
90-80-2

j

LirUUEASITY

5CIErlCE

Architecture of the Parallel Programming Support Environment

T . G. Lewis
W. G. Rudd

Oregon Advanced Computing Institute (OACIS)
&

Department of Computer Science
Oregon State University

Corvallis, OR 97331-3902

l
n
n
n

I I

l I
I I
j

J

Architecture of the Parallel Programming Support Environment

T. G. Lewis and W. G. Rudd

Oregon Advanced Computing Institute
and

Department of Computer Science
Oregon State University
Corvallis, Oregon 97333

lewis@cs.orst.edu
rudd@cs.orstedu

Abstract

The Parallel Programming Support Environment (PPSE) is
an experimental integrated set of tools for the design and
construction of large software systems to run on parallel
computers. The tools include a graphical design editor, a
graphical target machine description system, a task
mapper/scheduler tool, parallel code generator, and
graphical aids for performance analysis. The objective is,
to the extent possible, to design and develop parallel
software with little regard for the details of the architecture
of the target machine, programming language, or parallel
computing paradigm that the program is to use.

1. Introduction

This paper provides a top-level view of the architecture of
the Parallel Programming Support Environment, which is an
experimental set of tools for use in the design and
implementation of software systems for parallel computing
systems. Our research in this area is an attempt to close the
gap between what the world of research in computer science
knows about programming languages and paradigms,
scheduling, code generation, and applications, and what is
available as tools in the development of software for
parallel computers. We want to build a dynamic framework
into which we can insert new modules that incorporate
usable results as they arise. We want to use the resulting
system as a testbed for these tools and for our ideas on the
overall process of the design and implementation of parallel
programs .

Using the PPSE Parallax graphical design editor, one can use
a hierarchical graphical description language called ELGDF,
Extended Large Grain Dataflow, to describe data and control
dependencies between tasks. One then uses the ·Target
Machine Editor to provide a graphical description of the
architecture of the machine on which the program is to run,
together with some performance parameters that indicate
processor speeds, communications delays, and bus rates.
The Task Grapher module takes the output from the Parallax
editor and from the Target Machine Editor and, using several
heuristics, generates Gantt chart descriptions of the
mapping of tasks onto processors and their scheduling. One
can use the resulting performance estimates as guides in
modifying the software or hardware designs or both to
improve performance. As an alternative, one can use the
Superglue module to generate source code for the target

1

machine, using code fragments for the lowest level tasks
supplied through the Parallax editor or from other sources.

We have a prototype of the environment running on the
Macintosh and we have used it to parallelize a small image
processing application and several simple programs. Our
current version of Superglue generates C-Linda code.
Continuing research includes efforts to define a formal
interface between the output from design tools and the PPSE
tools, increased emphasis on data partitioning in the tools,
expanding the list of target machines and languages,
expanding the range of the schedulers, and "test drives" of
the system on several significant applications.

We begin with a description of the design objectives and
architecture of the system. We then present a report on the
status of the system as of this writing, and conclude with a
summary of what we have learned so far in this research and a
description of plans for further work. A more detailed
discussion of the components of the system is to be found in
[RLEJ89] and [Lewi89].

2. Design Objectives

Currently, parallel computing architectures and software
development systems are in a rapid state of flux. To avoid
building a system that rapidly becomes obsolete and to try
to make the system usable over a broad range of hardware
and software environments, we have ·adopted two major
design objectives for the PPSE. First, we want the system to
be as independent of the target machine architecture,
configuration, programming language, and operating
system as we can make it In other words, in the design and
analysis process, we want to delay the binding to these
target system-specific details as long as we can.

Our other major objective is that we want the system to
accept software system design specifications from a wide
variety of software development tools, including analyzers
of existing programs, CASE tools, graphical design aids,
and high-level design languages. This requires a clean and
well-defined interface between the outside world and PPSE.

While there is nothing inherent in our approach that
restricts the level of granularity one can select to use with
our tools, the current implementations are best suited for a
large-grained approach, in which the lowest level nodes are
code modules or functions. The intent is that one can use
tools and techniques that are suited for working on finer

n
n
n
n

J

I J

j

u
u

grained approaches, such as vectorizing compilers, if the
target machine has vector processors, loop unrolling
strategies, and data parallel approaches to improve the
performance of the code in the lowest level nodes._

Experience indicates that, for the foreseeable future, the
development of parallel programs will be an iterative
process, in which one must repeatedly go through a cycle of
decomposing data and functions, perhaps altering the target
machine description, doing the recoding that is necessary as
a result of design changes, doing simulations to predict
performance, and then running, testing, and doing
performance analyses on the results. The PPSE is designed
to make this process as easy as is possible.

We intend for the PPSE to serve as a framework into which
we can incorporate new design tools, schedulers, code
generators, and other components as they become available.
Here again, the intent is to avoid binding to particular
environments and technologies as much as we can in order
to support the broadest range of options that we can.

3. Structure of the PPSE

I Select
Algori

I-

- Manual IJpdai.

-Aulomalic Update

ExOQJtion Profile)
Analyzer

- - - - -·- -

Machine
DNorip

p--
EalinalN

Figure 1. The top-level architecture of the Parallel
Programming Support Environment . Ovals represent
processes and rectangles represent information.

As can be seen from the overfiew of the system in Figure 1,
we are concerned with both of the problems of software
engineering for parallel computing systems. We want the

2

system to be of use in the re-engineering process in which
we want to parallelize existing "dusty deck" programs.
Secondly, we want our tools to be applicable to the problem
of developing new systems of parallel programs . Therefore,
at the top of Figure 1, we indicate two sources of input for
the initial program design and code. On the left side we
indicate that a reverse engineering tool will accept existing
programs and convert them into a form that our tools can
process. In the center, we indicate that our Parallax
graphical editor [Kim89] can also be used to input the
original design for the software. In either case, the design -
including data and control flow information - is captured in
the PP Design File. The Parallax editor can then be used to
alter the design, no matter what its original source was.

The Parallax editor works with a graphical design language
called Extended Large Grain Dataflow, or ELGDF [ElLe89a].
This language arises from the same impetus as do LGDF2
[DiBa88], CODES [BASo89], and other high-level graphical
design aids. It is a hierarchical language that offers several
graphical constructs, such as pipes, loops, repeated nodes,
and special dataflow arcs to indicate mutually exclusive
access to data.

In order to predict performance later in the process, the user
enters into the initial design description estimates of how
long it will take to execute the tasks at the lowest-level
nodes in the design specification and how much data will be
transmitted on each dataflow arc . The schedulers and
mappers and performance estimators use these estimates in
performing their tasks. These data can be updated
automatically with real values from the performance
measurement tools once the program has been run on the
target machine.

The examples we show in Figures 2 through 6 are from the
use of the system in parallelizing a small (3,000 lines of
Fortran) image processing application [JuRu89]. Figure 2
shows the top-level ELGDF diagram for the image
processing example.

Figure 2. A top-level ELGDF diagram for the image
processing example.

7
1
n
n
n
l

l

j

J

I
j

u

An important feature of the PPSE is that the user can obtain
a great deal of experimentation with software and data
decomposition and with matches of software designs to
target hardware without actually writing any source code for
the target hardware. · Thus, the actual coding can be delayed
until most of the design details have been tested through the
use of the scheduling and simulation tools. Once the initial
design has been developed and tried with the schedulers and
simulators, one can use the Macintosh text editor from the
Parallax editor, or any other editor, to generate the code
fragment files. The code fragments are the software modules
that carry out the processes indicated in the lowest-level
nodes or tasks in the ELGDF design or in the PP Design File.
As noted above, in practice these correspond to code
modules or functions.

On the hardware side, we use our Target Machine Editor to
enter the necessary description of the architecture of the
target machine or network and its configuration. This
editor allows the user to use a PMS-style graphical language
[SBNe82] to specify arbitrary systems. The user enters
data that indicate processor speeds and data transfer rates on
communications paths. These data are combined to form a
Target Machine Description File, which is used by the
scheduling and mapping to~ls and by the code generator
tool. Figure 3 shows a possible hardware configuration for
our image processing example.

Figure 3. A proposed target machine architecture for the
image processing problem.

Once the design specifications and target machine
description have been created, or modified if this is not the

3

first time through the software implementation cycle, the PP
Design File is transformed into a task graph, which is
simply a precedence graph with nodes weighted with
estimated or measured execution times and arcs weighted
with quantities of data to be transmitted. A Task Graph for
the image processing example is shown in Figure 4.

Figure 4. A task graph for the image processing example.

The Task Grapher uses these and the target machine
description to apply (currently) seven different scheduling
and mapping heuristics. These heuristics include a simple
level approach [Hu61] and six new heuristics developed at
OSU [E1Le89], [El89], [Kru87]. The latter techniques take
communications delays between processors into account.
One of the outputs from the scheduling and mapping tools is
a set of Gantt charts that indicate the which processes are to
be run on which processors at what times. Figure 5 shows a
Gantt chart for the image processing application.

n
n
0
n
n
n

f I

J

l I
l)

l J

IJ
J

u

nme
0

2

3

4

s

6

7

8

9

10

Processors

Cu

11

12

13

14

IS

16

17

18

19

20

21

22

23

24

2S

26

27 rn:l

2 3 4

Figure 5. A Gantt chart schedule for the image processing
example.

These schedules are themselves performance estimates, and
we have several tools that can be used at this stage to
analyze the simulated performance further . One can also use
the editor that is built in to the Task Grapher to alter the
original task graph, and the Task Grapher also functions as a
stand-alone design tool [Fort89].

The Task Grapher produces as outputs bar charts showing
processor utilization and efficiency, a animated simulation

4

of the execution of the program, speedup curves, and other
data . In Figure 6, we show a speedup curve for the image
processing example .

s l5

p 4

•
• 3
d
u 2
p

0 ...__"T"""_---,- - -.---..------.----,
3 .0 5.5 8.0 10.5 13.0 15.5 18.0

Numbtr of Proc•ssors
•osH •K1

Figure 6. Speedup curve for the image processing example
for two different scheduling heuristics .

If real cod~ is to be developed. the Superglue tool [Hand90]
takes source code from the code fragments, dataflow
information from the PP Design File, the target machine
description , and a Gantt chart schedule and creates source
code ready for compilation . In other words, it is at this
stage that we make the final binding to a programming
language and parallel computing control method. Superglue
can automatically insert timing function calls into the code
so that real performance data can be recorded for subsequent
analysis. An option that we have not yet implemented is to
have Superglue insert calls to animation and debugging
routines .

4. Progress to Date

We are currently in the early prototype stage in this project.
While the system has gaps in it that must be manually
overcome, the tools are not yet well-integrated, and we
cannot yet deal with a diverse set of target languages and
systems, we have nevertheless had enough experience with
it to have proved the concepts involved.

The tools now run on large Macintosh computers with a
Hypercard top level for control, file management, and help.
To date, Superglue generates code only for parallel
computing systems that use C-Linda for control of and
communication between parallel processes. We have run
codes generated by the system and collected performance
data Sequent Balance and Symmetry and Intel iPSC2
computer systems to date.

Our experience with several applications shows that the
tools described thus far really are powerful aids in the
development of parallel program systems. While we have
not tested their use in a course on parallel programming, we
suspect that they will be fine teaching aids, as well.

In the development of the image processing application, we
found that, while the lack of integration between the
components is a definite hindrance, the tools really did help
us develop a code that performs at levels that would have
been difficult to achieve without the system. The Fortran
code fragments were written by hand in this experiment.

l
7
n
n
n

fl

J

lJ
u
J

In the process, we discovered that a valuable product of the
Task Grapher is that it can indicate possible paths that are
not worth taking early in the design process. For example,
one might conclude from the task graph in Figure 4 that an
18-processor system like that shown in Figure 3 might
improve performance on this problem. But the speedup
curve in Figure 6 indicates that there is not much use in
putting more than 4 processors to work on this
computation.

We have also developed small programs that have improved
significantly in performance after each of several cycles
around the design and implementation loop. We have
explored several cases in which actual performance
measurements were fed back into the Task Grapher, with the
result that improved schedules resulted in further
improvements in performance.

One interesting fact that we have observed in monitoring
the use of the PPSE as it stands is that there are at least two
different top-level approaches to parallel program design.
In one approach, for which our current ELGDF is well suited,
the user emphasizes the functions to be performed and their
decomposition. In this approach, the user distributes
processes onto processors, and then partitions the data to fit
onto the distributed processes. In the other approach we
have observed, the user begins by partitioning the data in
some logical way that fits with the algorithm, and then, in a
sense distributes processes to carry out the computations
onto the data partitions. The scheduling and mapping tools
then map the processes onto processors. Our current ELGDF
language is not well suited to the latter approach.

In this paper we emphasize the architecture of the PPSE
itself. Some of our co-workers in this large team project are
constructing new components that have been or soon will
be added to the environment. Harrison and Gifford [HaGi89]
have developed a prototype of a system that automatically
converts Fortran source code into a Prolog fact base that is
then converted into an ELGDF equivalent of the program.
Others in the project, including Bella Bose and his students
[A1Bo88, 89a,89b,89c], have developed algorithms for the
efficient partitioning of hypercubes into subcubes, while
still others, including Virginia Lo and Sanjay Rajopadhye
and their students [LoRa89a, b, LRGK90], have developed
powerful techniques for describing and analyzing problems
with high levels of regularity to run on regular architectures.

5. Work in Progress

We are now beginning the second year of effort on this
project . Our experience indicates that we should focus our
attention on the following issues:

Data partitioning. As noted above, ELGDF has a process
oriented flavor to it, with essentially no explicit means for
describing or restructuring data between processes. Since
we do not bind to an architecture or language at the design
stages, we need to implement means in ELGDF to allow the
user to explicitly indicate where data partitioning or views
change in the dataflow. We plan to do this by using the
notion of constrained dataflow [Stee89], in which, if
needed, one can specify logical input and output channels

5

for a node, and can then apply a data mapping function to
partition, project, merge, construct a new view, or do other
similar transformations on data structures .

Formal definition of ELGDF. This graphical design
notation was originally conceived as a back-of-the-envelop
design aid, and thus the original intent was to allow the user
to define details of the meanings of the objects of the
language as she saw fit. As the project has evolved, it has
become clear that we are coming close to compiling ELGDF.
Therefore, we need to produce a more formal definition of
the language features than was heretofore necessary.

Entry interface to the core of the system. As we indicated
above, ELGDF is just one of a host of possible sources for
high-level design specifications that our system could
process. In order for our system to work with other design
tools, we need to construct a well-defined general interface
to our system, so that we can write filters that convert
output from other tools into a form that our system can
process. We see no reason to go farther in this regard than
to extend our current internal dataflow notation to a simple
more· general guarded command notation.

Scheduling loops and branches. Our scheduling and
mapping tools produce static schedules that can be
converted into source code to be compiled. This means
that, although ELGDF diagrams (and real programs!) include
conditional branches and loops that cannot really be
scheduled statically, our system cannot presently handle
these dynamic control structures. Therefore, for now all
loops and branches must be hidden in low-level nodes; we
cannot now handle branches and loops in the task graphs
that our tools process. We plan to explore several ways in
which to circumvent this current limitation of our system,
including scheduling the longest critical path and using a
priori estimates of probabilities of execution paths to try
to generate reasonable schedules.

Enhanced Superglue. Superglue now produces C-Linda code,
and we soon will be able to generate message-passing code
for NCUBE hypercube systems. Immediate plans are to
extend Superglue to produce code for the Cogent parallel
computer and to generate Strand code, which will extend the
utility of our tools to include several other kinds of parallel
computing systems beyond those we can now support. We
also plan to incorporate the SCHEDULE package [DoSo87]
into the system soon.

Test drives. A difficult practical aspect in research in tools
for the development of large-scale software systems is that
it is expensive and time-consuming to test one's ideas, for,
in order to do so, one must use the tools, ideally in a
controlled experimental setting, to develop significant
software packages. While we cannot afford to do real
experiments, we do have several projects on the drawing
board in which experts from other domains will work with
software engineers to create parallel software systems for
applications in those domains. We plan such projects in
genetic sequencing, factoring large integers, and finite
element modelling.

n
n
n
n

f I

l

lJ
lJ
J

6. Conclusions

We have embarked on a significant experiment in parallel
software engineering in which we are developing an
integrated framework into which tools can be inserted to aid
in the process all the way from initial top level design to
performance measurement and for additional iterations
through this process. Our preliminary results using the
tools indicate that this approach is a sound one. We suggest
that, until we have a much finner idea of how the entire
process might be more fully automated, perhaps through the
development of "genius" compilers, ours and similar
systems will be the preferred environments for the
foreseeable future. ·

The PPSE is available for research use through the authors.
Also, we would like to establish collaborative relationships
with other groups that have tools available that might fit
into our framework.

While the system is designed to cover a wide range of
architectures and languages, the techniques and the system
can be specialized easily to aid in developing software for
single architectures and languages. We encourage computer
manufacturers and software developers to consider the PPSE
as a way to make parallel programming easier for their
customers .

7. Acknowledgments

We are particularly grateful to Sequent Computer Systems
and to Apple Computer, Inc., for their support of this work.

References

[A1Bo88]

[AIBo89a]

[AIBo89b]

[A1Bo89c]

[BASo89]

A. Al-Dhelaan and B. Bose, "Incomplete
cube-connected cycles," Proc., Canadian
Conference on Electrical and Computer
Engineering, pp. 573-576, Nov. 1988.

A. Al-Dhelaan and B. Bose, "Efficient fault
tolerant broadcasting algorithms for
hypercube," Proc., Fourth Conference on
HypercubeConcurrent Computers and
Applications, March 1989.

A. Al-Dhelaan and B. Bose, "New strategy
for processors allocation in an N-Cube
multiprocessors," Proc., Int. Phoenix
Conference on Computers and
Communications, pp. 114-118, March
1989.

A. Al-Dhelaan and B. Bose, "Efficient fault
tolerant broadcasting algorithm for the
cube-connected cycles network," Proc., The
IEEEPacific Rim Conference on
Communications, Computers, and Signal
Processing, June 1989.

Brown, J. C., M. Azam, and S. Sobek,
"CODE: A Unified Approach to Parallel

[BaDi87]

[DoSo87]

[E1Re89]

[E1Le88]

[E1Le89]

[Fort89]

[Hand90]

[Hu61]

[JuRu89]

[Kim89]

6

Programming," IEEE Software, pp. 10-18,
1989.

Babb, R. and D. DiNucci, "Design and
Implementation of Parallel Programs with
Large-grain Dataflow," in Characteristics
of Parallel Algorithms, Jamieson, Leah H.,
Dennis B. Gannon, and Robert J. Douglass,
eds., MIT Press, Cambridge, MA, pp. 335-
349, 1987.

Dongarra, J. and D. Sorensen,
"SCHEDULE: A Tool for Developing and
Analyzing Parallel Fortran Programs," in
Characteristics of Parallel Algorithms,
Jamieson, Leah H., Dennis B. Gannon, and
Robert J. Douglass, eds., MIT Press,
Cambridge, MA, pp. 363-394, 1987.

El-Rewini, H. "Task Partitioning and
Scheduling on Arbitrary Parallel
Processing Systems." unpublished PhD
dissertation, Dept. of Computer Science,
Oregon State University, 1989.

El-Rewini, H. and T. G. Lewis, "Software
Development in Parallax: The ELGDF
Language," Technical Report (88-60-17),
Dept. of Computer Science, Oregon State
University, 1988.

El-Rewini, H. and T . . G. Lewis, "Static
Mapping of Task Graphs with
Communications onto Arbitrary Target
Machines - Case Study: Hypercube," Proc
BISYCP '89, China, 1989. ,

Fortner, P. "MacSchedule: Tool for
Scheduling Parallel Tasks," unpublished
Master's thesis, Dept. of Computer
Science, Oregon State University, 1989.

Handley, S. "Superglue: Tool for
Automatic Code Generation," unpublished
Master's thesis, Dept. of Computer
Science, Oregon State University, (in
preparation).

Hu, T. "Parallel Sequencing and Assembly
Line Problems," Operations Research 9,
pp 841-848, 1961.

Judge, D. and W. G. Rudd, "A Test Case for
the Parallel Programming Support
Environment: Parallelizing the Analysis
of Satellite Imagery Data," Technical
Report (89-80-2), Dept. of Computer
Science, Oregon State University, 1989.

Kim, I. "Parallax: An Implementation of
ELGDF," unpublished Master's thesis,
Dept. of Computer Science, Oregon State
University, 1989.

l
n
n
n
n

l

]

J

u

j

u

[Krua87]

[Lewi89]

[LoRa89a]

[LoRa89b]

[LRGK90]

[RLEJ89]

[SBNe82]

[Stee89]

Kruatrachue, B. "Static Task Scheduling and
Grain Packing in Parallel Processing
Systems," unpublished PhD dissertation,
Dept. of Computer Science, Oregon State
University, 1987

Lewis, T. G., "Parallel Programming
Support Environment Research, Technical
Report TR Lewis 89-1, Oregon Advanced
Computing Institute, 1989.

Lo, V. M. and S. Rajopadhye, "LaRCS:
Language for Regular Communication
Structures", unpublished manuscript, 1989.

Lo, V. M. and S. Rajopadhye, "Mapping
Distributed Divide-and-Conquer Algorithms
onto Parallel Architectures", unpublished
manuscript, 1989.

Lo, V. M., S. Rajopadhye, S. Gupta, D.
Keldsen, M. Moataz, and J. Telle,
"OREGAMI: Software Tools for Mapping
Parallel Algorithms to Parallel
Architectures", unpublished manuscript,
1990.

Rudd, W. G., T. G. Lewis, H. El-Rewini, D.
Judge, S. Handley, and I. Kim, "Status
Report: Parallel Programming Support
Environment Research at Oregon State
University," Technical Report (89-80-1),
Dept. of Computer Science, Oregon State
University, 1989.

Sieworek, Daniel P., C. Gordon Bell, and
Allen Newell, Computer Structures:
Principles and Examples, McGraw-Hill,
New, York, NY, pp 18-22, 1982.

Steer, K., private communication

7

	Lewis_Rudd_90_80_02_A
	Lewis_Rudd_90_80_02_B

