
84-40 - 1

I "-"

tmi't1CPiS~TY

5C~ErlCE

Multiple Version Management
of Hypothetical Databases

Earl F. Ecklund , Jr.

Darryn M. Price

Department of Computer Science
Oregon State University

Computer Research Laboratory
Applied Research Group

Tektronix Labs

Multiple Version Management
of Hypothetical Databases

Technical Report No. 84-40-1

Earl F. Ecklund, Jr.

Darryn M. Price

Department of Computer Science
Oregon State University

Computer Research Laboratory
Applied Research Group

Tektronix Labs

July 16, 1984

Multiple Version Management
of Hypothetical Databases

ABSTRACT

This paper presents a Hypothetical Storage Server for an experimen
tal design database system. The storage server provides unified manage
ment of historical versions and hypothetical versions of objects in a design
database. The extension of each database object is managed as a tree of
multiple distinct representatives. One branch of the tree is designated as
the primary branch, and its current representative is the primary version
of the object. All other branches are considered hypothetical. A new
branch in the tree is started when a new hypothetical version is derived
from an existing representative. Hypothetical versions can be derived
from any representative of the object, including prior versions of either
the primary branch or a hypothetical branch. A branch grows when the
current representative of the branch is updated. Both the primary version
of the object and current versions of its hypothetical branches can be
updated. Updating the primary version is equivalent to updating the
object. An update to any other branch of the tree is a hypothetical
update of the object.

Updates to the primary version of the object must be serializable, but
derivation of hypothetical versions is not subject to such a constraint.
Thus only write-write conflicts are subject to constraint, and conflicting
updates can always be accepted by creating new hypothetical versions.

1. Introduction

Multiple Version Management
of Hypothetical Databases

Earl F. Ecklund, Jr.

Department of Computer Science
Oregon State University

Darryn M. Price

Computer Research Laboratory
Applied Research Group

Tektronix Labs

In this paper we present HSS, a Hypothetical Storage Server, under development at

Tektronix Inc., for an engineering design database system. HSS uses multiple logical

representatives to store a database object and its hypothetical versions. The existence

and availability of the multiple representatives is intertwined with controlling concurrent

operations on these objects. Our approach contrasts significantly with the multiple ver

sion concurrency control or update algorithms that have appeared in the literature (e.g.

[11]). In particular, we do not restrict concurrent transactions to be serializable 1 [3,5].

Two concurrent updates will produce two representatives for the object being updated.

The representative created by the first update performed would be recognized as the

current version of the object, while the representative created by the second update

would be stored as a new hypothetical version of the object.

1.1 Background

An engineering design environment places requirements upon a supporting design

database which are not met by traditional database management systems. Design actions

1 Actually we do require that updates to the current version of an object be serializable, but we wish to
allow parallel development of divergent (hypothetical) updates to the same object.

- 2 -

extend over a long period of time, perhaps days or weeks [7,8]. Multiple versions are

needed to represent alternate designs or a history of released versions [6, 10]. Multiple

versions are also useful in supporting extended actions (i.e. long transactions) [2,4].

The relational model does not adapt well to the requirements of an engineering

database [9, 10]. Hypothetical versions can be_ represented using appropriately defined

views [1, 14, 15]. In order to model the semantics of engineering design well, the rela

tional model must be extended to capture more semantic information. Lorie and Plouffe

[8] proposed representing complex objects with a COMPONENT ..l)F(OBJECT) domain to

model hierarchical relationships. Stonebraker et al [13] propose to extend attribute types

to model complex structure with abstract data types. Rehfuss et al [12] conclude that an

object-oriented database provides the appropriate foundation for an engineering database.

1.2 HSS, an Object Manager

It is our thesis that an engineering database system should have two levels: an object

management level and a semantic model level. Further we suggest that multiple version

ing is best supported at the object management level. The semantic model must be cog

nizant of potential multiple versions, in particular of hypothetical versions, of an object,

but multiple versions are nearly orthogonal to the semantics of structural complexity in

an engineering database. Version management can reasonably be separated from struc

tural and semantic modeling. Therefore, the Hypothetical Storage Server can and should

be independent of the semantic data model.

HSS is being developed as a model-independent, object-oriented storage server pro

viding unified management of hypothetical versions and historical versions of its objects.

It provides a rich interface for a client data model to access or update the various ver

sions of an object. Also, HSS exploits the availability of hypothetical versions to minim-

- 3 -

ize the ramifications of conflict among concurrent transactions. We allow any represen

tative to be read and updated (albeit as a hypothetical update) at any time, so a priori

concurrent read-read and read-write actions never conflict. Write-write conflicts can be

avoided by creating a new hypothetical version with the result of the second update.

HSS should be useful to support client applications where hypothetical updates are

to be investigated or where updates are performed interactively (e.g. by editing) over

extended periods of time . HSS will provide a suitable environment for semantic data

models supporting applications such as VLSI design, software development and documen

tation systems. In any design activity (e .g. VLSI design or software design) hypothetical

versions have straight-forward application to alternative designs. Further, in software

development, hypothetical versions should be used to develop revisions, leaving the

current version unaffected until the revision is frozen and installed as the new current

version of the object. Manual libraries, where manual pages are updated only when a

command is enhanced, and legal case support systems, where hypothetical versions might

be used for minority or divergent interpretations of a citation, are other examples.

2. The Structure of an HSS Database

A database stores information about a collection of entities. We define a database

to be a triple, (scheme, extension, mapping). Intuitively, the scheme is a collection of enti

ties that HSS manipulates at the request of its client data model. The extension is the set

of representatives stored in the database for each entity in the scheme. The mapping

identifies a unique representative for each entity in the scheme. We refer to the entries

in the scheme as names and the mapping as the name mapping for the database .

We classify the entities as objects and derivatives. Objects are the principal means

for access to and are the primary entities of the database. A derivative is a version

-4-

(actual or hypothetical) of its object, thus an object will be represented by one or more

derivatives. Each object has one derivative, the primary derivative of the object, whose

versions coincide with the object's versions. That is, the primary derivative of an object is

the actual version of the object and each additional derivative is a hypothetical version of

the object.

A representative is an instance of an entity. It is the basic unit of granularity for

accessing the entity . That is, reads or updates are performed by atomically retrieving or

writing the entire representative. A derivative is a series of representatives; successive

representatives in a derivative are each obtained by update to its predecessor . An object

can be regarded as a collection of multiple representatives, namely the union of the

representatives of its derivatives. These are not redundant copies of a single instance, but

a set of distinct, related instantiations.

2.1 The History Tree

An object is created with a single representative. Two .operations, update and

derive, are used to obtain additional representatives from the existing representatives for

an object . Only update affects the current version of an object. Derive is used to initiate

hypothetical updates, and several derivatives can be created from a single version of an

object. Thus the history of an object will be linear with respect to the versions created

by updates, but may be a tree when extended to include all derivatives and their

representatives . The genealogy of the representatives of an object will be called the his

tory tree of the object.

Figure 1 depicts an example of the evolution of a history tree. Note that in figure

la A has one derivative, A(l), for which A serves as an alias. Note also that in figure lg

the derivative A(4) is derived from another derivative, and their representative is not the

- 5 -

la. I lb. : le.
fl\ A I f-1\ A I 1 A(2)
v v A<z>

ld. , le.
1

- - - - - - - - ~- - - - - - - - - _,_ - J - - - - - - - - - - - - - - - -

lf. lg. : lh.

A{3) ,
A{4)

1

The steps in the growth of the history tree for object A:

la. Create object A from representative 1
lb. Derive A{2) from A, A{2) inherits representative 1
le. Update A with representative 2
ld. Update A{2) with representative 3
le. Derive A{3) from A, A{3) inherits representative 2
lf. Update A with representative 4
lg. Derive A{4) from A{3), A{4) inherits representative 2
lh. Update A{4) with representative 5

Figure 1. An Example of a History Tree.

current version of A. In fact, a derivative can be derived, at any time, from any

representative of an object. For example, in figure lh, it is possible to derive a new

derivative, A{S), in such a way that A{S) will inherit representative 1.

A derivative is created by designating an existing representative as the source of the

derivative. When creating a derivative, the derivative inherits the path from the root of

the object's history tree to the representative designated in the derive command. Any

update to the derivative will store a new representative that is exclusively a representative

of the new derivative (at least until it is used as the source in a future derive).

- 6 -

In the history tree of an object, each branch gives the history of one derivative.

That is, the path from the root to the leaf is composed of edges representing the update

and branches representing the derive operations that produced the current version of the

derivative from the initial version of the object .

A derivative may be created from any representative of its object. The new deriva

tive will appear in the history tree as a branch (of length 0) started at the node for the

representative from which it was created . Note that the current version of a derivative

may be the source for a newer derivative. Thus while every leaf in the history tree will

be the current version of a derivative, the current version of each derivative need not be

a leaf (in the graph theoretic sense).

2.2 The Name Mapping

It is the fundamental responsibility of a database system to provide a well-defined

mapping from its name space (i.e. scheme) into its extension space (i.e . representatives).

That is, for each named object in the scheme, HSS must map consistently from the

object's external name to a unique representative of the object . Our approach is embo

died in the management of the names of objects, the representatives of those objects, and

the mappings from the names to the representatives for the database system.

The name mapping is directly supported by the directories of the database system.

Each external name requires entries that associate the name with its current version . In

addition, each derivative will have an internal name and entries that associate the deriva

tive with its current version. Thus an object with N derivatives will have N + 1 directory

entries, one for each derivative and one for the object. These entries will enable the sys

tem to directly access the current versions of all derivatives in the history tree of an

object, and via the genealogy information of each representative, to access the entire his-

- 7 -

tory tree.

3. Some Semantic Issues

Our approach to object management is based on the paradigm of the database as a

library. We view HSS as a repository for a collection of representatives. These represen

tatives are to be checked out, used privately, and checked in (in good condition) to the

library. (This is similar to the use of check out and check in by Lorie and Plouffe [8] .)

The HSS controls the flow of outgoing and incoming objects, monitoring their status.

Note that by returned in good condition we mean that the update is semantically

consistent and valid in the context of the object being updated. Kutay and Eastman [7]

conclude that "integrity does not _exist for a database until design is almost complete."

For this reason we have the client work on a copy of the representative being updated in

his private file system until it has been restored to ' a state of semantic integrity. We do

not assume that HSS is responsible for enforcing the semantic constraints of the applica

tion in which the database system is being used. Further, we assume that the client

semantic data model will preserve the semantic integrity of the affected objects in the

database.

When a client wishes to check out an entity, HSS provides him with a copy of that

entity. The repository is presumed to have an adequate number of copies of each entity,

so no client is ever kept waiting to check out an entity. When the client has finished

using the entity he returns it to the library. If the copy checked out has been altered, the

revised representative will be checked in to be used as the new current version of the

entity. Similarly, if the client produces an alternate representative from the copy

checked out, it will be checked in as a hypothetical version of the entity.

----------~------~

- 8 -

name(A) f-----------..;,,,; 1

J : update

Figure 2. The Name-Mapping Transformation.

3.1 The Semantics of Updating

The fundamental role of a database system is to provide the mapping from the

names of objects to their instantiations. An update (or derive) transaction determines a

natural transformation of the existing name mapping. The transformation is made by

merging the changes relating to the entities being updated into the existing mapping. Fig

ure 2 represents the transformation determined by an update transaction.

The semantics of updating require that this transformation must be effective and

well-defined. An update transaction to an entity is said to be effective if it causes a new

representative to be stored in the extension of the entity. An update to an entity is said

to be well-defined if the update is based on the representative that was the current ver

sion of the entity before the update. A transaction that modifies an entity must either be

rejected or produce a new version of the entity.

The semantics of update must be adhered to. An update to an object is required to

produce a new version of the object; an update to a derivative must produce a new ver

sion of the derivative. That is, an update to the principal derivative must produce a new

current version, and should not produce any other representative nor have any affect on

a non-principal derivative.

- 9 -

In a database system that provides serializability of update transactions, serializabil

ity implies each update is well-defined. In a multiple representative history tree, for a

representative to be well-defined, the history of updates along the branch for one deriva

tive must be a sequence of effective updates to the successive versions of that derivative.

We wish to particularly emphasize that a new version of the object may not be obtained

by performing an update to a derivative that is not the principal derivative of the object.

An update to a non-principal derivative may not be retrieved under the name-mapping

from the object name. An update to a non-principal derivative can only be retrieved

under the name-mapping from its derivative name. (Using assign, the result of such an

update may be made the new version of the object, but this must be done explicitly.)

3.2 Group Semantics

We anticipate that client data models will use multiple HSS objects to model a com

plex structure. For example, hierarchical designs might be modeled with one object

which describes the structure and relationships among the components, and an additional

object (or set of objects) to model each of the components. In this case, HSS must help

the client semantic model maintain version consistency [4] among the set of objects used

to model the complex structure. The group update operation will not update one current

version in the group if it cannot perform all of the updates in an effective and well

defined manner as current versions of the same class of entities. In other words, group

updates must be performed at the lowest common level of currentness. (See section 6.10.)

4. Entity Names

An object's name is used in two ways. Its extension is its entire history tr~e, and its

instantiation is a representative that is designated as its current version. Designating an

object's current version is done by associating the object with one of its derivatives and

instantiating the object with the current version of that derivative. Initially, an object X

has one unnamed derivative X(l) which is th~ alias for the object. So long as no addi

tional derivatives are created, the history tree for an object will be a serial history. This

branch is the initial principal branch of the history tree.

The series of representatives along a branch of the history tree determines a

sequence of time intervals corresponding to when each representative was the current

version. We associate with each representative the time when the representative was

produced. A version of an object that preceded the current version is referenced as X(t],

where t is the time when the desired version was the current version.

A derivative need not be named, as it is accessible through the history tree of its

object. For convenience, a derivative can be given an external name which will be part

of the scheme for the object. All the derivatives of an object have implicit aliases

denoted by subscripting the object name. Thus if the object X has N derivatives, they

are recognized as X(l), X(2), ... , X(N), and any representative can be designated as

X(i)(t] for appropriately chosen values of i and t.

An external name must be used to refer to a representative. External n_ames may

be of the following forms:

Entity. . .N ame

Entity...N ame[time]

refers to the representative that is the current version
of the entity.

refers to a non-current version that was the current
version of the entity during the specified time.

A valid Entity.Name may be of one of the following forms:

Object.Name refers to the representative that is the current version
of the object.

Derivative.Name

Object.N ame(i)

5. Directories

- 11-

refers to the representative that is the current version
of the derivative.

where i is an implicit alias, refers to the current ver
sion of the i-th derivative derived for the object
specified.

The third component of a database, the name mapping from the objects of the

scheme to the representatives in the database, uses the directories of the system to main

tain the information required to make the mapping. Three types of information are

used: information about the entities (e.g. name, type of entity), information about the

representatives (e.g. parent, address, genealogy), and information about the mapping (e.g.

the current representative for each entity).

HSS uses two directories to keep the necessary information. The names directory

contains information about entities: name, current representative and genealogy informa

tion. The locations directory enables representatives to be located, and root-ward tracing

of the branch for a derivative., We will frequently refer to some of the attributes as

being of type token. By a token we mean an internal name whose value is unique within

the database system, and can be used as a key to identify each entity or representative.

5.1 The Names Directory

The attributes of an entity in the scheme are recorded in the names directory. The

structure for the names directory is:

names(instance, name, object, derivative, representative, implicit alias, source)

Instance, a token, is the key used internally to identify the entity. Note that the instance

token is immutable, and will be constant even if the name of the entity is changed.

Name refers to the external name for this entity. Objects must have external names, but

- 12 -

derivatives may be unnamed (name = null). This attribute is the domain for the name

mapping. Object is a token that identifies the object to which this entity belongs. Deriva

tive is a token designating the derivative that supports the current version of this entity.

Note that either the object token or the derivative token will equal the instance token,

indicating that the entity is an object or a derivative, respectively . Representative is a

token that identifies the representative for the current version of this entity. The implicit

alias is used to distinguish derivatives. It is a number corresponding to the order in which

the derivative was created. For an object, the implicit alias is interpreted as the number

of derivatives created from the object. The source contains information representing the

genealogy of the entity . In particular, it identifies the immediate parent of the initial

representative of the entity.

5.2 The Locations Directory

For each entity, the name mapping must locate the representative of the current

version of that entity. The token for the current version is in the representative field of

the entry in the names directory . To complete the name mapping, the locations direc

tory provides the address of each representative. The structure for the locations direc

tory is:

locations(representative, parent , derivative, time, address)

Representative is a token that uniquely identifies each representative. This token is

assigned when the representative is created, and is permanently associated with it. Parent

is a token designating the representative from which this one was obtained (via an

update). Derivative is a token that specifies the derivative to which this representative

belongs . Time is the time at which the operation that created this representative took

place. The time is used for path addressing of prior versions of an entity that were

current at a specified time. Address is an implementation specific value indicating how to

- 13 -

access the representative.

6. Operations

The multiple representative structure for HSS requires several operations that mani

pulate the objects in the database. The required operations are: assign, checkout, create,

delete, derive, erase, name, read, return, and update. In each of the following sections we

discuss one of the operations and its role in HSS's multiple representative structure.

6.1 Assign

Each object's external name is mapped to a unique representative which is the

current version of the object. Normal transitions of the name mapping are implicit in the

semantics of the update operation . To make an abnormal transition, i.e., to designate a

hypothetical version to be the current version of the object, the assign operation is

invoked. The assign operation designates a derivative to be the new principal derivative

of the object.

6.2 Checkout

To obtain a private copy of an entity, for update processing or extended browsing,

the checkout operation is invoked. Since the copy may be returned as an update, a

record of its source representative must be maintained. The checkout operation accom-

plishes this by prepending to the copy a header composed of the appropriate genealogy

information. This genealogy information must not be altered while it is stored privately .

6.3 Create

This operation is used to create a new object within the current scheme. The initial

representative of the object is obtained and its genealogy is recorded. A derivative is also

created as the principal branch of the new object. Thus creating an object requires two

.

I

- 14 -

new entries in the names directory.

6.4 Delete

The delete operation is the inverse of create. It is used to delete an object from a

scheme. This is done by removing the entries for that object from the directories of the

database.

6.5 Derive

The derive operation is invoked to create a new derivative entity whose source

representative becomes its current version. The new derivative is an entity with its own

names directory entry that essentially points to the source representative. In order to

update a representative, it must be the current version of some derivative. To update a

representative that is not the current version of any derivative, or to update a representa

tive of a derivative without altering its status as current version, one can derive a new

derivative from it. An update to the representative via the new derivative will have no

affect on the representative or older derivatives.

6.6 Erase

The erase operation is used to delete the current version of a derivative or to delete

an entire derivative. In deleting any representative of an object, the system must guaran

tee that if another derivative has the designated representative in its branch, then the

path through the representative will be maintained.

6.7 Name

A derivative can be identified in two ways, with its own external name or through

its implicit alias within the object to which it belongs. The create and derive operations

allow an external name to be specified at the time the derivative is created. If that

- 15 -

option is not exercised, then the derivative is unnamed and may only be referenced by its

implicit alias. The name operation assigns an external name to an unnamed derivative or

renames an object or derivative.

6.8 Read

To obtain a copy of an entity for browsing, the read operation is invoked. It is

important to note the distinction between checkout and read . While checkout assumes

that the user might update his copy of the entity and return it to the database, read does

not. Thus the overhead of keeping track of the copy, and maintaining its accompanying

genealogy information is unnecessary with read.

6.9 Return & Update

The return and update operations provide the "check in" function. The return

operation indicates that a copy is now inactive and will not be "checked in" as an update.

The update operation is the backbone of the entire object management approach.

Update is the only operation that extends a branch of the history tree of an object. It is

here that the integrity of the update semantics is maintained.

The genealogy information in the header of the copy informs the system which

source representative is being updated. The names directory is checked to validate that

the source representative is still the current representative of the entity being updated. If

so, the update is valid and processing continues. The new representative is stored and an

entry in the locations directory is made. This new entry will have a unique representa

tive token generated to identify it.

The names directory entry for the entity will be updated by setting the representa

tive token to the token of the new representative. If the entity being updated is an

r

- 16 -

object or the object's principal derivative, the names entries for both the object and the

principal derivative must be updated.

If the update was not valid, then an unnamed derivative is created from the source

representative, and the update is applied to the new derivative. This is not an effective

update, however, and a response is given that indicates the update failed and a new

hypothetical version was created.

6.10 Group Updating

In the discussion above, we have directed our attention to operations as they applied

to an isolated entity. In order to preserve semantic integrity, it is often necessary to

update sets of related entities atomically. That is, either all entities in the set will be

updated, or none of the updates will be applied to current versions of the entities.

In view of the semantics of updating, set atomicity is most important when the

intent is to update each current version of a set of objects. In this case, either all or none

of the updates must produce new current versions of their objects. If the intent is to per

form a set of hypothetical updates then all of the updates must create a new version of a

derivative which is not the principal branch of its object. That is, a set of hypothetical

updates must affect only the hypothetical versions of the objects.

Therefore it is of paramount importance to determine if the sources for each object

affected by a set update are still current. The update must be performed at the lowest

common level of currentness represented among the sources for the set of entities

involved in the update. If all members in a set of entities were current versions of

objects when checked out and some are not current versions when the update is returned,

the group update is not effective and an appropriate response must be given. There are

four possible cases that should be dealt with as follows:

I

- 17 -

a) All sources are the current versions of their objects. Apply all updates to the .

current versions, producing a new current version of each object in the set.

b) All sources are still the current versions of non-principal derivatives of their objects.

That is, each source is the current version of a derivative, but not the current ver

sion of its object. Process each update to produce a new hypothetical update of its

derivative.

c) Some sources are the current versions of non-principal derivatives and some sources

are prior versions of any derivatives. In order to update the prior (non-current)

versions, new derivatives must be created from these sources. After the new

derivatives have been created, then process the update as in case (b).

d) Some, but not all, sources are the current versions of their objects. In this case, all

updates must by applied to non-principal derivatives. Thus new derivatives must be

created from those sources that are the current versions of their objects. Then

using these non-principal derivatives, process the update according to case (b) or (c)

above.

7. Conclusions

We have outlined an approach to object management that would enable hypotheti

cal updating of the objects in a database. The approach principally addresses incorporat

ing a multiple representative structure into HSS, a hypothetical storage server. We also

propose naming conventions that would affect the data model level. The system has

several novel features principally related to the multiple representative structure. In this

section we review some of the key observations presented .

HSS is an object manager that deals with multiple representatives Jor objects in a

database. It specifically does not propose to support any particular data model. The

most important of its features is the support for hypothetical updates, and the

- 18 -

incorporation of certain hypothetically developed entities into the current state of the

scheme .

A multiple representation structure is developed for managing parallel development

of both the current version of an object, and zero or more hypothetical versions of the

object . The approach provides an optimistic checkout and update vehicle, in which no

update is ever thrown away. A invalid update is applied to a derived representative in

the multiple representative tree of the object.

The motivation for much of the design is derived from a ''library paradigm". Care

ful analysis of the semantics of updating single entities, or groups of entities subject to a

consistency constraint, yields insight into how the operations must behave. Specifically

group update must execute at the lowest common denominator of currentness for the

group of representatives being updated.

The interaction between multiple representatives and concurrency is richer than we

first anticipated. In addition to implicitly affecting the concurrency control for HSS, the

multiple representative structure may contribute to a more robust system. Typically, the

recovery process reconstructs a representative from its parent . Does ~he presence of

hypothetical versions provide a feasible alternate recovery path? This is a question that

merits further consideration.

l

- 19 -

References

1. R. Agrawal and D. J. DeWitt, ''Updating Hypothetical Databases," Inf. Proc.
Letters, vol. 16, no. 3, pp. 145-146, 1983.

2. Duzan Badal, "Long-lived Trans. - Are They a Problem or Not?," in Proc. Compcon
Spring 1983, pp. 503-507, IEEE Computer Society, 1983.

3. Philip A. Bernstein, David W. Shipman, and Wing S. Wong, ''Formal Aspects of
Serializability in Database Concurrency Control," IEEE Trans. on Software Engineer
ing, vol. SE-5, no. 3, pp. 203-216, May 1979.

4. C.N .G. Dampney, ''Precedency Control and Other Semantic Integrity Issues in a
Workbench Database," in Database Week Con/ . on Engineering Design Applications,
pp. 97-104, IEEE Computer Society, 1983.

5. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, ''The notions of con
sistency and predicate locks in a database system," Comm. ACM, vol. 19, no. 11, pp.
624-633, November 1976.

6. Randy H. Katz and Tobin J. Lehman, "Database support for versions and alterna
tives of large design files," IEEE Trans. on Software Engineering , vol. SE-10, no. 2,
pp . 191-200, March 1984.

7. Ali R. Kutay and Charles M. Eastman, ''Transaction Management in Engineering
Databases," in Database Week Con/. on Engineering Design Applications, pp. 73-80,
IEEE Computer Society, 1983.

8. Raymond Lorie and Wilfred Plouffe, "Complex Objects and Their Use in Design
Trans.," in Database Week Con/ . on Engineering Design Applications, pp. 115-121,
IEEE Computer Society, 1983.

9. David Maier and Darryn Price, ''Position Paper, Data Model Requirements for
Engineering Applications," Tech. Rpt. CR-84-17, Tektronix, 1984.

10. Dennis McLeod, K. Narayanaswamy, and K.V. Bapa Rao, "An Approach to Infor
mation Management for CAD/VLSI Applications," in Database Week Con/. on
Engineering Design Applications, pp . 39-50, IEEE Computer Society, 1983.

11. David P. Reed, "Implementing Atomic Actions on Decentralized Data, " ACM
Trans . on Computer Systems, vol. 1, no . 1, pp. 3-23, 1983.

12. S. Rehfuss, M. Freiling, and J. Alexander, "Particularity in Engineering Data,"
Tech. Rpt. CR-84-20, Tektronix, 1984.

13. Michael Stonebraker, Brad Rubenstein, and Antonin Guttman, "Application of
Abstract Data Types and Abstract Indices to CAD Data Bases," in Database Week
Con/. on Engineering Design Applications, pp. 107-113, IEEE Computer Society, 1983.

14. Micheal R. Stonebraker and K. Keller, ''Embedding Expert Knowledge and
Hypothetical Data Bases into a Data Base System," in Proc. ACM S/GMOD Con/ . on
Management of Data, pp. 58-66, ACM, 1980.

15. Micheal R. Stonebraker, ''Hypothetical Data Bases as Views," in Proc. ACM SIG
MOD Con/. on Management of Data, pp. 224-229, ACM, 1981.

	Ecklund_Price_84_40_01_A
	Ecklund_Price_84_40_01_B

