
92-30-02

LifUUEASlTY

5ClErlCE

On Learning More Concepts

Hussein Almuallim
Thomas G. Oietterich

Department of Computer Science
Oregon State University

Corvallis, OR 97331-3202

n
n

J

I
J

I
J

; J

j

J

I

u

On Learning More Concepts

Hussein Ahnuallim
Thomas G. Dietterich

Department of Computer Science
Oregon State University

Corvallis, OR 97331
almualh@cs.orst.edu

tgd@cs . orst . edu
Phone: 503-737-5566
FAX: 503-737-3014

Abstract

The coverage of a learning algorithm is the number of concepts that can be learned
by that algorithm from samples of a given size. This paper asks whether good learning
algorithms can be designed by maximizing their coverage. The paper extends a previous
upper bound on the coverage of any Boolean concept learning algorithm and describes
two algorithms-Multi-Balls and Large-Ball-whose coverage approaches this upper
bound. Experimental measurement of the coverage of the ID3 and FRINGE algorithms
shows that their coverage is far below this bound. Further analysis of Large-Ball
shows that although it learns many concepts, these do not seem to be very interesting
concepts. Hence, coverage maximization alone does not appear to yield practically ­
useful learning algorithms. The paper concludes with a definition of coverage within a
bias, which suggests a way that coverage maximization could be applied to strengthen
weak preference biases .

Keywords : inductive learning, concept coverage, theoretical analysis.

I
l
n
n
n
11

I

I
J

I
J

j

J

u
J
LI

1 Introduction

Research in computational learning theory (e.g., [Valiant 84), [Natarajan 87]) has provided
many insights into the capabilities and limitations of inductive learning from examples.
However, an important shortcoming of most work in this area is that it focuses on learning
concepts drawn from prespecified classes (e.g., linearly separable functions, k-DNF formulae).
This style of research begins by choosing a concept class and then finding a polynomial
bound-called the sample complexity-such that if a sample of size larger than the sample
complexity is available, any concept from the concept class that is consistent with the sample
will be approximately correct with high probability.

From a practical perspective, there are two important problems with this approach:

• Training examples are usually hard to obtain. In a typical inductive learning task, one
has only a limited number of training examples, much less than the polynomial bounds
provided by learning theory .

• The concept class is usually unknown. In most application settings, there is often
considerable flexibility (and concomitant lack of prior knowledge) concerning the choice
of which concept class to explore. In fact, many of the concept classes studied in
computational learning theory have never been supported by any practical justification.

Due to these difficulties, the learning algorithms and sample complexity bounds developed
in computational learning theory have rarely been of practical value.

Recently, an alternative theoretical framework was introduced [Dietterich 89). Instead of
fixing a class of concepts and then deriving the sample complexity, this framework turns the
problem around by asking: Given a fixed number of training samples, what is the largest
collection of concepts that some algorithm can learn? The intuition behind this framework
is that, in the absence of additional information, one should prefer the learning algorithm
that has the highest chance of learning the unknown concept-that is, the algorithm that
learns the largest number of concepts. In short, this framework could provide an approach
to discovering an "optimal" bias for inductive learning in the absence of prior knowledge.

The goal of this paper is to explore this approach. We define the coverage of a learning
algorithm to be the number of concepts learned by the algorithm from a given sample size
(and other relevant parameters). There are three questions raised by this approach:

1. For given sample size m, what is the largest possible coverage that any algorithm can
achieve?

2. Can we design a learning algorithm that attains this optimal coverage?

3. What is the coverage of existing learning algorithms?

This paper contributes to answering each of these questions. First, we generalize the upper
bound on coverage given in [Dietterich 89). Next, we present two learning algorithms and
determine their coverage analytically. The coverage of the first algorithm, Multi-Balls, is
shown to be quite close to the upper bound. The coverage of the second algorithm, Large­
Ball, turns out to be even better than Multi-Balls in many situations . Third, we considerably

1

1

n
n

fl

1

I
I
I
I
J

J

J

u
u

improve upon Dietterich's limited experiments for estimating the coverage of existing learning
algorithms. We find that the coverage of Large-Ball exceeds the coverage of 1D3 [Quinlan 86)
and FRINGE [Pagallo and Haussler 90) by more than an order of magnitude in most cases.

These results are very thought-provoking, because, upon careful analysis, it becomes
clear that the Large-Ball algorithm is rather trivial and uninteresting. In the final part
of the paper, we conclude that coverage analysis does not-by itself-provide a framework
for deriving an optimal inductive bias. It does however provide a framework for designing
optimal-coverage algorithms within a given bias.

2 Definitions and Notation

We consider the space of Boolean concepts defined on n Boolean features. Let Un be the set
of all the 2n truth assignments to the n features. A concept is an arbitrary set c ~ Un. An
example of a concept c is a pair (X, c(X)) where c(X) = 1 if X E c and O otherwise. The
example is called positive in the first case, and negative in the second.

As in [Dietterich 89), we assume the uniform distribution over Un. However, all our
results can be easily extended to the distributions where the probability is O on a subset
of Un and uniform on the rest. This is done by substituting the number of instances in Un
having non-zero probability in place of every occurrence of 2n in the results.

A training sample of a concept c is a collection of examples drawn randomly from Un and
labeled according to c. The number of examples in this collection is called the sample size,
denoted by m. Except in our experimental work, we assume that examples in a sample are
drawn independently (i.e., with replacement), and thus, a sample of size m does not neces­
sarily contain m distinct examples. Note that this is different from [Dietterich 89), where
sampling is done without replacement. Assuming that m << 2\ however, this difference is
not significant.

The disagreement between a sample and a concept is the number of examples in the
sample that are incorrectly classified by the concept.

The distance between two concepts c and his the number of assignments X E Un such
that c(X) =/-h(X). The error between c and h is the distance divided by 2n, which is
equivalent to the probability that a randomly chosen X will be classified differently by the
two concepts. For any O < f < 1, we say that h is €-close to c if the error between the two
concepts is at most c We let Ball(c, l) denote the set of concepts that are €-close to c. It
should be clear that I Ball(c, t) I = I:},:2on J (2n. We call c and L f2n J the center and radius of
the ball, respectively.

A learning algorithm is a mapping from the space of samples to the space of concepts.
The output of the algorithm is called an hypothesis. An hypothesis is consistent if it has no
disagreement with the training sample.

We adopt PAC learning [Blumer et.al. 87] as the criterion for successful learning, but we
restrict this to learning under the uniform distribution only. We say that an algorithm L
learns a concept c for given m, f and 6, if with probability at least 1-6, L returns some h that
is t-close to c when given a randomly drawn sample of c of size m, where the probability is
computed over all the samples of c of size m. f and 6 are called the accuracy and confidence

2

r

1

l
I
n
n
l
l

I

I

J

I
1

parameters, respectively. In general, t and 8 are in the range 0 < t, 8 < 1. In practice,
however, only values that are close to 0 are interesting. For this reason, we will sometimes
explicitly assume for instance that 0 < t < ¼ and O < 8 < ½, with the understanding that
these are reasonable Msumptions in practice. Further, to simplify our results, we will only
consider the values of t such that t2n is an integer. Clearly, this is not a serious assumption
when n is sufficiently large.

The coverage of a learning algorithm for given n, m, t and 8 is the number of concepts
the algorithm learns with respect to these parameters.

3 Upper Bound on Coverage

We begin by proving an upper bound on the best coverage that any algorithm can attain.
An upper bound of this type has been proven for the case where the training sample is drawn
randomly without replacement [Dietterich 89]. In the following, we generalize Dietterich's
result and show that the same upper bound also holds for the case where sampling is done
with replacement. In addition, we provide a closed-form expression for this bound.

Theorem 1 Assuming that m S (1 - 2t)2n, the coverage of any learning algorithm under

the uniform distribution can not exceed 2m I:~~rn:m) concepts, for sample size m, accuracy
parameter t and confidence parameter 8.

Proof (sketch): The proof follows the one given in [Dietterich 89] except that is uses a
probabilistic counting argument instead of a discrete counting argument in order to handle
sampling with replacement. D

It can be shown that for 0 < t < ¼ and m < ¼ 2n, the above quantity is further bounded by

2(l-dog2 e)m+l L~_:n (2~) 2(1-1.44£)m+l+H{£)2n
i-0 , < --------

1 - 8 1-8

where H(t) = dog 2 ¾ + (1- t)log 2 1:£.
This result shows that given a training sample of a reasonable size, any learning algo­

rithm can learn only a small proportion of the concept space. As a numerical example,
consider the case where n = 20, m = 100, 000 and 8 = t = .05. In this case H (t) ~ 0.286.

• • 92,788+0.286x2 20
The above result states that no learmng algonthm can learn more than 2

0_95 con-
cepts. This is less than 600 \ 00 of the 2220 possible concepts definable over 20 features-a
strikingly small fraction. '

For the extreme case where 8 = 0, we can derive a much tighter bound:

Theorem 2 If 8 = 0 and t < ¼, then the coverage of any learning algorithm is at most

Li!~ en concepts, for accuracy parameter t and confidence parameter 8.

This suggests that Theorem 1 is not tight when 8 is very small. It also implies that the
degree of freedom provided by the confidence parameter, 8, in the PAC definition is very
important. Any algorithm that does not exploit this freedom to output (with probability 8)
a totally incorrect hypothesis can have only very limited coverage.

3

l
1
n
n
fl

l
l

I

I

J

j

J

Algorithm Two-Balls (Sample)
1. If disagreement(Sample, c1) < disagreement(Sample, ,c 1) then return c1 •

2. Else return ,c 1 . Break ties arbitrarily.

Figure 1: The Two-Balls algorithm. c1 is a built-in constant concept.

4 The Multi-Balls Learning Algorithm

Given these upper bounds on coverage, can we design algorithms that achieve these cover­
ages?

Let c1 and c2 be two concepts with distance d, and suppose that we desire to construct a
learning algorithm L that learns both c1 and c2 • To do this, we must consider how L should
treat every possible sample consistent with ci, c2 , or both.

Obviously, any sample that is consistent with only one of c1 or c2 can be mapped to
some hypothesis that is within f of the consistent concept. The key question is how to map
a sample that is consistent with both c1 and c2 • Now, if 2dn ::; 2f, then there exists some
concept h that is within f of both c1 and c2• In this case, all we need to do is to map the
sample to h. However, if 2~ > 2f, then there exists no concept that is within f of both Ct

and c2 , and therefore, we must map the sample either in favor of c1 or in favor of c2 , but not
both. In these cases, if the correct concept is c2 and we map the sample in favor of Ct, we
will commit a mistake, and we can only afford to do this with probability 6. The probability
of getting a sample that is consistent with both Ct and C2 is e;~d)m, where mis the sample
size. This quantity is decreasing as d increases, so if we choose d sufficiently large, we can
keep the probability of a mistake below 6.

In short, if Ct and c2 are close together, then there is no problem, because we can choose
an h f-close to both. Conversely, if they are far apart, there is also no problem, because
the probability of a mistake can be bounded by E. This suggests that a good strategy for
designing learning algorithms with high coverage is to choose a collection of concepts that is
as large as possible, such that the distance between each pair of concepts in the collection is
either:

• sufficiently large to suppress the probability of getting a sample consistent with both
concepts, or

• within 2f2n, so that we can find concept(s) within f of both concepts.

This means that the concepts to be learned must be clustered as one or more balls in the
space of concepts. What we need to do in order to construct an appropriate algorithm is to
keep the radius of each ball small enough, and at the same time, make the distance between
the centers of the balls large enough.

As a trivial case, suppose that we want to learn the set of all concepts that are within
f of a fixed concept c-the set Ball(c, f). This is achieved simply by returning c as the
hypothesis regardless of the sample. This leads to a coverage of I:;!~ en.

A less trivial case is to learn 2 f-balls of concepts. This is accomplished by the "Two­
Balls" algorithm given in Figure 1. This algorithm returns, as the hypothesis, some fixed

4

n
A

n
l
l

I
I

I

l

u

LI

concept c1 or its complement, whichever is closer to the training sample. For any concept c
in Ball(c1, t), the probability of drawing an example of c that disagrees with c1 (and thus,
agrees with ,c 1) is at most t. · The same argument applies to the concepts in Ball(,c 1 , t).
Therefore, if t ~ 8, then a sample of size 1 (that is, m = 1) is sufficient to learn these two
balls. In general, we can show that a sample of size m > c/;:)2 ln ¾ is sufficient to learn the
two balls as desired. Even when 8 is as small as 0.001 (i.e. 99.9% confidence), for any tin
the range 0 < t ~ 0.1, this evaluates to only 13 examples. This holds independently of n.

Since the sample size is usually much larger than this, a direct generalization of the above
trivial cases is to attempt to learn as many balls of concepts as permitted by the sample size.
The idea is to choose a collection of well-separated concepts (the centers of the balls) and
attempt to learn all the concepts clustered around each of these centers. More specifically,
we start by fixing two integers d and k, and then construct a set 1{ = { h1, h2 , h3 , • • •, hk} of k
concepts such that the distance between each pair of concepts in 1{ is at least d. Then given
a training sample, the concept in 1{ that has the minimum disagreement with the sample is
returned as the hypothesis.

The goal of the algorithm is to learn all the concepts in UhE1i Ball(h, t), which will give a
coverage of k Li!~ en. The question is, of course, how to determine the appropriate values
of d and k such that this goal is accomplished. Particularly, we need to worry about the
following:

1. As explained earlier, d must be large enough so that the interaction between concepts
in different balls is kept within what is allowed by the confidence parameter 8.

2. The number of concepts that we can construct such that the minimum distance between
each pair is d drops sharply as d increases. Therefore, making d too large causes k
(and hence, the coverage of the algorithm) to be too small.

The following two lemmas show how to choose appropriate values ford and k.

Lemma 1 For O < t < ¼ and 2t <a<½, let 1{ = {hi, h2 , • • ·, hk} be a set of concepts such
that the distance between each pair h,, hj E 1{ is at least d = f a2n l, and let c E Ball (h, t)
for some h E 1{. Assume that L is a learning algorithm that on any sample S outputs
some hypothesis hi E 1{ that has minimal disagreement with S. Then, under the uniform
distribution, the probability that a sample of c of size m is mapped by L to a hypothesis other
than h is at most

(/3)2 2 p(<>-2<) 2
min k · {e- 21 - am+ e- 2a m} .

0</3<1
(1)

Proof (sketch): Let g =f=. h be a specific concept in 1{. We bound the probability that a
sample of c is mapped to g (instead of h) by positioning c as far from h as possible (and yet
still within Ball(h, t)). The probability can be calculated by nesting two Binomial random
variables, and, with some algebraic manipulation, this can be bounded by two applications
of Hoeffding's lemma . We then multiply this bound by k to obtain the result. □

Note that d in this lemma is expressed as a fraction a of 2n. This result says that if
the conditions of the lemma are met, and if c is a concept in one of the k t-balls, then the
samples of c are usually mapped by L to the center of that ball except with a probability
that is bounded , by Equation (1). Thus, a and k must be chosen so that this probability

5

l
n
n
n
l
I
I
I

I
I

1

J

J

Algorithm Multi-Balls (Sample, t, E)
1. Find a in the range 2t < a < ½ such that

1 -H(a) = 2(1 - ,B(a)]2a2;; log2 e
where

H(a) = alog 2 ~ + (1 - a)log 2 ~' and

.B(a) = 1 + <0 ;;3()2
- ✓r1 + <0 ;;3t:l2p - 1 .

2. Let k = l22n- >1(a)2n X !J .
3. Construct 1{ = {h1, h2, h3 ,· • •, hk} such that

Vh,,h,EH distance(hi,hj) 2: fa2nl .
4. Return some hypothesis in 1{ that has minimal disagreement with Sample

(break ties arbitrarily).

Figure 2: The Multi-Balls algorithm.

is at most E. It is important to note that this probability is diminishing in a and m and
independent of n.

Lemma 2 For any a, 0 < a < ½, and any even positive integer l, we can construct at
least 21-rH(a)(] bit vectors of length l and pairwise distance at least f afl, where H(a)
alog 2 ~ + (1 - a)log 2 1~0 -

This lemma is derived from a result in the field of Error-Correcting Coding Theory
known as the Gilbert-Varshamov bound. A proof of this result in addition to a method of
constructing the /-bit vectors, can be found in [Peterson and Weldon 72].

Using Lemmas 1 and 2, one can search for the appropriate value for d that leads to
learning k different t-balls, for k as large as possible. Let's now compute a lower bound on
the coverage that can be achieved by this approach.

Figure 2 shows the "Multi-Balls" algorithm in which we give a specific way of choosing
the value of a (and hence, d). To be able to give a lower bound on the coverage _of this
algorithm, we need the following definition.
Definition: For O ~ 0 ~ l and O < E < ¾, define p(0, t) as:

(e) _ 1 - H(&)
p ,E - 0

for & being the solution of the equation 1

in the range 2E < a < ½, where .B(a) = 1 + (a;;3t:)2
- ✓r1 -t (a;;3t:)2]2 -1 and H(a)

alog 2 ~ + (1 - a)log 21~0 • D

1 It can be shown that there always exists a solution for a as desired.

6

1
n
n

--.---,

n
l
I
I
I
I
I
I
j

I
J

J

0.2 .---- --.-- -- --,,--------,-----. - ---.----,

0.15

P 0.1

0.05

E= 0.10 -
t:=0.05 -
t:=0.01 -

0 .__ _ _ __..__ __ __. ___ __., ___ ___._ ___ ____._ _ __,

0 0.1 0.2 0.3
0

0.4

Figure 3: The function p(0, t:).

0.5

Although p(0, E) is not provided in closed form, it is easily computed for any given values
of 0 and E using standard numerical methods. For illustration, Figure 3 plots this function
over the range 0 ~ 0 ~½for E = 0.01, 0.05 and 0.10.

Using the above definition of p, a lower bound on the coverage of Multi -Balls can be
stated as follows:

Theorem 3 For O < E < ¾ and O < 8 < 1, the coverage of the Multi-Balls algorithm under
the uniform distribution is at least

for sample size m, accuracy parameter E and confidence parameter 8.

Proof (sketch): Substitute the quantities calculated i!). Step 1 of the algorithm into Lem­
mas 1 and 2 to verify that k balls can be found and that the probability of mistake is bounded
by 8. o

More specific bounds on the coverage of Multi-Balls can be obtained from Theorem 3 if
upper bounds on ;:. and E are assumed. For example, if we are interested only in the range
0 < E ~ 0.05 and 0 ~ ;:. ~ 0.25 (which are reasonable assumptions in practice), then the
coverage of Multi-Balls as given by Theorem 3 is at least

l~ 2• .. •mJ t (~·)
where the constant 0.094 is just the value of p(0.25, 0.05). Note that the main difference
between this and the upper bound of Theorem 1 is the coefficient of m in the exponent of
2. Therefore, for any fixed 8, this lower bound indicates that to achieve a given coverage,
Multi -Balls requires a sample size that is within a constant factor of that required by an
optimal learning algorithm.

7

l
n
n
n
l

1

I

I
I
I
J

J
u

Algorithm: Large-Ball (Sample)
1. Let c1 be a constant concept.

2. Define the concepts a.s: s(X) = { ~
3. Define the concept pas: p(X) = { 0

4. Return h = (,s A c1) V p.

if XE Sample
otherwise
if XE Sample and Xis a positive example
otherwise

Figure 4: The Large-Ball learning algorithm.

5 The Large-Ball Algorithm

So far we have been trying to maximize the coverage by learning as many balls of concepts
as possible, while fixing the radius of each ball at f2n. An alternative approach to increase
the coverage is to learn ball(s) of concepts with larger radius. Because of the extremely high
dimensionality of the space of concepts, any small increment in a ball's radius results in a
huge increase in the number of concepts contained in the ball.

It turns out that learning a single ball of radius larger than f2n is a surprisingly easy task,
as shown by the "Large-Ball" algorithm given in Figure 4. This algorithm works by modifying
a default hypothesis c1 so that the final hypothesis fully agrees with the training sample.
For example, suppose c1 is the nil concept. Then this algorithm classifies all examples as
negative unless they appeared as positive examples in the training sample! The coverage of
this algorithm is computed by the following theorem.

Theorem 4 For sample size m, ·accuracy parameter f and confidence parameter Ii, the cov­
erage of the Large-Ball algorithm under the uniform distribution is

where {3 is the largest integer such that

Proof: Without loss of generality, let c1 be the nil concept. Let c be a concept having exactly
t:2n + {3 positive examples. A sample of c is mapped by Large-Ball to an f-far concept only
if it contains less than {3 distinct positive examples. The theorem follows by showing that
the probability of drawing such a sample is just the left-hand side of the inequality of the
theorem. This is a variation of the Coupon-collecting problem (e.g., [Ross 88] p. 111). D

It can be shown that a sample of size ~ ln ½ is sufficient to make {3 at least 1, and that in

general, the value of {3 is at least nln~:~~~1nl ~ ~:~~¼ provided that f < ½· Since {3 grows

linearly in m, the above theorem says that the coverage of Large-Ball grows quite rapidly as
the sample size increases.

8

l
1

n
[l

I
r

I
1

j

l

J

u

The coverage lower bound obtained for Large-Ball appears to overlap the bound for
Multi-Balls, although Multi-Balls gives higher coverage for small values of E (e.g. 0.01).
In any case, the fact that a trivial algorithm like Large-Ball achieves such high coverage
suggests that coverage analysis alone is not strong enough to derive good inductive biases.
Before considering this point further, let us measure the coverage of some popular learning
algorithms.

6 Coverage of Current Learning Algorithms

A straightforward method to measure the coverage of a learning algorithm (as done in
(Dietterich 89]) is to run it on every possible training sample. However, the great cost of
this method limited Dietterich 's experiments to concepts defined over only 3 features.

In a separate paper (Almuallim 91], we reported some techniques to reduce the compu­
tational costs involved in such experiments by resorting to statistical approximation and by
exploiting the symmetry properties of learning algorithms with respect to permutation and
negation of features. With these techniques, we can carry out coverage evaluation experi­
ments on the space of concepts defined on up to 5 Boolean features. Due to space limitations,
we only give the results of these experiments here. Please see (Almuallim 91] for more details.

In these experiments, three learning algorithms were considered: ID3 (Quinlan 86],
FRINGE (Pagallo and Haussler 90] and MDT, which is an exhaustive algorithm that finds
a decision tree with fewest nodes consistent with the training sample. The coverage of these
algorithms was measured for n = 5, l = h = 0.1 and m = 8, 10, 12, 14, and 16. Sampling in
these experiments was done without replacement. The results are summarized as follows:

Sample size
Algorithm 8 10 12 14 16
ID3 12±0 332±0 396±0 1,756±0 4,954±640
FRINGE 12±0 332±0 396±0 1,756±0 5,284±970
MDT 12±0 12±0 116±40 496±0 3,694±0
Large-Ball 5,489 5,489 5,489 41,449 41,449
BALLS 10,978 10,978 10,978 82,898 82,898
Upper Bound 661,333 2,041,173 6,148,551 17,985,991 50,753,991

In this table, BALLS denotes the algorithm that classifies all the examples that are not in
the training sample as positive if the majority of the examples in the sample are positive, or
as negative otherwise (breaking ties arbitrarily). For those examples included in the training
sample, the algorithm gives the same class as given in the sample. The last row in the table
gives the maximum coverage that can not be exceeded by any algorithm, using the upper
bound of Theorem 1.

Note three points: (i) MDT does not give better coverage than the heuristic algorithms
ID3 and FRINGE, (ii) the coverage of ID3 and FRINGE is disappointingly smaller than
that of Large-Ball and BALLS, and (iii) the coverage of all these algorithms is far below the
upper bound of Theorem 1.

9

1

l
n
n
n
l
I
1

j

J

j

J

J

...... ::.-

7 Discussion

We began this paper by suggesting that an important design criterion for learning algorithms
should be the coverage of the algorithm. We presented the Multi-Balls algorithm and showed

· that it can achieve optimal coverage with a sample size that is within a constant factor of
optimal. However, we then showed that a fairly trivial algorithm, Large-Ball, can also achieve
very large coverage-larger than Multi-Balls in cases where Eis reasonably big. Experimental
tests confirm that Large-Ball and BALLS, a special case of Multi-Balls, have much better
coverage than the popular ID3 algorithm and its relatives.

Why does Large-Ball strike us as trivial? Because it merely memorizes the training
sample-it does not attempt to find any regularity in the data. Furthermore, the concepts it
learns, while they are very numerous, are all located near the null concept. In short, the bias
of Large-Ball is unlikely to be appropriate in real-world learning situations. This argument
shows that coverage analysis alone is not sufficient to find a practically-useful inductive bias.

This suggests that we combine coverage analysis with other methods for choosing induc­
tive bias. For example, in [Almuallim and Dietterich 91], we described learning situations in
which the MIN-FEATURES bias-the bias that prefers consistent concepts definable over
fewer features-is appropriate. However, the MIN-FEATURES bias does not uniquely define
a learning algorithm, because, given a training sample, there are typically many consistent
hypotheses that have the same, minimum, number of features. Hence, within the MIN­
FEATURES bias, we could apply coverage analysis to design a learning algorithm that has
the largest coverage among all algorithms that implement MIN-FEATURES.

In general, let Pref(c1 , c2) be a preference bias that prefers c1 to c2 in all cases where both
concepts are consistent with the training sample. Let Learns(L, c, m, E, 8) be true if algorithm
L can learn concept c from a sample of size m with error and confidence parameters f and
8. The coverage within bias Pref for L (with respect tom, E, and 8), is the size of the set
C = { c I Learns(L, c, m, E, 8) and V c' Pref(c', c) => Learns(L, c', m, E, 8)}. That is, a concept
is "covered" only if all concepts preferred to it are also covered.

In conclusion, the results from this paper suggest that an important problem for future
research is to design and analyze algorithms that have optimal coverage-within-bias for many
of the popular biases. This will be particularly important for biases that are so weak that
they do not have polynomial sample complexity.

8 Acknowledgments

The authors gratefully acknowledge the support of the NSF under grant number IRI-86-
57316. Thanks to Rob Holte for useful discussions and for providing [Holte 91], and to
Prasad Tadepalli for comments on an earlier draft of the paper.

10

l
7
J
n
n

l

)

I
J

J

I
J

I
j

LI

References

[Almuallim and Dietterich 91) Almuallim, H. and Dietterich, T. G. 1991. Learning With
Many Irrelevant Features. Proceedings of the 9th National Conference on Artificial In­
telligence {AAAI-91), 547-552.

[Almuallim 91) Almuallim, H. 1991. Exploiting Symmetry Properties in the Evaluation of
Inductive Learning Algorithms: An Empirical Domain-Independent Comparative Study.
To appear as a technical report from the Department of Computer Science, Oregon State
University.

[Blumer et.al. 87) Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and Warmuth, M. 1987. Learn­
ability and the Vapnik-Chervonenkis Dimension, Technical Report UCSC-CRL-87-20,
Department of Computer and Information Sciences, University of California, Santa Cruz,
Nov. 1987. Also in Journal of ACM, 36(4):929-965.

[Dietterich 89) Dietterich, T. G. 1989. Limitations on inductive learning. In Proceedings of
the Sixth International Conference on Machine Learning, 124-128. Ithaca, NY: Morgan
Kaufmann.

[Holte 91) 1991. Holte, R. C. Machine Learning as Error-Correction. Unpublished note.

[Natarajan 87) Natarajan, B.K. 1987. On learning Boolean Functions. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing 296-304. New York, NY.

[Pagallo and Haussler 90) Pagallo, G.; and Haussler, D. 1990. Boolean feature discovery in
empirical learning. Machine Learning, 5(1):71-100.

[Peterson and Weldon 72) W.W. Peterson and E. J. Weldon. 1972. Error Correcting Codes,
The MIT Press. p.86.

[Quinlan 86) Quinlan, J. R. 1986. Induction of Decision Trees, Machine Learning, 1(1):81-
106.

[Ross 88) Ross, S. 1988. A First Course in Probability. Macmillan Publishing Company, New
York. 3rd edition, pp 111.

[Valiant 84) L. G. Valiant. A Theory of the Learnable. Comm11,nications of ACM,
27{11): 1134-1142,1984.

11

	Almuallim_Dietterich_92_30_02_A
	Almuallim_Dietterich_92_30_02_B

