
90-60:-9 

Lirl~UEAS~TY 

5C~ErlCE 

Parallel Programming and Designing in Object Oriented Environment SS/ 1 

Sungwoon Choi 
Tom Sturte v ant 

Ted G. Lewis 
Computer Science Department 

Oregon State Uni v ersity 
Corvallis, Oregon 97331-3902 



l 
7 
n 
n 
n 
n 

I 
~ I 
[ I 
I 
l J 

I I 
j 

u 
J 

Parallel Programming and Designing 

in Object Oriented Environment SS/1 

Sungwoon Choi, Tom Sturtevant, Ted G. Lewis 

Computer Science Department 

Oregon State University 

Corvallis, Oregon 97331 

ABSTRACT 

Parallel software development requires the flexibility to describe algorithms regardless 

of hardware specification, the ability to accomodate existing applications, and maintainability 

throughout the software life cycle. We propose the following model to address these issues. 

Our model incorporates aspects of the object-oriented and large grain data flow programming 

paradigms, and introduces a concept called a "Server". "Servers" are objects as well as 

self-contained processes which communicate with each other by sending messages. The 

server paradigm considers all components of a program as servers. This concept helps in 

designing flexible and dynamically reconfigurable software. The major goals of the server 

model are reusability, maintainability, and productivity. These are realized through 

encapsulation, instantiation, and inheritence features of the server model, as well as a 

graphical design environment with the capability of tracing and debugging the user's design 

based on the data flow information. 

1. Introduction 

Parallel processing is emerging as a promising way of computation as powerful new 

multiprocessor computers are becoming available at reduced cost. It also exaggerates the 

critical problems of productivity and maintainability of software because of the increasing 

architectural complexities. Several new paradigms for parallel programming have been 

introduced to cope with these problems. These include the process model based on 

communicating sequential processes [Hoa78], data flow [Ager82] and object-oriented 



SS/1 

[Kay77] programming paradigms. In the communicating sequential process model, 

processes are executed sequentially and communicate with each other using communication 

· channels. Dynamic interconnection topology is not supported in the process model, so the 

user must precisely specify the communication topology between processes as in 

OCCAM[Pou87]. This makes it difficult for the user to program using a large number of 

processors. 

The data flow paradigm is based on dataflow machines which are programmable 

computers where the hardware is optimized for fine-grain data-driven parallel computation 

[Veen86]. This may fit fine grain parallel architecture in some applications containing no 

complicated control threads, but still shows a limitation in describing the nondeterministic 

nature of a program because of the fixed interconnection topology [DiN85]. 

In the object-oriented programming, a problem is modeled as a set of cooperating 

objects, where communication is achived by exchanging messages among objects. In 

parallel programming, a problem is modeled as a set of cooperating processes. In that 

context, object oriented programming seems to fit naturally with parallel programming; 

objects correspond to processes and message passing corresponds to inter-process 

communication. In the usual object oriented programming paradigm like Smalltalk-80 

[Gol83] , it is not easy to detect implicit parallelism because the objects are created and 

deleted dynamically and context is encapsulated within the objects [Chu89]. There have been 

previous attempts to introduce external parallel programming constructs to the object oriented 

parallel programming paradigm e.g., Concurrent C++ and ConcurrentSmalltalk [Yok87]. 

These are awkward to use and hard to read, or unable to handle exisiting code. 

The SS/1 (Server System/I) provides a framework for a parallel programming design 

Users 

Object Oriented Design 

Data Flow Information 

Target 
System 

CSP Style 
Implementation 

Fig 1.1 Design Flows in SS/1 

l 
7 
n 
n 
n 
. l 
I 

) 

I 
j 

l 
Ll 

J 



1 

1 
n 
n 
n 
n 
l 

lJ 

SS/1 

environment based on object oriented programming which can be used with any existing 

programming language. It extracts data flow information from the user's application and 

schedules the application based on the communicating sequential process. (Fig 1.1) SS/1 

considers the parallel programs as a collection of concurrently executable program modules, 

called "Servers": These interact with one another by sending messages and are used to 

define class hierarchy among objects, large-grain data flow architecture, and arbitrary source 

code modules. 

In terms of the implementation, a server is similar to an Actor in the Actor model 

[Agha86]. In the Actor model, a process is realized as an Actor, and is dynamically created. 

When a process is created, it waits until it receives a message. Interaction between processes 

is in terms of message passing . 

Although both models consider an object to be a self-contained process, they have 

these fundamental differences: 1) a server process is a transient process i.e., it has no state 

(data), 2) in the server model, the process synchronization scheme is based on data flow, 

while in the Actor model, processes are synchronized based on the message communication 

of the Actor. In other words, a server can be considered as a set of functions in the data flow 

programming paradigm. The message passing mechanism is described and analyzed using 

data flow information. This feature helps detect the implicit parallelism and validates external 

parallelism in user applications. It also makes SS/1 easy to use and flexible, because any 

other paradigms e.g., object oriented, large grain data flow or procedural programming 

paradigm, can be easily transformed into SS/1. 

Language Activation Synchronization Interconnection ~ommunication 

CSP parbegin/ blocking send static I/O commands 
parend and receive through channels 

DF receiving data static data path 
data 

Actor receiving future message dynamic nessage passing 
a message and remote 

procedure call 

SS/1 receiving message dynamic message passing 
a message 

Table 1.1 Comparison of SS/1 with other parallel programming languages 



2. General Design Considerations 

2.1 Design Considerations 

2.2..1 Design Layers 

SS/1 

Object oriented programming is believed to be one of the best programming concepts to 

cope with computational complexities while providing features like maintainability, 

extensibility, and reusability [Mey88]. However it is not so much a coding technique as it is 

a code packaging technique, a way for code suppliers to encapsulate functionality for delivery 

to consumers [Cox87]. In this paper, the object oriented way of programming is introduced 

only at the large grain level. Because heavy message traffic in the fine grain level results in 

increased complexities and poor run time performance. The dynamic nature of message 

passing makes it almost impossible to automatically detect parallelism in the fine grain level. 

The main idea in SS/1 is to decompose a program functionally based on the object 

oriented concept. At the fine grain level the programmer is free to use any special languages 

which fit their specialty, that is, APL can be used in v~ctor computation and Prolog in AI 

applications. This customization makes it easy to build the automatic paralleliz.ation compiler 

with the least amount of effort and facilitates the reusability of existing code. 

2.1.2 Encapsulation and data flow information 

Object oriented design facilitates the construction and use of reusable software 

components through support for data abstraction, generic operations, and inheritance. The 

benefits of data abstraction are achieved using encapsulation, which prevents an object from 

Users 

Fine Grain Level 

Fig 2.1 Design layer in SS/1 

l 
n 
0 
A 

n 
n 

11 

j 

I 
LI 

J 



n 
n 
fl 

I 
l 
l 

I 
I 
j 

j 

J 

u 

SS/1 

being manipulated except via its defined operations [Syn87]. The most important 

information in parallelizing an algorithm is the data flow information of the encapsulated 

instance variables. Because of this conflict between data encapsulation and data flow 

information, it is very difficult to directly map the object oriented design onto specific parallel 

hardware. 

SS/1 sacrifices some advantages of instance variable encapsulation by moving them to 

an external interface. Therefore, the state of each server is stored in the external interface, 

where the system analyzes and extracts data flow information . This restriction may be 

harmful in the sense of encapsulation, but is very useful in parallel process synchronization, 

deadlock prevention and scheduling. It also gives more flexibility than the pure object 

oriented programming paradigm because any conventional programming paradigm as well as 

the object oriented programming paradigm can be mapped into SS/1. 

2.1.3 Reconfigurability and extensibility 

SS/1 is an open system. Modification of a system does not necessitate the 

reconfiguration or the redefinition of the entire system. Even when introducing a new entity, 

the system grows gracefully. Because each server, including its methods and 

event-handlers, is an independent process, they can be created and deleted dynamically. 

Section 3 shows a computer store simulation example program which uses a "Store" class 

hierarchy. Suppose that a new method "moneyOut" is created in the class "Environment". 

The only thing that must be updated is the method table in the class "Environment". This can 

be done during the execution of a system by receiving the message from the new method 

"moneyOut". The system provides a dynamic interconnection topology. 

2.1.4 Portability 

SS/1 's design environment consists of the design editor and a run time environment. A 

graphical design editor produces glue code written in a meta language called "SML" (Server 

Manipulation Language) [APPENDIX I] from the user's design. The run time environment 

will execute the user's design in a target machine by interpreting the SML language. SML 

has only a minimum set of constructs and assumes an abstract machine. The run time 

environment of a system can be developed in a target machine based on SML by defining the 

process communication and the process creation mechanism. Implementation details of a 

method is handled by the existing compilers and system. The method in SS/1 is treated as a 

independent light weight process of the target system. SML gives SS/1 the power of 

portability among specific hardware configurations. 



SS/1 

2.1.5 Reusability 

Reusability of the existing code is one of the most important issues -in computer 

science . It has already been mentioned that the methods in SS/1 are independent programs. 

That is, any existing program can be reused in SS/1 with no changes. Especially in-reverse 

engineering, SS/1 's methods are mapped into the functions or procedures in conventional 

programming languages. 

2.2 Basic Constructs 

2.2.1 Servers 

SS/1 introduces a new concept called "Servers" which are self-contained parallel agents 

communicating with each other by sending messages. A server is an object plus one or more 

processes. Once a server is instantiated from a class, the server becomes an active 

computational agent which carries out its actions in response to incoming messages. A 

server consists of an event-handler process and one or more method processes (see Fig.2.2). 

The event-handler process reads messages from its message queue and looks for appropriate 

methods in its method table. If the requested method exists, the event-handler process 

spawns another process for executing the method. If no method is found, a search up the 

class hierarchy is made to find the appropriate method to be inherited from a superclass. 

A method process can be duplicated as many times as the user wants. In contrast to 

other object oriented programming paradigms [Gol83], method processes may not have 

persistent state, because they may be executed only once and then lose their state information. 

message queue 

Fig 2.2 Servers and messages 

7 
n 
n 
n 
D 
l 

-I 

I 
I 
] 

J 

J 



l 
n 
n 
n 
I 
I 

I 
J 

I 
I 
lJ 
l 

I 

u 

tl 

SS/1 

All transient state information is stored in a global communication . 

Each server maintains a scheduler which schedules its method processes by 

determining processor and communication overhead . Incoming messages are queued in the 

message queue and scheduled dynamically according to the current system overhead. This 

kind of distributed scheduling finds local and current optimal scheduling. Optimal static 

scheduler may be estimated by the other tools[Hes89]. 

2.2.2 Message and synchronization 

A message handler is a self-contained process which is responsible for the delivery of 

messages and the synchronization of the system (see Fig 2.3) . Once a message handler 

process is activated by SS/1, it sends its message content to the target server. The messages 

are queued in the message queue of the target server and the event-handler of the target server 

reads that message and creates and activates the appropriate methods. The message handler 

processes wait for termination signals from the methods. If the termination signal arrives, 

the message handler process terminates itself. 

Basically the process synchronization scheme in SS/1 is synchronous, whenever a 

message process is created, SS/1 waits for its termination. However, asynchronous 

processes can also be created by parallelizing message handler process activation. 

In a message passing machine, the message handler process can be a communication 

manager which controls the routing of its messages and data depending on its interconnection 

topology and communication overhead. Even in a shared memory machine, message handler 

processes have information about shared memory and can guarantee mutual exclusion and 

prevention of deadlock. 

user's program 

message contents 

tennination 
signal 

Event-Handler -----1~ message contents 
process 
~ 

Fig 2.3 Message process 



SS/1 

3. System Architecture 

3 .1 Overview 

SS/1 consists of a design editor and a run time environment (Fig 3.1). The design 

editor provides the object oriented data flow graphical language and generates the SML code 

from the user's design. Then SS/1 translates the SML source code and executes the user 

code on the target machine. Although SS/1 is basically standalone, it can be used in 

combination with other tools. In particular, the communication specification can be 

converted to TaskGrapher[Hes89] format so that it may be analysed by TaskGrapher which 

generates a static schedule and mapping of tasks onto processors. 

For our experiment, the design environment is built on an Apple Macintosh and the 

target machine is a Sequent Balance 21000 system. 

3. 2 Design editor 

The SS/1 Design Editor (Fig 3.2) is an integrated Macintosh application used to 

describe the Class Definition, as well as the Communication Specification. 

3.2.1 Design Editor features [APPENDIX m 
Facilitates Top-Down/Hierarchical design. 

Built-in word processor for editing method definitions. 

Built-in translator generates glue-code for target machine, as well as TaskGrapher 

format files. 

Fig. 3.1 data flow diagram for the server system. 

l 
7 

n 
n 
l 
l 

1 

J 

I 
I 
J 

j 

I 
u 



I 
n 
n. 
n 
fl 

( 

l 

I 
1 

u 
I 
j 

u 

SS/1 

3.2.2 Design Constructs 

The design environment in SS/1 consists of two parts, the Class definition, and the 

Communication specification. In the class definition, a class hierarchy is defined using a tree 

structure . The left window of Fig 3.2 shows the class hierarchy where terminal nodes are 

methods and internal nodes are classes. A class node has only a name and class hierarchy 

information while a method node contains code which defines the behavior of a method 

process . 

In the communication specification, the user can program in terms of message passing, 

inheritence , and the data flow . The right window of Fig 3.2 shows the communication 

specification of the matrix multiplication problem . A message consists of target object 

name, method name, and its arguments. Fig . 3.3. shows the description of the 

communication specification context palette . There are four kinds of messages in SS/1, e.g., 

"simple", "compound", "serial replicated", and "parallel replicated". The simple message 

indicates the point where the actual message is sent to the target object, whereas the 

compound message is a high level design construct which represents a set of messages linked 

together. The serial replicated and the parallel replicated messages are the messages 

generated repeatedly in serial or parallel. Using the concept of messages, mutual exclusion 

and prevention of deadlock can be guaranteed because message creation is based on data 

dependency information. 

s Session Class Definition Communication Spec. Edit TeHt Layout 

Closs Definition Communication Spec 

matrix : read ( Ndata 1 ", matA, row, rowCol); 

Matrix Multi plication 

i • 1 for row; 

matrix : write ("data3", mate, row,col); 

Figure 3.2 The SS/1 Design Editor 



i==J 

~ 

c=o 
PAR 

Q 
SE 
➔ 

~ .... 
··-._J,,,./ 
___ ,,'='....._ __ 

~ 

Selection 

Simple Message 

Compound Message 

SS/1 

Parallel Replicated Compound Message 

Serial Replicated Compound Message 

Arc 

Pack Messages 

Unpack Messages 

Fig 3.3. Communication Specification Context Palette 

3.2.3The Design Cycle 

The user first draws the class definition hierarchy as shown in fig 3.2 (an existing class 

hierarchy file may be used). A method definition is then specified for each method in the 

class hierarchy. The definition can be a procedure in any compilable language, it can also be 

a UN1X system call or a Macintosh ToolBox routine. 

The next step is to describe the communication specification (also shown in fig 3.2). 

Icons representing simple messages, compound messages, and replicated messages are 

connected with arcs to indicate data dependency relation. The built-in translator then 

generates SML code describing the class definition and the communication specification. 

This code along with the method definition files is then moved to the target machine. 

3. 3 Run time environment 

The SS/1 run time environment consists of three components, Translator, 

Event-Handler and Methods. 

(1) Translator 

The translator parses SML code and activates the appropriate message handler 

processes as specified in SML code. There is a one-to-one correspondence between the 

program constructs and the message handler processes. Each message handler process 

delivers its own portion of the program messages to the target server. 

l 
n 
n 
n 
fl 

l 
l 
1 

I 
l 
I 
I 
J 

J 



l 
n 
n 
n 
n 
l 

l 
I 
I 

I 
I 
j 

I 
j 

u 

LI 

SS/1 

(2) Event-handler 

The event-handler can be viewed as a method manager. When it is activated, it sets up 

the method table which has the physical process id associated with the logical method name 

in the Server. It reads a message from its message queue and activates the appropriate 

method process. It is responsible for the scheduling of the method processes. It schedules 

the method processes dynamically according to the current system overhead, i.e., allocate the 

method process to the processor with the least overhead. Once the method process is 

activated, the event-handler loses all information about the method process. Method 

inheritence and overriding are also handled by the Event-handler. 

(3) Methods 

A method is a procedure written by the user and linked with the communication code 

supported by the system. Each method is considered as an independent process. Once the 

method process finishes its job, it sends a "termination" message to its message process and 

is terminated. When it is terminated, it loses all its state information. Only the 

communication variables which are defined in the external interface of the method keep the 

result of the execution. Each method can be duplicated to invoke multiple instances of the 

method. 

4. Design Example: Computer Store Simulation 

4.1 Class Definition 

To design a computer store simulation program, the "Store" can be defined as a super 

class of all the other classes and is decomposed into the subclasses, "Ware", "People", and 

"Environment". Each subclass can be subclassed again. For example, the class "people" 

have three subclasses, "Service", "Sales", and "Customer". The class "Sales" has two 

methods "demo" and "sell". Fig 4.1 shows a possible class definition using the graphical 

editor of SS/1. 

4.2 Communication Specification 

Fig 4.2 shows the communication specification of top level computer store design 

which can be interpreted as follows, 

Open the store 



SS/1 

sales persons, service persons, and the customers do their role in parallel 

Close the store 

The "Sales Loop", "Service Loop" and "Customer Loop" messages is processed in 

parallel after the "Environment : open();" message is processed. After the all message is 

processed, the "Environment : close();" message is processed. The arc represents the flows 

of data between messages . 

The parallel replicated compound message "sales loop" will be replicated for 

MAX_SALES times in parallel and its lower level will describe the specific behavior of a 

single person. The "service loop" and "customer loop" can be interpreted in the same way. 

Fig 4.3 shows the behavior of a individual sales person and can be interpreted as 

depending upon which event happened (conditional branch) 

send the messages "sell" or "demo" to the object "Sales" 

Fig 4.3 shows the non deterministic flow of data between the methods "getEvent" and "sell" 

and the methods "getEvent" and "demo". The non-deterministic arc is shown as a dotted arc 

and means that the next message is sent depending on the data from the previous message . 

Clflss Definition Communicfltion Spec. Edit TeHt Lflyout 

Store 

0 
➔ 

Fig 4.1 Class Definition 

l 
n 
n 
n 
n 
l 
l 
l 
l 

J 

l 
J 

] 

J 



l 
l 
n 
n 
17 

n 
I 
1 

l 
r I 

l 
I 
j 

j 

J 

u 
J 

SS/1 

s Session Closs Definition Communicotion Spec. Edit TeHt Lo 

CJ 

~ 

D 
PAR 

Q 
SE 

CJ 

~ 

□ PAR 

bl 
SE 

Store 

I Environment : open( MAX-5ALES ,MAX-5ERV ,MAX_.CUST); I 

Sales Loop Se rvci ce Loop Customer Loop 

i = 1 for MAX-5ALES; j = 1 for MAX-5ERV; k = 1 for MAX_.CUST; 

Eni ronment : close (); 

Fig 4.2 Communication Specification : Level 1 

sion Closs Definition Communicotion Spec. Edit TeHt Loyou 

s 
1 = 1 1i 

Store 

Soles Loop 

I ndiuiduol Solse Loop 

Eni ronment : get Event ( theEvent) 

,"' .. 

Sales: sell (theEvent, theAmount) ',, 

Sales : demo (the Event); 

Eni ronment : money( n( theAmount} 

········ ·· ··· ·· ··················· ·· ········ ··· ······· ······· ····· ··········· ····································· ····· ········· ··· ····· ······ ········ ···· ···· ····· ···· ···················••'••········ ······ ····· ··· ······· ··········· ···· ···· ·· ······· ····· · ........... .... ···························· ····· ······ ········ · ············ ····· ··········· ············· ··· 

Fig 4.3 Communication Specification : Level 2 



SS/1 

Once the user finishes a design, the class definition and communication specification 

data are automatically translated into SML. The SML description also consists of the class 

hierarchy definition and the message communication specifying the control and data flow of 

the messages to be sent . The SML source code generated by the editor is shown in 

APPENDIX III. 

4.3 Message and Control Flow: Computer Store Simulation 

To execute the SML code in the SS/1 environment, the methods must be compiled and 

linked with a communication handler which handles the message passing mechanism in the 

methods. Once all of the methods are ready as in the class definition part, the system can be 

executed. The parser reads the class definition and initializes the methods and classes. The 

system code "event" will be woken up as the class processes and all methods will be run as 

light-weight independent processes. After the initialization is finished, the parser executes 

the communication specification in the SML code. 

In the next section, the execution details of the system will be shown using a 

"PAR-SEQ tree" which is the mapping of SML implementation. This looks like an "and-or 

tree", but it represents the process creation order. The nodes represent processes, and the 

edges indicate control flow (Fig. 4.4.(a)). A child node is always created by its parent node. 

Once the parent node wakes up its child process, it waits for the termination of the process. 

There are two ways to create children nodes. The "SEQ" subtree as in Fig 4.4 (b) with 

arcs across the edges shows the sequential process creation order, from left to right. In this 

case, the parent process creates its child processes and waits for them to terminate one by 

one . This corresponds the SML construct, "SEQ" which represents the serial execution of its 

sub structures. 

(a) 

e . 
. 

control flow 
► 

method table 
(A (SEQ BC)) (A (PAR BC)) (A (SEQ (B (PARC D)))) (A (PAR (B (SEQ CD)))) 

Fig 4.4 PAR-SEQ tree 

l 
1 
n 
n 
n 
n 

l 
l 

l 
Li 

J 

I 



l 
n 
n 
Fl· 

n 
[ l 
I 
l 

11 

l 
I J 

11 

] 

l J 

J 

j 

u 

SS/1 

The "PAR" subtree as in Fig 4.4 (b) which looks look like normal tree means the 

parallel creation of the child process nodes. The parent process wakes up all its children 

processes at the same time and waits for the terminations of all the created processes. This 

corresponds the SML construct, "PAR" which represents the parallel execution of its sub 

structures. One special form of the "P AR_SEQ" tree is the edge splitting which discriminates 

the message creation order among the subtrees . Fig 4.4 (d) is the PAR-SEQ tree 

representation of (SEQ A (PAR BC)) and (e) comes from (PAR A (SEQ BC)). 

4.2.1 Class Definition Phase 

A part of the computer store class hierarchy can be represented as follows using SML. 

(Store (People (Sales (demo sell))) 

The super class "Store" has subclass "People". The class "People" has "Sales". And the 

class "Sales" has two methods "demo" and "sell". According to the definition, SS/1 wiil set 

up the process class hierachy on the following order (Fig 4.5). 

SS/1 wakes up the class processes as defined in the class definition. 

Each class process sets up a method-table using the information from its methods. 

The system sets up the communication buffer and unique process IDs. 

demo 

Fig 4.5 Initialization Phase 

4.2.2 Communication Specification Phase 

The followings are the communication specification of the salesman's behavior. 

1) (PAR i = 1 for MAX_SALES 

2) (SEQ a = 1 for forever 

3) (SEQ 

4) (Environment, (getEvent,theEvent)) 

5) (PAR 



6) 

7) 

8) 

9) 

(SEQ 

(Sales, (sell,theEvent, theAmount)) 

(Environment, (moneyln,theAmount))) 

(Sales, (demo,theEvent)) 

SS/1 interprets the above SML code in the follwing way. 

SS/1 

SS/1 reads SML source code, "l) PAR i=l for MAX_SALES" and forks the message 

process MAX_SALES times as in level (a) of fig4.6. 

Each message process executes from "2) SEQ a= 1 for forever". (level b of fig4.6) 

The message process sends the "4) getEvent, theEvent" message to the object process 

"Environment". (level b, c of fig4.6) 

The message process forks two other message processes. (5-9)(level b, c of fig4.6) 

One message process executes from "6) SEQ" and sends the message "7) sell, 

theEvent, theAmount" to the object process "Sales". Once the message is processed, it 

sends "8) moneyln, theAmount" message to the object process "Environment". The 

message process is terminated.(level c, d of fig4.6) 

The other message process sends the "9) demo, theEvnet" message to the object 

process "Sales" . (c, d of fig4.6) 

LEVEL 

(a) 

(b) 

(c) 

~ 

Fig 4.6 Message flow and process creation 

l 
n 
n 
n 
n 
I 
I 
I 

l 
J 
j 

J 

I 



n 
n 
n 
n 
n 
I 
I 

f I 
I I 

J 

I 

j 

j 

J 

J 
L1 

LI 

SS/1 

5. Conclusion 

The computational model presented in this paper is based on three programming 

paradigms : Communicating sequential processes, Data flow, and Object oriented 

programming. The notion of "Server" provides a sound foundation for massively concurrent 

object-oriented programs, and transparent object-oriented design environments. 

SS/1 is designed for the general computation and may have more overhead than the 

customized languge for the specific hardware like Parallel-C[Seq88]. However SS/1 shows 

good run time behavior compared with Parallel-C even in very fine grain heavy 

computational application. APPENDIX IV shows the performance comparison between 

SS/1 and Parallel-C in Sequent Balance. 

However, the concept of server is in its infancy, and there remain many issues to be 

discussed. 

5 .1 Scheduling 

SS/1 uses dynamic scheduling. It schedules the processes to processors in 

first-come-first-serve fashion, considering the overhead of communication and processors. 

Unfortunately this does not guarantee optimal scheduling. A more intelligent scheduling 

scheme must be developed, e.g., static scheduling based on dynamic behavior of processes 

and processors. 

5. 2 Data parallel [Dan86] 

SS/1 is well suited for large grain or medium grain size problem decomposition. It is 

not designed to deal with the fine grain parallelism. Many useful techniques are already 

introduced to automatically detect parallelism from serial program in fine grain level, e.g., 

loop spreading [Wu88][Hes89]. Among them, data parallel language is one of the best 

concept to cope with fine grain parallelism. They can be combined with SS/1 in the fine 

grain level with automatic data partitioning and parallelization technique. 

5. 3 SS/1 as a multi programming environment 

SS/1 can support the procedural and functional programming environments as well as 

the object oriented programming environment, because SS/1 provides a means of 

programming, not a way of coding. SS/1 can give more flexibility in the field of reverse 

engineering where exisiting procedural languages are mapped to parallel environments. (fig 



SS/1 

5.1) 

5.4 SS/1 in various kinds of hardware architecture 

The prototype system of SS/1 now runs on the Sequent Balance which is a typical 

shared-memory machine. It should be ported to various parallel architectures . 

Object oriented design environment 

.{:1/j:-lllllj/jlljjjjjj// 
nctional design environme 

1t:1:11::l:1:::::-:ill:l:l:::::1:1:1:1:::::: 
f}ilf: 

Fig 5.1 SS/1 as a multi language paradigm 

l 
n 
n 
n 
fl 
n 

J 

J 

J 

I 

El 



l 
n 
n 
n 
n 
11 

I 
l 
I 
I 

j 

l J 

J 

Appendix 

I. SML Specification 

program 

class_definition 

class_declarations 

class_declaration 

com_specifications 

messages 

construct 

replicator 

start 

end 

message 

method_dsc 

arg_list 

expression 

: class_definition com_specifications; 

: ( class_declarations ) 

I null; 

: class_declarations class_declaration; 

: class_ name ( class_declarations ) 

I class_ name; 

: com_specifications messages 

I messages; 

: ( construct messages ) 

I message; 

: SEQ IPAR 

I SEQ replicator 

I PAR replicator; 

: var = start to end; 

: var I integer; 

: var I integer; 

: ( class_name, method_dsc); 

: ( method_ name, arg_list ) 

I method_ name; 

: arg_list expression 

I expression; 

: var I integer I string; 

SS/1 



SS/1 

II. Design Editor User Interface 

1. Design Editor Menus 

1.1 Apple/ About Menu 

Session Closs Definition Communication Spec. Edit TeHt Layout 

About SS/1 ... 

DAs 

- About SS/1 Display the initial SS/1 dialog. 

- Desk Accessories System desk accessories are fully supported. 

1.2 Session Menu 

r • a.'Y!...t..u[ll1• Class Definition Communication Spec. Edit TeHt Layout l 
Generate Glue Code 
Print 

Quit 

- Generate Glue Code Generate SML description of the design. 

- Print Print active window (Text or Graphics) . 

- .Qyit End design session. 

1. 3 Class Definition Menu 

• Session C:lass Definition 

New 
Open 
Close 

Soue 
Soue Rs ... 

Communication Spec. Edit TeHt Layout 

l 
l 
n 
A 

n 
l 
l 
I 
I 
l 
I 
I 
I 
I 
I 
J 
J 

u 



l 

Fl 

n 
r1 

l 

I 
J 

I 
I 
ll 

LI 

SS/1 

- New Open a new Class Definition window. 

-~ Open an existing Class Definition file. 

- Close Close the current Class Definition window. 

- Save Save the Class Definition information. 

- Save As Save the Class Definition in the file specified. 

1.4 Communication Specification Menu 

• Session Class Definition C:ommunic·ation Spec:. Edit TeHt Layout 

New 
Open 
Close 

Soue 
Soue As ... 

EHport Task Graph As ... 

- New Open a new Communication Specification window. 

- Qmm Open an existing Communication Specification file. 

- Close Close the current Communication Specification window. 

- Save Save the Communication Specification information. 

- Save As Save the Communication Specification in the file specified 

- Export Task Graph As Generate a Task Graph description of the Communication 

Specification. 

1.5 EditTextMenu 

r S Session Closs Definition Communication Spec. 1:l'"i~•~• Layout 1 
Cut 
Copy 
Poste 

Saue 
Saue As ... 

- Cut Delete currently selected text. Place this text in the paste buffer. 

-~ Place the currently selected text in the paste buffer. 

- Paste Insert the contents of the paste buffer at the current position. 



SS/1 

- Save Write the text to the Method Definition file. 

- Save As Write the text to the specified. Method Definition file. 

1. 6 Layout Menu 

r S Session Closs Definition Communication Spec. Edit TeKt ■ .-;u11111■ 

Redraw 
Zoom Out 
Zoom In 

- Redraw Repaint the current window. 

- Zoom Out Decrease the drawing scale of the current window. 

- Zoom In Increase the drawing scale of the current window. 

2. Design Editor Tool Palettes 

2.1 Class Definition Context Palette 

2.2 

0 

~ -~--
.,c::., 

i3:i), 

Selection 

Class or Method 

Arc 

Pack Classes and Methods 

Unpack Classes and Methods 

Communication Specification Context Palette 

c:::J 

~ 
CJ] 
PAR 
~ 
s 

~ 
··-. ..J:....····· 

Selection 

Simple Message 

Compound Message 

Parallel Replicated Compound Message 

Serial Replicated Compound Message 

Arc 

Pack Messages 

Unpack Messages 

l 
n 
n 
A 

0 
l 
I 

l 
l 
I 
l 

11 

I 
J 

J 



n 
n 
n 
n 
fl 
l 
l 
I 
I 
l 
II 
j 

I 

J 

J 

III. SML source code of Computer Store Simulation Example. 

r Class Definition • / 
( 

) 

Store ( 
Ware( 

Software 

) 

Hardware ( Other Apple Specs) 
getPrice 

People ( 

) 

Service ( fix ) 
Sales (demo sell) 
Customer (buy) 

Environment (getEvent moneyln open close ) 

/* Communication Specification*/ 
(SEQ 

(Environment, open) 
(PAR 

(PAR i = 1 for MAX_SALES 
(SEQ a= 1 for forever 

(SEQ 
(Environment, (getEvent,theEvent)) 
(PAR 

(SEQ 
(Sales, (sell,theEvent, theAmount)) 
(Environment , (moneyln ;theAmount)) 

) 
(Sales, (demo,theEvent)) 

) ) ) ) 
(PAR j = 1 for MAX_SERV 

(SEQ b = 1 for forever 
(SEQ 

) ) ) 

(Environment, (getEvent ,theEvent)) 
(Service, (fix,theEvent, theAmount)) 
(Environment, (moneyln,theAmount)) 

(PAR k = 1 for MAX_CUST 
(SEQ c = 1 for forever 

(SEQ 

) ) ) ) 

(Environment, (getEvent,theEvent)) 
(Customer, (buy,theEvent, theAmount)) 

(Environment, close) 

SS/1 



SS/1 

IV. Comparison of performance between SS/1 and parallel Con the Sequent Balance. 

Matrix Multiplication Problem (Timing unit : second) 

(1) Number of processors used = 10 

matrix size SSL1. Parallel C 

50 5.88 4.10 

100 17.35 15.25 

200 79.49 77.86 

300 222.37 218.88 

(2) Number of processors used = 20 

matrix size SS/1 Parallel C 

50 6.70 4.52 

100 15.33 13.46 

200 60.74 59.12 

300 158.82 154.32 

(3) Number of processors used = 27 

matrix size n .s.sLl. ParallelC 

50 6.78 4.84 

100 15.45 14.60 

200 58.79 57.45 

300 145.88 145.22 

l 
~ 

n 

n 
l 

l 
I 
I 
I 

j 

j 



· ~ 

n 
n 
A 

fl 
ii 
I 
1 

I I 

l 
J 

I 
I 

I 
J 

1 

u 
u 

SS/1 

References 

[Ager87] T. Agerwala, Arvind, Data flow systems, Computer 15:2, Feb 1982. 

[Agha86] G. A. Agha, ACTORS : A Model of Concurrent Computation in Distributed 

Systems, MIT Press. 1986. 

[Chu89] Jean Chung, Implicit Parallelism in Object Oriented programming , Technical 

Report, Computer Department, Oregon State University, November 1990. 

[Cox87] Brad J. Cox, Object Oriented Programming : An Evolutionary Approach, 

Addison-Wesly, 1987 

[Dan86] W. Daniel Hillis, Guy L. Steele, Jr., Data parallel algorithms, Communications 

of the ACM 29,12, December 1986. 

[DiN85] David C. DiNucci, Robert G. Babb II, Design and Implementation of Parallel 

Programs with LGDF2, Characteristics of parallel algorithms, Cambridge, MA: 

MIT Press,1985 

[Hes89] Hesham El-Rewini, Task Partitioning and Scheduling on Arbitrary Parallel 

Processing, Ph.D dissertation, Oregon State University, November 1989. 

[Gol83] Goldberg, A., D.Robson, Smalltalk-SO: The Language and its Implementation, 

Addison-Wesley, 1983 

[Hew73] Hewitt, C., et al., A unversal, Modular Actor Formalism for Artificial 

Intelligence, Proc. of UCAI, 1973. 

[Hew77a] C. Hewitt and R. Atkinson, Synchronization in actor systems, Proceedings of 

Conference on Principles of Programming Languages, pages 167-280, January 

1977. 

[Hew77b] C. Hewitt and H. Baker, Laws of communicating parallel processes, 1977 IFIP 

Congress Proceddings, pages 987-992, IFIP, August 1977. 

[Hoa78] C. A. R. Hoare, Communicating sequential processes, CACM 21:8, 666-677, 

August 1978. 

[Kay78] Alan Kay, Microelectronics and the Personal Computer, Scientific American, Vol 

237: 230 244, September 1977. 

[Mey88] Bertrand Meyer, Object-Oriented Software Construction,Prentice Hall, 1988. 

[Pou87] Pountain, D., A Tutorial Introduction to OCCAM Programming, INMOS Ltd., 

March 1987. 

[Seq87] Sequent Computer Systems, Guide to Parallel Programming., Sequent Computer 

Systems, Inc. 1987. 

[Syn87] Alan Snyder, Inheritance and the Development of Encapsulated Software 

Systems, Research Directions in Object-Oriented Programming, The MIT Press, 



SS/1 

1987. 

[Wu87] Youfeng Wu, Parallel Simplex Algorithms and Loop Spreading, Ph.D 

dissertation, Oregon State University, 1988 

[Yok87] Y. Yokote, M. Toloro, Concurrent Programming in ConcurrentSmalltalk, in 

Object-Oriented Concurrent Programming, The MIT Press, 1987. 

[Y on87] A. Y onezawa and M. Tokoro, Object-Oriented Concurrent Programming , pages 

1-7, The MIT Press, 1987. 

l 
n 
n 

n 
l 
I 

J 

J 

j 


	Choi_Sturtevant_Lewis_Parallel_Programming_A
	Choi_Sturtevant_Lewis_Parallel_Programming_B

