
89-80-1

j

Lin~UEAS~TY

Status Report: Parallel Programming
Support Environment Research at Oregon State University

W.G. Rudd
T.G. Lewis

Hesham El-Rewini
David V. Judge

Scott Handley
Inkyu Kirn

Oregon Advanced Computing Institute (OACIS)
&

Department of Computer Science
Oregon state University

Corvallis, Oregon 97331-3902

n
n
n
n
n

I
r J

f I
l J

u

j

Status Report: Parallel Programming
Support Environment Research at Oregon State University

W.G. Rudd, T. G. Lewis, Hesham El-Rewini, David V. Judge, Scott Handley, Inkyu Kim
Oregon Advanced Computing Institute (OACIS) and

Department of Computer Science
Oregon State University

Corvallis, OR 97331-3902
(503)737-3273

August 17, 1989
Introduction

The most significant problem facing the parallel
computing field is parallel programming [4]. Along with all
the software problems associated with sequential
programming, parallel programmers must deal with non­
determinism, race conditions, and problems involving
portability and compatibility between different parallel and
sequential architectures. The Parallel Programming Support
Environment (PPSE) is a set of software tools designed to
help parallel programmers deal with reverse engineering and
forward engineering aspects of parallel programs. Forward
engineering deals with the task of writing a new parallel
program from scratch. Reverse engineering involves
retrofitting existing sequential programs onto parallel
computers. PPSE research involves the following topics
(from [4]):

how to partition an application into parallel
parts,

how to map parallel parts ~nti? multiple
processors,

how to optimally schedule and run parallel
parts,

how to reverse engineer existing serial source
oode,

how to measure and analyze performance,

how to distribute data over a multiprocessor
network,

how to coordinate design, coding, debugging
and performance,

which techniques work.

With the forward engineering part of the project, the
research involves how to design. implement, test, and
evaluate the performance of a parallel program. PPSE research
at Oregon State University addresses a series of issues related
to designing and writing software for parallel computers. A
number of practical tools have been developed which allow a
programmer to visually design an architecture independent
program, specify a high-level description of architectures on
which the parallel program might run. determine a schedule or
map for assigning program segments to processors, and
automatically generate source code for a specific parallel
computer from code fragments, the graphical description of

the machine and the graphical description of the software. The
major areas of research address the following general
problems:

Developing a Graphical Notation for the
Design and Description of Parallel Programs .

Developing a Graphical Notation for the
Description of Parallel Machines.

Mapping the Parallel Software to the Parallel
Machine.

Automatic Generation of Machine Dependent
Parallel Source Code.

Developing Visual Methods of Inputting the
Hardware and Software Design Details.

Extended Large Grain Data Flow (ELGDF)[l] is a
graphical language for designing parallel programs. Ideally,
parallel software should be designed independent of any
specific hardware on which the developed code might
eventually run. ELGDF allows the development of a high
level, machine independent description of a parallel program.
ELGDF also allows the design of parallel software without
being bound to any particular programming language. To
enter descriptions of parallel programs, an ELGDF design
editor which runs on a Macintosh has been developed. The
design editor provides a visual method of inputting software
design details in ELGDF notation. The following features
have been implemented into the design editor:

ability to produce a hierarchical design for
parallel software in ELGDF notation.

ability to add detailed textual specification to
graphic notation through dialog windows,

easy manipulation of design by resizing,
encapsulating, and expanding the graphical
description,

ability to assign source code fragments to
specific graphical objects,

graphics to text (and text to graphics)
transformations for interface with other
PPSE tools.

Once the program design has been entered, other PPSE
tools permit the analysis of the design and transformation of
the design into forms such as dependency graphs, flow graphs
and source code. Before these steps can be taken. however,
specific implementation details must be entered.

To enter descriptions of parallel machines, a target
machine editor has been developed. The Target Machine Editor
provides a graphical analog to the classical Proccssor­
Memory-Switch hardware description notation developed by
Siewiorek. Newell, and Bell [2]. The present implementation

of the target machine editor runs on top of the Extend 1M
simulation package on a Macintosh. The following features
are implemented:

ability to graphically describe small irregular
architectures or easily describe large regular
architectures,

graphically create shared memory, tightly
coupled distributed memory or loosely
coupled distributed memory architecture ~.
describe system specific information by .
entering the information in dialog boxes
which are logically attached to the graphical
icons,

graphics to text transformation for interface
with other PPSE tools,

ability to save and edit graphical descriptions
of systems.

In general, a nwnber of system level blocks (processor,
memory, bus, and switch) are kept in a library. The user
selects blocks from the library and enters specific information
by double clicking on the block and keying in the ~lo~k
specific information (like processor speed or memmy size) m
the fields of the dialog window. A global information block,
called the Topology File Generator must be present in all
system descriptions. This block contains information which
is global to the system. In the case of large regular
architectures, the Topology File Generator block may be the
only block necessary. All necessary information can be
entered in its dialog.

Once the software and hardware descriptions have been
gathered. the software designer should determine the optimal
assignment of software processes to processors. MH
(Mapping Heuristic) is a tool which performs an automated
mapping of the software onto the hardware. MH maps
program modules represented as nodes in a precedence task
graph with communication (a transformation of the ELGDF
design file) onto arbitrary machine topologies and gives an
allocation and ordering of tasks onto processors. It produces as
output a Gantt chart, providing easy visualization of the
allocation of the program modules onto the target machine
processing elements, and the execution order of tasks allocated
to each processing element The Gantt chart consists of a list
of all processing elements in the target machine. For each

-2-

processing element, the Gantt chart shows a list of all tasks
allocated to that processing element, ordered by execution
time, including task start and finish times. The mapping
heuristic modifies Kruatrachue's [3] basic heuristic to handle
communication delay between tasks assigned to heterogeneous
processing elements in an arbitrary target machine topology.

A desirable output from the PPSE design is compilable
source code. A glue code module has been developed which
takes the PPSE software design, C code fragments, and a
hardware description as input and produces C-Linda source
code as output The C-Linda code can then be compiled on
parallel machines which support C-Linda such as the Intel
IPSC2, Sequent Balance, and the Cogent Machine. One of the
primary problems with manual generation of parallel
programs is the lack of portability of the fmished code due to
the architecture and vendor specific parallel programming
primitives. Parallel programs, like sequential programs,
frequently need to be transported across archite.ctures. The glue
code module allows the parallel program designer to design
parallel programs without specifying architecture specific
synchronization and communication primitives (such as locks
on a shared memory system or message passing primitives on
a distributed system). The glue code module automatically
adds these primitives to the code fragments according to the
specified design in the ELGDF editor.

The PPSE project is an attempt at creating a unified
approach toward parallelism. Each of the following sections of
this paper describe the major areas of PPSE research, at
Oregon State University, in more de~. We feel that .it is
necessary to provide tools which allow program designers the
ability to experiment with the ELGDF paradigm as one
possibility among many different parallel programming
models. Only through real practice and experimentation will
the ultimate solutions to the parallel software design problem
eme.rge.

References
1. H. El-Rewini and T. Lewis," Software

Development in Parallax: The EL.GDF Language,"

Teclmical Report (88-60-17), Dept of Computer

Science, Oregon State, University, July 1988.

2. D. Siewiorek, C. G. Bell, A. Newell, Computer

Structures· Principles and Examples, Mcgraw-Hill

Book Co, 1982.

3. B. Kruatrachue, "Static Task Scheduling and Grain
Packing in Parallel Processing Systems," Ph.D.

Thesis, Oregon State University, Corvallis,

Oregon, 1987.

4. T. Lewis, "Parallel Programming Support

Environment Research", TR-PPSE-89-1, Oregon

Advanced Computing Instimte, Beaverton, Oregon,

1989.

7
n
n
n
n

11

]

]

u
j

n
n
n
n
n
n

n
f I

l

u
lJ
l
J
J
J
j

ELGDF: Design Language for Parallel
Programming

Abstract

ELGDF (Extended Large Grain Data Flow) is a
graphical language for designing parallel programs. The goal
of ELGDF is two-fold: 1) to provide a program design
notation and computer-aided software engineering tool, and 2)
to provide a software description notation for use by
automated schedulers and performance analyzers. The syntax
is hierarchical to allow construction and viewing of
realistically sized applications. ELGDF is a program design
language, and not a programming language, but an ELGDF
design can be refmed into Pascal. C, FORTRAN, etc. source
code programs through simple transformations. ELGDF
facilitates describing parallel programs in a natural way for
both shared-memory and message-passing models using
architecture-independent higher abstractions that allow
program designers to express their algorithms in high level
structures such as replicators, loops, pipes, branches, and fans
without having to worry about details such as
synchronization code. Arc overloading in current graphical
languages is resolved in ELGDF by using different symbols
and different attributes for different types of arcs.

1. Introduction

It seems clear that the next generation of computas will
be based on the multiprocessor paradigm. but more effort is
needed to help software engineers develop programs for
parallel computers. Because hmnans tend to think sequentially
rather than concurrently, program development is most
naturally done in a sequential language [11]. Unfortunately
sequential programming is incapable of directly making
effective use of parallel computers.

If we look at the evolution of sequential programming,
we find that sequential programming has evolved in the
following way: at the beginning all the programs wae written
in architecture-specific low level languages. Then high level
languages started to appear allowing programs to be written in
architecture independent languages so the programmers didn't
have to worry about the architectural details. Finally
extensions have been made to high level languages to make
them more structured and abstract leading to programs that are
easier to develop, test, and maintain. We believe that parallel
programming should evolve in the same direction.
Developing hand-<:oded parallel programs is equivalent, in a
sense, to programming in a low level sequential language,
because hand-coded parallel programs are quite architecture
dependent. For example synchronization is done using locks
in a shared memory architecture, but synchronization is done
via message passing in a distn"buted memory architecture.

In order to develop hand-coded programs for parallel
systems, the programmer has to exploit the potential
concurrency of the algorithm, write the parallel program for a
given architecture using a language and synchronization
constructs suitable for the given architecture, schedule tasks
on the available processors using intuitive methods, execute
the program, and finally debug the program if it doesn't give
the expected results or if it goes into a deadlock siruation.
Programmers have a great deal of details to worry about at any
time which makes parallel programming a very difficult

- 3 -

process. In order to make parallel programming easy, we need
to get the system to shoulder more of the burden.

It is not surprising that an architecture independent
higher abstraction is needed so program designers can express
their algorithms in high level structures without having to
worry about the details like the synchronization code. High
level parallel programs then can be analyzed and translated
into schedulable units of computation that fit the target
hardware architecture.

We describe the ELGDF design language that allows
program designers to easily express parallel program designs
in a graphical. hierarchical, and natural way for both shared­
memory and message-passing models. The El.GDF provides
design files that contain the information needed by different
tools in the PPSE (Parallel Programming Support
Environment) under development at Oregon Advanced
Computing Institute (OACIS). For example an ELGDF
design can be easily transformed into task graphs at different
levels of granularity to be used by scheduling tools.
Estimated execution time of tasks at different levels of
granularity can also be used by performance evaluation tools.
An ELGDF design also can be refined into Pascal. C,
FORTRAN, etc. source code programs through simple
transformations. We believe that the El.GDF design language
will ease software development for parallel computers, help
programmer comprehension and will produce parallel
program designs in a form . appropriate for analysis.

In our work a program is represented as a large grain
data flow network. This work is related to a number of other
srudies [1,2,3,4,5,6,7,8,9,10], but extends LGDF [2,3,4] to
facilitate the following: 1) The syntax poses high level
structures such as replicators, loops, pipes, etc., 2) Branch
and loop constructs are provided which give more information
for scheduling and analysis purposes, 3) Parameterized
constructs that can be expressed compactly are provided, 4)
Arc overloading is resolved by providing different symbols
and different attn'butes for different types of arcs, 5) Mutual
exclusion for shared memory systems can be easily expressed,
6) Synchronized pipelining is provided through repeated arcs,
and 7) ELGDF captures program designs that can be easily
transformed into different forms appropriate for analysis
before being refined into source code.

The rest of this paper is organized as follows. Section 2
contains the definition and details of the proposed design
language while the implementation is briefly described in
section 3. Section 4 shows ELGDF designs for analysis. An
example is given in section 5. We give our conclusion in
section 6.

2. Definition or ELGDF

ELGDF is rich enough to express the common structures
found in parallel programs. An ELGDF design takes the form
of a directed networlc consisting of nodes, storage constructs,
parameterized constructs, structures, and arcs. Figure 1 shows
an ELGDF design networlc at some level in the hierarchy.

2.1 Basic Constructs

Nodes

A node, as shown in Figure 1, is represented by a
"bubble", and can represent either a simple or a compound
node. A simple node consists of sequentially executed code
and is carried out by at most one processor. A compound node

is a decomposable high level abstraction of a subnetwork of
the program design network.

Storage Constructs

A storage construct is represaued by a teetangle. and can
represent either a storage cell or a collection of storage cells.
A storage cell represents the data structure to be read or
written by a simple node. A node connected to the top of a
storage construct has access to it before any node connected to
its bottom. Nodes connected to a storage construct on the
same side (top/bottom) compete to gain access to that storage
construct in any order. A shared storage cell X is used in
Figure 1. A compound node connected to the left or the right
sides of a rectangle representing a collection of storage cells
means that the compound node accesses the constituents of
the storage collection. but the details are given in a lower
level description.

Arcs

An arc in ELGDF can express eithez-data dependency,
sequencing, transfer of controL or read and/or write access to a
storage construct. A set of attributes is associated with each
arc to provide information about the arc type, data to be
passed through the arc, storage access policy, and
communication strategy. An arc can be either a simple arc
which cannot be decomposed or a compound arc which is
decomposable into a set of other simple and/or compound
arcs.

Simple arcs can be classified into control and data arcs.
A control arc.. as shown in Figure 1 (dotted line) expresses
sequencing or transfer of control among nodes. A data arc
carries data from one node to another or can connect a node to
a storage construct. A data arc connecting a node and a storage
construct can represent READ, WRITE. or READ/WRITE
access according to the direction of the arc. A data arc can be
used to carry data once or repeated times per activation. One
of the arc's attributes is used to indicate the nwnber of times
the data will be passed through. H the value of that anribute
is greater than one then the arc is considered a repeated arc.
The repeated arc is used basically in pipelines. It can cauy
data (repeated times) from a simple node to another in a
synchronized fashion. Also it can express synchronized
writing and reading to or from a storage cell.

Spilt and Merge

Split and merge, as in Figure 1, are special purpose
simple nodes for representing conditional branching. Split has
two output control-arcs; one for T = True, and the other for F
= False. According to the truth or the falsehood of the
condition associated with the split node one of its two output
control arcs is activated. Merge has N input control arcs and
one output control arc. Merge activates its output arc when it
gets activated by any one of its N inputs.

Replicators

A replicator, as used in Figure 1, is one of the
parameterized constructs in ELGDF that allows program
designers to represent concurrent loop iterations compactly.
A set of attributes is associated with the replicator such as the
control variable, initial value, step, and replicator bound.
Replication of a node N times produces N concurrent
instances of that node. An arc connected to a replicator is
expanded as a set of identical arcs each of which is connected
to one of the replicated instances.

-4-

Pipes

A pipe, as in Figure 1, is a high level abstraction that
allows program designers to compactly represent a set of N
nodes forming a pipeline . The pipe consists of N simple
nodes and N-1 m-repeated arcs. The nodes forming the
pipeline are replications of the same simple node. A pipe has
several attributes associated with it such as nwnber of stages
in the pipeline (N), number of times the data will be passed
through repeated arcs in the pipe (m) and others.

repeated
ac

Figure 1

Loops

tt

F~

JJ
C;erfe1

A loop can represent For, While, or Repeat structures.
El.GDF allows program designers to express loops compactly
without using cycles in the graph. This is made possible by
descnbing only the node (simple or compound) that forms the
loop body, and then specify a set of attnbutes such as the
control variable. initial value, step, and loop bound in case of
"For" or the termination condition in case of While (Repeat) .
A For loop iterated N times over a node can be automatically
unrolled as a sequence of N instances of that node connected
by N-1 arcs. Similarly, a While (Repeat) structure can
automatically be represented in terms of split, merge, node
and While (Repeat) constructs. Figure 2 shows a For loop
construct and its unrolling with data fl.ow from one iteration
to anothez-.

n
n
n
n
n
n

l
11

I
I

I
j

l
n
n
n
D
n
l

l

l I

ll

u

Y(i-1) X(i)

Y(i)

For loop over
nodeP(i)

Y(O) X(l)

Y(l) X(2)

(/;{
Y(2f ;(3)
r!;;(

y~

Figure2

2.2 Common Structures

ELGDF al.so supports many of the common structures in
parallel programs that can be synthesiz.ed using the constructs
given in section 2.1 [12). It automatically provides them for
program designer convenience. Complete trees, meshes,
branches, and fans are examples of common structures. The
system can prepare skeletons for various types of structures
per designer request Using these structures reduces the
drawing time., helps design readability and comprehension,
gives more information for analysis tools (regularity of trees
for instance). For example., a fan of size n is composed of a
~tart node S, n parallel nodes Pi, i = [l..n], 2n control arcs aj,
J = [l..2n], and an end node (E). Arc aj COllllects S to Pj, j =
[l..n]. Arc Ilk connects Pk-n to E, k = [n+l..2n]. The start
node activates the parallel nodes and when they all finish E
gets activated. Compound arcs that are connected to a fan carry
data to or from its constituents.

2.3 Mutual Exclusion

ELGDF helps designers to easily express mutual
exclusive access to shared variables by having an attribute
associated with each arc connecting a node to a storage
construct. H the exclusion attribute is set, then mutual
exclusion is guaranteed. Figure 3 shows three simple nodes
A. B, and C and a storage cell X forming an ELGDF network.
Nodes A, B, and C share the variable X, yet A and B have
access to X before C because A and B are connected to the top
of X and C is COJU1ected to the bottom. A and B can access X
in any order since they are both in the top side of X. Both A
and B want to update X through a READ/WRITE arc and that
might produce an incorrect result unless we set the mutual
exclusion attribute (exclusion) associated with those
READ/WRITE arcs to guarantee mutual exclusive access to
X as shown.

-5-

Figure3

3. ELGDF Implementation

The ELGDF design language is being implemented in
Lightspeed Pascal on Macintosh II. A user-friendly graphical
Design Editor is provided as user interface. The Design Editor
is a computer-assisted software engineering tool for parallel
program design and implementation. It takes ELGDF designs
as input, and sourqe code fragments for each simple node in
the ELGDF design. and produces source code that can be
compiled and nm on a parallel computer.

A parallel program designer can use the Design Editor to
draw ELGDF graphs, and from these graphs produce a PP
design file that contains the design primitives with additional
information needed by various tools in the PPSE.

The Design editor is designed to have a menu bar as well
as a palette of language symbols and tools by which a user
can easily synthesize parallel programs. It also supports easy
drawing and graph manipulation facilities such as dragging,
resizing, encapsulation, expansion, etc. It al.so provides multi­
window system to show parallel programs at different levels
in the hierarchy. A program designer can define the attnbutes
associated with each construct in the program using fill-in­
the-spaces type of dialogues . Source code fragments for each
simple node in the design are specified in FORTRAN 77
either using text editing windows or from external files. The
Design Editor automatically generates some of the common
parallel program structures such as trees, meshes, fans, etc.
for parallel program designer convenience. The Design Editor
also supports syntax checking that catches illegal connections
in the ELGDF design network.

4. ELGDF Designs for Analysis

ELGDF provides the information needed by diffezmt
analysis tools in the PPSE, so that program designers can get
feedback and try different fonns of their designs before code is
wri~ Scheduling tools, for instance, can use a very large
gram task graphs automatically obtained from ELGDF
designs that hide loops, branches, and other details.
Alternately, a small grain task graph that shows some or all
of the branches, loops, and other details can be automatically
generated..

ELGDF designs can provide information concerning the
regularity of the algorithm by generating a task graph
containing umolled loops or common structures like trees and
meshes. Scheduling as well as performance estimation tools
are given important information such as the estimated
execution time at each node at different levels of granularity,
and the amount of data to be passed among nodes. For
instance the operations in a simple node might be used to
estimate the execution time of the node. The estimated
execution time of a compound node that contains branches or

loops can be calculated from the estimated probabilities of
taking different branches.

Glue code tools are povided with the information needed
for code generation - for example, the files that contain the
sequential code at each of the simple nodes, the precedence
relations among nodes, the data/control flow in the program.
the shared variables in a shared-memory system,
communication prolOcOls among communicating nodes in
message passing system, and others.

S. Example

In this section ELGDF is demonstrated by means of an
example that shows the toJHiown program construction for
the solution of AX = B, where A is a lower triangular matrix.
The computation, suggested by J. Dongarra and D. Sorensen
of Argonne National Laboratories, is the solution of AX=B,
where A is an N * N lower triangular matrix, X and B are N­
vectors [5]. The tasks used in the algorithm are:

1) S(sol#)

This task solves for the triangular diagonal block sol# .
It computes:

! X(sol#) = B(sol#)/A(sol#,sol#) !
This can be done only after all (T) tasks for row sol#

have completed. Notice that S(l) can start without any
preconditions.

2) Task T(ij)

This task executes the transformation:

!B(i) = B(i) - A(i.j)*X(j)I

on the ith block in column j. This step can only be
executed if SG) has been completed.

To express this program in ELGDF, . we first give the
abstract top level design network of the program that shows
the program and its input/output interaction. Then we define
every construct in the top level by giving the subnetwork
describing its fimction. We keep going down in the hierarchy
defining the network constructs 1mtil we reach the lowest
level in the hierarchy when we specify the source code with
each simple node. Figure 4 shows the ELGDF top-down
construction of the program.

As shown in Figure 4a, we give the very high level (top
level) description of the program which consists of a
compound node (AX=B) connected, through a READ/WRITE
compound arc to a storage construct representing the data
sttucrure to be used in the program. Now we define each
construct in the top level. We can decompose the compo1md
node (AX=B) into two separate conCUirent subnetworks: 1)
solves for the first triangular diagonal block, and 2) solves for
triangular diagonal blocks [2 ·- N].

The first subnetwork consists of the compound node
solve(!) connected to the storage collection representing the
data structure it accesses. The second subnetwork consists of
a replicator over a compound node solve(so1#) for sol#= 2, N
and the storage collection representing the data structure it
accesses. The replication over the compound node solve(sol#)
gives (N-1) concurrent nodes (solve(2), solve(3), ... ,
solve(N)). Figure 4b shows the two subnetworks describing
the compound node (AX=B).

-6-

Figure 4c shows the subnetwork describing the
compound node solve(l). The task S(l) can start without
having to wait for any other tasks. It takes B(l) and A(l,l) as
input and it produces X(l). Once S(l) finishes, all non­
diagonal (T) tasks in the first column can start in parallel.
These parallel tasks are represented using a replicator over the
simple node T(arow,1) for arow = 2, N. The replicator is
connected to the bottom of the storage cell X(l) so the
replicated tasks cannot start until S(l) which is COJD1ected to
the top of X(l) finishes.

The subnetwork defining the compound node solve(sol#),
for sol#= 2 to N, is given in Figure 4d. Since S(sol#) can
start only after all (T) tasks in row (sol#) have updated
B(so1#), a replicator over the simple node T(so1#,k) fork= 1
, sol#-1 is connected to the top of the storage cell B(sol#) and
S(so1#) is connected to its bottom. Once S(sol#) which is
connected to the top of X(sol#) finishes, all non-diagonal (T)
tasks in the column (sol#) can start in parallel. These parallel
tasks an: represented using a replicator over the simple node
T(j,sol#) for j = sol#+l, N. The replicator is COJD1ected to the
bottom of the storage cell X(sol#) so the replicated tasks
cannot start 1D1til S(sol#) writes into X(sol#). Notice that the
READ/WRITE arcs connecting the nodes representing the (T)
tasks to the elements of B vector have their exclusion
attribute set so mutual exclusion is guaranteed when
concurrent (T) tasks try to update an element in vector B at
the same time.

Figure 4e shows the FORTRAN code associated with
simple nodes S(i) for a given i and T(ij) for a given i and j.
At this point the program designer has finished the program
description and the system now can generate the expanded
network and the analysis files for any N.

collection of storage cells

Figure4a

B(arow) arow = 1,N
A(l,1), X(l)
A(arow,1) arow = 2, N

B(arow) arow = sol#,N
A(sol#,acol) acol = 1, sol#

A(arow,sol#) arow = sol#+l.N
X(so1#)

Figure4b

-B
sol# = 2, N

n
n
n
n
n
n

l
f I

j

J

j

J

J

n
n
n
n
0
n

(l

l

11

lJ
J

j

J
LJ

arow=2,N

Figure4c

A(j,101#)

j•IOl#+l,N

B(D

Figure4d

X(i) = B(i)/A(i,i) B(i) = B(i) - A(ij)*X(j)

Code at S(i) Code at T(ij)

Figure4e

6. Conclusion

In this paper, we have presented a graphical design
language for parallel programming. The complete syntax of
ELGDF helps program designers to deal with parallelism in
the manner most natural to the problem at hand. It allows the
expression of the common structures in parallel programs
easily and compactly. For example the replication mechanism
used in ELGDF leads to a compact, flexible, and powerful
representation of dynamic graph structures.

In addition to expressing parallel programs in a natural
way for both shared memory and message passing systems,
ELGDF provides a vehicle for studying parallel programs. It

-7-

helps as a way to capture parallel program designs for the
pwpose of analysis. ELGDF provides design files that contain
information needed by different tools in the PPSE.

7 References

1. P. Stotts, "The PFG Environment: Parallel
programming with Petri net semantics," proceedings of the
mess conference, 1988.

2. D. DiNucci and R. Babb, "Practical support for
parallel programming.'' proceedings of the mess conference,
1988.

3. R. Babb and D. DiNucci, "Design and
implementation of parallel programs with large-grain da1a
flow," in Characteristics of parallel algorithms, Cambridge,
MA: MIT Press, pp. 335-349, 1987.

4. R. Babb, "parallel processing with large-grain data
flow techniques," IEEE Computer, pp. 55-61, July 1984.

5. A. Adiga and J. Browne, "A graph model for parallel
computations expressed in the computation structures
language," proceedings ofICPP, 1986.

6. A. Davis and R. Keller, "Data flow program graphs,"
IEEE Computer, pp. 26-41, February 1982 .

7. J. Dennis, " Data Flow Supercomputers," IEEE
Computer , pp. 48-56, November 1980.

8. T. Kimura, "Visual programming by transaction
network," proceedings of the mess conference, 1988.

9. G. Raeder, "A survey of current graphical
programming techniques," IEEE Computer, pp. 11-25,
August 1985.

10. W. Ackerman, "Data flow languages," IEEE
Computer, pp. 15-25, February 1982.

11. J. Allen, and K. Kermedy, " A Parallel Programming
Environment," IEEE Software, pp. 21-29, July 1985.

12. H. El-Rewini and T. Lewis , " Software Development
io Parallax: The ELGDF Language," Technical Report (88-
60-17), Dept . of Computer Science, Oregon State,
University, July 1988.

Graphical Descriptions or Parallel Machines:
The PPSE Target Machine Editor

Abstract

A parallel program must nm on a parallel machine.
While it is desirable to produce architecture independent
software to achieve portability goals, the inclusion of
architecrure specific details in the software design and
development phase will often provide a means of gaining
much needed efficiency in the performance of the software on
a specific machine. Ideally, independent hardware and software
descriptions should be optimally fit together through an
automated process (mapping or scheduling). This paper
describes current work involving the graphical description of
parallel machines. The first part of this section discusses
several issues related to the needed level of abstraction for the
description of parallel machines and the necessmy information
to include in the description. The second part descnbes several
examples that weze created with a demonstration version of
the Parallel Programming Support Environment (PPSE)
Target Machine Editor. The Target Machine Editor provides a
graphical analog to the classical Processor-Memory-Switch
hardware description notation developed by Newell,
Siewiorek. and Bell [6]. The third part of the paper describes
the infonnation format of the resulting text file produced by a
graphics to text transformation on the graphical machine
description.

Part 1 - Target Machine Description
Introduction

A target machine, in the scope of the Parallel
Programming Support Enviromnent (PPSE), is defined as the
machine on which a designated parallel program will nm.
Essentially, three categories of parallel machines can be
~

machines that have globally shared memory,

machines that have no shared memory and in which

processors commmiicate by sending messages, and

machines that arc composed of loosely
coupled "clusters" of processors.

The last category is a composition of the first two.
Shared memory exists within each cluster while message
passing takes place between clusters.

The target machine editor provides a visual method of
entering a description of the target machine. The editor
provides a library of system level blocks which can be
constructed .into a representation of the target machine. Each
block also contains a dialog window in which system specific
information (like processor speed. word size. comn11mication
bandwidth. etc.) can be entered. The graphical diagram with its
associated information can be transformed into a topology
(text) file containing information which uniquely descnbes the
target machine. The information contained in the topology
file can be directly fed into the PPSE database (developed at
PSU).

The topology files should contain a textual description of
the target machine architecture. Three different
groups/modules within the PPSE project need to access the
topology files: schedulers, performance analysis, and program

- 8 -

transform/glue code. Our primary goal is to determine which
architectural aspects of the target machine need to be included
in the topology file according to the current and future needs
of the three groups.

The Target Machine Editor

The present implementation of the target machine editor

nms on the Extenci™ simulation package on a Macintosh.
The following features are implemented:

ability to graphically construct small
irregular architectures or easily describe large
regular architectures,

graphically create shared memory, tightly
coupled distributed memory or loosely
coupled distributed memory architectures,

describe system specific information by
entering the information in dialog boxes
which are logically attached to the graphical
icons,

• perform a graphics to text transformation in
order to save the system specific information
in a text file,

ability to save and edit graphical descriptions
of systems,

In general, a number of system level blocks (processor,
memory, bus, switch. etc) are kept in a library. The user
selects blocks from the library and enters specific information
by double clicking on the block and keying in the block
specific infonnation (like processor speed, memory size, etc.)
in the fields of the dialog window. A global information
bloclc, called the Topology File Generator must be present in
all system descriptions. This block contains information
which is global to the system. In the case of large regular
architectures, the Topology File Generator block may be the
only block necessary. All necessary information can be
entered in im dialog.

What ls Needed ln the Topology Files

Sc:heduleis:

Most scheduling algorithms being considered within
PPSE need to know at most the number of processors,
interconnection network, latency and contention infonnation.
Latency is a ftmction of the distance a message must travel.
the time it takes for a message to travel one hop, the size of
the message and the number of packets into which the
message must be split. Contention occurs when several
processors contend for a common resource. When contention
occurs, requests must be serializ.ed.

To deal with the mapping problem , Bennan [1] has
proposed performing a series of transformations (contraction,
placement. routing) which can be applied to the algorithm.
communication graph which result in a mapping of the
algorithm into the multiprocessor. The researchers at the
University of Oregon have proposed similar methods. Their

7
n
n
n
n
n

l

J

I
I

n
n
.n
n
0
n

f I
1

1

ii
j

lJ
j

u

mapping algorithms calculate a ~ear . optimum pro~s­
>processor mapping by approxunauon methods (~e
simulated armealing or neighborhood search). These mappmg
algorithms attempt to minimize a cost fimction which may
consider conflicting goals. The real problem then becomes
detcmrining the information that must be captured_ in the cost
fimction for a general class of target algonthms and
architectures. The inclusion of pertinent an:hitec:tural
characteristics in the cost function may enhance the
performance of these types of ma~ing algorithms ":bile
adding little to the time complexity of the mappmg
algorithms.

According to Jamieson [2], the following architectural
characteristics all affect algorithm performance: number of
PEs, memory organization, memory size,
mode(SIMD/MIMD/Pipelined), network, synchronization,
processor capacity, data types, addressing modes, data
structures, 1/0. Each of these characteristics include many
sub-characteristics or metrics. For example, the network
information could include such metrics as diameter,
bandwidth, average distance between processors, etc. Including
these characteristics in the topology files would be beneficial
only if the modules accessing the information can use this
information.

Perl'ormance Analysis:

From the performance analysis standpoint, the inchlsion
of actual metrics and behavioral characteristics in the form of
statistical values from real machines, and the ability to tweek
these values to simulate not-yet-built machines may be an
important addition to the topology files. According to Levitan
[3] there are a nwnber of metrics which can be used to
evaluate the effectiveness of certain communication structures.
Additional metrics could be formulated to measure proceswr
and memory access capabilities. Real values could be acquired
from target machines by running a set of tasks and
experiments on the target machine. Rough simulations of the
performance of the parallel code running on machine models
could then be accomplished by rwming different statistical
values through PPSE (if the different modules take these
values into consideration) and seeing if different code and/or
schedules are gene:ated.

Program Transform

The program transform. module needs to know which set
(package) of glue code or macros to grab from the glue code
files. Preswnably, each machine will need a different set of
macros based on language. version, compiler and architecture.
For example. if the ghle code needed is for version 1.()1) F77
compiler, FORTRAN Language on the Sequent Balance
(B21), we should specify this in the topology files.

Part 2 • Target Machine Editor - Examples

The Target Machine Editor is built on top of the Extend
Simulation package. To describe computer systems, a m,rary
of system level blocks has been created. The blocks can be
classified into four categories:

• Processing Elements

- 9 -

Memory Elements

Communication Elements

• Global Information Elements

Example 1 - Random Network of processors

Each block in this example was selected from a library
which can be accessed from the menu bar. The Topology­
File-Generator (TFG) block must be present for all target
machine descriptions and must always be placed in the upper
lefthand corner. (Extend executes the code for each block
according to the placement of the block on f:he screen. The
TFG block must always execute first. No other placement or
ordering constraints exist for the other blocks.)

• All blocks have an associated dialog box - to
see the box for my block, double click on
the block's icon. The following dialog box is
for a switch.

(U) swltch.2

[OK J (Cancel)

O Use ualues below nther then globally defined.

Transfer rate j 53.00

!=====:
Width (bits) ... I 3_2 ___ __.

Reconfiguration time ._! o_._so ____ _.

Block ldentmcetlon

The topology file is a textual analog to the information
contained in the graphical and dialog-entered system
description.

DIC

To generate a topology file, double click on
the TFG block and check that the ''Write to
file" box, in the lower left comer of the
dialog box, is checked (and click the OK
button to record the selection).

I teftcel 11 Neill] 1111• - to - ,i- te Mter 51.HIIL ,,.___ l'l'S1D4 INFNMIIIIIIM.

••••• lntar Iii.DIil INF0RMfflON -

N■h11on:T1111• Ii.ii I
pr■cnoan l!:all (!gJ

l■t■IICII ,_,.,. Cl• M • ·II)

:~

IUa .. ta CMagte/-1 53.ID
_M_C_) IDOO

-----~-:.-:.·.:-:.-:.-:.-:.-:.-:.-:.·.:-:.-:.-:.-:.-:.-::_-_,,
ILU£ CODE INFI: Sg•t- - ,~-•• LMfNIG _i-F-DIITIIIIN _____ .,, ___ _,

___ ..,._, ____ .!::=====·;:; --
IBI wrtta to fll■ rn!!J O.lg llll'lt• lnf■-■t._ i. tllll •1a1a1 ta fllL

• Select Run Simulation from the R1Dl menu
. . to actually create the file. The following is

part of the generated topology file. The full
file format is listed in Part 3 of this paper.

.. eKample. top l'E
ep,-oc:se -4 ~o
-It.ch I
•IIN<S 4
-.,u,,, I

- 4 net-.
lat.-.c,,µ,
latanc,,µ,
bua-ate -­prl-...,.._
1--

hat­

' D
53
1000

• ,..,.,..,_,
FORTRAN

Block ldaf'ltlflcatlon
cac:t. 17
cac:t. 11
Pl ac:111 er
pspeed6
Link 20
l"Gte 20
•idth 20
Pl OCISS,,,.,.
~21
Link 22
l"Gte 22

6
1

100.3
32
21
1

100.3

Example 2 - Hypercube

ii

Describing a 512 node hypercube using a graphically
entered description would be difficult with the current version
of the target machine editor. However, a topology file can
still be generated for completely regular architectures like
hypercubes. The information in the Topology File Generator
dialog box would look as follows:

Ill t- ratw

1111111111t■ lal rni!D , 11 •• - 1111.

• Make sure the Write to file box is checked
and then click the ''NOW" button on the
bottom center of the dialog box. This will
create a topology file consisting of only the
information in the TFG dialog box.

Example 3 - Shared Memory System

To graphically enter an eight processor shared-memory
system:

• Select New from the File menu to get a new
wmksheet.

• Select Topology-File-Generator from the
TM-Lib in the Libraries menu. A TFG block
should appear on the worksheet.

7
n
n
n
D
n

J

J

J

n
n
n
n
n
n

l

I

J

J

u

Select processor, cache , bus and then
memory from the TM-Lib in the Libraries
menu and make the correct number of copies
of each block.

• Enter information into the TFG block. Enter
information into the other blocks. The visual
description might look as follows:

To generate a topology file, double click on
the TFG block and check that the "Write to
file" box. in the lower left comer of the
dialog box. is checked (and click the OK
button to record the selection).

Select Run Simulation from the Run menu
to generate the topology file.

Part 3 - Topology File Format
The topology file consists of the following

sections:

• Block counts - how many of each block type
is represented. Format:

<count-description> <count>

Global data - information which pertains to
the entire system or is default for any block
which doesn't over-ride the information.
Format:

<data-description> <data>

Block identification and block information -
each block type is associated with a unique
number for identification as follows:

<block-type> <id>

Several blocks contain information of the
form:

<type-info> <block-number> <data>

- 11 -

Input Adjacency List - each line consists of a
block identifying itself and all blocks which
provide input to the identifying block .
Format:

<me> <input-1> <input-2> ...

Output Adjacency List - each line consists of
a block identifying itself and all blocks
which the identifying block provides output
to. Format:

<me> <output-1> <output-2> ...

Future Work

The current version of the Target Machine Editor is
capable of interfacing with the other PPSE modules and has
served as a useful exercise in determining the proper level of
abstraction for machine description. The next steps should be
to customize the tool so that hierarchical descriptions can be
generated, add the capability of text to graphics
transformation, and work on the problem of representing
large, possible irregular architectures. These steps will create
a more useful and more robust tool for describing parallel
architectures.

References
1. F. Berman, "Experience with an Automatic

Solution to the Mapping Problem", in The
Characteristics of Parallel Algorithms , L.
Jamieson, D. Gannon, R. Douglas (Editors), MIT
Press, (1988) .

2. Jamieson, "Characterizing Parallel Algorithms", in
The Characteristics of Parallel Algorithms, L.
Jamieson, D. Gannon, R. Douglas (Editors), MIT
Press, (1988).

3. Levitan, "Measuring Communication Structures in
Parallel Architectures and Algorithms",in The
Characteristics of Parallel Algorithms, L.
Jamieson, D. Gannon, R. Douglas (Editors), MIT
Press, (1988).

4. Kramer, Magee, Sloman, "Configuration Support
for System Description, Construction and
Evolution", Communications of the ACM, 1989.

5. E. Lusk, R. Overbeek, et al., Portable Programs for
Parallel Processors. Holt, Rinehart & Winston,

Inc., 1987.

6. D. Siewiorek, C. G. Bell, A. Newell, Computer
Structures: Principles and Examples, Mcgraw-Hill

Book Co, 1982.

Static Mapping or Task Graphs with
Communication onto Arbitrary Target Machines -
Case Study: Hypercube

Abstract

A new scheduling heuristic is introduced with the following
characteristics: 1) inputs to the scheduler are a) an arbitrary
labelled task graph representing a parallel program with
estimated task size, estimated message size, and b) a target
machine description which includes the speed of the
processors, the initialization time, the transmission rate, and
the interconnection topology, and 2) schedules are computed
by an adapted highest-level-first heuristic. The results for
scheduling simulated task graphs on ring, star, mesh,
hypercube, and fully connected networks are introduced. On
hypercubes these simulations suggest that 1)
communication delays should be considered in task selection
when scheduling communication intensive applications, 2)
priority scheduling is insensitive to the communication
delays of computation intensive applications, 3) performance
is inversely proportional to the ratio between average
communication and average task execution time, and 4) the
effect of increasing the task graph average degree increases as
the number of processing elements ~-

lo Introduction

The problem of scheduling parallel program modules
onto multi-processor computers has received considerable
attention in recent years. This problem is known to be NP­
complete in its most general form [10]. Regardless, many
researchers have studied restricted forms of the problem by
constraining the task graph representing the parallel program
or the parallel system model [1,4,6,11,14]. For example
when communication between tasks is not considered, a
polynomial time algorithm can be found for scheduling tree­
structured task graphs wherein all tasks execute in one time
unit [5].

It is well known that linear speedup generally does not
occur in a multi-processor system because adding additional
processors to the system also increases inter-processor
communication [13]. In order to be more realistic we need to
consider communication delay in scheduling tasks onto
multi-processor system. Prastein [12] proved that by taking
communication into consideration. the problem of
scheduling an arbitrary precedence program graph onto two
processors is NP-Complete and scheduling a tree-strucmred
program onto arbitrary many processors is also NP­
Complete. Kruatrachue [2] introduced a new heuristic based
on the so called list algorithms that considers the time delay
imposed by message transmission among concurrently
running tasks by assmning a homogeneous fully connected
parallel system.

Task allocation is not the same as task scheduling. The
goal of task allocation is to minimize the communication
delay between processors and to balance the load among
processors [7,8,9]. Kruatrachue [2] showed that task
allocation is not sufficient to obtain minimum run time
since there is a significant difference in performance when the
order of execution is changed among allocated tasks on a
certain processing element Other work has been done in task
allocation when the program is represented as an undirected
task graph [15].

Kruattachue [2] suggested some directions for future
work in relaxing restrictions in the program task graph and
the parallel system model. In this paper we extend the parallel
system model used by Kruatrachue to accommodate arbitrary
parallel systems. We introduce a mapping heuristic (MH) that
maps program modules represented as nodes in a precedence
task graph with communication onto arbitrary machine
topology. MH gives an allocation and ordering of tasks onto
processors. We then apply MH to the problem of mapping
task graphs with precedence and communication delay onto
cube-connected multiprocessors.

The rest of this paper is organized as follows. Section 2
contains the formulation of the problem. List scheduling is
briefly described in section 3. Section 4 shows the proposed
mapping heuristic. Experimental results that show the effe.c:t
of changing the policy used in MH to select a task and
changing two parameters of the task graph representing the
parallel program on the performance when hypercube is used
as the target machine are given in section 5. We give our
conclusions in section 6.

2. Formulation or the Problem

Our goal is to devise an efficient heuristic scheduler to
statically map parallel program modules onto a finite number
of processing elements in a pattern that minimizes final
completion time as determined by actual task computation
time and communication between processors.

Program Graph

A parallel° program consists of M separate cooperating
and communicating modules called tasks. Its behavior is
represented by an acyclic directed graph called a task graph. A
directed edge (ij) between two tasks i and j exists if there is a
data dependency between the two tasks which means that task
j cannot start execution until it gets some input from task i
after its completion. Once a task begins execution, it
executes until its completion (non-preemption). The task
graph is assumed to be static which means it remains
unchanged during execution.

Target Machine

A target machine is assumed to be made up of an
arbitrary number N of heterogeneous processing elements
that run a single application program at a time. These
processing elements are assumed to be interconnected in an
arbitrary way. A message sent from a task running on
processing element Pi to another task nmning on processing
element Pj takes the shortest path between the two
processing elements through one or more hops.
Communication time between two tasks located on the same
processing element is assumed to be zero time units. A
processing element can execute a task and communicate with
another processing element at the same time.

System Parameters

Parameters are required to represent the computational
costs and communication costs incurred by a parallel program
on a specific parallel processing system. The costs are as
follows:

1) E(m.n): the execution time of task m when executed on
processing element n. m = 1, ... , M; n = 0, ... , N-1.

- 12 -

n
n
n
R

n
n
l

I
u

I

lJ

l
n
n
n
n
n

n

j

f J

J

I j

J

J

u

2) C(m1 .m2.n1 .n2): the conummication delay between tasks
m 1 and m2 when they are executed on processing

elements n 1 and ni, respectively, m 1, m2 = 1, ••• , M;

n 1, n2 = 0, .•. , N - 1.

The parameter E(•) reflects the speed of the processing
elements and the size of the tasks. E(m,n) = INS(m)/S(n)
where INS(m) gives the nwnber of instructions to be
executed in task m and S(n) gives the speed of processing
element n; m = 1, ... , M; n = 0, ... , N-1.

The parameter C(•) reflects the target machine
performance parameters as well as the size of the data to be
transmitted. C(m1,m2.n1,n2) = (D(m1 ,m2)/ R +
I)•H(n1 ,n2) where D(m1 .m2) gives the size of the data to be
sent from m 1 to m2, H(n1,n2) gives the number of hops
between n1 and n2, I represents the time to initiate message
passing on each processing element, and R represents the
transmission rate, m1,m2 = 1, ••• , M; n1 , n2 = 0, ... , N-1.
The model studied by Kruatrachue [2] can be easily generated
as a special case of our model.

3. List scheduling

One class of scheduling heuristics, in which many
parallel processing schedulers are classified, is list
scheduling. In list scheduling each task is assigned a priority.
Whenever a processor is available, a task with the highest
priority is selected from the list and assigned to that
processor. The schedulers in this class differ only in the way
that each scheduler assigns priorities to nodes. Priority
assignment results in different schedules because tasks are
selected in different order. A comparison between different
task priorities has been studied in [3].

The insertion scheduling heuristic (ISH) introduced by
Kruatrachue [2] is essentially a list scheduler that considers
communication with an improvement to the communication
delay problem by -plugging in an insertion routine that
inserts tasks in available communication delay time slots.

4. The Mapping Heuristic (MH)

A mapper is an algorithm that takes two inputs: 1) a
description of the parallel program modules and their
interactions, and 2) description of the target machine. It
produces as output a Gann chart that shows the allocation of
the program modules onto the target machine processing
elements and the execution order of tasks allocated to each
processing elements. A Gann chart consists of a list of all
processing elements in the target machine and for each
processing element a list of all tasks allocated to that
processing element ordered by their execution time, including
task start and finish times.

Our mapping heuristic modifies Kruatrachue's basic
heuristic so it can handle communication delay between tasks
assigned to heterogeneous processing elements in an arbitrary
target machine topology. The insertion routine used in ISH
can be easily plugged in MH. The time complexity of MH is
O(n 2) for a constant nwnber of processing elements . We
study the effect of intercomection topology on schedule, and
in tum, on the performance of the parallel program on a
specific parallel processing architecture.

Definitions

The length of a path in a task graph is the summation
of all node execution times and edge communication delays
along the path. The ~ of a node is defined as the length
of the longest path from the node to the exit node.

Adam et al. [3] compared 5 different ways of assigning
priorities: HLFET (Highest Level First with Estimated
Times), HLFNET (Highest Level First with No Estimated
Times), RANOOM, SCFET (Smallest CO-level First with
Estimated Times), and SCFNET (Smallest CO-level First
with No Estimated Times). He showed that among all
priority schedulers, level priority schedulers are the best at
getting close to the optimal schedule. Following the advice
of Adam et al., we use the level at each node as its priority.
However, after adding communication delay, the node level is
not static and may change according to the mapping. Some
researchers simply ignore communication delays in
calculating the level at each node. We have studied both
strategies for calculating the level: 1) with, and 2) without
communication . The results of our study using hypercube
target machines is given in section 5.

The ready time of a processing element P
(ready _time[P]) is the time when processing element P has
finished its assigned task and is ready to execute a new one.
The message ready time of a task (Time_message_ready) is
the time when all messages to the task have been received by
the processing element containing the task. The speed up is
defined as the program execution time when it runs on one
processing element divided by its execution time when it
runs on a multi-processor system.
MH Algorithm

The algorithm can be explained in the following three
steps:

L The level of each node in the task graph is calculated and
used as each node's priority. (In case of a tie we break it by
selecting the one with the largest number of immediate
successors. If this does not break the tie, we select one
randomly). A ready queue is initialized by inserting all nodes
that don't have immediate predecessors. The ready queue is
sorted according to their priorities, yielding the highest
priority node, first, followed by lower priority nodes. Also,
an event list is needed in step II, so an event list is
initializ.ed.

II. Then, as long as the ready queue is not empty: 1) a task
is selected (dequeued from the front of the ready queue), 2) a
processing element is selected to run the task. A processing
element is selected in such a way that the task cannot fmish
on any other processing element earlier, 3) the selected task
is allocated to the selected processing element, and 4) the
time when the selected task will finish running on the
selected processing element is added to the event list. Once
the ready queue becomes empty, the event list is used to

modify the status of the immediate successors of the fmished
tasks. So when a task finishes execution, the nwnber of
conditions that prevent any of its immediate successors from
being run is decreased by one. When the number of
conditions associated with a particular successor becomes
zero then that successor node can be inserted into the ready
queue.

- 13 -

m. Step II is repeated until all the nodes of the task graph
are allocated to a processing elemenL (Fig. 1. gives the
detailed algoritlun)

Load the program lallt graph.
Load lho Wgct machine.
CompUIC Ille level of each tuk.
Inilia1iz.e die rmdy _ (Q).
lnilialiu lhe evCIII_~
repeal

while Q is not empty do
bqln

end

get wk (T) from Q.
locae~ ,P).
update lhe evan list E

whlle E is not empty do
begin

gct c:w:m (evmt) fromE.
procas_ewnt(eYall)

end
unlll all tasks are allocated

Fig. la

procedure locate__proceam(T ,P)
begin

P+-k.
where finish_time(l" ,le) s; finish_time(l" ,i), i • 0, .. . , N•l

end.

Fig. lb

function linish_time(T,P)
begin
Let IMP be the .a a! allmnnedialepr...iec-cm mT.

If IMP is =etY then
finiah_11me +- nady_lime[PJ + E(r,P)

elu
LetIMP• (ti, '2•···• '°)
where\ is aaigned lOpmcmoarPi_
T'mie_meaage_ready+- max(n,ady_timefl►i]

+ C('i_, T, Pi• P)), i • 1, ••• , m.
1Wt_time4-mu(T'ime_~_ready,

n:ady_time(P])
finish_time +- start_timo + E(T,P)

end.

Fig. le

procedure procaa_ewnt(evmt);
begin
Let "wk Tis dcno" be !ho cwnt ID be pi,,caaed.
Let IMS be lho lClof all immediate- ofT .
Let IMS • (t1, tz. ... , 1!n) wh- 'i bu ci aaoc:iated wilh, wh- ci is die
mimbor of condiliom lha1 pn,vam 'i from IIUting eiocurion (inir:ially ci •
mnnber of immediate pndo:aaoa of wk Ii);

end.

Ir IMS is not empty then
rori :- l 1am do

bealn

end

~+-~•l;
lf"i •Othen

iDlert 'i imo Q.

Fig. Id

Example

Fig. 2a shows a task graph consisting of 8 nodes (M =
8), where each node represents a task. The number shown
inside each node represents its task number, the number to
the left of a node i represents the parameter INS(i), and the
number to the right of an edge (i.j) represents the parameter
D(ij). For example INS(l) = 5, D(4,7) = 5. Fig. 2b shows a
target machine consisting of 4 processing elements (N = 4)

forming a cube of dimension= 2. Notice that H(0,3) = 2,
because a message sent from node O to node 3 takes two
hops. Fig. 2c shows the Gann chart that results from
scheduling the task graph given in Fig. 2a on the hypercube
given in Fig. 2b.

Fig. 3 shows the average speed up curves that resulted
from scheduling 25 random task graphs, with average number
of nodes = 60, average number of edges in the range (25 -
1()()), average execution time in the range (10 • 100) time
units, and average amount of data at each arc in the range (10
- 100) data units, on the following target machine
topologies: 1) fully connected. 2) hypercube, 3) mesh, 4)
star, and 5) ring with transfer rate= 1 and number of similar
processing elements in the range (2 - 64).

Fig. 2a (program task graph)

Fig. 2b (target machine)

time

26

Fig. 2c (Gann chart)

- 14 -

7
n
n
n
D
fl

l

J

I
J

J

n
n
n
n
D

[I

r J

lJ

lJ

u
J

S. Case Study: Hypercube

In this section we show the results of some experiments
we conducted using homogeneous hypercube architecture as a
target machine. We gencnred 400 random graphs with average
number of nodes = 50, average number of edges in the range
(25 - 100), average task execution time in the range (10 - 100)
time units, and average size of data at each arc in the range (10
- 100) data units. We ran each graph on hypercubes of size 2,
4, 8, 16 , 32, and 64 similar processing elements.

The first experiment shows the effect of using
communication delays in calculating the level at each node in
the MH algorithm.We fmmd that 52.6% of the time using
communication delays in calculating the level is better than
not using them and the improvement is in the range (0.04% -
7.72%). In the 52.6% of improvements, most task graphs
were "communication intensive". The performance was
observed to be the same 10.8% of the time. We also found
that 36.6% of the time not using the communication delays
in calculating the level is better with improvement in the
range (0.05% - 4.58%). Not all of these 36.6% were
"execution intensive" task graphs.

The second experiment shows the effect of varying two
program task graph parameters on the performance. We chose
the parameters: 1) the average degree and 2) the C/E_ratio,
defined as follows:

Average degree - number of edges / number of nodes.

Average C/E ratio= average conununication delay between
nodes / node average execution time.

We ran 80 random graphs at each average C/E_ratio
value in {0.1, 0.5, 1.0, 2.0, 10.0) and 100 random graphs at
each average degree value in {0.5, 1.0, 1.5, 2.0). Fig . 4
shows the speed up curves at each C/E_ratio and Fig. 5 shows
the speed up curves at each degree. The two sets of curves
show the degradation in performance when the average
communication delay between program tasks begins to
dominate the average task execution time or when the
number of edges in the task graph which represents the
number of interactions among tasks dominates the nmnber of
tasks in the program. The curves also show that as the
number of processing elements in the hypercube increases, the
degradation of performance due to the increase in the
C/E_ratio or the graph average degree is steeper .

si-fup

12

8

6

4

2

0

0 20 40
number of procalOIII

f_camecled
a,be
mah
ar
ring

60 80

Fig 3

~up

12 C/E•O .l

JO /E-0.5

C/E• l

8 CIE~2

6

C/E• 10
4

2

0

0 20 40 60 80
IIWllba- of procc:uan

Fig4

~up

12

10

dcg• l

g

6

4

2

0

0 20 40 60 80
amnbc:r of procallalS

Fig 5

6. Conclusions

Tiie results of this experiment are preliminary, but they
suggest the following:

1. For communication intensive applications, the scheduler
should consider communication delay in the scheduling
algorithm's priority,

2. For computation intensive applications, priority scheduling
is insensitive to the communication delays of the application.

3. Hypercubes perform better than meshes, star, and ring
networks, but are not as high performance as fully comtected
networks. This is not smprising, and indeed, the performance
of a hypercube as compared with a fully connected network is
comparable.

4 . Degree of nodes is a good indicator of the "amount of
communication" in the task graph.

More work needs to be done to characterize parallel algorithms
as task graphs, and to quantify the performance that can be
expected from certain kinds of task graphs running on specific

- 15 -

network topologies. The significance of this work is that we
can now begin to schedule task graphs onto multiprocessor
systems in an optimal way by considering the target machine,
communication delay, and the balance between computation
and communication. MH is recommended for communication
intensive task graph scheduling. MH does not oomider'
network contention. This is left as an open research problem.

7. References

1. M. Gonzalez, "Deterministic Processor Scheduling,"
Computing Surveys, vol. 9, no. 3, September 1977.

2. B. Kruatrachue, "Static Task Scheduling and Grain Packing
in Parallel Processing Systems," Ph.D. Thesis, Oregon
State University, Corvallis, Orego~ 1987.

3. T. Adam, K. Chandy, and J. Dickso~ "A Comparison of
list Schedulers for Parallel Processing Systems," Conun.
ACM, vol. 17, pp. 685-690, December 1974.

4. T. Casavant and J. Kuhl, " A Taxonomy of Scheduling in
General Purpose Distributed Computing Systems,"
IEEE Transaction on Software Engineering, vol. SE-14,
no. 2, February 1988.

5. T. Hu, "Parallel Sequencing and Assembly Line
Problems," Operation Research, vol.9, pp. 841-848,
1961.

6 E. Coffman and R. Graham, "Optimal Scheduling for Two­
Processor Systems," Acta Informatica, vol. 1, pp. 200-
213, 1972.

7. S. Bokhari, " A Shortest Tree Algorithm for Optimal
Assignments Across Space and Time in Distributed
Processor System, 11 IEEE Transaction on Software
Engineering, vol. SE-7, no. 6, November 1981.

8. T. Chou and J. Abraham, "Load Balancing in Distributed
Systems, 11 IEEE Transaction on Software Engineering,
vol SE-8, no. 4, July 1981.

9. D. Towsley, "Allocating Programs Containing Branches
and Loops Within a Multiple Processor System." IEEE
Transaction on Software Engineering, vol. SE-12, no.
10, October 1986.

10. J. Ullman. "NP-Complete Scheduling Problems," Journal
of Computer and System Sciences, vol. 10, pp. 384-
393, 1975.

11. V. Linnem~ "Deterministic Processor Scheduling with
Communication Cost, 11 Fachedaling Informatik
Universitat. Frankfurt.

12 M. Praste~ "Precedence-Constrained Scheduling with
Minimum Time and Communicati~" MS. Thesis,
University of Illinois at Urbana-Champaign, 1987.

13. W. Chu, L. Holloway, M. Lan. and K. Efe, ''Task
Allocation in Distributed Data Processing," IEEE
Computer, pp. 57-69, November 1980.

14. M. Chen. and K. S~ "Embedment of Interesting Task
Modules into a Hypercube Multiprocessor, 11 Proc.
Second Hypercube Conf., pp. 121-129, OcL 1986.

15. V. Lo, "Heuristic Algorithms for Task Assignment in
Distributed Systems," proc. 4th Int. Conf. Distr.
Comput. Syst, pp30-39, May 1984.

SuperGlue: Integrating the Tools

Abstract

A desirable output from the Parallel Programming
Support Environment (PPSE) tools is compilable source
code. SuperGlue takes a program flow file produced from the
program design, an architecture description, and C code
fragments from other PPSE tools, and produces C-Linda code
that can be compiled and executed on machines which support
the C-Linda environment This paper contains a discussion of
the reasons for developing SuperGlue, along with an
explanation of its functionality. We will also present a
demonstration of the utility of C-Linda and examine possible
future directions of ~h.

Introduction

The ultimate goal of this research is to create a system
which can be fed disjoint, abstract descriptions of software and
hardware and automatically merge the two into machine
specific source code. SuperGlue takes a flow file (dataflow
representation) of a parallel program (which is translated from
the output of the Extended Large Grain Data Flow (ELGDF)
design tool[6]), along with a target machine file, a gantt chart
file (which represents task scheduling), and code fragments and
generates a parallel application able to nm on the described
architecture.

Several difficulties inherent to this ~earch are:
• handling communication between tasks,

1wldling task synchronization,
• 1wldling the scheduling of tasks,

providing portability between architectures,
dealing with variable scoping.

Cmrently, parallel programmers are forced to use vendor
and architecture-specific parallel programming primitives to
deal with communications between tasks and synchronization
of tasks. This undesirable situation causes programmers to
create code which is neither robust nor portable across a range
of architectures. The job of coding task communication and
synchronization is left to the programmer, who has to juggle
low-level system calls with inadequate higher-level facilities.

The programmer must also determine the proper order to
schedule tasks. Frequently, this schedule will be incorporated
pennanently into the code - no changes in task scheduling can
take place unless the code is completely rewritten. The
problem is not so much in the difficulty of translating an idea
into working code, but in transforming the code to experiment
with different possible execution courses.

Finally, the problem of variable scoping must be dealt
with. This difficulty is easily remedied by adhering to a basic
rule of software engineering: Do not use global variables. IT
you must use global variables, ELGDF has facilities to allow
you to do so. Otherwise, all variables are local to a specific
code fragment (procedure) unless needed by another fragment,
and those variables needed by other fragments are passed by a

- 16-

7
n
n

0
n

l
11

I

11

I
u
j

I

7
n
n
n
n
n

J

ll

d
u
u
u

communication link (as specified by ELGDF). 1hls may
sowid restrictive but as will be explained, just a few changes
in programming habit, allows us to do some pretty neat
things.

These problem are met head-on in SuperGlue research.
The objective is to abstract the nuts and bolts of parallel
machines and parallel programming primitives so that
software designers need only worry about their applications
and their parallel design. The specifics are dealt with in an
automated source code generation phase.

C-Linda was chosen as the initial SuperGlue output
source language because it provides a portable high-level
approach to the problem of architecture-independent parallel
programming by providing simple yet powerful commands.
The hardware layer is abstracted off, providing the user with a
stable platform that is available on many architectures. With
little or no effort, a parallel program generated from the
PPSE tools will be able to nm on a variety of architectures.

PPSE Overview

Most of the forward engineering aspects of PPSE ae
shown in the following figure:

figure 1
Forward engineering portion of PPSE.

A user would use a program design tool such as
ELGDF to design and describe their parallel program. When
finished, ELGDF would save the users program in a large
ASCII file called the PP design file (see table 1). Also, all
code fragments that make up the users parallel program would
be saved in a code fragments file. Next the PP design file
would be input to the Mapping Heuristic tool (MH) which
would take the users parallel program and break the code into
pi blocks[l], expanding structures (i.e. unroll loops) where
possible and limit the decomposition of the program by
selecting a specific depth in the design. In addition, the MH
will generate a flow file (see table 2) which contains the code
fragment (task) connectivity and the variables to be passed
between fragments. Also, the code fragment file must be
updated with all changes made to the re-organization of code.
Next the output of MH is passed to a scheduler. Which then

schedules the code fragments onto the available processors
using a user specified heuristic or algorithm. The end result
of the scheduler is a gantt chart file (see table 3). At some
point the user must use the target machine editor to describe
the architecture that the newly designed parallel program is to
nm on. The resulting file is called the target machine file.
Now the users parallel program is descn"bed in four different
files: code fragment, flow, gantt chart, and target machine.

SuperGlue will take these four files and generate the
users parallel program, which has been mapped onto the
desired architecture, and place the new program into an output
file called the SuperGlue file. The resulting SuperGlue file
will then be FfP'ed (transferred via ethernet) to the desired
target machine, where the application will be compiled,
linked, and executed.

SuperGlue Overview

SuperGlue is not an interface design language like
MatchMaker[8], but is a PPSE tool integrator that generates
all necessary linkage between code fragments in the designed
parallel program as per the specifications of the PPSE tools.

For the purposes of clarification, a code fragment is a
procedure or program that can execute independently of other
code fragments using local variables only except for those
variables that are shared (i.e. passed from one task to another
via a communication link), and since we are approaching the
parallel programming from a large-grain dataflow point-of­
view, all code fragments will be at the procedural level, not at
the instruction level.

SuperGlue will not analyze the parallel code as an
optimizing compiler would. We are relying on the efforts of
the Mapping Heuristics (see figure 1), and the schedulers to
have done all necessary validation and optimization.

Currently SuperGlue assumes that there are no cycles in
the flow file and all data/control arcs point to code fragments
of a larger munber (nodes lower in graph), with the flow file
used to detennine the connectivity and the variables to be
passed between the fragments. Because MH is not functional,
SuperGlue takes the output of ELGDF (PP design file) and
generates both a flow, and a code fragment file. At a later date
MH will do this automatically (see figure 1). The gantt chart
file is used to detennine how the tasks should be bundled
(grouped) onto separate processors.

The shared variables come in two flavors: input and
outpuL A code fragment will need all input variables before
executing and will output all output variables before
terminating.

SuperGlue

SuperGlue uses the gantt chart, flow, target machine, and
code fragment files to piece the parallel application together.
The gantt chart file describes the order in which code
fragments are to be executed on each processor and which code
fragments are to be bwidled onto which processors. The flow
file determines code fragment connectivity and shared

- 17 -

variables. The target machine file specifies the target
architectme, the number of available processors, and the base
language (C or FORTRAN). The code fragment file contains
the code pieces of the usezs parallel program.

With this information. a base language, and the inherent
abilities of Linda for handling fragment communication and
synchronization., SuperGlue generates a complete parallel
application. If the user wants the parallel application to run
on a different architecture, all that is needed is a change of the
target machine (using the target machine editor) and re­
running SuperGlue . A new parallel application will then be
built for the desired architecture.

SuperGlue works by constructing a program with the
users code fragments as procedures, and inserting the correct
Linda statements at the beginning and end of each procedure.
SuperGlue is different from other systems that append code
into existing routines, in that SuperGlue builds from the
ground up, using many pieces, to form a complete parallel
application.

The nicest featme of Linda is that the hardware is totally
abstracted away from the user, and by using PPSE tools
including SuperGlue , even task communication and
synchronization are abstracted away. The user is then left to
only understand how to program parallel applications and how
to use the tools made available through PPSE. All of the
complexities are handled automatically .

However , a draw-back to using Linda as an integral part
of SuperGlue is that there must be a Linda implementation
for the hardware the user wishes to use .

Linda

The Linda parallel programming environment consists of
a small number of operations that may be integrated into a
conventional programming language, yielding a parallel
programming dialecL A host programming language is
extended with four basic operations (and two variant forms)
that provide the programmer with simple mechanisms for
accessing logically-shared object memory .

The common currency within the Linda environment is
the tuple . A tuple is simply an ordered set of data, such as
("Any_number", 6, 13.89). Tuples are added to and removed
from logically -shared memory, called tuple space , using the
Linda tuple operations . The basic tuple operations on shared
tuple space provide the necessary mechanisms for inter­
process communication., process creation, and inter-process
synchronization.

Communication is handled ·via operations that allow
tuples to be added to and removed from tuple space. Tuple
space provides a "bulletin board" style repository for data.
Tuples are persistent objects, remaining in tuple space until
removed. This approach provides communication free of the
complexity associated with address and time based schemes.

Synchronization concerns are common in many parallel
programming systems. The tuple removal and read operation
implicitly handle synchronization concerns by blocking until
an appropriate tuple becomes available . Predicate forms of
these operations provide non -blocking behavior .

Tuple Space

The Linda parallel programming model is based on a
logically-shared assoc iative memory called tuple space (TS).
Tuple space can be supported efficiently regardless of whether
the underlying hardware includes physically -shared memory.
Successful prototype implementations exist on networks of
conventional uniprocessors, disjoint-memory multicomputers,
and shared-memory multiprocessors.

Tuple space is an associative memory ; there are no tuple
addresses . Tuple lookup is similar to the select operation in
relational databases. Tuples are selected by in() or rd() on the
basis of any combination of their field values . Tuples are
inserted into TS by using either out() or evaIQ. For example
to place a three element tuple into TS we could execute
out("data", a, b, c) . To select or read this particular tuple
from TS we could execute in("data.", ?a, ?b, ?c).

Simple Example

As a first-cut for testing PPSE 's usefulness, we want to
examine the task of parallel programming by using programs
that are made up of large grained, loosely coupled processes
(each process can be developed independently of the others) .

The first programming paradigm we wish to tackle is
that of distnbuted data structures[5], where a group of identical
worker processes access data structures simultaneously. The
sample problem for this paper is to approximate pi using the
rectangle rule[9] (see listing 1). When parallelized, this
sequential program becomes basically a broadcast, calculate,
aggregate (BCA) problem where we send (broadcast) separate
intervals to a bunch of worker tasks who after doing their
calculations, send the results back to a task who collects
(aggregate) them. Using ELGDF the user might design the
parallel version as follows:

figure 2.

- 18 -

7
n
n
n
n
l
I
l

j

J

u
J
Ll

n
n
n
n
n
fl

l
f1

u
J

u
J

j

]

1be user would then specify the data to be passed on the
arcs. Figure 3 shows the variables being entered for the arc
between the start node and the workerl node . Likewise the
user would fill in the data to be passed on the other arcs.
Once the user had completed filling in the data arcs, the code
for each node should then be entered into the simple nodes
(see listing 2). Once all code is entered the user should save
their current work using the facilities of EI.GDF. Figure 4
contains a small portion of the ASCII file generated by
ELGDF for the pi example.

Arc lnfonmtion
Arc Pers ~ ll1nten,11l,st11rt 1, stop I !
Arc Usage 0 Reed ® Write O R/W

Mutual EHcluslon ®No OYes
Compound Arc ®No OYes

Num. Of ltentlon I I I Times

Message Size I 1 I Bytes

Documentetlon

(Cancel) DK)

figure 3.

After saving, the user will want to schedule the new
program using one of the scheduling tools. For this example
lets use Kruatrachue's Insertion heuristic with two processors,
which will produce the gantt chart in figure 5. The produced
gantt chart should then be saved by the user for later reference
and for use by SuperGlue.

Lets assume that the target machine file specifics a
Sequent Balance as the target machine. Now that we have all
necessary files, SupeIGlue is executed with the result being
similar to listing 2. This code can then be FI'P'cd to the
desired architecture, where it can be compiled, linked and
aecuted.

For comparison, the sequential version took on avenge
for an interval of 10000, 0.91 seconds. While the PPSE
designed and generated version for the same interval with two
processors took on average 0.63 seconds.

This small example with all its complexities has shown
that it is possible to achieve a speedup by using parallel
programming tools such as those found in PPSE, which
sufficiently aid the user in dealing with the complexities of
parallel programming.

t-Ulndoa Start-$
$Svt1BOL START$

Syabo I Naae : star- t
Syabo I ID : 0

S-.,.t,ol Kind: Node
Syabol Cotllp()rSiap: Siaple

Exac:ution n-: o
Nia Of lter-ationO

S\,abol Rect Top: 11
Syabol Rect Left : 197

Syabol Rect Botto•: &1
Sywbol Rect Right: 25 I

Symbo I Docun,en tat I on :
<Pre Object Na.e Start)
CPr. Object Na- End>
$$ START ARC INFORAMTION $$
(One Arc lnforaation Start)

Arc Ucriables : intel"Val,startl, stop1
Arc ID: 0

Fire Kind: dataArc
Arc Message Size : I

Arc Direction: Putoata
Arc Co111pOr-Si•p: Si11ple

Arc 11utual Exclusion: FALSE
Arc Count:

Arc Doc\Aentation:

figure 4.
Portion of PP design file.

Current and Future Status

Currently we have several early versions of SupeIGlue
running on the Sequent Balance (written in C). However,
since all tools for J>PSE are Macintosh applications, we
decided to do the same with SupeIGlue. This will allow, in
the future, a seamless design environment on the Macintosh.

iol pi.ish

Pr--ssor-s Q

1 2
0

TlrM Ci:]
1

2
I 2 I

3 r::u CD
4 LLI CI]

5

6
I 7 I

0
01 IQ 12]

Figure 5.

Currently SuperGlue is under development on a
Macintosh which generates code able to run on a Sequent
Balance. Hopefully in the near future, we will be generating
code for Intel Hyper-cube and Cogent architectures.

- 19 -

We need to test the concepts with actual parallel
programs to gain further insight into potential methods and
techniques.

References
[1] Allen. R., and Kennedy, K. Automatic Translation

of FORTRAN Programs to Vector Form. ACM Trans. Prog.
Lang. Syst. 9, 4 (1988), pp. 491-542.

[2] Babb, R., and DiNucci, D. Design and
Implementation of Parallel Programs with Large-Grain Data
Flow. In The Characteristics of Parallel Algorithms, L.
Jamieson. D. Gannon, R. Douglas (Editors), MIT Press,
(1988).

[3] Berndt, D. C-Linda Reference Manual, Scientific
Computing Associates, inc. New Haven. CT. Jan. 1989.

[4] Bjornson. R., Camero, N., Gelemter, D., and
Leichter, J. Linda the Portable Parallel, Yale University
Department of Computer Science Research Report 520, (Feb.
1987).

[5] Camero, N., Gelemter, D., and Leichter, J.
Distributed data structures in Linda. In Procudings of the
ACM Symposi,un Principles of Programming Languages
(St. Petersburg, Fla_, Jan. 13-15, 1986).

[6] El-Rewini, H., and Lewis, T. Software
Development in Parallax: The ELGDF Language. Teclmical
Report 88-60-17, Oregon State University, Corvallis, (1988).

[7] Gelemter, D. Generative communication in Linda.
ACM Trans. Prog. Lang. Syst. 7, 1 (1985), pp. 80-112.

[8] Jones, M., Rashid, R., and Thompson, M.
Matchmaker: An interface specification language for
distributed processing. In Proceedings of the ACM
Symposium Principles of Programming Languages (New
Orleans. La., Jan. 14-16, 1985).

[9] Karp, A. and Babb, R. A Comparison of 12 Parallel
Fortran Dialects. IEEE Software. Sept. 1988, pp. 52-67.

-20-

7
n
[1

0
n
]

j

I

I
j

J

l
n
n
n
n
n

1
r I

I

J

J

J

J

u

LJ

APPENDIX • Program Listings

Listing 1. (sequential version)

,,. /
,,. PI.CL •t
,,. Sequential version 6/27/89 •t ,,. /
real_mainO
{
int i, start=l,interval;
double scale, pi.:_approx = 0.0, rectangle_rule();

interval= 10000;
start_timer();
scale= 1.0 / interval; t• per calculate 1/n •t

t• collect the partial sum •t
pi_approx = rectangle_rule(start,interval, scale);

pi_approx = pi_approx • scale;,,. scale result •t
timer_split(" approx. calculated.");
print_timesQ;
printf("pi approximation %20.15lf\n", pi_approx);

}

double rectangle_rule(start.stop,scale)
int start, stop;
double scale;

{
inti;
double x, rr_sum = 0.0;

,,. do the summation over the given interval •t
for (i = start; i <= stop; ++i)
{
x = (i - 0.5) • scale;
rr_sum += 4.0 / (1.0 + x • x);

}
retum(rr_sum);

}

Listing 2. (parallel version)

,,. /
,,. PI.CL •t
,,. Parallel version 6/27/89 •t ,,. /

#include <linda.h>
#include <Stdio.h>
real_mainQ
{

int dID;
intdfl;
intdf3;
intdf5;
intdf6;
intdf2;
int df4;
inti;
start_timer();
scheduler();

timer_split("All tasks completed");
print_times();

} ,,. F.nd of Mainline!! • t
dffX)
(

int iJ=l,m,n, workers.processors;
int startl,start2,start3 ,start4,start5;
int stopl,stop2,stop3,stop4,stop5;

double intervalh;

n = 10000;
interval= 1.0/n;

startl=l;
start2=2000;
start3=4000;
start4=6000;
start5=8000;
stopl=l999;
stop2=3999;
stop3=5999;
stop4= 7999;
stop5=10000;
out("F06", interval);
out(''F05", intervalstart5,stop5);
out("F04", intervalstart4,stop4);
out("F03", intervalstart3,stop3);
out("F02", intervalstart2,stop2);
out("F0l ", intervalstartl,stopl);

} ,,. End of function ~ I
dflO
{

int startl,stopl;
inti;
double interval,x,resultl=0 .0;

in("F0l", ?interval ?startl, ?stopl);
for(i=startl ;i<=stopl ;++i)
{
x=(i-0.5)•interval;
resultl +=4.0/(1.0+x•x);

}
out("Fl6", resultl);

} ,,. End of function df1 • t
df1()
{

int start2,stop2;
inti;
double interval,x,result2=0.0;

in("F02", ?interval, ?start2, ?stop2);
for(i=start2;i<=stop2;++i)
{
x=(i-0.5)•interval;
result2+=4.0/(1 .0+x•x);

}
out("F26", result2);

} ,,. End of function df2•/
df30
{

- 21-

int start3,stop3;
inti;
double interval,x,result3=0.0;

in("F03", ?interval, ?start3, ?stop3);
for(i=start3;i<=stop3;++i)
{
x=(i-0.S)*interval;
result3-+=4.0/(1.0+x•x);

}
out("F36", result3);

} /* End of function dO*/
df40
{

int start4.stop4;
inti;
double interval,x,result4=0.0;

in("F04", ?interval, ?start4, ?stop4);
for(i=start4;i<=stop4;++i)
{
x=(i-0.S)*interval;
result4+=4.0/(l .O+x*x);

}
out("F46", result4);

} /* End of function df4*/
df5()
{

int start5,stop5;
inti;
double interval.x,result5=0.0;

in("F0S", ?interval, ?start5, ?stop5);
for(i=start5;i<=stop5;++i)
{
x=(i-0.S)*interval;
result5+=4.0/(l.O+x*x);

}
out("F56", result5);

} /* End of function df5*/
dff,()
{

double resultl,result2,result3,result4,result5;
double h.pi_approx=O.O, interval;

in("F56", ?result5);
in("F46", ?result4);
in("F36", ?result3);
in("F26", ?result2);
in("F16", ?resultl);
in("F06", ?interval);
pi_approx=resultl +f'esult2+result3+f'eSUlt4+result5;
pi_approx=pi_approx*inte.rval;
timer_split("approx. calculated.");
printf("pi approximation %20.151.f\n" ,pi_approx);

} /* End of function df6*/
gantlO {

dfOO;
dfl();
df3();
df50;
df6Q;
out("gant_done");
} /*end of gantt chart 1 */

gant2() (
df.2();
df4();
out("gant_done");

- 22-

} /*end of gantt chart 2 • /
schedule:()
{

timer_split(" gantl ");
eval(gantl O);
timer_split(" gant2");
eval(gant2());
in("gant_done");
in("gant_done ");

n
n
D
fl
D
n
I
n
I
l

u
J

J

	Rudd_Lewis_El_Rewini_Judge-handley_Kim_89_80_01_A
	Rudd_Lewis_El_Rewini_Judge-handley_Kim_89_80_01_B

