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Abstract 

The Parallel Programming Support Environment (PPSE) is 
an experimental integrated set of tools for the design and 
construction of large software systems to run on parallel 
computers. The tools include a graphical design editor, a 
graphical target machine description system, a task 
mapper/scheduler tool, parallel code generator, and 
graphical aids for performance analysis. The objective is, 
to the extent possible, to design and develop parallel 
software with little regard for the details of the architecture 
of the target machine, programming language, or parallel 
computing paradigm that the program is to use. 

1. Introduction 

This paper provides a top-level view of the architecture of 
the Parallel Programming Support Environment, which is an 
experimental set of tools for use in the design and 
implementation of software systems for parallel computing 
systems. Our research in this area is an attempt to close the 
gap between what the world of research in computer science 
knows about programming languages and paradigms, 
scheduling, code generation, and applications, and what is 
available as tools in the development of software for 
parallel computers. We want to build a dynamic framework 
into which we can insert new modules that incorporate 
usable results as they arise. We want to use the resulting 
system as a testbed for these tools and for our ideas on the 
overall process of the design and implementation of parallel 
programs . 

Using the PPSE Parallax graphical design editor, one can use 
a hierarchical graphical description language called ELGDF, 
Extended Large Grain Dataflow, to describe data and control 
dependencies between tasks. One then uses the ·Target 
Machine Editor to provide a graphical description of the 
architecture of the machine on which the program is to run, 
together with some performance parameters that indicate 
processor speeds, communications delays, and bus rates. 
The Task Grapher module takes the output from the Parallax 
editor and from the Target Machine Editor and, using several 
heuristics, generates Gantt chart descriptions of the 
mapping of tasks onto processors and their scheduling. One 
can use the resulting performance estimates as guides in 
modifying the software or hardware designs or both to 
improve performance. As an alternative, one can use the 
Superglue module to generate source code for the target 
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machine, using code fragments for the lowest level tasks 
supplied through the Parallax editor or from other sources. 

We have a prototype of the environment running on the 
Macintosh and we have used it to parallelize a small image 
processing application and several simple programs. Our 
current version of Superglue generates C-Linda code. 
Continuing research includes efforts to define a formal 
interface between the output from design tools and the PPSE 
tools, increased emphasis on data partitioning in the tools, 
expanding the list of target machines and languages, 
expanding the range of the schedulers, and "test drives" of 
the system on several significant applications. 

We begin with a description of the design objectives and 
architecture of the system. We then present a report on the 
status of the system as of this writing, and conclude with a 
summary of what we have learned so far in this research and a 
description of plans for further work. A more detailed 
discussion of the components of the system is to be found in 
[RLEJ89] and [Lewi89]. 

2. Design Objectives 

Currently, parallel computing architectures and software 
development systems are in a rapid state of flux. To avoid 
building a system that rapidly becomes obsolete and to try 
to make the system usable over a broad range of hardware 
and software environments, we have ·adopted two major 
design objectives for the PPSE. First, we want the system to 
be as independent of the target machine architecture, 
configuration, programming language, and operating 
system as we can make it In other words, in the design and 
analysis process, we want to delay the binding to these 
target system-specific details as long as we can. 

Our other major objective is that we want the system to 
accept software system design specifications from a wide 
variety of software development tools, including analyzers 
of existing programs, CASE tools, graphical design aids, 
and high-level design languages. This requires a clean and 
well-defined interface between the outside world and PPSE. 

While there is nothing inherent in our approach that 
restricts the level of granularity one can select to use with 
our tools, the current implementations are best suited for a 
large-grained approach, in which the lowest level nodes are 
code modules or functions. The intent is that one can use 
tools and techniques that are suited for working on finer 
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grained approaches, such as vectorizing compilers, if the 
target machine has vector processors, loop unrolling 
strategies, and data parallel approaches to improve the 
performance of the code in the lowest level nodes._ 

Experience indicates that, for the foreseeable future, the 
development of parallel programs will be an iterative 
process, in which one must repeatedly go through a cycle of 
decomposing data and functions, perhaps altering the target 
machine description, doing the recoding that is necessary as 
a result of design changes, doing simulations to predict 
performance, and then running, testing, and doing 
performance analyses on the results. The PPSE is designed 
to make this process as easy as is possible. 

We intend for the PPSE to serve as a framework into which 
we can incorporate new design tools, schedulers, code 
generators, and other components as they become available. 
Here again, the intent is to avoid binding to particular 
environments and technologies as much as we can in order 
to support the broadest range of options that we can. 

3. Structure of the PPSE 
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Figure 1. The top-level architecture of the Parallel 
Programming Support Environment . Ovals represent 
processes and rectangles represent information. 

As can be seen from the overfiew of the system in Figure 1, 
we are concerned with both of the problems of software 
engineering for parallel computing systems. We want the 
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system to be of use in the re-engineering process in which 
we want to parallelize existing "dusty deck" programs. 
Secondly, we want our tools to be applicable to the problem 
of developing new systems of parallel programs . Therefore, 
at the top of Figure 1, we indicate two sources of input for 
the initial program design and code. On the left side we 
indicate that a reverse engineering tool will accept existing 
programs and convert them into a form that our tools can 
process. In the center, we indicate that our Parallax 
graphical editor [Kim89] can also be used to input the 
original design for the software. In either case, the design -
including data and control flow information - is captured in 
the PP Design File. The Parallax editor can then be used to 
alter the design, no matter what its original source was. 

The Parallax editor works with a graphical design language 
called Extended Large Grain Dataflow, or ELGDF [ElLe89a]. 
This language arises from the same impetus as do LGDF2 
[DiBa88], CODES [BASo89], and other high-level graphical 
design aids. It is a hierarchical language that offers several 
graphical constructs, such as pipes, loops, repeated nodes, 
and special dataflow arcs to indicate mutually exclusive 
access to data. 

In order to predict performance later in the process, the user 
enters into the initial design description estimates of how 
long it will take to execute the tasks at the lowest-level 
nodes in the design specification and how much data will be 
transmitted on each dataflow arc . The schedulers and 
mappers and performance estimators use these estimates in 
performing their tasks. These data can be updated 
automatically with real values from the performance 
measurement tools once the program has been run on the 
target machine. 

The examples we show in Figures 2 through 6 are from the 
use of the system in parallelizing a small (3,000 lines of 
Fortran) image processing application [JuRu89]. Figure 2 
shows the top-level ELGDF diagram for the image 
processing example. 

Figure 2. A top-level ELGDF diagram for the image 
processing example. 
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An important feature of the PPSE is that the user can obtain 
a great deal of experimentation with software and data 
decomposition and with matches of software designs to 
target hardware without actually writing any source code for 
the target hardware. · Thus, the actual coding can be delayed 
until most of the design details have been tested through the 
use of the scheduling and simulation tools. Once the initial 
design has been developed and tried with the schedulers and 
simulators, one can use the Macintosh text editor from the 
Parallax editor, or any other editor, to generate the code 
fragment files. The code fragments are the software modules 
that carry out the processes indicated in the lowest-level 
nodes or tasks in the ELGDF design or in the PP Design File. 
As noted above, in practice these correspond to code 
modules or functions. 

On the hardware side, we use our Target Machine Editor to 
enter the necessary description of the architecture of the 
target machine or network and its configuration. This 
editor allows the user to use a PMS-style graphical language 
[SBNe82] to specify arbitrary systems. The user enters 
data that indicate processor speeds and data transfer rates on 
communications paths. These data are combined to form a 
Target Machine Description File, which is used by the 
scheduling and mapping to~ls and by the code generator 
tool. Figure 3 shows a possible hardware configuration for 
our image processing example. 

Figure 3. A proposed target machine architecture for the 
image processing problem. 

Once the design specifications and target machine 
description have been created, or modified if this is not the 
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first time through the software implementation cycle, the PP 
Design File is transformed into a task graph, which is 
simply a precedence graph with nodes weighted with 
estimated or measured execution times and arcs weighted 
with quantities of data to be transmitted. A Task Graph for 
the image processing example is shown in Figure 4. 

Figure 4. A task graph for the image processing example. 

The Task Grapher uses these and the target machine 
description to apply (currently) seven different scheduling 
and mapping heuristics. These heuristics include a simple 
level approach [Hu61] and six new heuristics developed at 
OSU [E1Le89], [El89], [Kru87]. The latter techniques take 
communications delays between processors into account. 
One of the outputs from the scheduling and mapping tools is 
a set of Gantt charts that indicate the which processes are to 
be run on which processors at what times. Figure 5 shows a 
Gantt chart for the image processing application. 
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Figure 5. A Gantt chart schedule for the image processing 
example. 

These schedules are themselves performance estimates, and 
we have several tools that can be used at this stage to 
analyze the simulated performance further . One can also use 
the editor that is built in to the Task Grapher to alter the 
original task graph, and the Task Grapher also functions as a 
stand-alone design tool [Fort89]. 

The Task Grapher produces as outputs bar charts showing 
processor utilization and efficiency, a animated simulation 
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of the execution of the program, speedup curves, and other 
data . In Figure 6, we show a speedup curve for the image 
processing example . 
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Figure 6. Speedup curve for the image processing example 
for two different scheduling heuristics . 

If real cod~ is to be developed. the Superglue tool [Hand90] 
takes source code from the code fragments, dataflow 
information from the PP Design File, the target machine 
description , and a Gantt chart schedule and creates source 
code ready for compilation . In other words, it is at this 
stage that we make the final binding to a programming 
language and parallel computing control method. Superglue 
can automatically insert timing function calls into the code 
so that real performance data can be recorded for subsequent 
analysis. An option that we have not yet implemented is to 
have Superglue insert calls to animation and debugging 
routines . 

4. Progress to Date 

We are currently in the early prototype stage in this project. 
While the system has gaps in it that must be manually 
overcome, the tools are not yet well-integrated, and we 
cannot yet deal with a diverse set of target languages and 
systems, we have nevertheless had enough experience with 
it to have proved the concepts involved. 

The tools now run on large Macintosh computers with a 
Hypercard top level for control, file management, and help. 
To date, Superglue generates code only for parallel 
computing systems that use C-Linda for control of and 
communication between parallel processes. We have run 
codes generated by the system and collected performance 
data Sequent Balance and Symmetry and Intel iPSC2 
computer systems to date. 

Our experience with several applications shows that the 
tools described thus far really are powerful aids in the 
development of parallel program systems. While we have 
not tested their use in a course on parallel programming, we 
suspect that they will be fine teaching aids, as well. 

In the development of the image processing application, we 
found that, while the lack of integration between the 
components is a definite hindrance, the tools really did help 
us develop a code that performs at levels that would have 
been difficult to achieve without the system. The Fortran 
code fragments were written by hand in this experiment. 
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In the process, we discovered that a valuable product of the 
Task Grapher is that it can indicate possible paths that are 
not worth taking early in the design process. For example, 
one might conclude from the task graph in Figure 4 that an 
18-processor system like that shown in Figure 3 might 
improve performance on this problem. But the speedup 
curve in Figure 6 indicates that there is not much use in 
putting more than 4 processors to work on this 
computation. 

We have also developed small programs that have improved 
significantly in performance after each of several cycles 
around the design and implementation loop. We have 
explored several cases in which actual performance 
measurements were fed back into the Task Grapher, with the 
result that improved schedules resulted in further 
improvements in performance. 

One interesting fact that we have observed in monitoring 
the use of the PPSE as it stands is that there are at least two 
different top-level approaches to parallel program design. 
In one approach, for which our current ELGDF is well suited, 
the user emphasizes the functions to be performed and their 
decomposition. In this approach, the user distributes 
processes onto processors, and then partitions the data to fit 
onto the distributed processes. In the other approach we 
have observed, the user begins by partitioning the data in 
some logical way that fits with the algorithm, and then, in a 
sense distributes processes to carry out the computations 
onto the data partitions. The scheduling and mapping tools 
then map the processes onto processors. Our current ELGDF 
language is not well suited to the latter approach. 

In this paper we emphasize the architecture of the PPSE 
itself. Some of our co-workers in this large team project are 
constructing new components that have been or soon will 
be added to the environment. Harrison and Gifford [HaGi89] 
have developed a prototype of a system that automatically 
converts Fortran source code into a Prolog fact base that is 
then converted into an ELGDF equivalent of the program. 
Others in the project, including Bella Bose and his students 
[A1Bo88, 89a,89b,89c], have developed algorithms for the 
efficient partitioning of hypercubes into subcubes, while 
still others, including Virginia Lo and Sanjay Rajopadhye 
and their students [LoRa89a, b, LRGK90], have developed 
powerful techniques for describing and analyzing problems 
with high levels of regularity to run on regular architectures. 

5. Work in Progress 

We are now beginning the second year of effort on this 
project . Our experience indicates that we should focus our 
attention on the following issues: 

Data partitioning. As noted above, ELGDF has a process
oriented flavor to it, with essentially no explicit means for 
describing or restructuring data between processes. Since 
we do not bind to an architecture or language at the design 
stages, we need to implement means in ELGDF to allow the 
user to explicitly indicate where data partitioning or views 
change in the dataflow. We plan to do this by using the 
notion of constrained dataflow [Stee89], in which, if 
needed, one can specify logical input and output channels 
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for a node, and can then apply a data mapping function to 
partition, project, merge, construct a new view, or do other 
similar transformations on data structures . 

Formal definition of ELGDF. This graphical design 
notation was originally conceived as a back-of-the-envelop 
design aid, and thus the original intent was to allow the user 
to define details of the meanings of the objects of the 
language as she saw fit. As the project has evolved, it has 
become clear that we are coming close to compiling ELGDF. 
Therefore, we need to produce a more formal definition of 
the language features than was heretofore necessary. 

Entry interface to the core of the system. As we indicated 
above, ELGDF is just one of a host of possible sources for 
high-level design specifications that our system could 
process. In order for our system to work with other design 
tools, we need to construct a well-defined general interface 
to our system, so that we can write filters that convert 
output from other tools into a form that our system can 
process. We see no reason to go farther in this regard than 
to extend our current internal dataflow notation to a simple 
more· general guarded command notation. 

Scheduling loops and branches. Our scheduling and 
mapping tools produce static schedules that can be 
converted into source code to be compiled. This means 
that, although ELGDF diagrams (and real programs!) include 
conditional branches and loops that cannot really be 
scheduled statically, our system cannot presently handle 
these dynamic control structures. Therefore, for now all 
loops and branches must be hidden in low-level nodes; we 
cannot now handle branches and loops in the task graphs 
that our tools process. We plan to explore several ways in 
which to circumvent this current limitation of our system, 
including scheduling the longest critical path and using a 
priori estimates of probabilities of execution paths to try 
to generate reasonable schedules. 

Enhanced Superglue. Superglue now produces C-Linda code, 
and we soon will be able to generate message-passing code 
for NCUBE hypercube systems. Immediate plans are to 
extend Superglue to produce code for the Cogent parallel 
computer and to generate Strand code, which will extend the 
utility of our tools to include several other kinds of parallel 
computing systems beyond those we can now support. We 
also plan to incorporate the SCHEDULE package [DoSo87] 
into the system soon. 

Test drives. A difficult practical aspect in research in tools 
for the development of large-scale software systems is that 
it is expensive and time-consuming to test one's ideas, for, 
in order to do so, one must use the tools, ideally in a 
controlled experimental setting, to develop significant 
software packages. While we cannot afford to do real 
experiments, we do have several projects on the drawing 
board in which experts from other domains will work with 
software engineers to create parallel software systems for 
applications in those domains. We plan such projects in 
genetic sequencing, factoring large integers, and finite 
element modelling. 
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6. Conclusions 

We have embarked on a significant experiment in parallel 
software engineering in which we are developing an 
integrated framework into which tools can be inserted to aid 
in the process all the way from initial top level design to 
performance measurement and for additional iterations 
through this process. Our preliminary results using the 
tools indicate that this approach is a sound one. We suggest 
that, until we have a much finner idea of how the entire 
process might be more fully automated, perhaps through the 
development of "genius" compilers, ours and similar 
systems will be the preferred environments for the 
foreseeable future. · 

The PPSE is available for research use through the authors. 
Also, we would like to establish collaborative relationships 
with other groups that have tools available that might fit 
into our framework. 

While the system is designed to cover a wide range of 
architectures and languages, the techniques and the system 
can be specialized easily to aid in developing software for 
single architectures and languages. We encourage computer 
manufacturers and software developers to consider the PPSE 
as a way to make parallel programming easier for their 
customers . 
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