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Flaws of Form 

ABSTRACT 

G. Spencer Brown's book Laws of Form has been enjoying a vogue 

among social and biological scierrtists. Proponents claim that the 

book introduces a new logic ideally suited to their fields of study, 

and that the new logic solves thq p~oblems of self-reference. These 

claims are false. We show that Brown's system is Bo~lean ~lgebra 

in an obscure notation, and that his "solutions" to the problems 

of self-reference are based on a misunderstanding of Russell's 

paradox. 
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INTRODUCTION 

In this paper we investigate the logic described by G. Spencer 

Brown in his book Laws of Form (Brown, 1969). All references to 

Brown are to this book. Brown claims to have invented a new logic 

0 

and a superficial perusal of his book with its unusual notation cer­

tainly suggests that something different from our usual logic is 

being described. It is ou± contention that Brown has merely rein­

vented Boolean algebra but in an obscure notation. In the first 

section of this paper we discuss Brown's notation and show how it 

allows him to obtain implicit axipms "for free." We also show that 

using Brown's expiicit and implicit arithmetic axioms we obtain 

exactly Boolean arithmetic. In the.second section we consider 

Brown's algebraic axioms and show that they ~re synonymous wibh the 

axioms for Boolea~ algebra . 

A fascinating aspect of Brown's work is his treatment of 

inconsistent equations. Brown's proponents (e.g., Howe and 

Von lfoerstei; 1975) claim that this treatment solves Russell's para­

dox and successfully handles proble~s of self-reference. We inves­

tigate these claims in the third section of this paper. We argue 

that what is correct about Brown'~ treatment is a reinvention of 

part of the theory of sequential machines. Further we show that 

Brown cannot solve Russell's paradox since his logic is too weak to 

even state the paradox. 

the meaning of paradox. 

We conclude with some general discussion of 
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1. NOTATION AND THE ARITHMETIC AXIOMS. 

An arithmetic is an equational system (of rules, axioms plus 

theorems~ etc.) containing no variables. 

1 

In this section we will show that Brown's arithmetic looks very 

different from Boolean arithmetic but, in the end, comes to the same 

thing. 

1.1 The Form of Brown'a Original Axioms 

Brown admits to only two axioms: 

(F 1) The Law of Calling 

·77=7 
(The value of a call made again is the value of the 

call.) 

(F 2) The Law of Crossing 

(The value of a crossing made again is not the value 

of the crossing.) 

The equals signs in Brown's system are intended as signs of 

J ordinary mathematical identity. He appears to employ only one other 

symbol, the right corner, "7 ", but in fact employs at least one 

J 

j 

other, a blank. Moreover, as we shall see, both the corner and the 

blank must be available in an indefinitely large number of sizes. 

There are two operations in his system, one represented by con­

j catenation, or the writing of terms alongside each other, and the 

other represented by superimposition or the inscribing of a term 

above another term. Thus, Brown ~as terms like 
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The oddest thing about these axioms is the absence of any 

apparent symbol on the right hand side of (F 2). Here, one might 

presume, a blank. character is int ended. In fact, this do es not seem 

to be quite what Brown intends, for he never leaves any blanks in 

equations. That is, there are no .terms like 

77 71 
What is going on here? First of all, the laws of his arith-

J metic make all terms with a blank equal to similar terms without a 

blank, so Brown can . omit bl~nks without disturbing the truth-values 

I 
J 

J 

J 

J 

J 

J 

of his equations. But beyond this, Brown thinks, that he is using 

only one symbol; he thinks that his language has only one character, 

the corner, or that if there is a blank in his system, there is only 

one token of it, simultaneously occupying all the uninscribed paper 

on which equations are written. While blank characters can be used 

in a legitimate way, this is not it. In thinking of his language as 

containing only one contentful character, Brown violates the most 

basic truth of information theory: at least two symbols are required 

to convey any information. 

We are forced, then, to an interpretation of (F 2) as containing 
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a blank character on the right. 

3 

Under this interpretation, what looks 

like a peculiar incomplete equation is merely inperspicuous, since 

non-digital readers, like people, find it difficult to recognize 

blanks . Of course a device that reads in discrete pieces, like a 

digital computer, functions well using a blank character as an un-

marked state, even though humans do not. For instance, humans may 

ask how many blanks they are to notice when they read (F 2). One? 

One hundred? We must ask how big the blanks are. Noting that the 

corners vary in size, we must presume that the blanks can too. For . 
a digital reader, answers to all those questions would be presupposed . 

The problems caused by using . a blank character are compounded 

by Brown's use of positions instead of symbols to indicate opera-

tions . Thus any space of paper left unfilled might indicate any 

manner of operations applied to sequences of whatever we take the 

blank character to represent. In fact, Brown treats blanf spaces 

as infinitely ambiguous in just this way, and perhaps brilliantly 

but certainly illegitimately - thus obtains additional axioms "for 

free" . 

Refore considering his axioms,.we will exchange Bro~n's notation for 

a more conventional one . Now proponents of Laws of Form sometimes 

appear to think that a deep and satisfying truth is revealed through 

the shapes of Brown's symbols, as adherents of religions often do 

about the symbols they use , but the metaphysical significance its 

advocates seem to derive form Brown'a notation should not be confused 

with its mathematical substance. From a mathematical point of view, 

notation is insubstantial : notation can be clear or confusing, re-

dundant or concise , convenient or awkward, but it cannot change the 
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subject the language is used to inform us about. 
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Brown merely replaces 

the ordinary ideographic notation of mathematics with a positional 

or analytic notation. (See Lyons, 1968.) Again, the shape, nature, 

etc., of the signs one chooses to convey information with are irrele-

vant to the mathematical content of what is conveyed. What is rele-

vant is the meaning of the symbols and the way they are combined. 

Brown's system is the same as any other system of axioms employing 

logical symbols with the same meaning (here, only identity) and the 

same configuration of axioms, albeit expressed with different charac­

ters. 

Note that we are not concerned here about the interpretations 

J of the axioms, the things for which the non-logical constants are 

intended to stand, but only about the abstract axiom system itself . 

l 

I 

• 
For example, Boolean algebra can be interpreted as an algebra of 

switching circuit~, sets, or truth functions. But the language, 

axioms, and theorems used to describe these interpretations all re-

main the same. Thus, even if Brown has discovered a new interpreta-

tion for Boolean algebra, he has not discovered a new mathematical 

system. Now, since we will show that Brown's systems are Boolean, 

he has at best discovered a new interpretation for such systems. But 

Brown's informal remarks, such as those associated with the axioms 

J above, cannot be regarded as providing: any interpretation for his 

system;. they are simply too incredibly vague and abstract. For 

l example, about the symbol "7", he says 

J 
tJ 

J 

KNOWLEDGE 

Let a state distinguished by the distinction 

be marked with a mark" 7" o.f distinction. 

(page 4) 
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1.2 The Axioms in Conventional Notation 

To return to the main thread 6f our arguement, we have argued 

that we may obtain a translation of Brown's axioms into a more con-

ventional language. By allowing 11 111 to replace 11 7 11 , 11 0 " to 

replace the blank, 11 V II for concatenation and II G) 11 for superimposi­

tion, the axioms appear as 

( F 1 *) 

(F 2 *) 1 0 1 = 0 

and when II V II and 11 0" are taken as inclusive and exclusive 

J Boolean addition, ·we have two familiar laws of Boolean arithmetic. 

I 
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The truly creative, but, we maintain, suspicious aspect of 

Brown's axioms is in his use of the identities 

(F 3) 7 = 7 
and 

(F 4) = 

As we have pointed out, blanks and operations performed on blanks are 

undetectable, so 3 and 4 represent,· among a multitude of equations, 

the fundamental ones 

( F 3 *) 

and 

(F 4*) 0 VO= O 0 O = O 

The conceptual or methodological confusion involved in deriving (F 3*) 

and (F 4*) from (F 3) and (F 4) is that (F 3) and (F 4) are tauto­

logical identities (assuming we can make sense out of (F 4) at all). 
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That is, (F 3) and (F 4) must be true, simply as a matter of logic, 

l while (F 3*) and (F 4*) are no such thing, but instead give us infor-

1 
l 
l 

l 

mation about the working of the functions " V " and "0 11 • Of course 

it's impossible to derive non-tautological information from a tauto ­

logy, so the fact that Brown seems to have done so is highly curious . 

In any case, equations (F 1*) through (F 4*) are translations 

of equations tru~ in Brown's system, and as these equations serve 

to uniquely determine the operation of "V II and " 0 " on 11 1 " and 

"0" , they complete the Boolean arithmetic for inclusive and exclu-

sive disjunctions . Now it is well known (for example, Klir, 1969) 

that these two functions, togeth~r with the constants, allow us to 

define all other Boolean functions. Since Brown's laws themselves 

are familiar laws of Boolean arithmetic, it is clear that the two 

systems, except for notation, are the~-

Finally, let us note that another translation, perhaps truer 

to what we suspect Bro~~ ' s intentions to be, is possible. 

This translation involves treating the blank as the only constant, 

J concatenation as the only binary function indicator, and treating 
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the corner as a unary function symb~l instead of as a constant, writing 

it over the constants it is being applied to . Thus any occurrence 

of the corner by itself in an equation would entail the presence 

of a blank within it for the corner to operate on . 

Assigning these grammatical categories to his symbols, 11 7" 
can now be translated as the Boolean complement operation. But be- · 

cause complement is definable in terms of exclusive or and one as 

-a=a@l 

both translations are themselves equivalent . 
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This second translation may be closer to what Brown has in mind 

for "7", because he sometimes seems to want to use this symbol 

to stand for an instruction - - which is to say, a function - -

rather then an object. Contrast, for instance: "Let any token 

be intended as an instruction to cross the boundary of the first 

distinction" on page 5, with the name-like suggestions about the 

l meaning of "7" on page 4, quoted above. 
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In this guise, Brown's axioms appear as follows: 

-o V -o = -o 

-0 = 0 

-0 V 0 = 0 V -0 = -0 

0 V 0 = 0 

and when the definition 

1 = -0 

is employed, they ~an be re-written as 

(F l*) 1 V 1 = 1 

(F 2*) -1 = 0 

(F 3*) 1 V 0 = 0 V 1 = 1 

(F 4 *) 0 V 0 = 0 

These last forms are the ones which will be used in the next section. 
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2. THE ALGEBRA 

According to Lipschutz, 1976, a Boolean algebra is a set 

containing at least two distinct elements, 0 and 1, two binary 

operations, V and*, and a unary operation, -, satisfying the fol­

lowing axioms: 

Al Commutative Laws 

a * b = b * a 

A2 Distributive Laws 

A3 

A4 

a V (b*c) = (a V b) * (a 1/. c) 

a * (b V c) = (a * b) V (a * c) 

Ide~tity Laws 

a V O = a a * 1 = a 

Complement Laws 

a V -a= l; a*-a = 0 

Brown's arithmetic satisfies these laws and is in fact the two-

element Boolean algebra. That there is only one two-element Boolean 

algebra is well known (Liu, 1977). 

2.1 Brown's Algebraic Axioms 

Brown offers two algebraic axioms, in addition to his arithmetic 

principles. 

and 
( F 5) 

(F 6) 

~ = 

Fl 7cfrl \ = 757 <fl \ r 
We will re-write these axioms in standard Boolean notation 

using the second system of translation suggested in part one. (Alter-

natively, one 

tion.) Thus, 

could use the first ~ystem and the definition of nega­

they become 
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( F 5 * ) .- ( - a V a ) = 0 

(F 6 **) - [ - (a V c) V (b V c)] = 

- (-a V -b) V c . 

Using the definition of conjunction from negation and dis-

7 junction, 

l 

) 

J 
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J 

(Dl) a * b = - (-a V -b) 

(F 6 **) becomes 

(F 6*)' (a V c) * (b V c) = (a * b) V c 

(F 5*) and (F 6*) are of course basic Boolean identities; 

(F 5*) is a form of excluded middle, and (F 6*) is a form of the 

distributive laws. Thus Brown's algebraic axioms are implied by 

the axioms of Boolean algegra. 

In fact, in ~hemselves, Brown's axioms are weaker than the 

Boolean axioms. But as was the case with his arithmetic, Brown 

uses more principles than he states. First of all, we still have 

with us the plethora ofbianks joinable to either side of any term 

in any equation. More surprisingly, we find that Brown simply pre-

supposes the commutativity and associativity of his concatenation 

operation. That is, he commutes terms and omits parentheses in his 

equations without ever stating as an axiom that such commutations 

and omissions are permissible. 

Brown does not make these presuppositions unknowingly. In 

his discussion of Sheffer's axioms for Boolesn algebra, p. 109, 

he says: 

"Sheffer explicitly assumes thr ·.restriction of his operator to 

binary scope ... also, implicitly, assumes the relevance 
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of the order in which variables under operation must appear . 

Sheffer was therefore forced to design his initial equations 

so ingeniously as to contradict them both." 

By this Brown seems to mean that Sheffer considered the possibility 

that his operation was not associative and not commutative, and 

then showed that his operation was both associative and commutative. 

In fact, although the Sheffer stroke is commutative, it is not 

associative . Thus Sheffer had good reason to consider whether these 

properties held for his operation. 

What Brown seems to be saying is that either to assert or to 

deny these proper~ies is to give them more consideration than they 

are due. He believes that the fundamental operations of mathematics 

(whatever they may be) are so necessarily commutative and associa­

tive that to assert that they are is to give the very possibility 

that they might not be more credence than such a possibility deserves. 

Thus he tells us that the properties are simply not "relevant". 

This is like objecting to another person's saying "I don't care what 

color a person is", because such a claim assumes the relevance of 

color, 

this: 

even as it denies it. The g~ain of truth in such a view is 

if no one ever had cared what color a person was, it would 

be odd to deny that you did, and would suggest that you had thought 

about the possibility of caring more than people who never mention 

it. But since many people have had a fierce interest in color, 

just as many mathematical systems do involve non-commutative and 

non-associative operations, it does not seem untoward to deny either 

the interest for oneself or the property to the operations . 
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To state commutativity and associativity is not, as Brown has 

it, to implicity admit the relevance of order and binary scope; it 

is to explicitly point out that order and binary scope are irrele­

vant in the system under consideration, while allowing that they 

may be relevant in other systems. To treat these two properties 

as unmentionables is passing strange. 

Some defenses for Brown's procedure do exist: one might say 

that Brown is proposing a logic in which the commutativity and asso­

ciativity of all· operations are rules of inference, so that they 

need not be stated as axioms of any particular system employing that 

logic. But · even if we were to ta·ke this tack, to compare Brown's 

system with an ordinary mathematical system it would be necessary 

to add the following unstated axioms: 

Associativity of Disjunction 

(F 7*) ·ca Vb) V c = a V (b V c) 

Commutativity of Disjunction 

(F 8 *) aVb=bVa 

Because we are treating the corner as complementation, we introduce 

the maximal element of the algebra through a definition 

(D2) 1 = - 0 

But it is also necessary to note that Brown generalizes the power of 

his blanks to create identities beyond the type (F 3*). 

First of all, form algebraic identities of the type 

a = a 

Brown's notation allows him to obtain 

(F 9*) a V O = a 

Again, in Brown's notation, these· two equations cannot be distir,guished. 
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Second, under the interpretation of the corner as a constant, 

and superimposition as an operation, the same trick ought to be pos-

sible for the superimposition operation. That is, from 

(F 2) 

and 

a = a 

we might obtain 

Brown does not choose, however, to allow this kind of substitution, 

and instead proves the above formula as a theorem. 

our notation 

This theorem, in 

- - a = a 

involves a complicated sequence of ~lgebraic manipulations. Brown's 

proof (pp. 28-31) can easily be reproduced from (F 7*) to (F 8*) 

using ordinary maihematical modes of inference. 

The fac~ that ~rown does not use the superimposition tack to 

establish double negation and the fact that he never superimposes 

variables in his algebra, both provide substantial additional evi-

dence that Brown sees the corner as- an operation, and not as a constant. 

2.2 The Equivalence 6f the Two Systems 

We are now ready to show that all the axioms of Boolean algebra, 

(Al) through (A4), follow from (F 1 *) through (F 9*). Of course, not 

all of (F 1*) through (F 9*) will be needed, but because all are 

J Boolean identities, the ones not needed are merely redundant. 

For reference, Brown's axioms are listed here: 
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(D 1) a * b = -(-a Y -b) 

(D2) 1 = -0 

(F 1*) 1 V 1 = 1 

(F 2*) 1 = 0 

(F 3*) 1 V 0 = 0 V 1 = 1 

(F 4*) 0 V 0 = 0 

(F 5*) - (- a V a) = 0 

(F 6*) (a V c)* (b V c) = (a* b) V C 

(F 7 *). (a V b) V C = a V (b V c) 

(F 8*) a V b = b V a 

(F 9*) a V 0 = a 

Commutativity 

The commutativity of disjunction is (F 8*). 

Because ti * 11 is defined as a * b = - (-a V -b) ~ the commutativity 

J of t1 V" guarantees . that of 11 * 11 

Identity 

The identity law for " V" is (F 9*). 

For conjunction, we again use the definition, obtaining a* 1 = 

- (-a V -1). From (D2), 1 = -0, we have a* 1 = - (-a V -- 0), and 

using (F 2*), we now have a* 1 = - (-a V 0), but by the identity law 

J for" V II this means a* 1 = --a. Double negation now gives us 

a* 1 = a. 

j 

J 

J 

Complement 

Brown's axiom (F 5*), - (-a V a) = 0, gives us -- (-a V a) - - 0, 

so by double negation and the definition of 11 1 11 , we have -a Va= 1. 

Because of commutativity, this is the complement law for II V 11 • 

From the definition of* , a* -a= -(-a V --a), which equals 
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- (-a V a) by double negation, and by (F 5*), a * -a thus equals 

o. 

Distribution 

14 

By commutativity, a V (b * c) = (b * c) Va. By (F 6*), then, 

a V (b * c) = (b Va) * (c Va). This last term is (a Vb) * (a V c) 

by another application of commutativity. 

The second . distributive law requires replacing a, b, and c in 

(F 6*) with -a, -b, and -c, obtaining (-a V -c) * (-b V -c) = 

(-a* -b) V -c. Eliminating " * " by (D'2), we have 

[-c-a V -c) V -(-b ~ -c)J = 

(--a V --b) V -·c 

Negating both sides of this equation and applying double negation 

I leads to 

l 

I 

l 

I 

J 

J 

- (-a V-c) V - (-b Y-c) = - [- (a Vb) V-c] 

reapplying the definition of"*" gives us 

(a * c) V · (b * c) = (a V b) * c 

which, 

which is the second distributive law when rearranged by commutativity. 

We have now shown that (Al) through (A4) are derivable from 

Brown's axioms plus two definitions. 

all well known Boolean identities. 

Brown's axioms, moreover, are 

The two algebras, then, are 

synonymous (De Bouvier, 1965). They determine exactly the same class 

of structures. Brown and his supporters are therefore wrong when 

they claim he has discovered a new logic. He has reinvented tradi-

tional Boolean logic in a notation that would be a printer's night­

mare, but with enough obscure and therefore profound-sounding remarks 

in his commentary to impress non-~athematicians. At best, Brown 

has produced a new axiomatization for Boolean algebra. M·any such 
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equivalent axiomatizations are known (see, for example, Mendelsort, 

1970) but it is very likely that a minimal subset of (F 1*) through 

(F 9*) would constitute a new one. 

Despite the synonymy df the two axiom sets, one minor difference 

between Brown's system and Boolean algebra is that the definition 

of "Boolean algebra" stipulates that all Boolean algebras, in addition 

to satisfying the listed axioms, must have at least two elements. 

The true mathematical significance of this difference, we shall see, 
. 

is minimal, but it looms large in saving. Brown from inconsistency. 
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3. BROWN'S PARADOXICAL EQUATION 

The most astounding part of Brown's work is the manner in 

which . he tries to give meaning to relatively inconsistent equations. 

3. 1 Substitutions and Equations 

The valid equations of an algebra are the equations that 

follow from the axioms defining the algebra - - they are the equations 

that are true of all structures satisfying those axioms. ln a 
. 

valid equation, any constant can be sub~tituted uniformly for any 

variable in the equation, and the result must still be a valid 

equation. Invalid equations, on the other hand, may be true for 

some substitutions of constants for variables or true in some of the 

• 
structures satisfying the axioms, but not others. Relatively incon-

sistent equations -- relative to an axiom system - - are invalid 

equations that are ~ot true in the axiom system for any assignment of 

constants to the variables of the equation. 

For example, 

a V 1 = a 

is an invalid equation which is true when "1" is substituted for 

"a" while 

a Y-a = 1 

is a valid equation, and 

a V-a = 0 

is inconsistent with the definition of Boolean algebra, since from 

that equation and the valid one immediately before it, we have 

1 = 0 
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As we have noted, this result is not strictly inconsistent with 

Brown's axioms, but he seems to want to avoid it. He claims, on 

page 19, for example, that the corner and the blank have 

distinct values "by definition". But Brown offers no definitions 

of these symbols, as they are primitives of his algebra, and offers 

no definition of structure satisfying his system which would require 

this. We suspect that, in the general spirit of his work, he is 

confusing use and mention here (see Mates, 1965). 

In chapter 11, Brown suggests a war. of interpreting inconsistent 

equations: he allows one to substitute different constants for 

different occurrencts of the same variable. For example, in 

a V-a = 0, we could substitute "0" for the first occurence of "a", 

j and "1" for the second, obtaining o• V-1 = 0, a valid equation. But 

J 

I 

J 

J 

J 

J 

] 

changing the rules of logic in this drastic way necessistates not 

only that O = 1, but that there is only one object in the structure 

to which the logic · is being applied. Otherwise, it would not be 

logically sound to use different constants interchangeably. In any 

system satisfying the axioms of Boolean algebra, as Brown's does, 

if O = 1, there can be only one object in the system. Such a system 

is not mathematically exciting because all equations are true of it, 

not only those of Boolean algebra, but those of any algebra. 

(Historical note: This system is not original with us or with 

Brown. It is the Aftermath system of Howland Owl propounded in 

Walt Kelly's "Pogo" comics, circa 1964.) 

Brown treats an equation requiring the technique we have just 

discussed for its interpretation in great detail, and he feels this 
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equation is the key to new fields of study and to the solution of 

old paradoxes in mathematics. This equation is 

(P 1) f = £7 
First, Brown claims that (Pl) can be interpreted as 

(P2) 

To see again that this is nonsense, we . could similarly "solve" 

the arithmetic inconsistency 

X = X + 1 

by claiming it "teally" means 

(y + 1) = y + 1 

by substituting "y + 1" for the first occurrence of "x", and "y" 

for the second. 

3.2 Applications in Automata and Switching Theory 

Even though (~1) is inconsistent, (P2) makes perfect sense. It 

could describe, for example, the behavior of a blinking light. 

Sup~osing the two states of the light occur for equal lengths of time. 

Allowing that unit of time to be assigned to "1", the equation can 

be read as the true claim that the state of the light at any time is 

the opposite of what it is after one unit of time has passed. This 

work df Brown's is reasonable, but it is not, as he seems to think it 

is, original with him (see Brown's preface). 

Such systems are well known. For example, Klir, 1969, describes 

them as discrete deterministic sequential systems, in a treatment 

far more detailed and sophisticated than Brown's. Of course, the 

idea is much older than even Klir' s work . Such systems go back at least 
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to McCulloch and Pitts, 1943. Shortly after the publication of 

:1 their paper van Neumann (see Randell, 1973) recognized that their 

technique could be used to describe the logical design of a digital 
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computer. McCulloch and Pitts had pointed out that memory could be 

modeled by sequences of zeros and ones circulating around a sequence 

of formal neurons arranged in a circle. This idea was quickly 

implemented. Some of the earliest digital computers had circulating 

memories which consisted of acoustic signals in delay circuits. 

These memories were later abandoned on favor of core memories that 

were faster and did not have to be constantly refreshed, but a faster 

circulation memory, the so called "bubble" memory, is currently in 

the developmental.stage (Matick, 1975). Thus when Brown claims his 

equations have application to computer circuitry (page 99) he is 

certainly correct. 

The devices Brown discusses as an extension of his time shift 

notation also have applicatio~ in switching theory, but they are a 

special case of devices that have been studied and used for many years. 

They are usually called feedback shift registers, and were probably 

first described by Huffman, 1954. These devices and their generali-

zations are so important that their study forms a standard part of 

the computer science and engineering curriculum. They are discussed 

in detail and with copious references, in Harrison, 1965, and Kohavi, 

1970, for example. 

3.3 Applications in Set Theory 

Brown suggests that his treatment of (Pl) provides a solution to 

J Russell's paradox, and an alternative to the theory of types (page 97). 

J 
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This cry is taken up forcefully in Howe and van Foerster, 1975. 

This view is entirely mistaken , 

First of ~11, the equation 

(Pl) f = £7 
can at best be interpreted set - theoretically as 

B = B 

20 

which is the claim that the set Bis equal to its own complement, or 

f (Sl) B = {xlxf B} 
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This is to say that Bis the set of all bbjects that are not members 

of B. 

But (S1) has "nothing in particular to do with Russell's paradox . 

Russell's paradox concerns the purpprted set R which contains all 

the sets that are not members of themselves, i.e., 

(S2) R-= {xlxfx} 

The Russell set, defined -by (S2), and Brown's set, described 

in (S1), are not described in comparable equations. (S2) is para­

doxical precisely because it looks like a good definition . (S1) is 

blatantly inconsistent, as the term to be defined, B, occurs on both 

sides of the equation. 

Russell's paradox is the proof that if R existed, it would both 

contain and not contain itself, and hence would force us to accept 

an inconsistency . Nowhere in that proof does one find a claim that 

corresponds to (S1) . 

Indeed, in one of the common solutions to Russell's paradox 

for set theory, namely the van Neumann, 1925, distinction between 
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sets and classes, the Russell set does exist as the universal class, 

but in no possible set theory could the "Brown set" exist. Investi­

gating (S1), we find it immediately implies that xis in B just in 

case xis not in B, from which it follows that everything would both 

be and not be in B. Thus, B would be both the universal class and 

the empty set. It appears we have only returned to a one object 

system, but by allowing the relation of membership into the language, 

we are worse of£ than when dealing with Brown's purely equational 

language. B itself can still not exist, for it would both be and 

not be a member of itself. Hence., (Sl) can be true only in "set 

theories" in which there are!!.£_ objects. 

An important point is being presumed here -- Brown's algebra is 

a system of equations, and as such is in an extremely weak language, 

in which only smail portions of mathematics could possibly be expressed. 

As a system of equations, Brown's algebra lacks quaritifiers, external 

or genuine negation, and even relational symbols. Almost all state-

ments in even so elementary a branch of mathematics as set theory 

require these devices, and in parti~ular, every formula involved in 

Russell's proof employs such symbolism and could not, therefore, even 

be expressed in the language of Laws of Form . 

It is the poverty of equational languages which saves Brown from 

absolute inconsistency. To see this, first note that in saying Brown's 

language lacks a genuine denial operator, we are pointing out that . 

his corner operates on variables and constants in his language, while 

genuine denial operates on the complete statements~ a language 

itself. For example, in Boolean algebra, the internal complement 



l 
l 
7 
n 
l 
) 

I 
j 

I 

1 

J 

I 
J 

J 

22 

operator"-" 

in 

represents a function on objects of the algebra, as 

-0 = 1 

but a genuine negation operation added to such a language would allow 

us to say things like 

" O "f 1 " (or "not [o = i] " ) . 

This distinction may be clearer in numerical algebra, for here the 

first equation is nonsense, and the second formula true. Note that 

absolute inconsistency involves asserting and denying simutaneously 

a single proposition, or claiming that one statement, given a precise 

single interpretation, is both true and false. Now, without external 

negation in a language, there is no way to as$ert that any of its 

statements are false, and hence no way to , arrive at an absolute in­

consistency. 

3.4 Paradox and Rationality 

There are three kinds of "paradoxes": mathematical-scientific 

paradoxes, social paradoxes, and inconsistencies. Mathematical­

scientific paradoxes are puzzling "paradoxical" truths that are para­

doxical in that they are surprising, and that they surprise because 

there are other truths that appear to be inconsistent with them; or 

because there are other false beliefs we wish to maintain that are 

inconsistent with the paradoxical truth. Russell's paradox, that 

there exists no Russell set, is such a paradox in that it is or 

appears to be inconsistent with the abstraction principle that every 

concept determines a set. It requires a solution in that we must 

now either explain why the abstraction principle, which is quite 
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7 attractive, is not true, or why the abstraction principle, when stated 

l 

l 

I 

correctly, is not really inconsistent with Russell's result. Such 

paradoxes are a major source of new directions in the sciences. 

We have argued, however, that Brown does not offer such a 

solution and new direction, since he does not even confront that 

paradox. He and his supporters, on the other hand (see Brown's preface, 

and Howe and von Foerster, 1975), suggest that Brown offers the first, 

one, and only suth iolution, thus opening up a new field of research 

and a new way of understanding mathematics and systems in general. 

We wish to point out that if peop1e are troubled by Russell's paradox, 

the development of alternative solutions to it and the corresponding 

new logics and languages required ih those solutions have by now a 

long and rich history. (One may consult, for instance, Ramsey, 1925, 

Schilpp, 1944, or Martin, 1970, to get a sampling of such discussions 

and more extensive bibliography.). 

Similar to this first kind of paradox in mathematics and science 

J are social paradoxes of the kind Marxists and Hegelians are often 

especially fond -- for example, the- disturbing and unacceptable jux-
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taposition of opulence and squalor. Such paradoxes provide a source 

of new visions, energy, and creativity, just as the mathematical-

scientific paradoxes do. But both of these kinds of paradoxes are 

often confused with the third kind,of paradox: antinomy or absolute 

inconsistency. Absolute inconsistency is intolerable in~ rational, 

or simply any language-using system, for it involves the absolute 

breakdown of even the possibility of communication. If a statement 
. 

that things are a certain way does not rule out the possibility that 



l 
l 
7 
l 
) 

l 

24 

they are not that very way, the statement can communicate no informa­

tion . If you tell me you are bald, and I accept inconsistencies, 

even if I believe you I will not yet have any definite beliefs for 

I may still believe that at the very same time in no sense at all are 

you bald. Now, it is precisely because this third kind of paradox is 

intolerable that the other kinds are the source of so much energy. 

The energy is expended to avoid absolute inconsistency. 

Howe and von Foerster, along with many others who see consistency 

as a bugaboo, confuse these kinds of paradox. In fact, they talk about 

paradox, inconsistency, self - reference, and the relationship of observer 

to observed as if all these things·were indistinguishable. There is, 

in fact, no reason whatsoever to see the theory of types as standing 

in any relation, either supportive ot contrary, to the existence of 

constructive "paradoxical" relationships in psychiatry. (For a dis-

J cussion of what the· theory of types does entail, see Chihara, 1972) . 

I 

J 

General Systems Theory, if it is to be general, must admittedly 

involve the discovery of stmilarities between strikingly different 

kinds of systems. If it is to be a science, however, and not a 

branch of magic, the features different systems share in common must 

be exactly specified; that is, the scientific way to generality is 

through equivalence in which distinct entities are considered to be 

the same for given purposes through their participating in a well-

defined equivalence rel~tion. In this regard Brown's Laws of Form, 

and its supporters like Howe and von Foerster, do a disservice to sy?tems 

J theory as a science. 

J 
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CONCLUSION 

We have shown that Rrown's axiom system specifies exactly the 

Boolean algebras. Thus Brown's system has applications to the extent 

that Boolean algebra has applications. In particular, Boolean algebra 

has long been used in the design and analysis qf computer and communi­

cation systems so that Brown is suggesting nothing new when he claims 

that his system has applications in these fields. 

Boolean alg-ebra is only a small fragment of logic. As such it 

does not contain either quantifiers or membership, and thus it is 

impossible to even state Russell's paradox within Boolean algebra. 

Since Brown's system is synonymous with Boolean algebra, it suffers 

from the same deficiencies. What is• claimed to be a solution of 

Russell's paradox is based on misunderstanding and confusion of terms. 

While we recognize the power of paradox to stimulate thinking, 

we feel that the solution of paradoxes and the clearing up of confusion 

is progress is science. If General Systems Theory is to become a 

science, we must avoid confusions without destroying useful analogies. 
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