
78-1-5

LifUUEAS~T'r

An Operator Calculus For Computer Programs

T. G. Lewis

Computer Science Department
Oregon State University

Corvallis, Oregon 97331

l
n
n
n
n
fl

l

f I

j

I

I
j

78-1-5

An Operator Calculus For Computer Programs

T. G. Lewis

Computer Science Department
Oregon State University

Corvallis, Oregon 97331

n
n
n
n
n
n

f J

I I

I

I
J

J

LI

□

An Operator Calculus For Computer Programs

Part 1

T. G. Lewis
Computer Science Department
Oregon State University
Corvallis, Oregon 97331

(503) 754-3273

Report

78-1-5

l
n
n
n
n
n
I

f I
. I

J

f

I

l J

II
I
u

0

Abstract

An operator calculus for transforming assignment statements, loops, and

choice constructs into equation-of-state expressions is shown to be powerful

enough to synthetically execute a given computer program and its test data.

A demonstration of the program is equivalent to applying an operator formalism

to the equation-of-state in order to reduce the equation to a simple, single

assignment sequence of assignment statements. The program is said to be

demonstrated correctly with respect to the given test data if the r~sulting

single-assignment sequence produces the desired "output" result.

The method is applied to a variety of programs of increasing complexity.

A published program shown to be a correct implementation of the binary search

algorithm is demonstrated to be incorrect .

n
n
n
n
n
n

II

lf J

I
ll
d
u
u

0

Contents

0. Introduction

Literature survey and motivation ... 1.

1. An Operator Calculus For Assignment Statements

Terms, definitions, and the fundamental conjecture

2. An Operator Calculus For Loops And Choice

Transformations of WHILE and IFTHENELSE •..

3. Difficult Transformations

Application of the calculus to a "correct" program ...

4. Research Topics

A list of three areas for further investigation ...

References

r
'

7
n
n
n
n
n

l J

I
u
LI

0

0. INTRODUCTION

Program correctness is an ideal sought after by every programmer :

creating new programs. It appears much easier to produce program text

than it is to convince an observer of the text's correctness, however.

After many years developing theories and useful theorems for the

skilled mathematician to use in proving programs, it has recently been

suggested that pragmatic testing be used as a means of discovering errors

in programs. Such tests can be automated, it is argued, and us~d by non

mathematically inclined programmers.

Testing is certainly a step forward for programmers concerned with

software quality. Indeed, a broader perspective is needed in order to

?olve many of the problems encountered by software implementors.

McKeeman (1) suggests, " ... we must realize that assertions are too

constraining to become the only acceptable method of proving programs

correct". It is the thesis of this paper that other "acceptable" methods

do indeed exist, and furthermore, we propose such an alternative.

Geller (5) has applied a pragmatic approach to proving program

correctness by combining earlier proof techniques with test data as an

aid to proving programs. He states, "It is far easier to specify the

relevant mathematical properties of the program ... by specifying

behavior on test data than by other formal specification methods."

Geller's approach was motivated by the need for alternative methods.

In fact, he suggests that one such .alternative is to consider the program

itself" ... as its own specification."

The operator calculus developed in this paper combines many ideas

1.

l
fl
n
n
n
n
l
I

f 1

I l

J

j

I

J

J

J

regarding program verification. In a ·sense, the formal ·operator

technique merely serves to structure the orderly application of known

techniques. It is tempting to designate the method a "structured proof"

technique.

The symbolic execution method suggested by Handler and King (2)

provides a framework for proving programs correct, also. Their approach

suffers from an inability to effectively handle looping. Any alternative

method must .off.er ease of application as a compensating merit . to offset

the discipline required to handle a formalism . We seek a method that

works equally well with loops and assignment statements.

The suggestion that programs be designed to make proofs easier to

obtain is also a concession difficult for many programmers to make.

Deriving loop invariants is an example of such a philosophy. Loop

invariants may acutally add to the programmer's problems if they are poor

models of the process being implemented in a program. Therefore, an

operator calculus must be able to transform loops into simple, singl~

assignrnent sequences without undo labor.

The goal of this research is to devise a formal (non-rigorous, but

useable) operator calculus for modeling structured programs. This calculus

is designed to be blindly applied by moderately skilled programmers. The

proposed calculus is analogous with the formal application of operator

algebras in the solution of differential equations. Most engineers are

able to use Laplace Transforms without having to perform contour integra

tion (a method of deriving the transforms).

The operator calculus is applied to program text to produce an

"equivalent equation" . The equation is "solved" by applying test data

2

l
n
n
n
n
n

l J

I J

j

0

as a driving function of the equation, then the equation is reduced to a

solution. The "reductions" are actually transformations that retain

computational equivalence with the original program.

3

l

n
n
n
n
n
n

j

J

J

j

j

LI

1. AN OPERATOR CALCULUS FOR ASSIGNMENT STATEMENTS

We employ a formal mathematical notation to interpretation of

programming language objects. For example, a concatenated sequence of

programming language statements is written as a string of statements

U. separated by the delimiting operator
l

equivalence operator 11 _ 11

" . " , and defined by the

The equivalence operator states that the computation performed on

either side of the equivalence symbol results in the same outcome. For

example, we can establish a computational equivalence for differing

statement sequences as shown in the following simple,single-assignment

statement sequences.

y:=5; x:=O; - x:=O; y:=5;

This illustrates how a sequence of computationally independent

statements produce identical computational results due to their data

independence. We say a sequence of simple, single-assignment statements

is data independent if the set of variables formed by the lhs (left-hand

side) of the statements is disjoint from the set of variables formed by the

rhs (right-hand-side) variables occuring in the sequence of statements.

We will often demonstrate such independence by writing the sequence in

concurrent form;

[
y:=E;] = [x;=O;]

x:=O; y:=5;

4

7

n
n
n
n

11

l
l J

l

J

J

I
u

A simple, single-assignment sequence is a sequence in which lhs and

rhs variables are distinct. Such sequences of assignment statements are

analogous with the ~onstant function f(x) = C , because the statements
0

can often be moved around within program segments without altering the

computational equivalence of the program with its modified form. The

operator calculus proposed here is used , to reduce arbitrary programs to

a single-assignment sequence. Herre~ we seek techniques for transforming

more complex sequences into an equivalent simple, single-assignment

sequence .

A coupled, single-assignment sequence is a sequence in which each

lhs occurs once, only, but the set of rhs variables intersect with the

lhs set. For instance,

x:=O; y:=x+S; z:=y-2;

This example of a coupled, single-assignment sequence illustrates

why the coupled (data-dependent) calculations cannot be executed con

currently . Hence, we must be careful with the order of their execution.

This particular sequence is not computationally equivalent to the permu

tation below:

x:=0; z:=y-2; y:=x+S;

A coupled, single-assignment sequence can be reduced from k coupled

statements to k simple statements by forward substitution of j < k

statements of the sequence. We say a coupled, single assignment sequence

is c-reduced (coupled reduced) when forward substitution is used to

eliminate coupling from the sequence . The example above may be c-reduced

as follows .
5

7

n
n
n
n

11

I 1

u

I
u
I J

u

[x:=O; y:=x+S; z:=y~2] ~ [x:=O; y:=O+S; z:=y~2]

- [x:=O; y:=5; z:=5-2]

- [x:=O; y:=5; z:=3]

Hence, coupled, single.,.assignment statements are reducible ·to simple,

single-assignment statements. Ac-reduction of a sequence of assignment

statements in a manner illustrated above is an example of a · synthetic

execution of a program segment.

We employ synthetic execution in the programs to follow for the

purpose of demonstrating their correctness relative to fixed test data.

In the process of synthetic executio~ we may discover sequences imbedded

within programming language operators that are more complex than the

assignment statement. For example, the operator IFTHENELSE imposes

greater complexity on a sequence of statements than illustrated thus far.

How can we formalize such complex operators and devise the corresponding

reductions that allow synthetic execution? Before discussing this problem,

we need methods for handling yet more sophisticated sequences of assign

ment statements.

A simple-recursive, single-assignment sequence is a coupled, single

assignment sequence in which one or more statements is.recursively defined.

y:=y+l; i:=i/2;

The simple-recursive, single-assignment statements above are of the

form,

6

l
n
n
n
0
n
I
1
1 I

I
u
I
J

LI

variable :=f (variable)

where F is an arbitrary expression function.

A forward substitution may be used to reduce the simple-recursive

assignment statement, however, recursion is often used as part of a

program loop. When the simple-recursive, single~assignment sequence is

part of a loop, we must employ more sophisticated formal operators to the

sequence in order to reduce the sequence (and the loop) to a simple, ,single

assignment sequence. The operator calculus for loop reduction is discussed

in a later section.

A chained-recursive, simple-assignment sequence is a recursive,

simple-assignment sequence in which a lhs variable appears on the rhs of

other statements in the sequence.

a:=1-b; b:=-a;

A forward substitution of "a" into the right-most statement above

produces a simple~recursive, single-assignmen~ sequence from the chained

recursive single-assignment sequence.

[a:=1-b; b:=-a;] - [a:=1-b; b:=b~l;]

In many cases, it may be possible to reduce a chained-recursive

single-assignment sequence to a simple-recursive, single-assignment sequence

by forward substitution. However, the chained-recursive statements may be

cyclic in nature;

y:=y-x; x:=x-y;

in which case the substitution is unclear (indeterminate). Such a sequence

7

n
n
0
fl
I
1
[I

I
I.

11

I
J

is an example of a cyclic-recursive, single-assignment statement.

In many instances, a simple-recursive, single-assignment sequence may

be generalized by rewriting it in non-recursive form. The simpler, non

recursive sequence makes it easier to apply . synthetic execution; but may

pose a problem of transforming the recursive statement into a non-recursive

statement.

A transformation of a sequence S , is a formal operator induced

change in S that produces the same computation as S ·. In other words,

a transformation on S leaves S invariant with respect to results of the

calculation. Consider the following program for the calculation of fact- .

orial.

recursive proce .dure RFACT(ri:integer) :integer;
if n~l then _r-eturn(l);

else return(n*RFACT(n-1));
fi

end FACT;

This recursive procedure can be transformed by operator induced

changes into the following computationally equivalent program.

procedure IFACT(n:integer):integer;
var ril: integer;
IFACT:=l;
if n>l then begin;

fi
return (I FACT);

end IFACT

m:=n;
while(m>l) do

IFACT:::IFACT*m;
_ m: ::m:-1;

end;

8 .

~

n
n
0
n
I
l

f I
1

I I
11

l I
lJ
J

J

u
u
0

While the transformations (changes) are rather extensive for the

factorial example, above, they are merely operator induced changes.

Instead of asing IFTHENELSE and recursion to compute RFACT, we employed

IFTHENELSE and WHILE to obtain IFACT. The result obtained with IFACT is

computationally equivalent to the result obtained with RFACT even though

the number and form of the calculations involved is different in each

procedure.

The point of all this is to demonstrate the importance of an operator

formalism for expressing programs. Given a formalism for expressing

either IFACT or RFACT, and formalism for reducing the expressions, we can

reduce the expression to a simple, single-assignment sequence. Hence, we

conjecture that every expressible program is reducible to a simple, single

assignment sequence.

Conjecture Every program expressible in a formal operator system D(C,R)

is reducible to a simple, single-assignment sequence. System D is a

set of control operators C, and a set of reduction rules R

The remainder of this paper deals with the application of this con

jecture. The conjecture can be proven true by a circular argument. Thus,

only programs expressible in D will be studied, and only operators that

are reducible in C by rules R will be discussed. Hence, every program

expressible by the formal operators studied in this paper are reducible

because only reducible operators are studied. This restriction is logically

·absurd, but will be shown to be a powerful idea, nonetheless.

9

n
n
n
0
fl

7
II
1

j

J

u
l

J

LI

D

2. AN OPERATOR CALCULUS FOR LOOPS AND CHOICE

A program is a collection of partially ordered statements whose

complexity is measured by the number of predicates employed in the control

structures. If the program is structured, then every control structure

forms a single-entry, single-exit sequence of (nested) control structures.

Hence, the most significant attribute of a structured program is its set

of predicates.

Program predicates suggest a "handle" for devising an operator

calculus for computer programs. The operator calculus suggested in this

section is analogous with the operator calculus used by electronic engineers

to analyze circuits. The circuit diagram is drawn, often from experience

and intuition (the program), and then analyzed by writing an equation

similar in form to the one below.

+ C dV + K = f(t)
I dt

Once the differential equation is known, a set of formal operatorcalculus

reductions are applied to derive the system performance. For instance, to

solve the differential equation we supply a set of test data inputs, f(t) ,

and derive an expression for V(t) .

A computer program is also represented by an equation. The test data

for a program is some (simple) function that generates values for the

variables in the program. We "solve" the "equation" of a program by

reducing the program to a simple, single-assignment sequence. As with the

differential equation, the "solution" to a computer program "equation" is

a function of the driving function (input data).

10

7

n
n
fl
fl
l

11

11

d
I
j

J

LI

u

We use the I operator to designate an IFTHENELSE predicate and the

!!integration" operator to designate the WHILE loop. A horizontal line is

used to alternate program statement sequences. Thus, formal operators

over predicate p,q, andstatements u,v,w, are;

a) concatenation: u· ,

b) alternation:

c) decide from p

d) loop over u with step 6

f u;6
q

e) increment/decrement by v:

v· , w· ,

u. -,
v .

I p

V

6 u;

Suppose we "integrate" a loop-body over some indefinite predicate.

The "integral" is a function of the loop body, initial and terminal

conditions, and the step size. Here are a few examples of loop integration

where the initial and terminal conditions have been undeclared . (an

indefinite integral).

Example 1

f 6x;6i - x :=x+i

This operator is equivalent to the repeat clause of an indefinite

loop.

repeat

x:=x+l;

i:=i+l

until (false);
11

l
n
n
n
n
n
I

i I
l

-J

J

I
lJ
j

J

Example 2

These examples correspond to indefinite integration in sophomore

calculus. The value of the integral depends on the initial conditions and

the integrand's interval. The next two examples give generalized results

for simple loop integration.

Example 3

Example 4

f -k
6 x;M x : =x-k*i;

Suppose we apply loop integration to the following simple summation

program.

SUM (x (1. . n]) - procedure SUM (x: array (1. . n]) : real;

~ s:real;
s:=O;
for i:=l to n do;

s:=s+x[i];
.end;

return(s);

end SUM

This. simple program is transformed into the formal expression shown

below.

SUM(x[l .. n]) _ s:=0;/6 x[i]s;

1 < i < n

12

n
n
n
n
n
I
l
l I
1

l
l
I
j

J

j

We can "solve" this equation for s given a driving function x[l. .n].

Suppose we study the behavior of this equation when x[i] := c . (constant).

Test #1: SUM(c .. c);

- s:=O; f
C

ti s;

1 < ii <n

- s:=O; s:=n*c+s;

_ s:=n*c;

The test demonstrates the behavior of SUM when it is synthetically

executed. The formal loop operator is reduced to a simple~recursive,

single-assignment sequence (s:=n*c+s;) by loop integration. Next, the

recursive form is reduced by forward substitution and redundant statement

elimination, to a simple, single-assignment sequence. Hence, we have

succeeded in demonstrating the behavior of this simple program through

formal methods of operator transformation. The result is not a proof of

correctness for the program; however, it is a demonstration of its synthetic

execution relative to its simple inputs. Instead of giving an absolute

proof, we have demonstrated the program's behavior relative to constant

inputs.

A demonstration of a program is an operator calculus proof of its correct-

rtess relative to the synthetic -(test · data) inputs. Many demonstrations may be

required before gaining confidence in the program. Suppose we apply a more

difficult input to SUM.

Test #3: SUM(l .. i . . n);

_ s:=O; J tiis;
l<i<n

13

n
n
n
0
n
l
n
f I

J

J

u
ll
J

n
s:=O; s:= E i+s;

i=l

- s:=O; s:=(n*(n~l)/2)+s;

- s:=(n*(n-1)/2);

The delta operator (6) is a shorthand form for simple-recursion in a

single-statement sequence that offers a limited amount of algebraic conven

ience sometimes useful in reducing recursive sequences.

a) Show that 6a . x· , 6ay a
- 6 (x;y)

6ax· , 6ay - x:=x+a; y:=y+a;

- y:=y+a; x:=x+a;

a
- 6 (x;y)

a
- 6 (y;x)

+ +
b) Show that b-a b -a 6 y; - · 6y;6 y;

+
b-a +

6 y; - y:=y+(b-a);

- y:=y+b; y:=y.:!:_a;

+
b -a

- 6 y;6 y;

Let's turn now to use of the formal operator I . Suppose we derive

an equation for the bubble sort algorithm. ,·Bubble sort quarantees an output

list in ascending order. That is, every element x[i] _.:: x[j] for i _:: j

We express this condition in succinct predicate form as follows.

x[i] _:: ALL(x[j];) where j > i

Furthermore, this condition must exist over all values of i

integrate the predicate:

14

Hence we can

n
n
n
n

f I

J

l J

J

j

0

J
l<i<n x[i]< x[j]

The value of subscript j is undefined in the intergrand, but we want to

run over all values greater than i This assures that every element of

x is greater than every other element of x whenever j..:::_i

integration provides the needed values of j

bubble(x[l .. n]) -

f
l<i<n i<j.2_n x[i~<x[j]

A second:

The bubble sort algorithm employs an exhange or "ripple" to exchange

x[i] with x(j] whenever the predicate fails to be true. We include this

possibility in the equation using the alternation operator. The upper path

is selected when the predicate in

otherwise.

bubble(x[l .. n]) -

is true, and the lower path selected,

f f x[j] +-+ x(i] ;l:lj;lii;
1<i <n i <j.2_n x [i]2x [j]

The equation above may be used to derive a program segment for bubble

sort as shown below.

for i:=l to n;A2.;
begin; for j:=i+l ton do

if x[TT<x[}T then;
- else-x[i] +-+ x [j];
fi;

15

n
n
n
n
n

I J

I I

J

j

u
tJ

To demonstrate that the bubble program works as expected we reduce its

equation. First, we assume a constant input; . next an ordered input; and

finally we study a descending sequence of inputs.

Test #1: bubble(c .. c);

J J
l<i<n i<j2_n c<c

since c<c is always true, we can simplify:

J J
l<i<n

J j :=n+l;M;
l<i<n

bubble(c .. c) - j:=n+l; i:=n+l;

The definite integration is performed in each case by evaluating both

upper and lower limits of the loop integration. For example,

J M - i:=l; i:=i+(n);
l<i<n

i:=l+n;

Test #2: bubble (l .. i .. n);

J J I
l<i<n i<j~n i_:sj

---------- · ,· 6J. ,· 6i;
i -+-+ j

Again, since the input is ordered, i<j is always true over i<j2_n

(the loop predicate). Hence, the alternation path is ·reduced to the null

case.

16

l
n
n
n
n
n
l

I l
I

lJ
I

..
J J tlj;M; - j:;::;n+l; i:;::;n+l

l<i<n i<j.:5_n

Finally, suppose we demonstrate that bubble works correctly with a

descending list. Let x[i] = (~i).

Test #3 bubble (-1.. -n);

- J J ';"tlj ;tli;
l<i<n i<j 2 n -i2-j X [i] ++ X [j]

- J J I ;tlj;tli;
l<i<n i<j 2 n i>j x[i]++ x[j]

This time, when the predicate is false, we reduce the alternation path

to an exchange. As it .turns out, the predicate .is always false, leading

to a circular shift of the array elements.

J J x[i] ++ x[j];tlj;tli;
l<i<n i<j<n

The resulting integration of the inner loop shows how the final value

of x is "rotated" to the start of the sublist beginning at position i .

J x[i] := x[n-i+l]; j :=n+l;M;
l<i<n

j :=n+l; i:=n+l;

x[l] : = x[n];
x[2] := x[n-1];
X [3] := X [n-2];

x[n-1] .- x[2]

Note, in the final exchange, the last element of the list is not

exchanged with its elf because (i <j~n) would become false. Therefore, the

list (-l,-2,-3, . .. -n) is reversed to give (-n,-(n-1), . . . ,-1).

17

7
n
n
n
n
n

l

J

J

)

J

j

3. DIFFICULT TRANSFORMATIONS

The examples studied thus far are simple programs easily analyzed by

other methods. The advantage of alternate program verification and/or

derivation techniques must lie in their ability to analyze intellectually

difficult programs. Furthermore, the formal operator technique provides a

way to systematize the analysis of programs. Such systemization suggests

possible automatic means of applying the operator transformations. The

automation of program demonstrations has not been pursued todate, however.

The greatest-common-denominator program is often used as an example of

an intellectually difficult program to prove (2). The source of difficulty

is the coupled-recursive sequence cop.tained within the loop body of GCD.

GCD(a,b) - procedure GCD(a,b:real):real;
while (alb) do

if a>b then a :=a-b;
- else b:=b-a;
fi

end;
return (a);
end GCD

Handler and King (2) explore the GCD algorithm using a symbolic execu

tion tree. The tree helps to prove the program correct, but application of

the proof technique takes the programmer far from the task of verification.

How well does the formal operator calculus perform when applied to the GCD

. algorithm?

18

7
n
n
n
n
n

r I

I J

I
l]

u
u
u
u

I a:=a-b. 6
GCD(a,b) - afb a>b b:::;b-a'

-b
f 6 a

- 6-¾ afb a>b

How can we test (demonstrate) the GCD equation? Since the alternation

paths are chained-recursive, we are at a loss to invent an input that

exercises the coupled body of the loop.

The GCD program is usually proven correct employing mathematical

properties of the GCD function. This approach is taken here. We note that

GCD(a,a)=a if a>O, GCD(a,b) - GCD(b,a) , and most impor~antly that

GCD(a,b) - GCD(a+b,b). If these three relations are shown to hold, then we

not only have demonstrated the GCD program, but we have proven it correct as

surely as if traditional proof techniques were employed.

Test #1: GCD(a,a) - a if a>O.

-a
f 6 a

-a - afa a>a 6 a

I -a
- afa 6 a

The result of this demonstration is a null sequence containing no simple,

single-assignment statements. The reason is that the loop is never integrated,

hence the output of GCD(a,a) is a.

19

n
n
n
n
n
n

11

]

11

l J

J

l

Test #2: GCD(a,b) - GCD(b,a)

Li-b . -a

f I a · - f I ti b

alb a>b Li-¾ bfa b>a ti-ba

-a
t,.-\1 Li b I -Since b>a

--=1,
Li a b<a 6-¾

is an identity relation, and since the single value (b-a) cannot exist

within the loop body;

f = f
bia b<a bfa b<a

We derive the equivalence by direct substitution of the identity.

Test #3: GCD(a,b) - GCD(a+b,b)

f
-b Li (a+b) - a:=a+b-b; GCD(a,b) I

(a+b)fb (a+b)>b Li - (a+b)b

- a:=a; GCD(a,b)

- GCD(a,b)

The basis of this demonstration is quite simple. . The first cycle

through the loop produces:

(a+b)fb = TRUE

(a+b)>b = TRUE

-b
thus, ti (a+b) - a:=a+b-b

20

l
n
n
n

I -

f I

I
J

J

j

J

The next (_and subsequent) execution o;I; the loop uses the resuit a:=a to

produce an execution identical toGCD(a,b) . . In short, the first pass through

the loop . replaces every occur.ence of > (a+b) with the value (a)

We could also demonstrate that GCD(a,a+b) = GCD(a,b) by a similar

argument.

The GCD program is intellectually difficult because of the chain

recursive coupling of variables: · We were able to sidestep this difficulty

by relying on a mathematical relationship defined for GCD over .different

test data. This is not always possible, and indeed the problem of demon

strating a program may be as difficult as proving it correct.

Perhaps one reason to demonstrate a difficult program even when the

demonstration is difficult to do, is that the demonstration provides another

handle for the same problem. We illustrate this idea with a program that

was proven correct by Dershowit.z and Manna (3), but according to the following

demonstration, is incorrect. Indeed, the program fails to produce correct

results for a very simple test data input.

Dershowitz and Manna use a loop-invariant version of the binary search

algorithm. The loop-invariant provides a way to prove the program correct,

but alas the program is incorrect! While useful, the loop-invariant is not

needed for the following demonstration.

binary(a[l .. n],b) - z:=n; f y:=y/2;
-n<y<-1

y
I 11 z -11

b_s_a [z+y] '

This equation was derived from the program given in reference (3). It

illustrates the use of a convergent loop invariant y:=y/2; z.:=z+y; which

converges to the location of element b in array a[l .. n] .

21

7
n
n
n
n
n

11

j

ll
j

The binary search algorithm is intellectually difficult because of the

simple-recursive, single-assignment sequence imbedded within the loop

integrand. We overcome this difficulty by removing the recursive statements

and replacing them with non-recursive equivalents. In otherwords, we must

first transform the equation into a computationally equivalent equation using

formal operator changes.

The indefinite integrals for y and z are obtained by transformation

of recursion, as follows.

fy:=y/2;6 ' - y:=y; /(y/2);6y
0

- f y: =y C½l; 6k
0

This relation was obtained by solving the difference equation:

and y =(-n)
0

Furthermore, we can derive a non-recursive version of z by solving its

difference equation. Thus, the transformed equation for binary search is:

binary(a[l .. n],b) -

f y:=-n/2**k;

-~y <-1

z:=n/2**k. 6
b..::_a [z+yl '

Now, every statement in the integrand is invariant with respect to loop

integration. The only variable affected by the loop is k, which was intro

duced to generalize the expressions for y and z. This is the concept

underlying loop invariance proposed by Dijkstra, but used in a somewhat reverse

fashion. The operator calculus removes induction from the proof and replaces

it with integration. The next step in solving this equation is to integrate

22

n
n
n
n
n
n
I

l
1

J

J

J

l

the simple, single-assignment statements by computing a value of k that

terminates the loop. The reader can clearly see the loop invariant in action

by carefully studying the following demonstrations.

Test #1: binary(l .. n,l)

Suppose we demonstrate this program with test data a [i] = i, and b=l.

f
-n<y<-1

y:=-n/2**k; z: =n/2**k. 6 ,

. Since the loop hopefully terminates with b=l=a(l), the predicate - for

is always true. We reduce the alternation paths to the evaluation of z .

This means that every pass through the loop produces the following subscript

for a[z+y].

a[z+y] = a[n/2**(k-l)-n/2**(k)] = a[n/2**k]

When y>-1 (loop termination) we get ·

a value for k

k
-12-n/2 , which produces

Thus, · k is the ceiling of the logarithm of n When n is not . a

power of two, the value of k is selected such that 2k>n. The loop termi

nates when we have integrated over k=0,1,2 ... [log 2n].

binary(l. .n,l) =
y>-1; k=,rog 2n7; l_::a[n/2**k]; z:=n/2**k;

- y>-1; l,2a[11/2**1log2nl]; z:=n/2**rlog2nl

23

n
n
n
n
n
n

I I

11

I l

l I
lJ

u
u
u

Then,

And,

Case B:

Then,

thus,

2**rog n1 _ n
2 I

binary(l .. n,l) - l.::_a[l]; z:=l

- l..::_l; z:=l

2** flog n1 -I - 2 1

binary(l. .n,l) -
+l +l

l.::_a [2] ; z :=2 ;

The binary program succeeds in case A, above, but fails due to array

indexing errors in case B. Hence, when the length of array "a" is a

power of two, this version of binary is correct, however, the program "blows

up" when n is not a power of two. The reader is encouraged to demonstrate

another problem area for the Dershowitz-Manna version of binary search;

to demonstrate binary(l .. n,n).

try

The traditional binary search algorithm is implemented without loop

invariance. The following equation mirrors such a traditional program. Notice

the divide-and-conquer steps that take place by moving an upper and lower

pointer (j and i) to designate upper and lower sublists within array x.

24

7
n
n
n
0
n

I
f I

I J

I

l l
J

u
J
LJ

D

binary (x (1. . n), k) -

I i : :::; 1 ; j : =n ; m : =
x[l]<k<x[n]

m:=O

n+l
-2; J I

k;tx[m] x[m]>k
i:=m-1 i+J· •

m·=-·6 i : =m+ 1 ' · · 2 '

This version of binary returns m:=O if the key k is not within the

list. Furthermore, the loop is integrated over code that is executed only

when the key is not found. We transform this equation into a simple,

single-assignment sequence containing the value of the matching element's

subscript in m, and predicates that convince us that the value is indeed

correct.

Test #1: binary(l .. n,k)

r
l<k<n

n+l
i:=1; j:=n; m:=-2-; J

kim
m:=O;

j:=n;

m>k
j :=m-1. i+J· m·--·6 i: =m+l' . 2 '

i: =l; l
n+l

l_2k<n; ~:=_2_ J I J· :=m-1. i+j_6
- m:= 2 ' kfm m>k i:=m+l'

l~k>n; m:=O;

25

n
n
n
n
fl
n

j

J

J

u

We obtained the alternating paths above by splitting the predicate of

the outer operator. If we do this again for the inside the intergrand,

we get the same equation, but with a new integrand, as follows.

J
k;ofm

m> k; j : =m-1 ;
m<k; i:=m+l;

i+j_t::,
m:= 2 '

These paths are reduced by forward substitution and noting the integer

valued results.

m>k; j:=m-1 - j>k-1 . - j:=k

m<k; i:=m+l - i<k+l i:=k

We substitute these reductions into the integrand and get the following.

binary(!. .n,k) -

J·:=k i+J·
i:=k ;m:=-2- ;t::,

l>k>n; m:=O

Technically, we should have used the reduced forms

m>k; j:=k

m<k; j:=k

in the integrand, but in either case the results merge due to their

equivalence.

Forward substitution gives a result for i,j, and m. The result

produces

26

7
n
11

n
0
n

I

Li

f J

lJ

J

u
J
Ll

D

m:=k+k = m:=k
-2-

which causes loop integration and reduction.

[

. :=l; 7
j ==~l1 J

l_<k<n,· m:=- 2- . ,· J m:=k; j:=k; i:=k;6
k;lm

l>k>n; ~:=O;

l<k<n; i:=k; j:=k; m:=k
l>k>n; m:=O;

This demonstrates the correctness of this version of the binary search

with respect to an ascending list of integers.

The binary search is easily derived from the equation just used.

binary(x[l .. n],k) =
procedure BINARY(x:array[l .. n], k:integer, m:integer);
var i,j:integer;
if x(l]<k<x[n] then begin

i:=l;J:=n; m:=(n+l)/2;
while (k;lx[m]) do

if x[m]>k then j:=m-1;
- else i:=m+l;
fi;
m:=(i+j)/2;
end;

else m:=O;
fi;
return;

end BINARY

The demonstration technique is powerful enough to compete with more

formal proof techniques. There is a danger in using the method, however.

27

7
n
n
n
n
n

l
11

J

Success with synthetic executio,1,1 may lull the user into beli~ving the

results too strongly. The demonst·ration does not guarantee correctness

any more than formal techniques as used incorrectly in reference (3) . .

Indeed, it could be argued that demonstration is a much weaker method than

proof by inductive assertion. The following recursive definition of

Quicksort illustrates how one can be misled by initial success.

QUICK(x[l .. n]) - j:=n; i:=l; T:=x[n/2];

J QUICK(x (1 .. i]);

I
x[i]>T

I
x [j] <T

I
x[j]<T

00

00 .

QUICK(x[j+l .. n]);b._ 6
X [i] ++ X [j] ; M . ,

,\ -1.
Ll J

-1
6 j; M;

The 6 term is a "breakloop" statement that terminates the loop integra-

tion. Hence, the loop is terminated after double recursion on the top path

of the alternations rather than by a loop predicate.

Demonstrating QUICK(c .. c) and QUICK(l .. n) produces success, but careful

scrutiny of the equation reveals that the algorithm is indeed incorrect.

Selecting n=3, and simple values for x_(i] immediately causes array overflow

or underflow in the algorithm. Thus, we are cautioned not to use the formal

techniques without careful analysis of the test data.

28

7
n 4. RESEARCH TOPICS

l I

n
n

n

f

I

I
I

The fo.regoing operational calculus is merely an initial step toward a

complete theory of programs, program equations, and transformations leading

to program reductions.

The problems that still remain to be examined are:

1) extend the transformations to coupled sequences of greater generality

and sophistication.

2) formulate a theory of test data selection that increases the chances

that all possibilities have been considered. At first glance it

appears that testing boundary conditions on the data is most fruitful,

but the criterion are more complex than this. Test data selection

techniques employed by traditional "data domain" techniques seem

to apply equally to this method (4,5).

3) investigate automated equation-solving systems that read a program,

produce the transformed equation, and demonstrate the equation by

synthetic execution.

Perhaps the most significant contribution of a formal operator calculus

for expressing computer programs is the insight obtained by viewing a program

as a physical system. Physical systems are modeled by linear and non-linear

differential equations, most of which are easily solved using non-rigorous

mathematical manipulation . The same can be achieved with computer programs

once we develop a mathematical understanding of operator notation and its

use in programming.

29

n
n
n
n
0
n
I
7

I
J

l I
lj

I
j

u
LJ

0

REFERENCES

(1) McKeeman, W.M., On Preventing Programming Languages From Interfering

With Programming, IEEE Trans. Soft. Engr., SE-1, 1, (March 1975),

19-25.

(2) Handler, S.L. and King, J.C., An Introduction To Proving The Correct

ness of Programs, Comp. Survey, 8,3, (Sept. 1976), 331-353.

(3) Dershowitz, and Manna, F., IEEE Trans. Soft. Engr., SE-3, 6, (Nov.1977).

-
(4) Goodenough, J.B., and Gerhart, S.L., Toward a Theory of Test Data

Selection, Proc. Int. Conf. on Reliable Software, 1975, pp. 493-510.

(5) Geller, M., Test Data As An Aid In Proving Program Correctness,

Comm. ACM, 21, 5, (May 1978), pp. 3'68-375

30

l
n
n
n
n
n
I
. I

11

l

l J

l J

I

j

d
u
u

An Operator Calculus For Concurrent Computer Programs

Part II

T. G. Lewis
Computer Science Department
Oregon State University
Corvallis, Oregon 97331

(503) 754-3273

Report

78-1-5

7
n
n
n
n
fl

I I

l
J

J

I
J

J

Contents

Abstract

Motivation

The Interleave Principle

The Process-state Matrix

P and V Operators

Device Monitors

Conclusions

References

n
n
n
n
n
fl

' 1

l
11

I I

J

J

J

j

J

LI

Abstract

The formal operational calculus is extended to include concurrent

programs typically used to construct operating systems. An interleave

principle is used to define a process-state matrix. The matrix is used

to construct execution paths representing concurrent (asynchronous)

execution of multiple processes. The "correctness". of concurrent programs

is demonstrated by studying the paths given by the process-state matrix.

The technique is applied to Dekker's algorithm, several faulty

semaphore's, and a device monitor suggested by Wirth's Modula program

ming language. The method performs moderately well as show~ by success

in demonstrating small programs. Directions for future research indicate

fruitful areas of further investigation.

l
n
17

n
n
n
I

I

l
I
I
J

l J

u
J

LI

u

Motivation

The research reported in Part I [l] describes a formal operator

calculus for demonstrating programs. The term "demonstration" is used

to distinguish the methodology from proof of correctness techniques. A

demonstration is a symbolic execution of a computer program carried out

by submitting test data to the program . The value of such an approach

depends heavily on the appropriateness of test datq; often a program

appears to be correct with one set of test data, and incorrect with

another set of (unused) data . Hence, a demonstration provides agditional

evidence to support the conjecture that a program is correct.

The symbolic execution of a program and its test data is carried

out in a structured way. A formal operator calculus is used to trans-

form the source code of a program into an equation . This so-called

equation-of-state for the program is completely analogous to a differential

equation used to describe the behavior of a physical system. Given a

driving function (test data), a differential equation can be solved

using a set of formal operators to reduce the differentiation terms to

functions defining the solution through time . The solution is accepted

as a model of the physical system's behavior.

In deriving a solution to a computer program equation, we apply

formal operators that reduce the program to a sequence of simple, single

assignment statements. Hence, the solution to every computer program

equation is a sequence of single-assignment statements.

Part I [l] described the formal operators as follows.

A. The equivalence operator,

l
n
n
n
n
n

l

l

j

j

J

u
u

B. · The step operator, 6

AX -
Ll Y = y:=y+x;

C. The forward substitution, operation:

y:=a;x:=x+y = y:=a;x:=x+a;

D. The alternation operator, I

p
s false

where pis a predicate, ands is used when pis true, true

sf 1 is used otherwise.
a se

E. The loop integration operator, J

F.

J 6· ,
p

where pis a loop predicate; the loop is executed forever,

or until p becomes false.

The parallel operator, [J
[y:=a J

x:=b ; both statements can be done in parallel.

The examples of Part I illustrated the power and versatility of

this operator calculus. In short, the equations derived by "solving"

programs range from simple execution of code without conclusive proof

of its correctness, to correctness proofs as valid as proof by assertion,

and proofs using loop invariants with induction.

The purpose of this report is to extend the formal operator

notation and range of usefulness to include concurrent program demon

strations. The idea is very straight forward. We want a theory that

can be used by non-mathematically•inclined programmers to demonstrate

- 2 -

7
1
fl
n
n
n

l
11

I I

.1

l
I

u
u
u
u

□

that concurrent programs are correct when executed by one or more concurrent

(asynchronous) processes running on one or more computers.·

A program is said to be concurrently executable if it is re-entrant

and overcomes two problems associated with multiprocess program execution:

1) critical sections can be shown to solve the semaphore problem for

shared data, and 2) processes are deadlock-free while executing the

program.

The Interleave Principle

The operator calculus is applied to a 11concurrent" program by

assigning a process "tag" to the program, and then deriving the equation

of-state for the tagged program. The equation-of-state for the program

is derived using the formal operators given, above, and illustrated in

Part 1 [ll.

A demonstration of a concurrent program Q with statements

q0 q1 q2 ... qk is achieved by tagging the program with a process label,

say Pl, and then interleaving the processes with every statement of the

program.

We interleave a second process also executing program Q as follows.

Pl:q 0;P2:Q;Pl:q 1;P2:Q;Pl:q 2; ... P2:Q;Pl:qk;

The "solution" to the equation above produces a sequence of single

assignment statements that represent all execution paths of a concurrently

executable program. If the solution fails to reduce t~ a sequence of

single-assignment statements, then we say the program is incapable of

supporting concurrency.

- 3 -

l
n
n
n
n
n

I I

l
l

l

l I
J

J

j

LI

u

An illustration of the Interleave Principle is shown below using a

program for mutual exclusion (page 45, problem 5, [2]). This program

attempts to implement mutual exclusion by busy waiting. We assume each

statement is indivisible during execution because of memory interlock.

We cannot, however, assume that two processes, Pl and P2 enter and execute

this program in any prescribed . order.

MUTEXBEGIN:
need [me] :=TRUE;
DO WHILE (need [other]) ;END;
CR: /* critical region*/

MUTEXEND: need [me]:=FALSE

This code is re-written in formal operator notation:

Q = need[me] :=T

f /::, ;
need [other]

CR;
need[me] :=F

We begin a process by initializing the shared variables need [1],

need [2], to F (false). Furthermore, process Pl owns me=l, and process

P2 owns me=2. In either case, other=2 or l, respectively. Hence,

execution of Q by Pl and P2 give program activations as follows (as

viewed by process Pl):

Pl:Q - need[me] :=T; J /::,; CR; need[me] :=F

need[other]

P2:Q - need[other] :=F; J /::,; CR; need[other] :=F

need [me]

Initially need[l]=need[2]=F, and we assume Pl is executed first.
l

The Interleave Principle is used next to solve this set of equations

- 4 -

n
n
n
n
n
fl
I
1

1

I
f 1

J

J

u
u
J

u

(simultaneous linear equations?).

- Pl:need[me] :=T;P2:Q; f 6 ;P2:Q;CR;P2:Q;need[me] :=F;

need[other]

We need only expand the first P2:Q statement, above to demonstrate

that this program fails as a concurrently executable program.

- Pl :need[me] :=T;P2:need[other] :=T; J 6;CR;need[other] :=F;Pl: f 6;

need[me] need[other]

This equation is reducible to the first loop integration, which

never terminates; the computation in P2 is blocked.

- Pl:need[me] :=T;P2:need[other] :=T; J 6

need[me]

The remaining part of the equation also terminates due to blocking.

Pl: f 6 ; P2:Q

need[other]

Hence, we rapidly conclude that this program leads to deadlocked

processes. If we start P2 first, and Interleave Pl after every statement

of P2, the processes are blocked in reverse order, and lead to deadlock,

also.

The Interleave Principle revealed a fault in the mutual exclusion

example above because it produces an equation for every possible execution

path through the two processes. Indeed, the symbolic execution of every

path becomes a tangle of expressions when using the operator notation,

above. A visual aid to symbolic execution is more useful.

- 5 -

r

l
n
n
n
n
n

11

l

j

u
u
u

The Process-State Matrix

The operator calculus notation can be used along with a matrix of

process states to reveal the structure of concurrent program execution.

A process-state matrix is a two-dimensional matrix A[n,n] such that the

square at a[i,j] represents the state of process Pl after execution of

statement i; and the state of process P2 after execution of statement j

of the concurrent program in question.

The process-state matrix is constructed by drawing a grid. One

horizontal line is drawn for each statement executed by Pl; one-vertical

line for each statement executed by P2.

The upper left-hand square (the "home" square, or starting state)

represents simultaneous entry into the concurrent program by two processes.

Which process actually gains first entry is determined by initial values

of shared and local variables.

As an illustration, we take an improved version of the mutual

exclusion program shown to be deadlock-prone (see page 45, problem 5,

[2]).

MUTEXBEGIN:
need(me] :=TRUE;
DO WHILE (need[other]);

need(me] :=FALSE;
DO WHILE (need[other]);

END;
need[me] :=TRUE;

END;
CR;
need[me] :=FALSE;

This program also begins execution with local variables "me" and

"other" (equal to 1, 2 in process Pl, and 2, 1 in process P2), and

- 6 -

n
n
n
n
n

r
ii
I
. I
J

J

u
u
J

u

need [l], need [2] equal to FALSE (F).

The operator calculus version of this program is:

Pl:MUTEX = need[me] :=T; J need[me] :=F; J 6 ;need[me]:=T;6;CR;need[me] :=F

need [other] need[other]

The process-state matrix for MUTEX is given below (also showing the

home square) .

Pl :need[niel:=F

MUTEXBEGIN:need[me]:=T

ii.
II

,........,
!,;
(])

..c:
.µ
0

"O
(])
(])

~

N
0..

HOME

E-<
II ..
~

(])

..c:
.µ
0 ._,

"O
(])
(])

~

ii.
II ..
~
(]) ,........, ..c:

(]) µ
S 0 ._, ._,

"O

--. ~
~

"O
(])
(])

~

E-<
II

~ ... (])
r, ..c:

<l (]) .µ
E= ~

----. ~ "O
(]) (])
(]) (])

~ ~ <l

, ,

,J

-,

~ ,,

'I/

ii.
II

~
(])

..c:
.µ
0 ._,

"O
(])
(])

~

-
~

'!/
~ - r> -~~ - -

f
need[other]

need[me]:=F

J 6 ;
need[other]

need[me]:=T;

CR;

need[me J: =F ·

' "
\{

I
t

-,

'"' -

~

1-....' / ,,
'¥

,,

,,, I /

➔-➔ ' I/ ~
1-..... -

I
, /

\ I 'V
➔ i

..... i- ,.
I

t
I

l_
~

.... ,,

- 7 -

lJ

u
u
u

We have drawn only a small portion of the total nwnber of paths

possible, above. The path algorithm is as follows: 1) begin in the home

square, 2) draw an arrow connecting one or more squares with the home square,

(the arrow represents a one-step concurrent execution of either Pl or P2),

3) continue to draw arrows representing state transitions for either Pl or

P2, and 4) when a block is encountered indicate the .block with a bar in

the square being blocked.

The demonstration of a concurrent program is based on three funda~

mental characteristics of "correct" programs.

1)

2)

(Mutual exclusion): Only one process can be in the critical

region at a time. Hence, the process-state matrix must

contain no path passing through the squares adjacent to

(CR,CR).

(No permanent blocking): If no other process is in CR, then

any other process can enter the CR. Hence, there exists at

least one path from the home square that passes through a

CR square (crosses the CR line). Furthermore, there is a

path for every process passing through CR, e.g. Pl:CR and

P2:CR are both possible.

3) (No starvation): No set of timings can keep a process waiting,

indefinitely. Hence, there does not exist~ path through one

process's critical region that bypasses another process's

critical region.

- 8 -

n
n
n
n
n
n

7

I J

l I
J

u
u
LI

Let's examine each of the three fundamental characteristics, above

with respect to the process-state·matrix. The demonstration of the last

example of MUTEX reveals a violation of mutual exclusion.

1) (Mutual exclusion): A path does exist leading to the (CR, CR)

intersection. Hence, the program fails to prevent indeterminism

during concurrent execution. The path is shown in the process

state matrix for the following symbolic execution.

Pl:need[me] :=T

Pl: f
need [other]

Pl:need[me] :=F

P2:need[other] :=T;

P2: J need[other] :=F
need[me]

J ·~ P2: J ~ ;need[other] :=T

need[other] need[me]

Pl:need[me] :=T; ~ P2: f ~

need[me]

CR

Pl: CR; ...

This path leads to concurrent entry into CR by P2 first, then Pl

(or vice-versa) as shown by the last two terms in the equation, above.

2)

3)

(No permanent blocking): A fully drawn set of paths through

the process-state matrix will reveal that no permanent

blocking exists in this - version of MUTEX. The squares con

taining a block also contain an alternate arrow that is not

blocked. Hence, this characteristic is satisfied.

(No starvation). Starvation is possible. For Pl there exists

a path through CR that does not also pass through P2:CR.

Rigorously, the path should lie to the right of the

P2:need[other]:=T line since starvation of P2 is meaningless

- 9 -

n
n
n
n

unless P2 requests access. The following perpetual loop is

possible.

Pl :need [me]: =T; P2: need [other]: =F;

Pl : CR; P2:need[otherJ:=T

Pl:need[me]:=F; MUTEXBEGIN:need[me]:=T

P2: f n need [me]

n

1

f I

f j

lJ

11

(]

u
u

LI
□-

It is possible, as shown above, for process P2 to quickly request

a second, third, etc . access before P2 has a chance to break from its

wait loop. Thus, this particular set of timings leads to starvation of

P2.

We have shown two examples of mutual exclusion algorithms that fail

to provide the necessary characteristics of concurrent programs. The

formal operator calculus in its two- dimensional format has demonstrated

faults in the routines. Hence, we have greater confidence in its

ability to test concurrent programs. However, the question remains,

"what does this method offer for certifying correct algorithms?"

Dekker's algorithm [2] is a busy-waiting algorithm commonly accepted

as a "good" mutual exclusion algorithm when memory interlock (but no

"test-and-set") is the only mechanism for preventing indeterminism.

The algorithm is given in succinct form in reference [l], page 25.

- .10 -

7
1

n
n
11

f I

11

j

lJ
lJ
J
u

MUTEXBEGIN:

need[me] :=TRUE;

DO WHILE (need[other]);

IF turn -, = me THEN

DO; need[me] :=FALSE:

DO WHILE (turn,= me); ·

END;

need[me] :=TRUE;

END;

END;

CR;

need[me]:=FALSE

turn:=other;

Dekker's algorithm uses shared variables need [l], need [2], and

turn, to indicate pending requests from Pl or P2 and whose turn it is

to have access. Their initial values are FALSE,FALSE, and turn=me.

The following process-state matrix for Dekker's algorithm reveals

a possibility of process starvation, , but guarantees mutual exclusion.

- 11 -

i:i..
II ..

Initially,Turn:=me ,......,
i:i.. H

need[me] :=F II <!)

...c:: ,......, E-< H .µ

need[other] :=F H II <!) 0
<!) ...c:: '-'
...c:: ~

.µ "C
.µ 0 <!) <]
0 <!) -II- <!)

'-' ...c:: ,......, ~ ~
i"C .µ <!) H '---,

<!) 0 s - ::s
<!) '-' '-' E-<
~ . "C "C

<!) '---, <!)

N <!) <!)

0.. ~ ~

Pl:need[me] :=F
......
/

need [me] : =T ·
'Ii - ,IJ "- - --, ,, ,, r

J Jr-- I'/\ _,
I' '

need[other]

I
Turn~me

" " V
-:.. -~ -➔• f;

needlmel :=F

J I:,

Turntme

need[me] :=T; t:,

CR
'" ,11 ,I ,,,,

◄'- ' I

r ~' - ~ 1-=--7 I~ I ,. t

need[me] :=F

-.1,, 4 v 'V ➔{!1 - -➔-~-
'

"I/ --v
~ -

Turn:=other I

w w t

r- (_ ,:_ c::::: [_.. [_._

<J . .,
H E-<
<!) II
...c::
.µ ,..,
0 H

--t+- <!)

~ ...c::
H .µ
::s 0
E-< L-1

"C
<!)
<!) ~
~ u

...... .,

J,,
I~

\I

,,

~I

•

...... ,,

'I

i:i..
II

,......,
H
<!)

...c:: <!)
.µ s
0 II
'-'

"C ~
<!) H
<!) ::s
~ E-<

....._ -
, ,, ,

'I - - 'I_' l
,, .,

~

I~

w

~I \I
~I/

I
,;lj w

I
,1 \JI - -.,, - r

,v \/
\ I

- - -

-

N
M

l
n
n
n
f I
fl
1
, I

I I

J

J

Checking the three characteristics of a good concurrent program:

1)

2)

3)

The intersection (CR,CR) cannot be reached, hence Dekker's

algorithm guarantees mutual exclusion.

There exists at least one path to Pl:CR and one path to

P2:CR.

There exists a path from home to P2:CR and Pl:CR, hence no

starvation is likely. However, there alsp exists a path from

home to Pl:CR that does not pass through P2:CR, hence starvation

is possible.

P and V Operators

A synchronizing semaphore can be implemented on machines with

indivisible "test-and-set" instructions. Such machines employ the

Testandset instruction instead of a busy-wait loop to prevent con

current (indeterminate) access to the critical region encased in P-V

operators.

The testandset instruction "simultaneously" (indivisibly) tests a

bit and sets a condition code, e.g. CODE. If the CODE is false, the

Testandset changes the flag to true, and sets CODE to true if the flag

was previously true; to false if the flag was previously false. In

otherwords, CODE indicates the condition resulting from a test, while

the flag is set to "l" or true.

A decrement instruction simulates Testandset by decrementing a word

containing zero (thus setting it to (-1) and the condition code to

Negative).

- 13 -

n
n
n
n
n

1

I j

J

u

The semaphore for mutual exclusion given in reference [1], page 26,

uses Testandset, a flag "occupied", and condition code CODE.

P: Testandset [occupied]

DO WHILE (CODE);

Testandset [occupied],

END;

CR;

V: occupied:=FALSE;

The process-state diagram for this concurrent program is given

below. Note that every path leading to a potential indeterminacy is

blocked. Starvation is possible because there exists paths through

Pl:CR that do not pass through P2:CR.

,--.. <]
""(j ,--..
<I) ""(j

.,.; <I)

ff ,,.;
0..

(J a (J

i:i.. 0 (J

II '--' . 0 i:i.. .. .µ '--' II
'"O <I) .µ ..

<I) Vl <I) ""(j
,,.; ""(j Vl <I)

ff § ""(j ,,.;

§ 0..
(J .µ ::l
(J Vl .µ (J

0 <I) Vl (J .. E-< Cl) Cl) 0
N E-< ""(j 0::: ..
Cl 0.. 0 u >

'--, (J

Ql:occupied:=F

P:Testandset(occupied)

f Testandset(occupied) I':,,

code

CR

V:occupied:=F

- 14 -

l
I

J

j

I

J

j

Device Monitors

Recent developments in structured programming languages have led to

structuring concepts in operating systems. A form of "structured con

currency" is possible if a device monitor is employed.

A monitor is an abstract data type consisting of permanent data

(the critical section data), access procedures (the routines needed by

a cluster to define the data to a routine outside the monitor), and

initialization code that "starts" the device monitor running.

The concept of a monitor is quite straight-forward: it is intended

to encapsulate, or "virtualize" the critical resources of a computer

system. The resources are "critical" due to sharing by more than one

process running concurrently in the computer.

The monitor described below is derived from Wirth's Modula [3].

Its purpose is to guarantee mutual exclusion, blocking and waking-up

of processes. We use the explanation of monitor given in reference [2):

"They are fences enclosing critical data. The variables

declared in the monitor are the critical data and are

permanent (retain their values between executions in the

monitor). A monitor consists of a monitor header,

declarations of local variables, initialization code,

zero or more procedures, and zero or more entries."

The following monitor from Modula is used in a PDP-11 operating

system to manage_ the console keyboard. The kb process runs from an

interrupt vector at location 60B. The "readch" routine runs from

outside invocations. The permanent data includes a buffer of 64

characters, and signals for synchronizing the two active routines in

the device monitor.

- 15 -

I
n
n
n
D
n

l
I l
I

I I

I I

I J

l J

lJ
J

u
u
□-

device module keyboard

define readch;

const n = 64;

var in,out,n#:integer;

nonempty,nonfull:signal;

buf:array l:n of char

procedure readch (var ch: char);

begin

if n#=o then wait (nonempty) end

ch:= buf [out]; out:=(out mod n) +l;

dee (n#): send (nonfull)

end readch;

process kb[60B];

begin

loop

if n#=n then wait (nonfull) end

buf [in]:=doio; in:=(in mod n) +l;

inc (n#): send (nonempty);

end kb;

initial:begin

in :=l; out:=l; n#:=o;

kb: (*start process*)

end keyboard

16

l
n
n
n
n
d

l J

I
u
u
iJ
LI

Characteristics of a "good 11 "keyboard" monitor:

1)

2)

No buffer overflow, underflow:

1 _.:::. in, out_.:::. n

No buffer overrun:

1 <out< in< n

Process kb is a perpetually running device .reader while procedure

11readch 11 is a callable routine. Since "readch" appears in a "define''

statement, it is exported to other routines outside the keyboard module

(monitor). Other processes may use "readch" to get data, but may not

use process kb, or access permanent variables "in", "out", "n#", etc.

directly.

Characteristics of a "good" monitor "keyboard" are demonstrated,

as follows:

1) No buffer overflow, underflow:

1 _.:::. in, out_.:::. n

Since in:=l; out:=l; and modulo n calculations are performed in

every increment of each variable, this characteristic holds, immediately:

and,

thus, .

2)

1 < in:=(in mod n) +l < n

1 < (in mod n) +l < n

0 < (in mod n) < n-1

1 2 out:=(out mod n) +l < n

0 _.:::. (out mod n) < n-1

No buffer overrun:

(O _.:::. n# .2_ n) implies (1 .2_ out< in 2. n)

- 17 -

n
n
n
n
0
n

7
f I

I
u
j

J

LJ

This is proven by solving the equations for "kb" and "readch" as

follows. First, we will shorten the resulting expressions by eliminating

the executed code in "kb" and "readch" except for the code that deals

with the values of interest, e.g. n;n#,in, and out. Also, the values of

these variables are computed corresponding to their use by buf [x], where

x=in, or x=out. Hence, we are concerned only with references to the

critical data.

Secondly, the solution to this problem is given by reducing the

processing to "kb" or "readch" activations. Whenever .a "wait" is en'""

countered we substitute an execution in its place. The substitutions

are noted by the prefix "kb:" or "readch:", as done earlier for con-

current prqcesses.

Given O < n# < n show 1 <out< in< n. Start with the execution

of process kb.

n#=n; wait (nonfull)
- kb:O < n# < n;

0 < n# < n;in=(n#+out)mod n+l; send(nonempty)

The next step in substitution is to replace the "wait" and "send"

with "readch".

n#=n;readch:out=l
- kb:O < n# < n; . n#=O·wait(nonempty) 0 < n# < n;1n=(n#+out)mod n+l;readch: • -----------

0 < n# < n;out=(in-n#)

Notice above how the expressions for "in" and "out" have been

replaced by expressions representing the value obtained through n#. The

n# counter is the only variable common to both processes, hence we use it

to break the chained-recursive expressions for in and out. Then# counter

counts up in "kb" and counts down in "readch". Therefore, "in" is equal

to the number of inputs as recorded by n# plus the number of outputs as

recorded by "out".

- 18 -

n
n
n
n
fl

l

1

l

u
l J

j

□

When n#=n, the buffer is full (in and n# have counted up to their

maximum) and out=l. Conversely, when the buffer is empty, n#=O

(decremented to zero) and "in" begins over, again.

Finally, note that "out" is equal to the number of inputs, "in",

minus the number of outputs as recorded in variable "n#".

The next step is to substitute "readch" for the remaining "wait"

statement, and reduce the expression to a sequence of simple, single

assignment statements.

n#=n;readch:out=l;
= kb: 0 < n# _2 n; n#=O; kb :_in=l; 0 < n# < n;in=(n#+out)mod n+l;readch:

0 < n# < n;out=(in-n#)

We began by trying to demonstrate the implication:

(0 < n# < n) implies (1 <out< in< n). - - - - -

The next step in the demonstration is to reduce each expression containing

the variables in question to predicates. We can do this by combining the

predicates as follows.

(O _'.: n# < n;in=(n#+out)mod n+l implies (out 2 in 2 n)

Forward substitution of "in" into the expression for out gives the

final reduction:

out=(n#+out-n#) implies out=out.

kb:O < n# < n; n#=n;readch:out=l

n#=O;kb:in=l
0 < n# < n;out < in< n;readch:

0 < n# < n;out=out

This final expression (all simple single-assignment statements and

predicates) demonstrates the point. Hence, we have shown the keyboard

monitor of Wirth's paper to be correct relative to the two characteristics

stated, above.

- 19 -

n
n
n
n
fl

, l

r 1

CONCLUSIONS

The formal operator technique is useful for straight forward

application to concurrent programs of unusual complexity. Few other

formal methods exist for study of these smai1, but convoluted procedures.

Thus, the methods of this paper hold promise for formal testing

procedures especially applicable to operating system modules. Many

problems exist, however.

2)

The process-state matrix is detailed and error-prone. An

automatic process-state matrix generator should be developed

to analyze programs of reasonable complexity.

The method is basically a hand method. The transformations

and their operators need to be formalized even further to

allow automatic application. This may require cataloging

the various transformations used in demonstrating a class of

programs. Obvious differences exist between sequential and

concurrent programs as shown in this two-part report.

3) A formal theory of test data selection still does not exist

for the operators given here.

- 20 -

n
n
n
n
0
n
l
l

I
I
l

j

l 1

I
J

u

References

[l] Lewis, T. G.,

"An Operator Calculus For Computer Programs: Part I",

Oregon State University, Computer Science Department,

Tech. Report 78-1-5, 1978.

[2] Holt, R. C., Graham, G. S., Lazowska, E. D., Scott, M.A.,

Structured Concurrent Programming With Operating Systems

Applications, Addison-Wesley, 1978.

[3] Wirth, N. ,

"Modula: A Language For Modular Multiprogramming",

Software Practices and Experience, 7, 1 (1977), pp . 3-35.

- 21 -

	Lewis_T_G_78_01_05_A
	Lewis_T_G_78_01_05_B

