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Introduction 

The most significant problem facing the parallel 
computing field is parallel programming [4]. Along with all 
the software problems associated with sequential 
programming, parallel programmers must deal with non­
determinism, race conditions, and problems involving 
portability and compatibility between different parallel and 
sequential architectures. The Parallel Programming Support 
Environment (PPSE) is a set of software tools designed to 
help parallel programmers deal with reverse engineering and 
forward engineering aspects of parallel programs. Forward 
engineering deals with the task of writing a new parallel 
program from scratch. Reverse engineering involves 
retrofitting existing sequential programs onto parallel 
computers. PPSE research involves the following topics 
(from [4]): 

how to partition an application into parallel 
parts, 

how to map parallel parts ~nti? multiple 
processors, 

how to optimally schedule and run parallel 
parts, 

how to reverse engineer existing serial source 
oode, 

how to measure and analyze performance, 

how to distribute data over a multiprocessor 
network, 

how to coordinate design, coding, debugging 
and performance, 

which techniques work. 

With the forward engineering part of the project, the 
research involves how to design. implement, test, and 
evaluate the performance of a parallel program. PPSE research 
at Oregon State University addresses a series of issues related 
to designing and writing software for parallel computers. A 
number of practical tools have been developed which allow a 
programmer to visually design an architecture independent 
program, specify a high-level description of architectures on 
which the parallel program might run. determine a schedule or 
map for assigning program segments to processors, and 
automatically generate source code for a specific parallel 
computer from code fragments, the graphical description of 

the machine and the graphical description of the software. The 
major areas of research address the following general 
problems: 

Developing a Graphical Notation for the 
Design and Description of Parallel Programs . 

Developing a Graphical Notation for the 
Description of Parallel Machines. 

Mapping the Parallel Software to the Parallel 
Machine. 

Automatic Generation of Machine Dependent 
Parallel Source Code. 

Developing Visual Methods of Inputting the 
Hardware and Software Design Details. 

Extended Large Grain Data Flow (ELGDF)[l] is a 
graphical language for designing parallel programs. Ideally, 
parallel software should be designed independent of any 
specific hardware on which the developed code might 
eventually run. ELGDF allows the development of a high 
level, machine independent description of a parallel program. 
ELGDF also allows the design of parallel software without 
being bound to any particular programming language. To 
enter descriptions of parallel programs, an ELGDF design 
editor which runs on a Macintosh has been developed. The 
design editor provides a visual method of inputting software 
design details in ELGDF notation. The following features 
have been implemented into the design editor: 

ability to produce a hierarchical design for 
parallel software in ELGDF notation. 

ability to add detailed textual specification to 
graphic notation through dialog windows, 

easy manipulation of design by resizing, 
encapsulating, and expanding the graphical 
description, 

ability to assign source code fragments to 
specific graphical objects, 

graphics to text (and text to graphics) 
transformations for interface with other 
PPSE tools. 



Once the program design has been entered, other PPSE 
tools permit the analysis of the design and transformation of 
the design into forms such as dependency graphs, flow graphs 
and source code. Before these steps can be taken. however, 
specific implementation details must be entered. 

To enter descriptions of parallel machines, a target 
machine editor has been developed. The Target Machine Editor 
provides a graphical analog to the classical Proccssor­
Memory-Switch hardware description notation developed by 
Siewiorek. Newell, and Bell [2]. The present implementation 

of the target machine editor runs on top of the Extend 1M 
simulation package on a Macintosh. The following features 
are implemented: 

ability to graphically describe small irregular 
architectures or easily describe large regular 
architectures, 

graphically create shared memory, tightly 
coupled distributed memory or loosely 
coupled distributed memory architecture ~. 
describe system specific information by . 
entering the information in dialog boxes 
which are logically attached to the graphical 
icons, 

graphics to text transformation for interface 
with other PPSE tools, 

ability to save and edit graphical descriptions 
of systems. 

In general, a nwnber of system level blocks (processor, 
memory, bus, and switch) are kept in a library. The user 
selects blocks from the library and enters specific information 
by double clicking on the block and keying in the ~lo~k 
specific information (like processor speed or memmy size) m 
the fields of the dialog window. A global information block, 
called the Topology File Generator must be present in all 
system descriptions. This block contains information which 
is global to the system. In the case of large regular 
architectures, the Topology File Generator block may be the 
only block necessary. All necessary information can be 
entered in its dialog. 

Once the software and hardware descriptions have been 
gathered. the software designer should determine the optimal 
assignment of software processes to processors. MH 
(Mapping Heuristic) is a tool which performs an automated 
mapping of the software onto the hardware. MH maps 
program modules represented as nodes in a precedence task 
graph with communication (a transformation of the ELGDF 
design file) onto arbitrary machine topologies and gives an 
allocation and ordering of tasks onto processors. It produces as 
output a Gantt chart, providing easy visualization of the 
allocation of the program modules onto the target machine 
processing elements, and the execution order of tasks allocated 
to each processing element The Gantt chart consists of a list 
of all processing elements in the target machine. For each 
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processing element, the Gantt chart shows a list of all tasks 
allocated to that processing element, ordered by execution 
time, including task start and finish times. The mapping 
heuristic modifies Kruatrachue's [3] basic heuristic to handle 
communication delay between tasks assigned to heterogeneous 
processing elements in an arbitrary target machine topology. 

A desirable output from the PPSE design is compilable 
source code. A glue code module has been developed which 
takes the PPSE software design, C code fragments, and a 
hardware description as input and produces C-Linda source 
code as output The C-Linda code can then be compiled on 
parallel machines which support C-Linda such as the Intel 
IPSC2, Sequent Balance, and the Cogent Machine. One of the 
primary problems with manual generation of parallel 
programs is the lack of portability of the fmished code due to 
the architecture and vendor specific parallel programming 
primitives. Parallel programs, like sequential programs, 
frequently need to be transported across archite.ctures. The glue 
code module allows the parallel program designer to design 
parallel programs without specifying architecture specific 
synchronization and communication primitives (such as locks 
on a shared memory system or message passing primitives on 
a distributed system). The glue code module automatically 
adds these primitives to the code fragments according to the 
specified design in the ELGDF editor. 

The PPSE project is an attempt at creating a unified 
approach toward parallelism. Each of the following sections of 
this paper describe the major areas of PPSE research, at 
Oregon State University, in more de~. We feel that .it is 
necessary to provide tools which allow program designers the 
ability to experiment with the ELGDF paradigm as one 
possibility among many different parallel programming 
models. Only through real practice and experimentation will 
the ultimate solutions to the parallel software design problem 
eme.rge. 
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ELGDF: Design Language for Parallel 
Programming 

Abstract 

ELGDF (Extended Large Grain Data Flow) is a 
graphical language for designing parallel programs. The goal 
of ELGDF is two-fold: 1) to provide a program design 
notation and computer-aided software engineering tool, and 2) 
to provide a software description notation for use by 
automated schedulers and performance analyzers. The syntax 
is hierarchical to allow construction and viewing of 
realistically sized applications. ELGDF is a program design 
language, and not a programming language, but an ELGDF 
design can be refmed into Pascal. C, FORTRAN, etc. source 
code programs through simple transformations. ELGDF 
facilitates describing parallel programs in a natural way for 
both shared-memory and message-passing models using 
architecture-independent higher abstractions that allow 
program designers to express their algorithms in high level 
structures such as replicators, loops, pipes, branches, and fans 
without having to worry about details such as 
synchronization code. Arc overloading in current graphical 
languages is resolved in ELGDF by using different symbols 
and different attributes for different types of arcs. 

1. Introduction 

It seems clear that the next generation of computas will 
be based on the multiprocessor paradigm. but more effort is 
needed to help software engineers develop programs for 
parallel computers. Because hmnans tend to think sequentially 
rather than concurrently, program development is most 
naturally done in a sequential language [11]. Unfortunately 
sequential programming is incapable of directly making 
effective use of parallel computers. 

If we look at the evolution of sequential programming, 
we find that sequential programming has evolved in the 
following way: at the beginning all the programs wae written 
in architecture-specific low level languages. Then high level 
languages started to appear allowing programs to be written in 
architecture independent languages so the programmers didn't 
have to worry about the architectural details. Finally 
extensions have been made to high level languages to make 
them more structured and abstract leading to programs that are 
easier to develop, test, and maintain. We believe that parallel 
programming should evolve in the same direction. 
Developing hand-<:oded parallel programs is equivalent, in a 
sense, to programming in a low level sequential language, 
because hand-coded parallel programs are quite architecture 
dependent. For example synchronization is done using locks 
in a shared memory architecture, but synchronization is done 
via message passing in a distn"buted memory architecture. 

In order to develop hand-coded programs for parallel 
systems, the programmer has to exploit the potential 
concurrency of the algorithm, write the parallel program for a 
given architecture using a language and synchronization 
constructs suitable for the given architecture, schedule tasks 
on the available processors using intuitive methods, execute 
the program, and finally debug the program if it doesn't give 
the expected results or if it goes into a deadlock siruation. 
Programmers have a great deal of details to worry about at any 
time which makes parallel programming a very difficult 
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process. In order to make parallel programming easy, we need 
to get the system to shoulder more of the burden. 

It is not surprising that an architecture independent 
higher abstraction is needed so program designers can express 
their algorithms in high level structures without having to 
worry about the details like the synchronization code. High 
level parallel programs then can be analyzed and translated 
into schedulable units of computation that fit the target 
hardware architecture. 

We describe the ELGDF design language that allows 
program designers to easily express parallel program designs 
in a graphical. hierarchical, and natural way for both shared­
memory and message-passing models. The El.GDF provides 
design files that contain the information needed by different 
tools in the PPSE (Parallel Programming Support 
Environment) under development at Oregon Advanced 
Computing Institute (OACIS). For example an ELGDF 
design can be easily transformed into task graphs at different 
levels of granularity to be used by scheduling tools. 
Estimated execution time of tasks at different levels of 
granularity can also be used by performance evaluation tools. 
An ELGDF design also can be refined into Pascal. C, 
FORTRAN, etc. source code programs through simple 
transformations. We believe that the El.GDF design language 
will ease software development for parallel computers, help 
programmer comprehension and will produce parallel 
program designs in a form . appropriate for analysis. 

In our work a program is represented as a large grain 
data flow network. This work is related to a number of other 
srudies [1,2,3,4,5,6,7,8,9,10], but extends LGDF [2,3,4] to 
facilitate the following: 1) The syntax poses high level 
structures such as replicators, loops, pipes, etc., 2) Branch 
and loop constructs are provided which give more information 
for scheduling and analysis purposes, 3) Parameterized 
constructs that can be expressed compactly are provided, 4) 
Arc overloading is resolved by providing different symbols 
and different attn'butes for different types of arcs, 5) Mutual 
exclusion for shared memory systems can be easily expressed, 
6) Synchronized pipelining is provided through repeated arcs, 
and 7) ELGDF captures program designs that can be easily 
transformed into different forms appropriate for analysis 
before being refined into source code. 

The rest of this paper is organized as follows. Section 2 
contains the definition and details of the proposed design 
language while the implementation is briefly described in 
section 3. Section 4 shows ELGDF designs for analysis. An 
example is given in section 5. We give our conclusion in 
section 6. 

2. Definition or ELGDF 

ELGDF is rich enough to express the common structures 
found in parallel programs. An ELGDF design takes the form 
of a directed networlc consisting of nodes, storage constructs, 
parameterized constructs, structures, and arcs. Figure 1 shows 
an ELGDF design networlc at some level in the hierarchy. 

2.1 Basic Constructs 

Nodes 

A node, as shown in Figure 1, is represented by a 
"bubble", and can represent either a simple or a compound 
node. A simple node consists of sequentially executed code 
and is carried out by at most one processor. A compound node 



is a decomposable high level abstraction of a subnetwork of 
the program design network. 

Storage Constructs 

A storage construct is represaued by a teetangle. and can 
represent either a storage cell or a collection of storage cells. 
A storage cell represents the data structure to be read or 
written by a simple node. A node connected to the top of a 
storage construct has access to it before any node connected to 
its bottom. Nodes connected to a storage construct on the 
same side (top/bottom) compete to gain access to that storage 
construct in any order. A shared storage cell X is used in 
Figure 1. A compound node connected to the left or the right 
sides of a rectangle representing a collection of storage cells 
means that the compound node accesses the constituents of 
the storage collection. but the details are given in a lower 
level description. 

Arcs 

An arc in ELGDF can express eithez-data dependency, 
sequencing, transfer of controL or read and/or write access to a 
storage construct. A set of attributes is associated with each 
arc to provide information about the arc type, data to be 
passed through the arc, storage access policy, and 
communication strategy. An arc can be either a simple arc 
which cannot be decomposed or a compound arc which is 
decomposable into a set of other simple and/or compound 
arcs. 

Simple arcs can be classified into control and data arcs. 
A control arc.. as shown in Figure 1 (dotted line) expresses 
sequencing or transfer of control among nodes. A data arc 
carries data from one node to another or can connect a node to 
a storage construct. A data arc connecting a node and a storage 
construct can represent READ, WRITE. or READ/WRITE 
access according to the direction of the arc. A data arc can be 
used to carry data once or repeated times per activation. One 
of the arc's attributes is used to indicate the nwnber of times 
the data will be passed through. H the value of that anribute 
is greater than one then the arc is considered a repeated arc. 
The repeated arc is used basically in pipelines. It can cauy 
data (repeated times) from a simple node to another in a 
synchronized fashion. Also it can express synchronized 
writing and reading to or from a storage cell. 

Spilt and Merge 

Split and merge, as in Figure 1, are special purpose 
simple nodes for representing conditional branching. Split has 
two output control-arcs; one for T = True, and the other for F 
= False. According to the truth or the falsehood of the 
condition associated with the split node one of its two output 
control arcs is activated. Merge has N input control arcs and 
one output control arc. Merge activates its output arc when it 
gets activated by any one of its N inputs. 

Replicators 

A replicator, as used in Figure 1, is one of the 
parameterized constructs in ELGDF that allows program 
designers to represent concurrent loop iterations compactly. 
A set of attributes is associated with the replicator such as the 
control variable, initial value, step, and replicator bound. 
Replication of a node N times produces N concurrent 
instances of that node. An arc connected to a replicator is 
expanded as a set of identical arcs each of which is connected 
to one of the replicated instances. 
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Pipes 

A pipe, as in Figure 1, is a high level abstraction that 
allows program designers to compactly represent a set of N 
nodes forming a pipeline . The pipe consists of N simple 
nodes and N-1 m-repeated arcs. The nodes forming the 
pipeline are replications of the same simple node. A pipe has 
several attributes associated with it such as nwnber of stages 
in the pipeline (N), number of times the data will be passed 
through repeated arcs in the pipe (m) and others. 

repeated 
ac 

Figure 1 

Loops 
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A loop can represent For, While, or Repeat structures. 
El.GDF allows program designers to express loops compactly 
without using cycles in the graph. This is made possible by 
descnbing only the node (simple or compound) that forms the 
loop body, and then specify a set of attnbutes such as the 
control variable. initial value, step, and loop bound in case of 
"For" or the termination condition in case of While (Repeat) . 
A For loop iterated N times over a node can be automatically 
unrolled as a sequence of N instances of that node connected 
by N-1 arcs. Similarly, a While (Repeat) structure can 
automatically be represented in terms of split, merge, node 
and While (Repeat) constructs. Figure 2 shows a For loop 
construct and its unrolling with data fl.ow from one iteration 
to anothez-. 
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2.2 Common Structures 

ELGDF al.so supports many of the common structures in 
parallel programs that can be synthesiz.ed using the constructs 
given in section 2.1 [12). It automatically provides them for 
program designer convenience. Complete trees, meshes, 
branches, and fans are examples of common structures. The 
system can prepare skeletons for various types of structures 
per designer request Using these structures reduces the 
drawing time., helps design readability and comprehension, 
gives more information for analysis tools (regularity of trees 
for instance). For example., a fan of size n is composed of a 
~tart node S, n parallel nodes Pi, i = [l..n], 2n control arcs aj, 
J = [l..2n], and an end node (E). Arc aj COllllects S to Pj, j = 
[l..n]. Arc Ilk connects Pk-n to E, k = [n+l..2n]. The start 
node activates the parallel nodes and when they all finish E 
gets activated. Compound arcs that are connected to a fan carry 
data to or from its constituents. 

2.3 Mutual Exclusion 

ELGDF helps designers to easily express mutual 
exclusive access to shared variables by having an attribute 
associated with each arc connecting a node to a storage 
construct. H the exclusion attribute is set, then mutual 
exclusion is guaranteed. Figure 3 shows three simple nodes 
A. B, and C and a storage cell X forming an ELGDF network. 
Nodes A, B, and C share the variable X, yet A and B have 
access to X before C because A and B are connected to the top 
of X and C is COJU1ected to the bottom. A and B can access X 
in any order since they are both in the top side of X. Both A 
and B want to update X through a READ/WRITE arc and that 
might produce an incorrect result unless we set the mutual 
exclusion attribute ( exclusion) associated with those 
READ/WRITE arcs to guarantee mutual exclusive access to 
X as shown. 
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Figure3 

3. ELGDF Implementation 

The ELGDF design language is being implemented in 
Lightspeed Pascal on Macintosh II. A user-friendly graphical 
Design Editor is provided as user interface. The Design Editor 
is a computer-assisted software engineering tool for parallel 
program design and implementation. It takes ELGDF designs 
as input, and sourqe code fragments for each simple node in 
the ELGDF design. and produces source code that can be 
compiled and nm on a parallel computer. 

A parallel program designer can use the Design Editor to 
draw ELGDF graphs, and from these graphs produce a PP 
design file that contains the design primitives with additional 
information needed by various tools in the PPSE. 

The Design editor is designed to have a menu bar as well 
as a palette of language symbols and tools by which a user 
can easily synthesize parallel programs. It also supports easy 
drawing and graph manipulation facilities such as dragging, 
resizing, encapsulation, expansion, etc. It al.so provides multi­
window system to show parallel programs at different levels 
in the hierarchy. A program designer can define the attnbutes 
associated with each construct in the program using fill-in­
the-spaces type of dialogues . Source code fragments for each 
simple node in the design are specified in FORTRAN 77 
either using text editing windows or from external files. The 
Design Editor automatically generates some of the common 
parallel program structures such as trees, meshes, fans, etc. 
for parallel program designer convenience. The Design Editor 
also supports syntax checking that catches illegal connections 
in the ELGDF design network. 

4. ELGDF Designs for Analysis 

ELGDF provides the information needed by diffezmt 
analysis tools in the PPSE, so that program designers can get 
feedback and try different fonns of their designs before code is 
wri~ Scheduling tools, for instance, can use a very large 
gram task graphs automatically obtained from ELGDF 
designs that hide loops, branches, and other details. 
Alternately, a small grain task graph that shows some or all 
of the branches, loops, and other details can be automatically 
generated.. 

ELGDF designs can provide information concerning the 
regularity of the algorithm by generating a task graph 
containing umolled loops or common structures like trees and 
meshes. Scheduling as well as performance estimation tools 
are given important information such as the estimated 
execution time at each node at different levels of granularity, 
and the amount of data to be passed among nodes. For 
instance the operations in a simple node might be used to 
estimate the execution time of the node. The estimated 
execution time of a compound node that contains branches or 



loops can be calculated from the estimated probabilities of 
taking different branches. 

Glue code tools are povided with the information needed 
for code generation - for example, the files that contain the 
sequential code at each of the simple nodes, the precedence 
relations among nodes, the data/control flow in the program. 
the shared variables in a shared-memory system, 
communication prolOcOls among communicating nodes in 
message passing system, and others. 

S. Example 

In this section ELGDF is demonstrated by means of an 
example that shows the toJHiown program construction for 
the solution of AX = B, where A is a lower triangular matrix. 
The computation, suggested by J. Dongarra and D. Sorensen 
of Argonne National Laboratories, is the solution of AX=B, 
where A is an N * N lower triangular matrix, X and B are N­
vectors [5]. The tasks used in the algorithm are: 

1) S(sol#) 

This task solves for the triangular diagonal block sol# . 
It computes: 

! X(sol#) = B(sol#)/A(sol#,sol#) ! 
This can be done only after all (T) tasks for row sol# 

have completed. Notice that S(l) can start without any 
preconditions. 

2) Task T(ij) 

This task executes the transformation: 

!B(i) = B(i) - A(i.j)*X(j)I 

on the ith block in column j. This step can only be 
executed if SG) has been completed. 

To express this program in ELGDF, . we first give the 
abstract top level design network of the program that shows 
the program and its input/output interaction. Then we define 
every construct in the top level by giving the subnetwork 
describing its fimction. We keep going down in the hierarchy 
defining the network constructs 1mtil we reach the lowest 
level in the hierarchy when we specify the source code with 
each simple node. Figure 4 shows the ELGDF top-down 
construction of the program. 

As shown in Figure 4a, we give the very high level (top 
level) description of the program which consists of a 
compound node (AX=B) connected, through a READ/WRITE 
compound arc to a storage construct representing the data 
sttucrure to be used in the program. Now we define each 
construct in the top level. We can decompose the compo1md 
node (AX=B) into two separate conCUirent subnetworks: 1) 
solves for the first triangular diagonal block, and 2) solves for 
triangular diagonal blocks [2 ·- N]. 

The first subnetwork consists of the compound node 
solve(!) connected to the storage collection representing the 
data structure it accesses. The second subnetwork consists of 
a replicator over a compound node solve(so1#) for sol#= 2, N 
and the storage collection representing the data structure it 
accesses. The replication over the compound node solve(sol#) 
gives (N-1) concurrent nodes (solve(2), solve(3), ... , 
solve(N)). Figure 4b shows the two subnetworks describing 
the compound node (AX=B). 

-6-

Figure 4c shows the subnetwork describing the 
compound node solve(l). The task S(l) can start without 
having to wait for any other tasks. It takes B(l) and A(l,l) as 
input and it produces X(l). Once S(l) finishes, all non­
diagonal (T) tasks in the first column can start in parallel. 
These parallel tasks are represented using a replicator over the 
simple node T(arow,1) for arow = 2, N. The replicator is 
connected to the bottom of the storage cell X(l) so the 
replicated tasks cannot start until S(l) which is COJD1ected to 
the top of X(l) finishes. 

The subnetwork defining the compound node solve(sol#), 
for sol#= 2 to N, is given in Figure 4d. Since S(sol#) can 
start only after all (T) tasks in row (sol#) have updated 
B(so1#), a replicator over the simple node T(so1#,k) fork= 1 
, sol#-1 is connected to the top of the storage cell B(sol#) and 
S(so1#) is connected to its bottom. Once S(sol#) which is 
connected to the top of X(sol#) finishes, all non-diagonal (T) 
tasks in the column (sol#) can start in parallel. These parallel 
tasks an: represented using a replicator over the simple node 
T(j,sol#) for j = sol#+l, N. The replicator is COJD1ected to the 
bottom of the storage cell X(sol#) so the replicated tasks 
cannot start 1D1til S(sol#) writes into X(sol#). Notice that the 
READ/WRITE arcs connecting the nodes representing the (T) 
tasks to the elements of B vector have their exclusion 
attribute set so mutual exclusion is guaranteed when 
concurrent (T) tasks try to update an element in vector B at 
the same time. 

Figure 4e shows the FORTRAN code associated with 
simple nodes S(i) for a given i and T(ij) for a given i and j. 
At this point the program designer has finished the program 
description and the system now can generate the expanded 
network and the analysis files for any N. 

collection of storage cells 
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X(i) = B(i)/A(i,i) B(i) = B(i) - A(ij)*X(j) 

Code at S(i) Code at T(ij) 

Figure4e 

6. Conclusion 

In this paper, we have presented a graphical design 
language for parallel programming. The complete syntax of 
ELGDF helps program designers to deal with parallelism in 
the manner most natural to the problem at hand. It allows the 
expression of the common structures in parallel programs 
easily and compactly. For example the replication mechanism 
used in ELGDF leads to a compact, flexible, and powerful 
representation of dynamic graph structures. 

In addition to expressing parallel programs in a natural 
way for both shared memory and message passing systems, 
ELGDF provides a vehicle for studying parallel programs. It 
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helps as a way to capture parallel program designs for the 
pwpose of analysis. ELGDF provides design files that contain 
information needed by different tools in the PPSE. 
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Graphical Descriptions or Parallel Machines: 
The PPSE Target Machine Editor 

Abstract 



A parallel program must nm on a parallel machine. 
While it is desirable to produce architecture independent 
software to achieve portability goals, the inclusion of 
architecrure specific details in the software design and 
development phase will often provide a means of gaining 
much needed efficiency in the performance of the software on 
a specific machine. Ideally, independent hardware and software 
descriptions should be optimally fit together through an 
automated process (mapping or scheduling). This paper 
describes current work involving the graphical description of 
parallel machines. The first part of this section discusses 
several issues related to the needed level of abstraction for the 
description of parallel machines and the necessmy information 
to include in the description. The second part descnbes several 
examples that weze created with a demonstration version of 
the Parallel Programming Support Environment (PPSE) 
Target Machine Editor. The Target Machine Editor provides a 
graphical analog to the classical Processor-Memory-Switch 
hardware description notation developed by Newell, 
Siewiorek. and Bell [6]. The third part of the paper describes 
the infonnation format of the resulting text file produced by a 
graphics to text transformation on the graphical machine 
description. 

Part 1 - Target Machine Description 
Introduction 

A target machine, in the scope of the Parallel 
Programming Support Enviromnent (PPSE), is defined as the 
machine on which a designated parallel program will nm. 
Essentially, three categories of parallel machines can be 
~ 

machines that have globally shared memory, 

machines that have no shared memory and in which 

processors commmiicate by sending messages, and 

machines that arc composed of loosely 
coupled "clusters" of processors. 

The last category is a composition of the first two. 
Shared memory exists within each cluster while message 
passing takes place between clusters. 

The target machine editor provides a visual method of 
entering a description of the target machine. The editor 
provides a library of system level blocks which can be 
constructed .into a representation of the target machine. Each 
block also contains a dialog window in which system specific 
information (like processor speed. word size. comn11mication 
bandwidth. etc.) can be entered. The graphical diagram with its 
associated information can be transformed into a topology 
(text) file containing information which uniquely descnbes the 
target machine. The information contained in the topology 
file can be directly fed into the PPSE database ( developed at 
PSU). 

The topology files should contain a textual description of 
the target machine architecture. Three different 
groups/modules within the PPSE project need to access the 
topology files: schedulers, performance analysis, and program 
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transform/glue code. Our primary goal is to determine which 
architectural aspects of the target machine need to be included 
in the topology file according to the current and future needs 
of the three groups. 

The Target Machine Editor 

The present implementation of the target machine editor 

nms on the Extenci™ simulation package on a Macintosh. 
The following features are implemented: 

ability to graphically construct small 
irregular architectures or easily describe large 
regular architectures, 

graphically create shared memory, tightly 
coupled distributed memory or loosely 
coupled distributed memory architectures, 

describe system specific information by 
entering the information in dialog boxes 
which are logically attached to the graphical 
icons, 

• perform a graphics to text transformation in 
order to save the system specific information 
in a text file, 

ability to save and edit graphical descriptions 
of systems, 

In general, a number of system level blocks (processor, 
memory, bus, switch. etc) are kept in a library. The user 
selects blocks from the library and enters specific information 
by double clicking on the block and keying in the block 
specific infonnation (like processor speed, memory size, etc.) 
in the fields of the dialog window. A global information 
bloclc, called the Topology File Generator must be present in 
all system descriptions. This block contains information 
which is global to the system. In the case of large regular 
architectures, the Topology File Generator block may be the 
only block necessary. All necessary information can be 
entered in im dialog. 

What ls Needed ln the Topology Files 

Sc:heduleis: 

Most scheduling algorithms being considered within 
PPSE need to know at most the number of processors, 
interconnection network, latency and contention infonnation. 
Latency is a ftmction of the distance a message must travel. 
the time it takes for a message to travel one hop, the size of 
the message and the number of packets into which the 
message must be split. Contention occurs when several 
processors contend for a common resource. When contention 
occurs, requests must be serializ.ed. 

To deal with the mapping problem , Bennan [1] has 
proposed performing a series of transformations ( contraction, 
placement. routing) which can be applied to the algorithm. 
communication graph which result in a mapping of the 
algorithm into the multiprocessor. The researchers at the 
University of Oregon have proposed similar methods. Their 
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mapping algorithms calculate a ~ear . optimum pro~s­
>processor mapping by approxunauon methods (~e 
simulated armealing or neighborhood search). These mappmg 
algorithms attempt to minimize a cost fimction which may 
consider conflicting goals. The real problem then becomes 
detcmrining the information that must be captured_ in the cost 
fimction for a general class of target algonthms and 
architectures. The inclusion of pertinent an:hitec:tural 
characteristics in the cost function may enhance the 
performance of these types of ma~ing algorithms ":bile 
adding little to the time complexity of the mappmg 
algorithms. 

According to Jamieson [2], the following architectural 
characteristics all affect algorithm performance: number of 
PEs, memory organization, memory size, 
mode(SIMD/MIMD/Pipelined), network, synchronization, 
processor capacity, data types, addressing modes, data 
structures, 1/0. Each of these characteristics include many 
sub-characteristics or metrics. For example, the network 
information could include such metrics as diameter, 
bandwidth, average distance between processors, etc. Including 
these characteristics in the topology files would be beneficial 
only if the modules accessing the information can use this 
information. 

Perl'ormance Analysis: 

From the performance analysis standpoint, the inchlsion 
of actual metrics and behavioral characteristics in the form of 
statistical values from real machines, and the ability to tweek 
these values to simulate not-yet-built machines may be an 
important addition to the topology files. According to Levitan 
[3] there are a nwnber of metrics which can be used to 
evaluate the effectiveness of certain communication structures. 
Additional metrics could be formulated to measure proceswr 
and memory access capabilities. Real values could be acquired 
from target machines by running a set of tasks and 
experiments on the target machine. Rough simulations of the 
performance of the parallel code running on machine models 
could then be accomplished by rwming different statistical 
values through PPSE (if the different modules take these 
values into consideration) and seeing if different code and/or 
schedules are gene:ated. 

Program Transform 

The program transform. module needs to know which set 
(package) of glue code or macros to grab from the glue code 
files. Preswnably, each machine will need a different set of 
macros based on language. version, compiler and architecture. 
For example. if the ghle code needed is for version 1.()1) F77 
compiler, FORTRAN Language on the Sequent Balance 
(B21), we should specify this in the topology files. 

Part 2 • Target Machine Editor - Examples 

The Target Machine Editor is built on top of the Extend 
Simulation package. To describe computer systems, a m,rary 
of system level blocks has been created. The blocks can be 
classified into four categories: 

• Processing Elements 
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Memory Elements 

Communication Elements 

• Global Information Elements 

Example 1 - Random Network of processors 

Each block in this example was selected from a library 
which can be accessed from the menu bar. The Topology­
File-Generator (TFG) block must be present for all target 
machine descriptions and must always be placed in the upper 
lefthand corner. (Extend executes the code for each block 
according to the placement of the block on f:he screen. The 
TFG block must always execute first. No other placement or 
ordering constraints exist for the other blocks.) 

• All blocks have an associated dialog box - to 
see the box for my block, double click on 
the block's icon. The following dialog box is 
for a switch. 



(U) swltch.2 

[ OK J ( Cancel ) 

O Use ualues below nther then globally defined. 

Transfer rate j 53.00 

!=====: 
Width (bits) ... I 3_2 ___ __. 

Reconfiguration time ._! o_._so ____ _. 

Block ldentmcetlon 

The topology file is a textual analog to the information 
contained in the graphical and dialog-entered system 
description. 

DIC 

To generate a topology file, double click on 
the TFG block and check that the ''Write to 
file" box, in the lower left comer of the 
dialog box, is checked (and click the OK 
button to record the selection). 

I teftcel 11 Neill] 1111• - to - ,i- te Mter 51.HIIL ,,.___ l'l'S1D4 INFNMIIIIIIM. 

••••• lntar Iii.DIil INF0RMfflON -

N■h11on:T1111• Ii.ii I 
pr■cnoan l!:all (!gJ 

l■t■IICII ,_,.,. Cl• M • ·II) 

:~ 

IUa .. ta CMagte/-1 53.ID 
_M_C_) IDOO 

-----~-:.-:.·.:-:.-:.-:.-:.-:.-:.-:.·.:-:.-:.-:.-:.-:.-::_-_,, 
ILU£ CODE INFI: Sg•t- - ,~-•• LMfNIG _i-F-DIITIIIIN _____ .,, ___ _, 

___ ..,._, ____ .!::=====·;:; --
IBI wrtta to fll■ rn!!J O.lg llll'lt• lnf■-■t._ i. tllll •1a1a1 ta fllL 

• Select Run Simulation from the R1Dl menu 
. . to actually create the file. The following is 

part of the generated topology file. The full 
file format is listed in Part 3 of this paper. 

.. eKample. top l'E 
ep,-oc:se -4 ~o 
-It.ch I 
•IIN<S 4 
-.,u,,, I 

- 4 net-. 
lat.-.c,,µ, 
latanc,,µ, 
bua-ate -­prl-...,.._ 
1--

hat­

' D 
53 
1000 

• ,..,.,..,_, 
FORTRAN 

Block ldaf'ltlflcatlon 
cac:t. 17 
cac:t. 11 
Pl ac:111 er 
pspeed6 
Link 20 
l"Gte 20 
•idth 20 
Pl OCISS,,,.,. 
~21 
Link 22 
l"Gte 22 

6 
1 

100.3 
32 
21 
1 

100.3 

Example 2 - Hypercube 

ii 

Describing a 512 node hypercube using a graphically 
entered description would be difficult with the current version 
of the target machine editor. However, a topology file can 
still be generated for completely regular architectures like 
hypercubes. The information in the Topology File Generator 
dialog box would look as follows: 

Ill t- ratw 

1111111111t■ lal rni!D ......... , .... 11 •• - ...... 1111. 

• Make sure the Write to file box is checked 
and then click the ''NOW" button on the 
bottom center of the dialog box. This will 
create a topology file consisting of only the 
information in the TFG dialog box. 

Example 3 - Shared Memory System 

To graphically enter an eight processor shared-memory 
system: 

• Select New from the File menu to get a new 
wmksheet. 

• Select Topology-File-Generator from the 
TM-Lib in the Libraries menu. A TFG block 
should appear on the worksheet. 
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Select processor, cache , bus and then 
memory from the TM-Lib in the Libraries 
menu and make the correct number of copies 
of each block. 

• Enter information into the TFG block. Enter 
information into the other blocks. The visual 
description might look as follows: 

To generate a topology file, double click on 
the TFG block and check that the "Write to 
file" box. in the lower left comer of the 
dialog box. is checked (and click the OK 
button to record the selection). 

Select Run Simulation from the Run menu 
to generate the topology file. 

Part 3 - Topology File Format 
The topology file consists of the following 

sections: 

• Block counts - how many of each block type 
is represented. Format: 

<count-description> <count> 

Global data - information which pertains to 
the entire system or is default for any block 
which doesn't over-ride the information. 
Format: 

<data-description> <data> 

Block identification and block information -
each block type is associated with a unique 
number for identification as follows: 

<block-type> <id> 

Several blocks contain information of the 
form: 

<type-info> <block-number> <data> 
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Input Adjacency List - each line consists of a 
block identifying itself and all blocks which 
provide input to the identifying block . 
Format: 

<me> <input-1> <input-2> ... 

Output Adjacency List - each line consists of 
a block identifying itself and all blocks 
which the identifying block provides output 
to. Format: 

<me> <output-1> <output-2> ... 

Future Work 

The current version of the Target Machine Editor is 
capable of interfacing with the other PPSE modules and has 
served as a useful exercise in determining the proper level of 
abstraction for machine description. The next steps should be 
to customize the tool so that hierarchical descriptions can be 
generated, add the capability of text to graphics 
transformation, and work on the problem of representing 
large, possible irregular architectures. These steps will create 
a more useful and more robust tool for describing parallel 
architectures. 
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Static Mapping or Task Graphs with 
Communication onto Arbitrary Target Machines -
Case Study: Hypercube 

Abstract 

A new scheduling heuristic is introduced with the following 
characteristics: 1) inputs to the scheduler are a) an arbitrary 
labelled task graph representing a parallel program with 
estimated task size, estimated message size, and b) a target 
machine description which includes the speed of the 
processors, the initialization time, the transmission rate, and 
the interconnection topology, and 2) schedules are computed 
by an adapted highest-level-first heuristic. The results for 
scheduling simulated task graphs on ring, star, mesh, 
hypercube, and fully connected networks are introduced. On 
hypercubes these simulations suggest that 1) 
communication delays should be considered in task selection 
when scheduling communication intensive applications, 2) 
priority scheduling is insensitive to the communication 
delays of computation intensive applications, 3) performance 
is inversely proportional to the ratio between average 
communication and average task execution time, and 4) the 
effect of increasing the task graph average degree increases as 
the number of processing elements ~-

lo Introduction 

The problem of scheduling parallel program modules 
onto multi-processor computers has received considerable 
attention in recent years. This problem is known to be NP­
complete in its most general form [10]. Regardless, many 
researchers have studied restricted forms of the problem by 
constraining the task graph representing the parallel program 
or the parallel system model [1,4,6,11,14]. For example 
when communication between tasks is not considered, a 
polynomial time algorithm can be found for scheduling tree­
structured task graphs wherein all tasks execute in one time 
unit [5]. 

It is well known that linear speedup generally does not 
occur in a multi-processor system because adding additional 
processors to the system also increases inter-processor 
communication [13]. In order to be more realistic we need to 
consider communication delay in scheduling tasks onto 
multi-processor system. Prastein [12] proved that by taking 
communication into consideration. the problem of 
scheduling an arbitrary precedence program graph onto two 
processors is NP-Complete and scheduling a tree-strucmred 
program onto arbitrary many processors is also NP­
Complete. Kruatrachue [2] introduced a new heuristic based 
on the so called list algorithms that considers the time delay 
imposed by message transmission among concurrently 
running tasks by assmning a homogeneous fully connected 
parallel system. 

Task allocation is not the same as task scheduling. The 
goal of task allocation is to minimize the communication 
delay between processors and to balance the load among 
processors [7,8,9]. Kruatrachue [2] showed that task 
allocation is not sufficient to obtain minimum run time 
since there is a significant difference in performance when the 
order of execution is changed among allocated tasks on a 
certain processing element Other work has been done in task 
allocation when the program is represented as an undirected 
task graph [15]. 

Kruattachue [2] suggested some directions for future 
work in relaxing restrictions in the program task graph and 
the parallel system model. In this paper we extend the parallel 
system model used by Kruatrachue to accommodate arbitrary 
parallel systems. We introduce a mapping heuristic (MH) that 
maps program modules represented as nodes in a precedence 
task graph with communication onto arbitrary machine 
topology. MH gives an allocation and ordering of tasks onto 
processors. We then apply MH to the problem of mapping 
task graphs with precedence and communication delay onto 
cube-connected multiprocessors. 

The rest of this paper is organized as follows. Section 2 
contains the formulation of the problem. List scheduling is 
briefly described in section 3. Section 4 shows the proposed 
mapping heuristic. Experimental results that show the effe.c:t 
of changing the policy used in MH to select a task and 
changing two parameters of the task graph representing the 
parallel program on the performance when hypercube is used 
as the target machine are given in section 5. We give our 
conclusions in section 6. 

2. Formulation or the Problem 

Our goal is to devise an efficient heuristic scheduler to 
statically map parallel program modules onto a finite number 
of processing elements in a pattern that minimizes final 
completion time as determined by actual task computation 
time and communication between processors. 

Program Graph 

A parallel° program consists of M separate cooperating 
and communicating modules called tasks. Its behavior is 
represented by an acyclic directed graph called a task graph. A 
directed edge (ij) between two tasks i and j exists if there is a 
data dependency between the two tasks which means that task 
j cannot start execution until it gets some input from task i 
after its completion. Once a task begins execution, it 
executes until its completion (non-preemption). The task 
graph is assumed to be static which means it remains 
unchanged during execution. 

Target Machine 

A target machine is assumed to be made up of an 
arbitrary number N of heterogeneous processing elements 
that run a single application program at a time. These 
processing elements are assumed to be interconnected in an 
arbitrary way. A message sent from a task running on 
processing element Pi to another task nmning on processing 
element Pj takes the shortest path between the two 
processing elements through one or more hops. 
Communication time between two tasks located on the same 
processing element is assumed to be zero time units. A 
processing element can execute a task and communicate with 
another processing element at the same time. 

System Parameters 

Parameters are required to represent the computational 
costs and communication costs incurred by a parallel program 
on a specific parallel processing system. The costs are as 
follows: 

1) E(m.n): the execution time of task m when executed on 
processing element n. m = 1, ... , M; n = 0, ... , N-1. 
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2) C(m1 .m2.n1 .n2): the conummication delay between tasks 
m 1 and m2 when they are executed on processing 

elements n 1 and ni, respectively, m 1, m2 = 1, ••• , M; 

n 1, n2 = 0, .•. , N - 1. 

The parameter E(•) reflects the speed of the processing 
elements and the size of the tasks. E(m,n) = INS(m)/S(n) 
where INS(m) gives the nwnber of instructions to be 
executed in task m and S(n) gives the speed of processing 
element n; m = 1, ... , M; n = 0, ... , N-1. 

The parameter C(•) reflects the target machine 
performance parameters as well as the size of the data to be 
transmitted. C(m1,m2.n1,n2) = (D(m1 ,m2)/ R + 
I)•H(n1 ,n2) where D(m1 .m2) gives the size of the data to be 
sent from m 1 to m2, H(n1,n2) gives the number of hops 
between n1 and n2, I represents the time to initiate message 
passing on each processing element, and R represents the 
transmission rate, m1,m2 = 1, ••• , M; n1 , n2 = 0, ... , N-1. 
The model studied by Kruatrachue [2] can be easily generated 
as a special case of our model. 

3. List scheduling 

One class of scheduling heuristics, in which many 
parallel processing schedulers are classified, is list 
scheduling. In list scheduling each task is assigned a priority. 
Whenever a processor is available, a task with the highest 
priority is selected from the list and assigned to that 
processor. The schedulers in this class differ only in the way 
that each scheduler assigns priorities to nodes. Priority 
assignment results in different schedules because tasks are 
selected in different order. A comparison between different 
task priorities has been studied in [3]. 

The insertion scheduling heuristic (ISH) introduced by 
Kruatrachue [2] is essentially a list scheduler that considers 
communication with an improvement to the communication 
delay problem by -plugging in an insertion routine that 
inserts tasks in available communication delay time slots. 

4. The Mapping Heuristic (MH) 

A mapper is an algorithm that takes two inputs: 1) a 
description of the parallel program modules and their 
interactions, and 2) description of the target machine. It 
produces as output a Gann chart that shows the allocation of 
the program modules onto the target machine processing 
elements and the execution order of tasks allocated to each 
processing elements. A Gann chart consists of a list of all 
processing elements in the target machine and for each 
processing element a list of all tasks allocated to that 
processing element ordered by their execution time, including 
task start and finish times. 

Our mapping heuristic modifies Kruatrachue's basic 
heuristic so it can handle communication delay between tasks 
assigned to heterogeneous processing elements in an arbitrary 
target machine topology. The insertion routine used in ISH 
can be easily plugged in MH. The time complexity of MH is 
O(n 2) for a constant nwnber of processing elements . We 
study the effect of intercomection topology on schedule, and 
in tum, on the performance of the parallel program on a 
specific parallel processing architecture. 

Definitions 

The length of a path in a task graph is the summation 
of all node execution times and edge communication delays 
along the path. The ~ of a node is defined as the length 
of the longest path from the node to the exit node. 

Adam et al. [3] compared 5 different ways of assigning 
priorities: HLFET (Highest Level First with Estimated 
Times), HLFNET (Highest Level First with No Estimated 
Times), RANOOM, SCFET (Smallest CO-level First with 
Estimated Times), and SCFNET (Smallest CO-level First 
with No Estimated Times). He showed that among all 
priority schedulers, level priority schedulers are the best at 
getting close to the optimal schedule. Following the advice 
of Adam et al., we use the level at each node as its priority. 
However, after adding communication delay, the node level is 
not static and may change according to the mapping. Some 
researchers simply ignore communication delays in 
calculating the level at each node. We have studied both 
strategies for calculating the level: 1) with, and 2) without 
communication . The results of our study using hypercube 
target machines is given in section 5. 

The ready time of a processing element P 
(ready _time[P]) is the time when processing element P has 
finished its assigned task and is ready to execute a new one. 
The message ready time of a task (Time_message_ready) is 
the time when all messages to the task have been received by 
the processing element containing the task. The speed up is 
defined as the program execution time when it runs on one 
processing element divided by its execution time when it 
runs on a multi-processor system. 
MH Algorithm 

The algorithm can be explained in the following three 
steps: 

L The level of each node in the task graph is calculated and 
used as each node's priority. (In case of a tie we break it by 
selecting the one with the largest number of immediate 
successors. If this does not break the tie, we select one 
randomly). A ready queue is initialized by inserting all nodes 
that don't have immediate predecessors. The ready queue is 
sorted according to their priorities, yielding the highest 
priority node, first, followed by lower priority nodes. Also, 
an event list is needed in step II, so an event list is 
initializ.ed. 

II. Then, as long as the ready queue is not empty: 1) a task 
is selected (dequeued from the front of the ready queue), 2) a 
processing element is selected to run the task. A processing 
element is selected in such a way that the task cannot fmish 
on any other processing element earlier, 3) the selected task 
is allocated to the selected processing element, and 4) the 
time when the selected task will finish running on the 
selected processing element is added to the event list. Once 
the ready queue becomes empty, the event list is used to 

modify the status of the immediate successors of the fmished 
tasks. So when a task finishes execution, the nwnber of 
conditions that prevent any of its immediate successors from 
being run is decreased by one. When the number of 
conditions associated with a particular successor becomes 
zero then that successor node can be inserted into the ready 
queue. 
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m. Step II is repeated until all the nodes of the task graph 
are allocated to a processing elemenL (Fig. 1. gives the 
detailed algoritlun) 

Load the program lallt graph. 
Load lho Wgct machine. 
CompUIC Ille level of each tuk. 
Inilia1iz.e die rmdy _ (Q). 
lnilialiu lhe evCIII_~ 
repeal 

while Q is not empty do 
bqln 

end 

get wk (T) from Q. 
locae~ ,P). 
update lhe evan list E 

whlle E is not empty do 
begin 

gct c:w:m (evmt) fromE. 
procas_ewnt(eYall) 

end 
unlll all tasks are allocated 

Fig. la 

procedure locate__proceam(T ,P) 
begin 

P+-k. 
where finish_time(l" ,le) s; finish_time(l" ,i), i • 0, .. . , N•l 

end. 

Fig. lb 

function linish_time(T,P) 
begin 
Let IMP be the .a a! allmnnedialepr...iec-cm mT. 

If IMP is =etY then 
finiah_11me +- nady_lime[PJ + E(r,P) 

elu 
LetIMP• ( ti, '2•···• '°) 
where\ is aaigned lOpmcmoarPi_ 
T'mie_meaage_ready+- max(n,ady_timefl►i] 

+ C('i_, T, Pi• P)), i • 1, ••• , m. 
1Wt_time4-mu(T'ime_~_ready, 

n:ady_time(P]) 
finish_time +- start_timo + E(T,P) 

end. 

Fig. le 

procedure procaa_ewnt(evmt); 
begin 
Let "wk Tis dcno" be !ho cwnt ID be pi,,caaed. 
Let IMS be lho lClof all immediate- ofT . 
Let IMS • ( t1, tz. ... , 1!n ) wh- 'i bu ci aaoc:iated wilh, wh- ci is die 
mimbor of condiliom lha1 pn,vam 'i from IIUting eiocurion (inir:ially ci • 
mnnber of immediate pndo:aaoa of wk Ii); 

end. 

Ir IMS is not empty then 
rori :- l 1am do 

bealn 

end 

~+-~•l; 
lf"i •Othen 

iDlert 'i imo Q. 

Fig. Id 

Example 

Fig. 2a shows a task graph consisting of 8 nodes (M = 
8), where each node represents a task. The number shown 
inside each node represents its task number, the number to 
the left of a node i represents the parameter INS(i), and the 
number to the right of an edge (i.j) represents the parameter 
D(ij). For example INS(l) = 5, D(4,7) = 5. Fig. 2b shows a 
target machine consisting of 4 processing elements (N = 4) 

forming a cube of dimension= 2. Notice that H(0,3) = 2, 
because a message sent from node O to node 3 takes two 
hops. Fig. 2c shows the Gann chart that results from 
scheduling the task graph given in Fig. 2a on the hypercube 
given in Fig. 2b. 

Fig. 3 shows the average speed up curves that resulted 
from scheduling 25 random task graphs, with average number 
of nodes = 60, average number of edges in the range (25 -
1()()), average execution time in the range (10 • 100) time 
units, and average amount of data at each arc in the range (10 
- 100) data units, on the following target machine 
topologies: 1) fully connected. 2) hypercube, 3) mesh, 4) 
star, and 5) ring with transfer rate= 1 and number of similar 
processing elements in the range (2 - 64). 

Fig. 2a (program task graph) 

Fig. 2b (target machine) 

time 

26 

Fig. 2c (Gann chart) 
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S. Case Study: Hypercube 

In this section we show the results of some experiments 
we conducted using homogeneous hypercube architecture as a 
target machine. We gencnred 400 random graphs with average 
number of nodes = 50, average number of edges in the range 
(25 - 100), average task execution time in the range (10 - 100) 
time units, and average size of data at each arc in the range (10 
- 100) data units. We ran each graph on hypercubes of size 2, 
4, 8, 16 , 32, and 64 similar processing elements. 

The first experiment shows the effect of using 
communication delays in calculating the level at each node in 
the MH algorithm.We fmmd that 52.6% of the time using 
communication delays in calculating the level is better than 
not using them and the improvement is in the range (0.04% -
7.72%). In the 52.6% of improvements, most task graphs 
were "communication intensive". The performance was 
observed to be the same 10.8% of the time. We also found 
that 36.6% of the time not using the communication delays 
in calculating the level is better with improvement in the 
range (0.05% - 4.58%). Not all of these 36.6% were 
"execution intensive" task graphs. 

The second experiment shows the effect of varying two 
program task graph parameters on the performance. We chose 
the parameters: 1) the average degree and 2) the C/E_ratio, 
defined as follows: 

Average degree - number of edges / number of nodes. 

Average C/E ratio= average conununication delay between 
nodes / node average execution time. 

We ran 80 random graphs at each average C/E_ratio 
value in {0.1, 0.5, 1.0, 2.0, 10.0) and 100 random graphs at 
each average degree value in {0.5, 1.0, 1.5, 2.0). Fig . 4 
shows the speed up curves at each C/E_ratio and Fig. 5 shows 
the speed up curves at each degree. The two sets of curves 
show the degradation in performance when the average 
communication delay between program tasks begins to 
dominate the average task execution time or when the 
number of edges in the task graph which represents the 
number of interactions among tasks dominates the nmnber of 
tasks in the program. The curves also show that as the 
number of processing elements in the hypercube increases, the 
degradation of performance due to the increase in the 
C/E_ratio or the graph average degree is steeper . 

si-fup 
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6. Conclusions 

Tiie results of this experiment are preliminary, but they 
suggest the following: 

1. For communication intensive applications, the scheduler 
should consider communication delay in the scheduling 
algorithm's priority, 

2. For computation intensive applications, priority scheduling 
is insensitive to the communication delays of the application. 

3. Hypercubes perform better than meshes, star, and ring 
networks, but are not as high performance as fully comtected 
networks. This is not smprising, and indeed, the performance 
of a hypercube as compared with a fully connected network is 
comparable. 

4 . Degree of nodes is a good indicator of the "amount of 
communication" in the task graph. 

More work needs to be done to characterize parallel algorithms 
as task graphs, and to quantify the performance that can be 
expected from certain kinds of task graphs running on specific 
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network topologies. The significance of this work is that we 
can now begin to schedule task graphs onto multiprocessor 
systems in an optimal way by considering the target machine, 
communication delay, and the balance between computation 
and communication. MH is recommended for communication 
intensive task graph scheduling. MH does not oomider' 
network contention. This is left as an open research problem. 
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SuperGlue: Integrating the Tools 

Abstract 

A desirable output from the Parallel Programming 
Support Environment (PPSE) tools is compilable source 
code. SuperGlue takes a program flow file produced from the 
program design, an architecture description, and C code 
fragments from other PPSE tools, and produces C-Linda code 
that can be compiled and executed on machines which support 
the C-Linda environment This paper contains a discussion of 
the reasons for developing SuperGlue, along with an 
explanation of its functionality. We will also present a 
demonstration of the utility of C-Linda and examine possible 
future directions of ~h. 

Introduction 

The ultimate goal of this research is to create a system 
which can be fed disjoint, abstract descriptions of software and 
hardware and automatically merge the two into machine 
specific source code. SuperGlue takes a flow file ( dataflow 
representation) of a parallel program (which is translated from 
the output of the Extended Large Grain Data Flow (ELGDF) 
design tool[6]), along with a target machine file, a gantt chart 
file (which represents task scheduling), and code fragments and 
generates a parallel application able to nm on the described 
architecture. 

Several difficulties inherent to this ~earch are: 
• handling communication between tasks, 

1wldling task synchronization, 
• 1wldling the scheduling of tasks, 

providing portability between architectures, 
dealing with variable scoping. 

Cmrently, parallel programmers are forced to use vendor 
and architecture-specific parallel programming primitives to 
deal with communications between tasks and synchronization 
of tasks. This undesirable situation causes programmers to 
create code which is neither robust nor portable across a range 
of architectures. The job of coding task communication and 
synchronization is left to the programmer, who has to juggle 
low-level system calls with inadequate higher-level facilities. 

The programmer must also determine the proper order to 
schedule tasks. Frequently, this schedule will be incorporated 
pennanently into the code - no changes in task scheduling can 
take place unless the code is completely rewritten. The 
problem is not so much in the difficulty of translating an idea 
into working code, but in transforming the code to experiment 
with different possible execution courses. 

Finally, the problem of variable scoping must be dealt 
with. This difficulty is easily remedied by adhering to a basic 
rule of software engineering: Do not use global variables. IT 
you must use global variables, ELGDF has facilities to allow 
you to do so. Otherwise, all variables are local to a specific 
code fragment (procedure) unless needed by another fragment, 
and those variables needed by other fragments are passed by a 
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communication link (as specified by ELGDF). 1hls may 
sowid restrictive but as will be explained, just a few changes 
in programming habit, allows us to do some pretty neat 
things. 

These problem are met head-on in SuperGlue research. 
The objective is to abstract the nuts and bolts of parallel 
machines and parallel programming primitives so that 
software designers need only worry about their applications 
and their parallel design. The specifics are dealt with in an 
automated source code generation phase. 

C-Linda was chosen as the initial SuperGlue output 
source language because it provides a portable high-level 
approach to the problem of architecture-independent parallel 
programming by providing simple yet powerful commands. 
The hardware layer is abstracted off, providing the user with a 
stable platform that is available on many architectures. With 
little or no effort, a parallel program generated from the 
PPSE tools will be able to nm on a variety of architectures. 

PPSE Overview 

Most of the forward engineering aspects of PPSE ae 
shown in the following figure: 

figure 1 
Forward engineering portion of PPSE. 

A user would use a program design tool such as 
ELGDF to design and describe their parallel program. When 
finished, ELGDF would save the users program in a large 
ASCII file called the PP design file (see table 1). Also, all 
code fragments that make up the users parallel program would 
be saved in a code fragments file. Next the PP design file 
would be input to the Mapping Heuristic tool (MH) which 
would take the users parallel program and break the code into 
pi blocks[l], expanding structures (i.e. unroll loops) where 
possible and limit the decomposition of the program by 
selecting a specific depth in the design. In addition, the MH 
will generate a flow file (see table 2) which contains the code 
fragment (task) connectivity and the variables to be passed 
between fragments. Also, the code fragment file must be 
updated with all changes made to the re-organization of code. 
Next the output of MH is passed to a scheduler. Which then 

schedules the code fragments onto the available processors 
using a user specified heuristic or algorithm. The end result 
of the scheduler is a gantt chart file (see table 3). At some 
point the user must use the target machine editor to describe 
the architecture that the newly designed parallel program is to 
nm on. The resulting file is called the target machine file. 
Now the users parallel program is descn"bed in four different 
files: code fragment, flow, gantt chart, and target machine. 

SuperGlue will take these four files and generate the 
users parallel program, which has been mapped onto the 
desired architecture, and place the new program into an output 
file called the SuperGlue file. The resulting SuperGlue file 
will then be FfP'ed (transferred via ethernet) to the desired 
target machine, where the application will be compiled, 
linked, and executed. 

SuperGlue Overview 

SuperGlue is not an interface design language like 
MatchMaker[8], but is a PPSE tool integrator that generates 
all necessary linkage between code fragments in the designed 
parallel program as per the specifications of the PPSE tools. 

For the purposes of clarification, a code fragment is a 
procedure or program that can execute independently of other 
code fragments using local variables only except for those 
variables that are shared (i.e. passed from one task to another 
via a communication link), and since we are approaching the 
parallel programming from a large-grain dataflow point-of­
view, all code fragments will be at the procedural level, not at 
the instruction level. 

SuperGlue will not analyze the parallel code as an 
optimizing compiler would. We are relying on the efforts of 
the Mapping Heuristics (see figure 1), and the schedulers to 
have done all necessary validation and optimization. 

Currently SuperGlue assumes that there are no cycles in 
the flow file and all data/control arcs point to code fragments 
of a larger munber (nodes lower in graph), with the flow file 
used to detennine the connectivity and the variables to be 
passed between the fragments. Because MH is not functional, 
SuperGlue takes the output of ELGDF (PP design file) and 
generates both a flow, and a code fragment file. At a later date 
MH will do this automatically (see figure 1). The gantt chart 
file is used to detennine how the tasks should be bundled 
(grouped) onto separate processors. 

The shared variables come in two flavors: input and 
outpuL A code fragment will need all input variables before 
executing and will output all output variables before 
terminating. 

SuperGlue 

SuperGlue uses the gantt chart, flow, target machine, and 
code fragment files to piece the parallel application together. 
The gantt chart file describes the order in which code 
fragments are to be executed on each processor and which code 
fragments are to be bwidled onto which processors. The flow 
file determines code fragment connectivity and shared 
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variables. The target machine file specifies the target 
architectme, the number of available processors, and the base 
language (C or FORTRAN). The code fragment file contains 
the code pieces of the usezs parallel program. 

With this information. a base language, and the inherent 
abilities of Linda for handling fragment communication and 
synchronization., SuperGlue generates a complete parallel 
application. If the user wants the parallel application to run 
on a different architecture, all that is needed is a change of the 
target machine (using the target machine editor) and re­
running SuperGlue . A new parallel application will then be 
built for the desired architecture. 

SuperGlue works by constructing a program with the 
users code fragments as procedures, and inserting the correct 
Linda statements at the beginning and end of each procedure. 
SuperGlue is different from other systems that append code 
into existing routines, in that SuperGlue builds from the 
ground up, using many pieces, to form a complete parallel 
application. 

The nicest featme of Linda is that the hardware is totally 
abstracted away from the user, and by using PPSE tools 
including SuperGlue , even task communication and 
synchronization are abstracted away. The user is then left to 
only understand how to program parallel applications and how 
to use the tools made available through PPSE. All of the 
complexities are handled automatically . 

However , a draw-back to using Linda as an integral part 
of SuperGlue is that there must be a Linda implementation 
for the hardware the user wishes to use . 

Linda 

The Linda parallel programming environment consists of 
a small number of operations that may be integrated into a 
conventional programming language, yielding a parallel 
programming dialecL A host programming language is 
extended with four basic operations (and two variant forms) 
that provide the programmer with simple mechanisms for 
accessing logically-shared object memory . 

The common currency within the Linda environment is 
the tuple . A tuple is simply an ordered set of data, such as 
("Any_number", 6, 13.89). Tuples are added to and removed 
from logically -shared memory, called tuple space , using the 
Linda tuple operations . The basic tuple operations on shared 
tuple space provide the necessary mechanisms for inter­
process communication., process creation, and inter-process 
synchronization. 

Communication is handled ·via operations that allow 
tuples to be added to and removed from tuple space. Tuple 
space provides a "bulletin board" style repository for data. 
Tuples are persistent objects, remaining in tuple space until 
removed. This approach provides communication free of the 
complexity associated with address and time based schemes. 

Synchronization concerns are common in many parallel 
programming systems. The tuple removal and read operation 
implicitly handle synchronization concerns by blocking until 
an appropriate tuple becomes available . Predicate forms of 
these operations provide non -blocking behavior . 

Tuple Space 

The Linda parallel programming model is based on a 
logically-shared assoc iative memory called tuple space (TS). 
Tuple space can be supported efficiently regardless of whether 
the underlying hardware includes physically -shared memory. 
Successful prototype implementations exist on networks of 
conventional uniprocessors, disjoint-memory multicomputers, 
and shared-memory multiprocessors. 

Tuple space is an associative memory ; there are no tuple 
addresses . Tuple lookup is similar to the select operation in 
relational databases. Tuples are selected by in() or rd() on the 
basis of any combination of their field values . Tuples are 
inserted into TS by using either out() or evaIQ. For example 
to place a three element tuple into TS we could execute 
out("data", a, b, c) . To select or read this particular tuple 
from TS we could execute in("data.", ?a, ?b, ?c). 

Simple Example 

As a first-cut for testing PPSE 's usefulness, we want to 
examine the task of parallel programming by using programs 
that are made up of large grained, loosely coupled processes 
(each process can be developed independently of the others) . 

The first programming paradigm we wish to tackle is 
that of distnbuted data structures[5], where a group of identical 
worker processes access data structures simultaneously. The 
sample problem for this paper is to approximate pi using the 
rectangle rule[9] (see listing 1). When parallelized, this 
sequential program becomes basically a broadcast, calculate, 
aggregate (BCA) problem where we send (broadcast) separate 
intervals to a bunch of worker tasks who after doing their 
calculations, send the results back to a task who collects 
(aggregate) them. Using ELGDF the user might design the 
parallel version as follows: 

figure 2. 
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1be user would then specify the data to be passed on the 
arcs. Figure 3 shows the variables being entered for the arc 
between the start node and the workerl node . Likewise the 
user would fill in the data to be passed on the other arcs. 
Once the user had completed filling in the data arcs, the code 
for each node should then be entered into the simple nodes 
(see listing 2). Once all code is entered the user should save 
their current work using the facilities of EI.GDF. Figure 4 
contains a small portion of the ASCII file generated by 
ELGDF for the pi example. 

Arc lnfonmtion 
Arc Pers ~ ll1nten,11l,st11rt 1, stop I ! 
Arc Usage 0 Reed ® Write O R/W 

Mutual EHcluslon ®No OYes 
Compound Arc ®No OYes 

Num. Of ltentlon I I I Times 

Message Size I 1 I Bytes 

Documentetlon 

(Cancel) DK ) 

figure 3. 

After saving, the user will want to schedule the new 
program using one of the scheduling tools. For this example 
lets use Kruatrachue's Insertion heuristic with two processors, 
which will produce the gantt chart in figure 5. The produced 
gantt chart should then be saved by the user for later reference 
and for use by SuperGlue. 

Lets assume that the target machine file specifics a 
Sequent Balance as the target machine. Now that we have all 
necessary files, SupeIGlue is executed with the result being 
similar to listing 2. This code can then be FI'P'cd to the 
desired architecture, where it can be compiled, linked and 
aecuted. 

For comparison, the sequential version took on avenge 
for an interval of 10000, 0.91 seconds. While the PPSE 
designed and generated version for the same interval with two 
processors took on average 0.63 seconds. 

This small example with all its complexities has shown 
that it is possible to achieve a speedup by using parallel 
programming tools such as those found in PPSE, which 
sufficiently aid the user in dealing with the complexities of 
parallel programming. 

t-Ulndoa Start-$ 
$Svt1BOL START$ 

Syabo I Naae : star- t 
Syabo I ID : 0 

S-.,.t,ol Kind: Node 
Syabol Cotllp()rSiap: Siaple 

Exac:ution n-: o 
Nia Of lter-ationO 

S\,abol Rect Top: 11 
Syabol Rect Left : 197 

Syabol Rect Botto•: &1 
Sywbol Rect Right: 25 I 

Symbo I Docun,en tat I on : 
<Pre Object Na.e Start ) 
CPr. Object Na- End> 
$$ START ARC INFORAMTION $$ 
(One Arc lnforaation Start) 

Arc Ucriables : intel"Val,startl, stop1 
Arc ID: 0 

Fire Kind: dataArc 
Arc Message Size : I 

Arc Direction: Putoata 
Arc Co111pOr-Si•p: Si11ple 

Arc 11utual Exclusion: FALSE 
Arc Count: 

Arc Doc\Aentation: 

figure 4. 
Portion of PP design file. 

Current and Future Status 

Currently we have several early versions of SupeIGlue 
running on the Sequent Balance (written in C). However, 
since all tools for J>PSE are Macintosh applications, we 
decided to do the same with SupeIGlue. This will allow, in 
the future, a seamless design environment on the Macintosh. 
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Figure 5. 

Currently SuperGlue is under development on a 
Macintosh which generates code able to run on a Sequent 
Balance. Hopefully in the near future, we will be generating 
code for Intel Hyper-cube and Cogent architectures. 
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We need to test the concepts with actual parallel 
programs to gain further insight into potential methods and 
techniques. 
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APPENDIX • Program Listings 

Listing 1. (sequential version) 

,,. ................................. / 
,,. PI.CL •t 
,,. Sequential version 6/27/89 •t ,,. ................................. / 
real_mainO 
{ 
int i, start=l,interval; 
double scale, pi.:_approx = 0.0, rectangle_rule(); 

interval= 10000; 
start_timer(); 
scale= 1.0 / interval; t• per calculate 1/n •t 

t• collect the partial sum •t 
pi_approx = rectangle_rule(start,interval, scale); 

pi_approx = pi_approx • scale;,,. scale result •t 
timer_split(" approx. calculated."); 
print_timesQ; 
printf("pi approximation %20.15lf\n", pi_approx); 

} 

double rectangle_rule(start.stop,scale) 
int start, stop; 
double scale; 

{ 
inti; 
double x, rr_sum = 0.0; 

,,. do the summation over the given interval •t 
for (i = start; i <= stop; ++i) 
{ 
x = (i - 0.5) • scale; 
rr_sum += 4.0 / (1.0 + x • x); 

} 
retum(rr_sum); 

} 

Listing 2. (parallel version) 

,,. ................................. / 
,,. PI.CL •t 
,,. Parallel version 6/27/89 •t ,,. ................................. / 

#include <linda.h> 
#include <Stdio.h> 
real_mainQ 
{ 

int dID; 
intdfl; 
intdf3; 
intdf5; 
intdf6; 
intdf2; 
int df4; 
inti; 
start_timer(); 
scheduler(); 

timer_split("All tasks completed"); 
print_times(); 

} ,,. F.nd of Mainline!! • t 
dffX) 
( 

int iJ=l,m,n, workers.processors; 
int startl,start2,start3 ,start4,start5; 
int stopl,stop2,stop3,stop4,stop5; 

double intervalh; 

n = 10000; 
interval= 1.0/n; 

startl=l; 
start2=2000; 
start3=4000; 
start4=6000; 
start5=8000; 
stopl=l999; 
stop2=3999; 
stop3=5999; 
stop4= 7999; 
stop5=10000; 
out("F06", interval); 
out(''F05", intervalstart5,stop5); 
out("F04", intervalstart4,stop4); 
out("F03", intervalstart3,stop3); 
out("F02", intervalstart2,stop2); 
out("F0l ", intervalstartl,stopl); 

} ,,. End of function ~ I 
dflO 
{ 

int startl,stopl; 
inti; 
double interval,x,resultl=0 .0; 

in("F0l", ?interval ?startl, ?stopl); 
for(i=startl ;i<=stopl ;++i) 
{ 
x=(i-0.5)•interval; 
resultl +=4.0/(1.0+x•x); 

} 
out("Fl6", resultl); 

} ,,. End of function df1 • t 
df1() 
{ 

int start2,stop2; 
inti; 
double interval,x,result2=0.0; 

in("F02", ?interval, ?start2, ?stop2); 
for(i=start2;i<=stop2;++i) 
{ 
x=(i-0.5)•interval; 
result2+=4.0/(1 .0+x•x); 

} 
out("F26", result2); 

} ,,. End of function df2•/ 
df30 
{ 
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int start3,stop3; 
inti; 
double interval,x,result3=0.0; 



in("F03", ?interval, ?start3, ?stop3); 
for(i=start3;i<=stop3;++i) 
{ 
x=(i-0.S)*interval; 
result3-+=4.0/( 1.0+x•x); 

} 
out("F36", result3); 

} /* End of function dO*/ 
df40 
{ 

int start4.stop4; 
inti; 
double interval,x,result4=0.0; 

in("F04", ?interval, ?start4, ?stop4); 
for(i=start4;i<=stop4;++i) 
{ 
x=(i-0.S)*interval; 
result4+=4.0/(l .O+x*x); 

} 
out("F46", result4); 

} /* End of function df4*/ 
df5() 
{ 

int start5,stop5; 
inti; 
double interval.x,result5=0.0; 

in("F0S", ?interval, ?start5, ?stop5); 
for(i=start5;i<=stop5;++i) 
{ 
x=(i-0.S)*interval; 
result5+=4.0/(l.O+x*x); 

} 
out("F56", result5); 

} /* End of function df5*/ 
dff,() 
{ 

double resultl,result2,result3,result4,result5; 
double h.pi_approx=O.O, interval; 

in("F56", ?result5); 
in("F46", ?result4); 
in("F36", ?result3); 
in("F26", ?result2); 
in("F16", ?resultl); 
in("F06", ?interval); 
pi_approx=resultl +f'esult2+result3+f'eSUlt4+result5; 
pi_approx=pi_approx*inte.rval; 
timer_split("approx. calculated."); 
printf("pi approximation %20.151.f\n" ,pi_approx); 

} /* End of function df6*/ 
gantlO { 

dfOO; 
dfl(); 
df3(); 
df50; 
df6Q; 
out("gant_done"); 
} /*end of gantt chart 1 */ 

gant2() ( 
df.2(); 
df4(); 
out("gant_done"); 
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} /*end of gantt chart 2 • / 
schedule:() 
{ 

timer_split(" gantl "); 
eval(gantl O); 
timer_split(" gant2"); 
eval(gant2()); 
in("gant_done"); 
in("gant_done "); 
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