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Abstract 

Dataparallel C is a SilvlD extension to the standard C programming language. It is derived 
from the original C* language developed by Thinking Machines Corporation. We have 
nearly completed a third-generation Dataparallel C · compiler, which transforms Dataparallel 
C programs into SPMD-style C code suitable for compilation and execution on NCUBE 
multicomputers. In this paper we elaborate on the characteristics and strengths of data­
parallel programming languages. We summarize the syntax and semantics of Dataparallel C, 
present six benchmark programs, and document the performance of these programs executing 
on the NCUBE 3200 multicomputer. Our work demonstrates that SilvlD source programs 
can achieve reasonble speedup when compiled and executed on MIMD computers. 
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1. Introduction 

The typical multicomputer programming language is an imperative language, such as C 
or FORTRAN, augmented with a variety of message-passing constructs. The difficulty 
of programming multicomputers using such languages is well known [l, 2, 3, 4, 5]. In 
response to this problem, a large number of high-level parallel programming languages have 
been proposed, including Booster [6, 7], C-Linda [8, 9], Crystal [10, 4], Coherent Parallel C 
[11], DINO [12, 13], Kali [14], Parallel Pascal [15, 16], and SEYMOUR [17]. 

In this paper we describe the high-level language Dataparallel C, which is derived from 
the original C* language developed by Thinking Machines Corporation [18]. Dataparal­
lel C is a data-parallel programming language: the only mechanism by which parallelism 
is achieved is through the simultaneous application of a single operation to an entire data 
set [19]. The fully synchronous semantics and the local view of the computation give 
Dataparallel C a number of important advantages over languages without these attributes. 
Synchronous execution eliminates race conditions and makes Dataparallel C programs deter­
ministic, greatly reducing the complexity of program debugging. Having a local view of the 
computation simplifies the introduction of data decomposition directives, which are essential 
in a distributed memory environment. 
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This paper describes experience with our third generation Dataparallel C compiler for a 
hypercube multicomputer. Our first compiler was based upon a general, but less efficient, 
control flow model [20]. Our second compiler introduced both efficient flow of control 
and a powerful communication optimizer, but was implemented in prototype form only [21, 
22, 23]. The third, and current, compiler is intended to be usable by the general research 
community. It features a full implementation of the language, including general pointer­
based communication and support for separate compilation. The compiler included new 
optimizations and utilizes an improved set of communication primitives. 

In the remainder of this paper we summarize the characteristics we have chosen for our 
high-level language, give an overview of Dataparallel C, and present the results of compiling 
and executing a set of benchmark Dataparallel C programs on a 64-node NCUBE 3200 
hypercube . 

Few high-level parallel programming environments are available to those who want to 
solve problems on parallel computers or design new parallel algorithms. We hope that 
this compiler, which can produce code for workstations and multicomputers, will stimulate 
further research in parallel computing. 

2. Design Choices for a High-Level Language 

The parallel programming community has recognized the need for better languages, and 
dozens of alternatives have been proposed. An examination of these languages reveals 
that the fundamental design questions have been answered in virtually every possible way. 
Should the language be imperative, functional, or based on logic programming? Should the 
parallelism be implicit or explicit? Should the computation be expressed in terms of global 
activity or from the view of one of the processes? Should the processes execute a single 
instruction stream or multiple instruction streams? Should memory be viewed as distributed 
or shared? 

We anticipate that there will be a variety of successful higher-level parallel programmng 
languages available to programmers of multicomputers in the next decade. However, we 
have chosen to concentrate on parallel languages with the following characteristics: 

Imperative style. Imperative languages are more familiar to most programmers and can 
be compiled more efficiently. We believe imperative languages are so well established 
that they will continue to be used, even if the interesting work being done in the 
areas of logic programming and functional programing languages leads to efficient 
implementations on parallel machines. 
Explicit parallelism. The programmer and compiler must work as a team to produce 
good parallel code. It is ridiculous for a programmer writing a new application to hide 
the parallelism inside sequential control structures and then ask the compiler to extract 
parallelism from the sequential code. The compiler-writer's job is hard enough-why 
add unnecessary complexity? 
Local view of the computation. The language associates a virtual processor with 
the fundamental unit of parallelism, and the computation is expressed in terms of the 
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operations performed by the virtual processors. A key problem in generating code for 
multicomputers, which have no shared . memory, is determining how to distribute the 
data among the individual memories of the physical processors. The compiler's job is 
simplified enormously when the programmer expresses the computation in terms of the 
actions of the virtual processors. 
Synchronous execution of a single instruction stream. Inside parallel code the virtual 
processors execute the same instructions in lock step. In other words, the language is 
SIMD (single instruction stream, multiple data stream). 
Global name space. Memory is distributed among the virtual processors, but every 
virtual processor can access the values of any other virtual processor. Processor 
interaction is through expressions, rather than explicit messages. 

Dataparallel C has these characteristics. As a result, it has the following desirable 
attributes: 

Versatility. Data parallelism is the natural paradigm for a large fraction of problems 
in science and engineering. In his study of 84 separate applications in the areas . of 
biology, chemistry and chemical engineering, geology, earth and space science, physics, 
astronomy, computer science, and other disciplines [24], Fox has found that "the source 
of parallelism is essentially always domain decomposition or data parallelism; a simple 
universal technique to produce high performance scaling parallel algorithms" [25]. 
Practicality. It is easy to convert sequential C programs into Dataparallel C code, because 
Dataparallel C allows arbitrary control structures within domain select statements. During 
a normal conversion process, many functions and the interior portions of many loops 
can be lifted from the C program and inserted into the Dataparallel C program with 
very few changes. 
Programmability. Data-parallel programs are easier to write than programs using lower­
level parallel constructs, because the synchronous model of execution means that there 
is only one locus of control: race conditions and deadlock are impossible. The illusion 
of a global name space means that the programmer does not have to get involved with 
explicit message passing, even if the underlying architecture does not have a global name 
space. The existence of virtual processors simplifies the data partitioning task. 
Together, the synchronous model of execution, globa1 name space, and virtual processors 
cause Dataparallel C programs to be much shorter than programs written in languages 
with low-level parallel constructs. In fact, Dataparallel C programs are usually about the· 
same length as the corresponding sequential program written in C. The extra code for 
defining parallel data structures and delimiting parallel program sections is compensated 
for by an elimination of for loops that sequentialize inherently parallel operations. 
Dataparallel C programs are easier to debug, too. Debugging MIMD programs is diffi­
cult, because interacting asynchronous processes can exhibit deadlock, race conditions, 
and nondeterminism. The execution of data-parallel programs is easily made determin­
istic, and the synchronous processes interact through shared variables in a predescribed 
manner--deadlock and race conditions are impossible. 
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Portability. Because Dataparallel C is based on a high-level abstract model of parallel 
computation, Dataparallel C programs are more machine:..independent than programs 
written in a language closer to the underlying hardware. As long as novel par~el 
computer architectures continue to appear with regularity, portability will be an especially 
valuable commodity. 
Reasonable performance . Our benchmark suite of Dataparallel C programs demonstrates 
that data-parallel programs can achieve high speedups on MIMD computers. In most 
cases our compiler does not generate code that executes as fast as programs hand written 
in a lower-level language. Karp and Babb have called programming languages with 
low-level parallel constructs "the equivalent of machine language" [2], and we feel the 
analogy is a good one. A proficient assembly language programmer can usually construct 
a program that executes faster than one automatically compiled from a higher-level 
language . If assembly language programs execute faster, why does anybody use a higher­
level language? Because other qualities have value, such as programmer productivity, 
code portability, and maintainability. In the general-purpose computing arena, execution 
time is not the only criterion . As parallel computing enters the mainstream, extracting 
every possible parallel cycle will become less important, and other issues will get the 
attention they deserve. 

3. Overview of Dataparallel C 

The Dataparallel C programming language is very similar to the original C* language 
designed by Rose and Steele {18]. We have added the notion of virtual topologies, extended 
the specification of pointers, and made array assignment a part of the language. 

The conceptual model presented to the Dataparallel C programmer is that of a front-end 
uniprocessor attached to an adaptable back-end parallel processor. The sequential portion 
of the Dataparallel C program (consisting of conventional C code) is executed on the front 
end. The parallel portion of the Dataparallel C program ( delimited by constructs not found 
in C) is executed on the back end. 

The back end is adaptable in that the programmer selects the number of processors to 
be activated . This number is independent of the number of physical processors that may 
be available on the hardware executing the Dataparallel C program. For this reason the 
Dataparallel C program is said to activate virtual processors when a parallel construct is 
entered. 

Vrrtual processors are allocated in groups. Each virtual processor in the group has an 
identical memory layout. The Dataparallel C programmer specifies a virtual processor's 
memory layout using syntax similar to the C struct. A new keyword domain is used to 
indicate that this is a parallel data declaration. Figure 1 contains a partial domain declaration 
for the mesh points of a hydrodynamics simulation. As in C structures, the names declared 
within the domain are referred to as members. 

Instances of a domain are declared using the C array constructor. Each domain instance 
becomes the memory for one virtual processor . The array dimension therefore indicates the 
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domain cell {double energy, density, temperature, pressure;}; 

#define KDIM 54 
#define LDIM 54 

Fig. 1. Declaring a domain. 

domain cell mesh[KDIM] [LDIM]; 

[domain cell].{ 
double templ; 

Fig. 2. Declaring virtual processors. 

templ = calculate_temperature(energy,density); 
temperature= (templ > TFLR? templ : TFLR); 
pressure= calculate_pressure(temperature,density); 

Fig. 3. Activating virtual processors. 

size of the virtual back-end parallel processor that is to be allocated. Figure 2 contains a 
domain array declaration. Note that domain arrays can be multidimensional. The number of 
virtual processors allocated is the product of the array dimensions. 

Data located in Dataparallel C's front-end processor is termed mono data. Data located 
in a back-end processor is termed poly data. 

Figure 3 illustrates the Dataparallel C domain select statement. The body of the domain 
select is executed by every virtual processor allocated for the particular domain type selected. 

· The virtual processors execute the body synchronously. The domain members are included 
within the scope of the body of the domain select. These names refer to the values local 
to a particular virtual processor. 

The code executing in a virtual processor of a Dataparallel C program can reference a 
variable in the front-end processor by referring to the variable by name. A variable that 
is visible in the immediately enclosing block of a domain select statement is visible within 
the domain select. The Dataparallel C compiler is responsible for making mono variables 
accessible at run time to the virtual processors. 

Similarly, the members of a domain instance are accessible everywhere in a program. 
The members of one domain can be read and written from within a domain select statement 
for a different domain. Poly data can also be read and written from the sequential portion 
of the program. The syntax employed is to provide a full domain array reference followed 
by a member reference. 

Dataparallel C, like C++, has a keyword this. In Dataparallel C this is a pointer to 
the domain instance currently being operated on by a virtual processor. Pointer arithmetic 
on this can be performed to access other virtual processors' members. 
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Dataparallel C provides a set of reduction operators, which accumulate poly values into 
· a mono location. All C assignment operators are overloaded for this purpose. The language 
includes new operators to express reductions that compute the minimum and maximum of 
a set of poly values. 

The sequential portion of a Dataparallel C program is just C code and executes according 
to the normal C semantics. Conceptually, the parallel sections of a Dataparallel C program 
execute synchronously under the control of a master program counter (MPC). A virtual 
processor's local program counter is either active, executing in step with the MPC, or 
inactive, waiting for the MPC to reach it. 

For example, the MPC steps through an if-then-else statement by first evaluating 
the control expression, then executing the then clause, and finally executing the else 
clause. A local program counter would also proceed first to the control expression. However, 
if the expression evaluated to zero (false in C), then the local program counter would proceed 
to the else clause and wait for the MPC to reach it. If the expression evaluated to nonzero 
(true in C), then the local program counter would wait at the then clause for the MPC. 

As well as being synchronous at the statement level, Dataparallel C is also synchronous at 
the expression level. No operator executes within a virtual processor unless all active virtual 
processors have evaluated their operands for the operator. Once the operands have been 
evaluated, the operator is executed as if in some serial order by all active virtual processors. 
This seemingly odd use of a serial ordering to define parallel execution is required to make 
sense of concurrent writes to the same memory location. 

Our implementation of Dataparallel C allows additional information to be provided by 
the programmer in order to aid the compiler in the mapping of virtual processors to physical 
processors. The array dimension of the domain array establishes a virtual topology. A 
one-dimensional domain array is considered to be a ring of virtual processors. A two­
dimensional domain array is considered to be a two-dimensional mesh of virtual processors 
with wraparound connections. In general, an n-dimensional domain array is considered to 
be an n-dimensional mesh of virtual processors with wraparound connections. 

These virtual topologies establish a convention of locality. Virtual processors that are 
adjacent in a virtual topology should be mapped by a compiler to physical processors that 
are "near" each other. On some architectures this information will be of little value and can 
be ignored by the compiler. On other architectures this can lead to large efficiency gains if 
the programmer exploits the feature and the compiler effectively implements it. 

For the common topologies (low dimension domain arrays), the compiler recognizes 
macros that provide convenient access to adjacent elements in the virtual topology. The 
macros return the address of the appropriate adjacent domain element In the one-dimensional 
case macros called successor and predecessor provide access to ring neighbors; in 
the two-dimensional case the macros north, south, east and west provide access to 
mesh neighbors. 

Additional keywords exist to aid the compiler in mapping a larger number of virtual pro­
cessors to a smaller number of physical processors. The keyword contiguous indicates 
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that blocks of adjacent domain elements should be mapped to the same physical processor. 
The keyword interleaved indicates that domain elements should be assigned to physical 
processors in a round-robin fashion. In the two-dimensional case, the keywords contigu­
ous_row, contiguous_col, interleaved_row, and interleaved_col exist to 
map rows and columns in toto. The keyword userspec indicates that the compiler should 
utilize user-written macros to implement an arbitrary mapping. 

4. Benchmark Programs and Results 

In this section we present a selection · of short Dataparallel C programs that serve as 
a preliminary benchmark suite for the compiler. We are currently in the process of 
implementing a variety of nontrivial applications in Dataparallel C, including the SIMPLE 
benchmark from Lawrence Livermore Labor~tory, an irregular mesh computation, and an 
underground contaminant transport model. · 

Many parallel programming environments have been reported in the literature, but there 
is a decided lack of hard performance data to facilitate comparisons between the various 
approaches. We invite comparisons between the performance of our compilers and other 
portable parallel programming environments, and to that end the programs in this section are 
completely self-contained. Every program generates whatever input data it needs and prints 
some sort of check sum result. 

A. Numerical Integration 

The area under the curve 4/(1 + x 2) between O and 1 is 1r. One way to compute the 
value of 1r, then, is to approximate the integral by calculating the sum 

1 N-1 4 

1r ~ N ~ 1 +x~ 
1=0 I 

using the rectangle rule, where Xi = (i + 1/2)/N is the midpoint of the ith interval. This 
numerical integration algorithm is the basis for two works contrasting the programming 
environments on a variety of parallel architectures [1, 2]. 

The problem is amenable to a data-parallel solution. We associate one virtual processor 
with every interval. Each virtual processor computes the height of its rectangle, and then 
all the individual heights are added to form a global sum. The total area is determined by 
multiplying the total height by the rectangle width. The Dataparallel C implementation of 
the 1r-finding algorithm appears in Figure 4. 

B. Relatively Prime Nwnber Computation 

The problem is to count the number of integer pairs (i,j) such that i and j are relatively 
prime, for 2 ~ i,j < N + 1. Two numbers are relatively prime if they have no prime 
factors in common; i.e., if their greatest common divisor is 1. For example, 3 and 5 are 
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/* Computation of pi using rectangle rule */ 

#define INTERVALS 400000 
#define ID (this-chunk) 

domain span char dummy; } chunk[INTERVALS]; 

main () 
{ 

double sum; 
double width; 

/* Sum of areas*/ 
/* Width of interval*/ 

width= 1.0 / INTERVALS; 

[domain span] . { 
double x; /* Midpoint of rectangle on x axis*/ 
x = (ID+0.S)*width; 
sum= (+= (4.0/(1.0+x*x))); 

sum*= width; 
print£ ("Value of pi is %14.12£\n", sum); 

Fig. 4. Dataparallel C program to compute 1r using numerical integration. 

relatively prime, since their greatest common divisor is 1, while 6 and 15 are not relatively 
prime, since their greatest common divisor is 3. The greatest common divisor of two integers 
can be found using Euclid's algorithm, which repeatedly replaces the larger value with the 
difference between the values until the two values are equal. 

This algorithm can be characterized as "embarrassingly parallel," since all candidate 
pairs may be examined simultaneously. It would be a mistake, however, to assume that 
simply because the virtual processors do not interact, a parallel algorithm will achieve high 
speedup. The first difficulty we encounter has to do with establishing the fundamental unit 
of parallelism. If we choose the integer pair to be the fundamental unit of parallelism and 
declare a two-dimensional array of domain instances to represent all possible pairs, then 
only those instances above the diagonal will be active (since we cannot count both ( i, j) and 
(j, i)). Creating twice as many virtual processors as needed wastes memory and reduces the 
maximum size problem we can solve. If we choose all integer pairs beginning with element 
i to be the fundamental unit of parallelism and declare a one-dimensional array of domain 
instances (one for every possible value of i), then there will be a high-level load imbalance 
between the virtual processors. We have decided to take another course: we define one virtual 
processor for each of the N ( N -1) / 2 unique pairs. This option solves the memory utilization 
and load-balancing problems; its disadvantage is the number of arithmetic operations needed 
for a virtual processor to determine which integer pair it is responsible for. 

An interesting feature of the problem is the variance in the amount of time needed 
to determine the greatest common divisor of two integers using Euclid's algorithm. For 
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example, determining that 6 and 12 are not relatively prime requires two comparisons and one 
subtraction, while determining that 6 and 13 are relatively prime requires eight comparisons 
and seven subtractions. The distribution of virtual processors to physical processors can 
determine whether all physical processors have a reasonable mix of "easy" and "difficult" 
pairs. 

It is important to note, however, that MIMD computers have an advantage over SIMD 
computers when emulating virtual processors in blocks whose execution times have large 
variances. On a SIMD computer, no virtual processor may continue execution beyond the end 
of a while loop until all processing elements have completed execution, because the system 
supports only a single instruction stream. A MIMD computer can execute a program that is 
semantically equivalent, yet not so tightly synchronized, taking advantage of the ability of 
every processor to execute its own instruction stream. Since there are no interactions among 
the virtual processors, CPUs on a MIMD computer can race ahead on the easy pairs and lag 
behind on the difficult pairs. In other words, every CPU executes at full speed throughout 
the computation, and the only inefficiency occurs at the end of the computation, when the 
CPUs must synchronize. For this reason MIMD computers can achieve higher efficiency 
than SIMD computers when executing embarrassingly parallel programs. 

The Dataparallel C program to count relatively prime integer pairs appears in Figure 5. 

C. Matrix Multiplication 

Matrix multiplication is a tempting target for a case study. The standard sequential 
algorithm has time complexity 0 ( N 3), and there are no data dependencies, so any reasonable 
parallel algorithm will have a good grain size. 

Matrix multiplication may be parallelized in a variety of ways, but the Dataparallel C 
program we benchmark is based upon a row-wise decomposition of the first matrix. A row­
wise decomposition makes use of the following property: when multiplying ·two matrices A 
and B to yield matrix C, the ith row of C is the product of the ith row of A and the entire 
matrix B. All of these vector-matrix products may be computed simultaneously. 

Our Dataparallel C program assigns one row of A, one column of B, and one row of C 
to every virtual processor. The program appears in Figure 6. 

D. Wars hall's Algorithm 

The transitive closure of an N x N binary relation can be found through flog Nl matrix 
multiplication-like steps, where multiplication is replaced by logical "and" and addition is 
replaced by logical "or." The time complexity of the resulting algorithm is 0(N 3 log N). 
Warshall observed that by pulling the innermost loop to the outermost level, only a single 
iteration is required, reducing the complexity of the algorithm to 0(N 3 ). 

Although Warshall's algorithm bears a superficial similarity to the standard matrix 
multiplication algorithm, it is not "embarrassingly parallel," since there are data dependencies 
between variables set and used in different iterations of the outermost loop. 
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/* Program to count number of relatively prime pairs*/ 

#include <math . h> 

#define N 128 
#define ID (this-x) 
#define FIRST (((1 + (int) sqrt((double) (8*ID+l)))/2)+1) 
#define SECOND (ID - (((i-l)*(i-2))/2) + 1) 

domain cell { char dummy; } x[N*(N-1)/2]; 

main() 
{ 

int count= 0; 

[ domain cell] . { 
if (gcd(FIRST,SECOND) == 1) count+= (poly) l; 

printf ("Number of relatively prime pairs is %d\n", count); 

int gcd(i, j) 
int i, j; 

while (i != j) 
if (i > j) i 
else j -= i; 

return (i); 

j; 

Fig. 5. Dataparallel C program to count number of relatively prime integer pairs. 

A Dataparallel C version of Warshall' s algorithm appears in Figure 7. Although the speed 
of the program can be increased by adding a test before the innermost for loop, we have 
omitted this test in order to make the execution time of the algorithm less data dependent. 

E. Gaussian Elimination 

Gaussian elimination is an 0(N 3 ) algorithm used to solve a system of linear equations 
Ax=b for the vector x. The principle behind Gaussian elimination is to reduce the number of 
unknowns from a system of linear equations by adding multiples of rows to other rows. After 
matrix A has been reduced to upper triangular form, back substitution is used to diagonalize 
the matrix. Once all of the off-diagonal elements have been reduced to zero, the elements 
of x may be found directly. 

Since Gaussian elimination is row-oriented, we choose to make the row the fundamental 
unit of parallelism. The algorithm requires N -1 iterations to reduce an N x N system. During 
iteration i the column i value in every unmarked row is driven to O by taking a linear 
combination of that row and the pivot row. For numerical stability the pivot row chosen is 
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/* Matrix multiplication in Dataparallel C */ 

#define N 128 
#define ROW (this-x) 
domain row { float a[N], btrans[N], c[N]; } x[N]; 

main() 
{ 

float checksum; 
int j, k; 

[domain row] . { 
for (j = 0; j < N; j++) { 

a[j] = 1.0 + N *ROW+ 
btrans[j] = 1.0 / (1.0 

/* Initialize matrices*/ 
j; 
+ N * j + ROW); 

for (j = 0; j < N; j++) /* Multiply matrices*/ 
float tmp, bcol[N]; 
tmp = 0.0; 
bcol = x[j] .btrans; 
for (k = 0; k < N; k++) 

tmp += a[k] * bcol[k]; 
c[j] = tmp; 

. checksum = 0 . 0; 
[ domain row] . { 

for (j = 0; j < N; j++) 
checksum+= c[j]; 

/* Print result*/ 

print£ ("Check sum is %13.6e\n", checksum); 

Fig. 6. Dataparallel C program to multiply two N x N matrices. 

the unmarked row whose column i value has the greatest magnitude. Once a row is used as 
a pivot row, it is marked, meaning that it is never again reduced or considered as a pivot 
row candidate. After the Gaussian elimination step the problem of solving Ax=b has been 
reduced to the problem of solving Ux=c, where U is an upper triangular matrix. 

The back substitution algorithm solves Ux=c. Given a system of size N, the algorithm 
has N -1 iterations. During each iteration the values above the diagonal in another column 
are reduced to zero, so that at the end of the reduction all elements above the main diagonal 

_ are zero. At this point the problem has been reduced to Dx=d, where D is a diagonal matrix, 
and the problem can be solved directly. 

A Dataparallel C program that generates and solves a system of linear equations appears 
in Figure 8. The function to generate pseudo-random numbers does not appear; our code is 
adapted from Pascal functions appearing in [26]. 
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/* Warshall's algorithm in Dataparallel C */ 

#define N 512 
#define SQUARE 64 
#define ID (this-x) 

domain row char a[N]; } x[N]; 

n 
n 
n 

main() n 
{ 

int checksum, j, k; 

[ domain row] . { 
for (j = 0; j < N; j++) a[j] = 0; /*Initialize*/ 
if (! ((ID+l) % SQUARE)) a[ID-SQUARE+l] = 1; 
else a[ID+l] = 1; 

for (k = 0; k < N; k++) { 
char row[N]; 
row= x[k] .a; 
for (j = 0; j < N; j++) 

a[j] I= (a[k] & row[j]); · 

checksum = 0; 
[domain row] . { 

for (j = 0; j < N; j++) 
checksum+= a[j]; 

/* Compute closure*/ 

/* Print result*/ 

printf ("Check sum is %d\n", checksum); 

Fig. 7. Dataparallel C implementation of Warshall' s algorithm. 

F. Prime Number Sieve 

A prime number has exactly two factors: itself and 1. A number is composite if it is 
not prime. The Sieve of Eratosthenes begins with a list of natural numbers 2, 3, 4, ... , N, 
then gradually weeds composite numbers from the list by marking multiples of 2, 3, 5, and 
successive primes. After the multiples of all primes up · to L ffeJ have been removed, the 
numbers remaining on the list are all prime numbers. 

Our Dataparallel C implementation of the Sieve of Eratosthenes associates with every 
virtual processor a block of natural numbers. When a new prime number v is found, every 
process strikes every vth element of its block, beginning with the first block element that is 
a multiple of v. The program appears in Figure 9. 

G. Results 

We present the results of executing the six benchmark programs in Table 1. For each 
execution we include the speedup of the parallel program on 64 processors over our best 
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/* Dataparallel C program to solve a system of linear equations*/ 

#define N 512 
#define EPSILON 1.0e-08 
#define FALSE 0 
#define TRUE 1 
idefine ID (this-r) 

double fabs(); float random(); 
domain system ( 

double a[N-f-1); 
int id, marked, pivot; 

r[N); 

main() 
{ 

double coeff, temp array[N+l), temp element; 
int i, mono_i, picked, solution;-

[domain system).{ 
int k, seed; 
id= ID; 
marked= 0; 
seed= id* id; 
a[NJ = 0.0; 
for (i = 0; i < N; i++) { 

a[i) = random(&seed); 
a[N] += i * a[i); 

solution= TRUE; 
for (i = O; (i < N-1) && solution; i++) ( 

double tmp; 
if ( !marked) 

if (max tournament(fabs(a[i]), id, &picked)) ( 
marked= 1; /* Mark pivot row*/ 
pivot= i; /* Remember permuted position*/ 

temp_array = r[picked].a; 
temp element= temp array[i]; 
if (fabs(temp element) < EPSILON) solution~ FALSE; 
else if (!marked) ( 

tmp = a[i) / temp element; 
for (k = i; k < N+l; k++) 

a[k) = a[k) - temp_array[k] * tmp; k++; 
} ; 

if (!marked) pivot= N-1; 
if (solution) ( 

for (i = N-1; i >= O; i--) 
if (pivot== i) picked= id; 
temp array= r[picked].a; 
coeff = temp array[N) / temp array[i); 
if (pivot< i) a[N) -= coeff-* a[i); 

if (solution) 
for (mono i = 0; mono i < N; mono_i++) 

int teip int; 
double temp_dbl; 
temp int= r[mono i).pivot; 
temp-dbl= r[mono-i].a[NJ/r[mono i].a[temp int]; 
printf ("x[%d] = %10.6f\n", temp=int, temp=dbl); 

else printf ("No solution\n"); 

Fig. 8. Dataparallel C program to solve a system of linear equations. 
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/* 

* 
*I 

#define 
#define 
#define 
#define 
#define 
#define 

Sieve of Erotosthenes in Dataparallel C 

NUMPROCS 64 
VPRATIO 125000 
N (NUMPROCS * VPRATIO) 
FALSE 0 
TRUE 1 
ID (this-x) 

domain natural char prime[VPRATIO]; 
int first, i, localsum, lowvalue; } x[NUMPROCS]; 

main() 
{ 

int candidate; /* Index of prime number candidate*/ 
int count; 

[domain natural].{ 
for (i = 0; i < VPRATIO; i++) prime[i] 
if (!ID) prime[0J = prime[l] = FALSE; 
lowvalue = VPRATIO*ID; 

TRUE; 

candidate= 2; /* First prime number * / 
while (candidate*candidate < N) { 

[domain natural].{ 
if (!ID) first= 2 * candidate; 
else { 

/ * Mark multiples of current prime*/ 

first= lowvalue . % candidate; 
if (first) first candidate - first; 

for (i = first; i < VPRATIO; i = i + candidate) prime[i] = FALSE; 
if (! ID) { 

i = candidate + 
while (prime [i] 
candidate= 

count 0; 

[domain natural].{ 
localsum = 0; 

i; 

l; 
FALSE) 

for (i = 0; i < VPRATIO; i=i+l) 

i 

if (prime(i] TRUE) localsum++; 
count+= localsum ; 
if ( !ID) 

/* Find next prime number 

i + l; 

printf ("There are %d primes less than %d\n", count , N); 

Fig. 9. Dataparallel C program to count prime numbers. 

*/ 

sequential version of the program executing on a single processor. When measuring the 
execution times of the sequential and parallel programs, we do not include the time needed 
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Program name Problem size Execution time Speedup 
(seconds) 

pi 400,000 0.41 38.67 

relprime 128 0.04 23.46 

relprime 256 0.16 30.48 

matmult 64 0.42 10.05 

matmult 128 1.96 17.82 

matmult 256 11.76 29.01* 

matmult 512 83.51 31.85* 

warshall 64 0.22 9.92 

warshall 128 0.79 21.53 

warshall 256 4.02 34.55* 

warshall 512 26.74 42.31* 

linearsystem 128 6.47 2.35 

linearsystem 256 24.54 5.22* 

linearsystem 512 109.80 9.35* 

primes 1,600,000 0.82 33.11* 

primes 4,800,000 1.92 46.02* 

primes 8,000,000 2.95 50.91* 

Table 1. Performance of compiled C* benchmark programs on a 64-processor 
NCUBE 3200. Speedup figures marked with a * are scaled speedup, 
because the problem is too large to be solved on a single processor. 

to generate the input data or print the results. We have been careful to choose fast sequential 
algorithms as standards against which our parallel code is compared. To further document 
the performance of the compiled programs, we have included their absolute execution times. 

Some of the programs are too large to solve on a single processor of the NCUBE, due 
to the 512 Kbyte primary memory size. · In these cases the table records the scaled speedup 
of the parallel algorithm; that is, the time required by the parallel algorithm divided into 
our best estimate of the time that would be needed to execute the sequential algorithm on a 
single processor, if it had enough primary memory. 

In some cases the speedups are satisfactory, give~ the parallel algorithm. For example, 
in the case of the Gaussian elimination program, the phase that reduces the sytem to upper 
triangular form achieves a speedup of 15.57 over the sequential program, but the back 
substitution phase, with its small number of computations per communication, actually runs 
more than 10 times slower than the sequential program, leading to an overall speedup of 
9 .35 on 64 processors. 
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In other cases the compiler could generate better code. For example, the compiler does 
not yet generate efficient code for nearest neighbor communications. Once this functionality 
has been added, we will be able to improve the speed of matrix multiplication significantly 
by implementing a systolic version of the algorithm in which the processors form a mesh 
and pass blocks of A and B to mesh neighbors. 

We want to emphasize that these speedups are real results, not projections. As we continue 
to refine our compiler and learn how to write more efficient code, the performance of the 
compiled Dataparallel C programs will improve. 

In another paper we have shown that Dataparallel C programs can ·be compiled for 
efficient execution on shared-memory multiprocessors [27]. Taken together, these results 
demonstrate that it is possible to execute programs written in a high-level parallel pro­
gramming language on two radicaly different parallel architectures and achieve reasonable 
speedups on both machines. 

5. Summary 

The typical commercial parallel programming language is too low-level and machine depen­
dent. Vendors have been slow to recognize that programming environments can be even 
more important than processing speed. As a result, there is a large gap between relatively 
sophisticated hardware and relatively primitive systems software. 

Given the dizzying pace at which new parallel computers are released, the gap between 
hardware and software will continue to increase, unless architecture-independent program­
ming environments are developed. Programmers are far more likely to develop parallel 
programs, if they know that the programs will not become worthless when the next gen­
eration machine appears. The data-parallel model of computation offers programmers an 
abstract machine with a single flow of control, virtual processors, and a global name space. 
This model is sufficient to solve many problems in science and engineering. 

We have implemented a compiler for the language Dataparallel C. The compiler generates 
C code suitable for cross-compilation and execution on the NCUBE 3200 multicomputer. The 
performance of our compiler on a set of benchmark programs demonstrates that data-parallel 
programs can be compiled for reasonably efficient execution on multicomputers. 
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