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Abstract 

Reasoning about physical systems requires the integration of a range of 
knowledge and reasoning techniques. P. Hayes has named the enterprise of 
identifying and formalizing the common-sense knowledge people use for this 
task "naive physics." Qualitative Process theory by K. Forbus proposes a 
structure and some of the content of naive theories about dynamics, (i.e., the 
way things change in a physical situation). Any physical theory, however, rests 
on an underlying mathematics. QP theory assumes a qualitative mathematics 
which captures only simple topological relationships between values of contin­
uous parameters. While the results are impressive, this mathematics is unable 
to support the full range of deduction needed for a complete naive physics 
reasoner. A more complete naive mathematics must be capable of represent­
ing measure information about parameter values as well as shape and strength 
characterizations of the partial derivatives relating these values. This article 
proposes a naive mathematics meeting these requirements, and shows that it 
considerably expands the scope and power of deductions which QP theory can 
perform. 

1 Introduction 

Qualitative Process (QP) theory [Forbus, 1984] describes the form and structure of 
naive theories [Hayes, 1979] .about the dynamics of physical systems. A key compo­
nent of QP theory is the qualitative mathematics used to represent values of contin­
uous parameters and relationships between them. A research strategy for developing 
this mathematics has been to search for a qualitative mathematics capable of yielding 
significant results from a minimum of information about the situation being modelled. 
In the work described here, we ask a slightly different question: what kinds of infor­
mation can we add to the base theory, and what new questions can we answer with 
this additional information? We will examine a simple example which reveals two 
limitations in the current theory. First, the qualitative description of a situation is 
often ambiguous. Second, QP theory is of limited use in reasoning about the effects 
of adjustments to continuous control parameters. We will then present an extension 
to the mathematics used in QP theory which improves its performance in both these 
areas. We begin with a review of QP theory. 

1.1 Mathematics in QP theory 

The representation for a continuous parameter in QP theory is a quantity. A quantity 
has four parts: 
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1. The magnitude of the amount of the quantity. 

2. The sign of the amount {-, 0, + }. 

3. The magnitude of the derivative. 

4. The sign of the derivative. 

The use of the sign as a significant qualitative abstraction is adopted from DeKleer 
[deKleer, 1979] [deKleer and Brown, 1984]. Magnitudes are represented in a quantity 
space. The quantity space for a number consists of all those amounts to which it is 
potentially related in the situation being modelled. The special value ZERO is always 
included in every quantity space, and relates the quantity space representation with 
sign information. 

Quantities are related to one another through Relations, which can be either or­
dering relations, functional relations, or influences. Ordering relations include simple 
statements regarding the relative values of quantities, such as: 

level(p) = level(q) 
pressure(p) Greater .lhan Zero 

Functional relations are a qualitative analog of continuous monotonic functions 
whose domain and range are real numbers. The following states that the level of 
water in a container is qualitatively proportional to the amount in the container: 

level(p) Q+ amouni_of(p) 

These are called Qualitative Proportionalities (Qprops). Qprops can be named, 
permitting the propagation of ordering information through separate instances of the 
same named relationship. The Process is the mechanism of change in QP theory . A 
process acts to change a situation by influencing some parameter(s) of objects in the 
situation. An Influence is similar in information content to a qualitative proportion­
ality, but affects the derivative of the range variable, rather than its amount. For 
example, the primary effect of a fluid-flow process is on the derivatives of the source 
and destination fluid quantities . 

amouni_o f (destination) I+ f low_rate 
amounLof(source) I- flow_rate 

Qprops are often referred to as indirect influences, smce they provide pathways 
through which direct influences propagate. 

Forbus' implementation of QP theory combines this basic domain information with 
an initial system description to perform measurement interpretation and envisioning. 
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The initial description contains only a listing of the basic physical objects in the 
situation, and need not identify any processes which may be active in that situation. 
These are automatically determined from descriptions of the conditions under which 
processes become active. The basic inferences performed are: 

l. Elaboration, in which all possible process instances which may occur in a situ­
ation are added to it. 

2. Process structure determination, that is, selection from the set of possible pro­
cess instances, those subsets which are mutually consistent and consistent with 
the known facts about the situation. Each such subset is a partial description 
of one or more possible qualitative states of the physical system. 

3. Influence resolution, in which the set of influences on each situation parameter 
is closed for each possible process structure, in an attempt to resolve the effect 
of the influences on the parameter. 

4. Limit analysis, in which predictions are made regarding possible transitions out 
of each qualitative state. 

For a detailed discussion of these inferences, see [Forbus, 1984]. We will primarily be 
concerned in this paper with influence resolution and a modification of it we term 
Linguistic Perturbation Analysis. In addition, we will briefly discuss extensions to 
process structure determination for dealing with uncertain information. For a more 
detailed discussion of these extensions, see [D'Ambrosia, 1986]. 

2 Example 

We now analyze a hypothetical model of a typical continuous flow industrial process, 
in order to demonstrate these steps and identify the capabilities and limitations of 
QP theory. Fig. i shows a simplified sketch of the process. Reactants in granular 
form enter through ~the port .at the top left ( a material flow process), and are heated 
to reaction temperature within the vessel ( a heat-flow process). When the reactants 
reach reaction temperature, they undergo a state change (a reaction), in which they 
disappear and a fluid product and an off-gas are created. The off-gas exits through 
the port at the upper right ( another material flow process). As the hot off-gas flows 
out of the reaction vessel, heat is transferred to the cool incoming reactants ( counter­
current heat flow). We will ignore the processes by which the product is extracted 
from the vessel and simply allow it to accumulate at the bottom. 

Our interest in a system such as this is in reasoning about it for purposes of process 
control. Many forms of reasoning are needed for process control, from which we 
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Figure 1: Reaction Vessel 

have selected two for initial investigation: measurement interpretation and prediction. 
Specifically, we would like to determine what might be happening in the system, given 
some observations of selected measureable parameters (measurement interpretation), 
and to estimate the effects of possible control actions (prediction). These control 
actions typically are adjustments to independent continuous parameters. 

A well established mathematical theory, control theory, exists for reasoning about 
systems such as this. Unfortunately, it is not applicable in many situations for any 
of four reasons: 

1. Observational data may be uncertain or incomplete . 

2. Precise mathematical models of the underlying physical processes may be un­
available or too complex for efficient reasoning. 

3. The results of mathematical modelling must be further interpreted before they 
can be used by human or automated control systems. 

4. Mathematical models carry only part of the modelling burden. Specifically, they 
cannot conveniently account for the appearrance or disappearance of objects in 
the situation being modelled, and do not account for the processes by which an 
appropriate model is formulated. 

QP theory, on the other hand, can reason with incomplete data, is computationally 
tractable, allows for description of system processes in terms familiar to those who 
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Figure 2: influence graph for furnace active state 

actually control such systems today, and can represent and reason about situations in 
which objects appear and disappear. For these reasons, QP theory offers the promise 
of significantly extending the scope of automated process control. 

The four basic processes crucial to understanding of the system described above, 
basic heat :flow, the reaction, material flow, and counter-current heat flow, are de­
scribed in detail in [D' Ambrosio, 1986). Given a suitable initial state description, the 
first two QP inferences identify three possible states for the situation described, (1) 
that nothing is happening, (2) that the only thing occurring is that the reaction vessel 
is being heated, or (3) that all processes are active. The state of interest is the one in 
which all processes are active. The influence graph in Fig. 2 illustrates a simplified 
version of the influences and qualitative proportionalities between variables in the 
state. 

Using influence resolution, we can determine various facts about this state, such 
as (a complete output for the three cases is shown in figure 3): 
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• If the heat input is increasing, the off-gas generation rate will be increasing also. 

• If the incoming reactant temperature is decreasing, the off-gas temp will be 
decreasing. 

However, we cannot determine: 

1. Is the product temperature increasing, decreasing, or constant? 

2. If the heat input is increasing, is the off-gas exit temperature increasing or 
decreasing? 

3. If we increase the heat input a little , how much will the generation rate increase? 

4. If the available observations do not uniquely identify a single state , which of 
the possible states is more likely? 

These limitations are the result of ambiguity in the conclusions derived using QP 
theory. 

3 Ambiguity in QP theory 

We identify two types of ambiguity in QP theory, Internal and External ambiguity. 
Internal ambiguity occurs when the use of QP theory produces multiple descriptions 
of a single physical situation. External ambiguity is the dual of this, namely when a 
single QP theory description corresponds to several possible physical situations which 
must be distinguished. Internal ambiguity is of two types. First, given a situation 
description, there may be ambiguity about which of several possible states a system 
is in ( e.g., given a leaky bucket with water pouring in, is the water level rising or 
falling?). Second, given a specific state, there may be ambiguity about what state 
will follow it ( e.g., given a closed container containing water, and a heat source heating 
the container, will it explode?). 

External ambiguity is the inability to determine, on a scale meaningful to an 
external observer, the duration of a situation , as well as the magnitude and intra­
situation evolution of the parameters of the situation ( e.g., how fast is the water 
rising? How long before the container explodes?) 

These ambiguities are the result of four fundamental limitations in QP theory 
representations and inference mechanisms: 

1. Inability to resolve conflicting functional dependencies. That is, if two influences 
on a parameter are of opposite sign, QP theory has no way to determine the 
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Parameter Influence QPA(Heater) QP A( reactants) 
Resolution 

P (reactants bin) - - ? 
A (reactants bin) - - ? 

T ( reactants bin) 0 0 + 
P (reactants furnace) ? - ? 
A (reactants furnace) ? - ? 
T (reactants furnace) ? + ? 
P (product furnace) + + ? 
A (product furnace) + + ? 
T (product furnace) ? + ? 
P (off-gas furnace) ? + ? 

Not 
A ( off-gas furnace) ? + ? 

e: 

T (off-gas furnace) ? + ? 
P ( off-gas off take) + + ? 
A ( off-gas offtake) + + ? 
T ( off-gas offtake) ? ? + 

Temperature (heater) 0 + 0 
Flow-Rate (reactants) ? + ? 

Flow-Rate (off-gas) ? + ? 
Flow-Rate (heat) ? + ? 
G-Rate (reaction) ? + ? 
Temperature-Lost ? ? -

Temperature-Gained ? + -

1. "?" indicates an ambiguity in the QP analysis . 

2. The two independent parameters are in boldface. 

3. The value shown is the sign of the derivative . 

Figure 3: Results of QP analysis of Furnace 
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resulting composite influence. This is caused by the weak representation for the 
functional form of dependencies, which captures only the sign but no strength 
information. 

2. Inability to order predicted state changes. This results in the inability to de­
termine which of several possible successor states will be the actual successor 
of a state. This is caused by lack of ordering information on change rates, as 
well as lack of quantitative information on the magnitude of change needed for 
state change. 

3. Inability to quantify, even approximately, parameters significant to external 
observers during times between major state transitions. This is caused by a weak 
model of intra-state situation evolution. Time, quantity values, and functional 
dependencies are all represented qualitatively in QP theory. 

4. Inability to represent non-boolean predicate and state possibilities. This pre­
vents the system from distinguishing between states which are possible, but 
highly unlikely, and states which are highly likely. 

Solving these problems requires extending QP representations to capture more 
information about the system being modelled. We have studied three classes of ex­
tensions: extensions to the quantity representations, the relationship representations, 
and the certainty representations. Specifically, we have developed an extension to QP 
theory which utilizes: 

• Belief function certainty representations - these will permit capture of partial 
or uncertain observational data, and estimates of state likelihood. 

• Linguistic descriptions of influence sensitivities - to reduce undecidability during 
influence resolution. 

• Linguistic characterizations of parameter values and ordering relationships - to 
permit captur~ of partial or uncertain observational data, and enable estimates 
of the effects of adjustments to continuous control parameters. 

It should be noted that these are extensions, not replacement representations. 
This extension is orthogonal to the quantity-space representation used in QP. The 
original quantity-space representation is retained, and is assumed in the examples 
presented in this paper. These extensions reason at the appropriate level of detail 
for the kinds of control actions typically needed, draw the needed distinctions, are 
computationally tractable, and can reason with the imprecise or uncertain data typ­
ically available. In this paper we concentrate on the second of these extensions, 
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linguistic influence sensitivities, and present a way of annotationing the relationship 
representation in QP theory to reduce ambiguity. Discussion of the integration of 
Dempster-Shafer belief functions with QP theory and the underlying ATMS can be 
found in [D'Ambrosio, 1987b]. A later section of the present paper also discusses our 
parameter value extensions and shows how they, in combination with the functional 
e)..-tensions, can be used to estimate the effects of potential control actions. Further 
details can be found in [D'Ambrosio, 1986]. See [Simmons 1 1987] for an alternate 
extended quantity representation . 

4 Linguistic Influence Sensitivities 

Basic QP theory cannot resolve the conflicting influences on the off-gas temperature 
parameter in our example. The influence resolution rule used by Forbus states that 
if opposite influences impinge on a single parameter, then the net influence on the 
parameter is unknown. In order to reduce the number of situations in which con­
flicting functional dependencies cannot be resolved, we extend QP theory functional 
descriptions with a linguistic influence sensitivity. Intuitively, this corresponds to dis­
tinguishing between first order, second order, etc., dependencies. ,vith this extension 
we can now address the second question unanswerable earlier: if we increase the heat 
input, will the offgas temperature increase or decrease? 

Forbus claims that if actual data about relative magnitudes of the influences is 
available, it can be used to resolve conflicts. We might attempt to achieve this by 
extending direct and indirect influences with a strength parameter. This is inad ­
equate, however, for two reasons. First, the overriding influence may not be local. 
Information may have to be propagated through several influences before reaching the 
parameter at which it is combined. Second, various sources of strength information 
have varying scopes of validity. In the following sections we first identify two basic 
influence subgraphs responsible for the ambiguity in our example, and argue that the 
ambiguity can be eliminated by annotating the subgraphs with influence sensitivity 
and adding additional situation parameters. ,ve then present extensions to the influ­
ence resolution algorithm for utilizing the sensitivity annotations, and finally describe 
a control structure for managing acquisition and use of annotation information. 

4.1 Identifying internal causes of conflict in influence graphs 

,ve have identified two basic patterns of influences which account for the ambiguity 
previously encountered. These are the conflict triangle (Fig . 4) and the feedback loop 
(Fig. 5). The reason, for example, that the change in offgas temperature in the offtake 
cannot be resolved is that there are two conflicting paths through which a single 
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Figure 4: Conflict Triangle 

parameter (offgas temperature in the reaction vessel) affects the target parameter. 
But the effect on temperature-lost is in this case smaller than the direct effect on the 
offtake temp, and can be ignored . We can indicate this by adding to the influence arc 
an annotation indicating temp-lost in counter-current heat flow is relatively insensitive 
to off gas temperature in the furnace (Fig 4b ). 

Another ambiguity in the QP theory analysis of the furnace is in the generation 
rate and associated variables. One of the causes of this ambiguity is the set of in­
fluences on product temperature shown in Fig. 3. Since both the generation rate 
and heat-flow rate are positive, the qualitative derivative of the product temperature 
is undecidable. This network is similar to one Kuipers [Kuipers, 1986) identifies as 
introducing a new landmark value, not in the original quantity space for the prod­
uct temperature. This new value represents an equilibrium value towards which the 
temperature will tend. Recognition of the existence of an equilibrium value per­
mits resolution of the effects of the conflicting influences on product temperature, 
depending on the assumed ordering between the actual product temperature and the 
equilibrium value. Kuipers adds the equilibrium value to the set of fixed points in 
the quantity space for the original variable. We, however, add it as a new parameter 
of the model, subject to influences similar to those of the original quantity. Thus , we 
can represent and reason about change in both the actual value and the equilibrium 
value in response to active processes. For example, if the actual temperature is only 
slightly sensitive to the heat-flow rate, but the equilibrium temperature is very sensi­
tive, then we might conclude that the system will be slow in returning to equilibrium 
once perturbed. The extended influence diagram for the feedback loop is shown in 
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Figure 5: Feedback Loops 

Fig 5. 

4.2 Sensitivity Annotations 

An influence is a partial derivative of a controlled variable with respect to a controlling 
variable. In QP theory, computing a value for a controlled variable takes place in two 
phases: 

1. All of the individual influences on the controlled variable must be identified and 
the effect of each of these must be computed. 

2. The various effects must be combined to determine the composite effect on the 
controlled variable . 

This procedure relies on local propagation to perform influence resolution. If 
local propagation is to carry the burden of our extended influence resolution, then 
the propagated value must somehow be extended to represent the sensitivity infor­
mation. The value being propagated in influence resolution is a quantity, and the 
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representation used is sign abstraction. If we model influences as describing the nor­
malized sensitivity of one variable to changes in another, then we can simply e:x.-tend 
the quantity representation for the influence quantity and use a discrete scale of in­
fluence magnitudes. \Ve then represent the actual value as a fuzzy set over this value 
space, to model the imprecision in the available sensitivity information. The follow­
ing observations lead us to choose a fuzzy set representation for influence sensitivity 
annot~tions: 

• A discrete representation matches well with the propositional style reasoner 
underlying our implementation. 

• The sensitivity is not always known with precision (recall our comment a.bout 
lack of precise mathematical models). 

• The sensitivity may not be constant over the range of the variables, or may not 
be independent of the values of other parameters. 

An alternate model is described in [Mavrovouniotis, Michael & Stephanopoulos, George; 1987). 
A major difference between their work and ours is our assumption that an annotation 
represents a normalized sensitivity. We show in the next section how this permits us 
to make semi-quantitative estimates, which we believe their system cannot do. \Vhile 
influence resolution using sensitivity annotations is conceptually simple, two ques-
tions arise. First, how can an appropriate discretization for the normalized change 
value (effect on one variable of changes in another), henceforth referred to as a.n in-
fluence value, can be determined. Second, How are influence values to be propagated 
through annotated influences. 

If we start with an n-level influence value discretization and an m-level sensitiv­
ity discretization, then after k influence propagation steps we seemingly might need 
an (nm)" influence value discretization to avoid information loss. This worst case 
complexity can be avoided, however, by the following four observations: 

1. We are only interested,in the result at a resolution equivalent to the original 
n-level discretization. 

2. Additional detail is only relevant when two annotated influences are being com­
bined, to aid in influence resolution if they conflict. 

3. Rather than annotating all influences in a graph, we will only annotate those 
necessary to disambiguate parameters of interest in a specific query. Vle can 
design the propagation algorithm to take advantage of this by treating an unan­
notated influence as an identity operator for influence values. 

12 



4. We use a fuzzy relational algorithm as the basic model for influence propagation. 
The basic fuzzy relational influence algorithm can be designed so that failure 
to maintain a fully detailed discretization only increases the ambiguity of the 
result, rather than produce incorrect results ( e.g. if the correct answer is 2.5, 
and our discretization for influence values contains only the values {l, 2, 3, 4, 
5}, we can represent the answer as the set { 2,3}) . 

Given this, we model sensitivity annotations as parameters of a standard fuzzy 
relational influence algorithm [Zadeh, 1973]. We choose a fuzzy representation to 
allow simple modelling of the imprecision of these annotations 2 • We next detail the 
algorithms used to compute the consequences of this fuzzy sensitivity . 

4.2.1 Computing individual influences 

An influence of the form: 

(Influenced-variable Q+ / - Influencing-variable, Sensitivity) 

is taken to specify a fuzzy relation between three amounts: C, the amount of the 
influencing variable; S, the amount of the influence sensitivity; and Iv, the influence 
value. The value of Iv can be computed as follows: 

where Q1,c,s(C, S) is the relation providing a degree of membership for each possible 
value of Iv for each value of C and S. A short review of fuzzy notation is in order at 
this point: µx(Y) is the degree of membership of element y in the fuzzy set denoted 
by x, and can take on values in {0,1}. When the argument is omitted, as below, it is 
assumed that the element is obvious from context. For example, "E,0 (µc) is the sum 
of the degree of memberships of each element in the fuzzy set C. Also, the notation 
x / y typically means that y is a member of a set to degree x. The formula above, then, 
defines the set Iv to consist of all the values of the elements of the relation Q1v,C,S· 
Each value may appear more than once in Q. The degree to which it is a member of 
Iv is the maximum of the degrees of membership specified in each appearance. The 
degree of membership resulting from an appearance of a value in Q is the minimum of 
the degree of membership of the corresponding value of the influencing variable ( C), 
the degree of membership of the corresponding valu e of the sensitivity annotation 
(S), and the degree of membership of the value :_n Q1v,c,s(C, S). 

2The underlying model we assume is of a set of independent , lin ear influences. Fuzzy set models 
of sensitivities permit us to allow for the inaccuracies of this model. 
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This relation ( Q Jv,c,s) can be customized when specific information is available. 
As a default, we use the following to generate the table, assuming ln.fiuence value and 
sensitivity annotations are both represented on a { ... -2, -1, 0, 1, 2, ... } scale 3 : 

Q1.c.s(Cj, Sk) = sign(Ci * Sk) * (abs(Ci * Sk) 112) 

In cases where the result is not in the original discretization, we use the set represen­
tation described earlier. Thus, we get the following default relation table for a fise 
element discretization for sensitivities and influence values: 

C/S -2 -1 0 1 2 
-2 2 {1,2} 0 {-2,-1} -2 
-1 {1,2} 1 0 -1 {-2, -1} 
0 0 0 0 0 0 
1 {-2, -1} -1 0 1 {1,2} 
2 -2 {-2, -1} 0 {1,2} 2 

4.2.2 Combining influences 

Sensitivity annotations provide us with a means of estimating influence magnitudes, 
which are directly comparable. Below we show an algorithm for computing the com­
bined effect of two influences. A rough translation is that an element is definitely a 
member of the set of possible values for the combined influence if that element is a 
member of the value sets for both input values, or if it is a member of the value set 
for one input, and a weaker element of the same sign is a member of the value set 
for the other input. Also, an element of the discretization may be an element of the 
result set under two conditions. First, if it is a member of the value set of one input, 
and a element of the same magnitude but opposite sign is a member of the value set 
for the other input. Second, if an element of the same sign but greater magnitude is a 
member of one value set, and an element of the opposite sign and greater magnitude 
is a member of the other value set. We formalire this algorithm as follows: 

(µ1v1(i) /\ µ1v2(i)) 

v(v;,[il<lil(µ1v1(i) /\ µ1v2U))) 
V(µ1v1 ( i) /\ µ1v2(-i) /\unknown) 

V(V;J>i Vk,k<-i (µ1v1U) /\ µ1v2(k) /\ unknown)) 

Subscripts i, j, and k are assumed to be O for no influence, increasing positive for 
positive influence elements, and increasing negative for increasing negative influence 

3 All the algorithms we present are independent of the actual discretization used. ""e typically 
use a five or seven element discretization, that is, {-2, -1, 0, 1, 2 } or {-3, -2, -1, 0, 1, 2, 3}. 
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elements ( e.g., -3, -2, -1, 0, 1, 2, 3 for a seven element discrete scale, with -3 the 
strongest negative influence). The above is only half of the formula actually used. 
The actual relation is symmetrical in the two influences Ivl and Iv2. 

4.3 Annotation Management 

In examining the sources of ambiguity in the reaction vessel example, we note that 
many of the annotations which could resolve the ambiguities are not universally valid. 
In fact, we identify four levels of validity for an annotation. These validity levels are 
determined primarily by opportunities in the implementation: 

1. An annotation is universally valid when it can be incorporated directly into a 
view or process description, and correctly describes the functioning of a par­
ticular influence in all situations in which an instance of the view or · process 
participates. These are rare. 

2. An annotation is scenario valid when it correctly describes the operation of a 
particular influence in a particular view or process instance, for all qualitative 
states in which the instance is active. Product temperature annotations in the 
example are an instance of this annotation type. 

3. An annotation is state valid when it correctly describes the operation of a par­
ticular influence in a view or process instance, only for a defined subset of the 
qualitative states of a system. 

4. Annotation is query valid when it correctly describes the operation of a partic­
ular influence in a view or process instance, only for a particular query. The 
conflict triangle annotation for determining off-gas temperature in the offtake 
is an example of this type of annotation. 

The first type of annotation can simply be part of the basic view or process 
definition. The other three a!"e added to the QP description of a scenario as needed 
during problem solving. A four step algorithm extends the basic QP theory influence 
resolution algorithm: 

1. Execute the basic influence resolution. 

2. Check results for ambiguities in parameter values of interest. If all interesting 
parameter values are determined uniquely, then problem solving is complete. 
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3. Otherwise, search the influence graph for instances of ambiguity causing sub­
graphs. If one is found, and the parameter for which it might create an am­
biguity is ambiguous, then annotate the subgraph with influence sensitivity 
information if available. 

4. Re-execute the basic influence resolution algorithm on the now annotated graph. 

This algorithm assumes the extended QP reasoner is embedded in a larger system 
,,·hich has or can obtain the necessary problem specific information to resolve ambi­
guities. It provides a problem directed way of selecting aspects of the larger system's 
problem specific knowledge relevant to the query being processed. 

5 Linguistic Perturbation Analysis 

QP theory cannot directly answer quantitative questions about the effect of changes 
to independent parameters. Yet, many approaches to process control require a means 
to estimate the effects of hypothetical actions. The four basic deductions of QP 
theory do not directly address this problem, even on the qualitative level. However, 
a relatively simple extension of influence resolution does permit qualitative analysis 
of the impact of control actions. We use the influence graph for the state of interest 
and perform a qualitative form of classical small signal or perturbation analysis. This 
analysis is based on de Kleer's IQ analysis [deKleer and Brown, 1984]. 

Straightforward application of small signal analysis yields qualitative estimates 
of the effects of control actions subject to the same limitations as the original QP 
deductions. Situations can arise in which it is impossible to determine whether a 
target parameter Tii.lue will. increase or decrease following a control action. Also, many 
of the control actions which must be reasoned about are adjustments to continuous 
control parameters. Simple increase or decrease results are insufficient for reasoning 
about this kind of control. It is important to be able to estimate how much the 
increase or decrease will he. 

The same functional characterizations used to extend influence resolution in the 
previous section can also remove much of the qualitative ambiguity. Also, these same 
annotations can he used to obtain linguistic estimates of change magnitudes. This 
results from our interpretation of function strength annotations as normalized sensi­
tivities. By integrating these annotations with the linguistic quantity space extensions 
described below we can obtain complete semi-quantitative estimates of the effects of 
control actions. "\Ve call this complete procedure Linguistic Perturbation (LP) Anal­
ysis. This section builds up the LP analysis algorithm step by step, starting with the 
simpler qualitative perturbation analysis. 
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Parameter Standard Extended 
Influence Influence 

Resolution Resolution 
P (reactants bin) - -
A (reactants bin) - -

T (reactants bin) 0 0 
P (reactants furnace) ? 0 
A (reactants furnace) ? 0 
T (reactants furnace) ? + 
P (product furnace) + + 
A (product furnace) + + 
T (product furnace) ? 0 
P ( off-gas furnace) ? 0 
A ( off-gas furnace) ? 0 
T (off-gas furnace) ? 0 

P ( off-gas offtake) + + 
A ( off-gas offtake) + + 
T ( off-gas offtake) ? -

Temperature (heater) 0 0 

Flow-Rate (reactants) ? -
Flow-Rate (off-gas) ? -

Flow-rate (heat) ? 0 

G-Rate (reaction) ? + 
Temperature-Lost ? + 

Temperature-Gained ? + 
Figure 6: Comparison of Results of Influence Resolution 
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5.1 Qualitative Perturbation Analysis 

Classical small signal analysis determines a delta for a target parameter given a 
delta for a control parameter. This change is determined by evaluating the partial 
derivative of the target with respect to the control parameter at the current value of 
the parameters, and multiplying that value by the control delta. A simple qualitative 
version of this procedure would be to multiply a qualitative form of this partial 
derivative by the sign of the control delta. This is only valid as long as the change in 
the control parameter does not result in a change in the view and process structure for 
the situation. This is the qualitative equivalent of "small signal" analysis. Therefore, 
a restriction on the application of this technique is that either the current view and 
process structure must not be dependent on any equality quantity conditions or, if it 
is, their validity must not be affected by the proposed change. 

This procedure is simple to perform, and the partial derivatives are already rep­
resented as influences in the influence graph. de Kleer has developed a qualitative 
procedure for performing this computation which he calls IQ analysis. A problem 
arises in determining the qualitative change values in de Kleer's confluence formal­
ism, though, because arcs are undirected and he allows cycles in the influence graph. 
This requires search to find a globally consistent solution, which he performs by in­
troducing assumptions about unknown values, and backtracking as needed. 

Forbus eliminates the possibility of cycles in QP theory by fiat, claiming that cycles 
violate intuitive notions of causality and are unnecessary[Forbus, 1984). The result 
of this simplification is that the search intensive IQ algorithm of de Kleer reduces to 
the simple one-pass influence resolution algorithm of Forbus. An adaptation of this 
algorithm for qualitative perturbation analysis is shown in Fig. 7. This algorithm 
uses the derivative of each quantity to store the delta. The basic difference between 
this and inference resolution is that we initialize certain derivatives to non-zero values. 

However, while this algorithm is adequate for Influence Resolution, it is inadequate 
for Qualitative Perturbation Analysis. The problem is that the sign of the target 
parameter delta is not always the sign of the first derivative. It is the sign of the 
lowest order nonzero derivative 4 • This fact renders the one-pass influence resolution 
algorithm only a partial solution to the problem of perturbation analysis. The graph 
of Fig. 8 shows the problem. 

A simple analysis of this diagram according to the above algorithm would lead 
one to conclude that ((D (Amount product)) = 0). However, the correct answer 
is ((D (Amount product) > 0). The reason is that, while the first derivative is 
zero, the second derivative is positive. Therefore, assuming the change persists for 
a finite period of time, the eventual result will be a positive first derivative, and 
therefore a positive delta. Increasing the temperature of the reactants will increase 

4This depends critically on the state persisting for some nonzero time interval. 
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(defun Simple-QPA (delta-list) 

) 

make a list of all quantities (amounts and first derivatives) 
in the situation, ordered by dependencies 
(this is the same as for influence resolution) 

set the value of each quantity in the delta list to the value 
specified, set all others to unknown 

For each quantity: 
If positive direct influences and no negative direct 

influences and no unknown direct influences, set its value 
to positive 

If negative direct influences and no positive direct 
influences and no unknown direct influences, set its value 
to negative. 

If both positive and negative direct influences, or any 
unknown direct influences, set its value to unknown . 

If no direct influences, then: 
If positive indirect influences, and no negative or unknown 

indirect influences, set its value to positive. 
If negative indirect influences, and no positive or unknown 

indirect influences, set its value to negative. 
If both positive and negative indirect influences , set its 

value to _ unknown. 
Else set its value to zero. 

Figure 7: Simple Qualitative Perturbation Analysis Algorithm 
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Temp(x) -Q+-> (Rate y)-1+-> Amount(z) 

((D (Temp x)) > 0) 
((D (Amount z)) ? 0) 

Figure 8: QP Sample Influence Graph and Query 

the amount of product produced over any non-zero time interval, if all other factors 
are held constant. Information about second derivatives can be obtained from direct 
influences (I+/I-) in QP theory. 

The inference sanctioned by QP theory, given that the amount of product is 
directly positively influenced by the generation:.rate, is that if the amount of the 
generation-rate is positive, then, in the absence of conflicting influences, the deriva­
tive of the product amount is also positive. However, we can make the same inference 
for the next higher order set of values. That is, if the first derivative of the generation­
rate is positive, than, in the absence of conflicting influences, the second derivative 
of the product amount is also positive. Combining this with the perturbation anal­
ysis rule that the result of perturbation analysis is the value of the lowest non-zero 
derivative, we conclude that the correct result for the example of Fig. 8 is that 
the amount of product will increase, since the second derivative is the lowest order 
non-zero derivative. This is equivalent to treating selected direct influences (I+/I-) as 
indirect influences (Q+/Q-), thereby re-introducing loops into the influence graph and 
destroying the one-pass nature of Forbus' algorithm . A revised algorithm for QPA is 
shown in Fig. 9. The key change to the previous algorithm is that, once the previous 
one-pass algorithm is complete, the new algorithm searches for the earliest (in terms 
of the quantity dependency partial order) derivative which is zero, and which has a 
non-zero second derivative. It then assigns that value to the first derivative, thus 
starting a new round of influence propagation. The procedure repeats until no such 
zero derivatives can be found. This is the algorithm used to derive the results shown 
in Fig. 3. Notice that this algorithm uses the same basic procedures for computing 
individual influences and combining them that are used in influence resolution . 
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defun QPA (delta-~ist) 
Perlorm Simple- Q?A as described earlier. 
Execute repeate:ily until no further changes occur: 

For each quant~ty in the quantity list: 
If the quan~ity is a derivative and has a value of Zero 

perfo~ a higher order derivative check and set its 
value according to the results. 

If the value is now not zero, mark a change has occurred. 
Also, if any changes have occurred on this pass through the 

quantity list, then re-execute normal influence check for 
this quaJ:itity. 

defun high-order-deriv-check (quantity) 

;;This function is only invoked on derivatives with a current 
;; value of Zero. 

Set the minus-list to the list of direct negative influences 
(I- vith positive derivative of influencing parameter, 
I+ vith negative derivative of influencing parameter, or 
I+ or I- ~ith unknown derivative of influencing parameter) 

Set the plus-list to the list of direct positive influences 
If the plus and minus lists are both empty, do nothing. 
If the plus-list is non-empty, and the minus list is empty, 

set the quantity value to plus. 
If the minus-lirt is non-empty, and the plus-list is empty, 

set the quantity value to minus. 
If neither list is empty, set the quantity value to unknown. 

Figure 9: Revised Qualitative Perturbation Analysis Algorithm 
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5.2 Extended Perturbation Analysis 

The analysis described in the previous section is capable of deriving many useful 
results. Our furnace example has only two independent parameters, the temperature 
of the heat source and the temperature of the incoming reactants. Examination of the 
results of Qualitative Perturbation analysis shown in Fig. 3 reveals that there are some 
indeterminacies in the analysis, though. The sources of these ambiguities have already 
been discussed in the previous section. By replacing the basic influence computation 
and combination algorithm of QP theory with the extended algorithm discussed in 
that section, we can eliminate those ambiguities. Figure 5.2 show the results of 
extended QPA using the annotations described earlier, and compares these results 
with the results of analysis without annotations. The figures follow the same format as 
those for influence resolution shown in the preceding section, and the same comments 
apply, except that the value shown is the computed delta. \Ve compare results both 
for the increased heat query (labelled "heater") and the increased incoming reactant 
temperature query(labelled "reactants"). 

5.3 Final Form: Linguistic Perturbation Analysis 

QP theory is limited in the range of "what if" or small signal perturbation analysis 
questions it can answer by its restricted representations. We have seen that we can 
reduce the ambiguity in its analyses by adding additional functional characterizations, 
and providing a semi-quantitative extension representation for influence magnitudes. 

- In traditional small-signal analysis we can obtain an estimate of the final value of a 
target parameter by adding the computed delta to the initial value for the parame­
ter. QP theory provides no representation for parameter magnitudes to which we can 
add a computed delta to obtain any meaningful result. The problem is that there 
is no information within the theory itself which permits us to establish any relevant 
distinctions beyond those already made in the quantity space, and these distinctions 
establish an ordinal, not a cardinal, scale. We can do more in reasoning a.bout the 
consequences of chaJ?.ge by pr~>Viding an extension theory which can represent distinc­
tions relevant to an external agent. We use a linguistic variable representation to meet 
this requirement. For our purposes, we will simply consider a linguistic variable to be 
a possibility distribution over a discrete set of "interesting" values in some domain. 
For a more complete discussion, see [Zadeh, 1975]. 

Using linguistic variables as the needed quantitative representation of parameter 
magnitudes, we have developed a four step procedure to perform a linguistic version 
of perturbation analysis. This procedure will need substantial amounts of situation­
specific quantitative information, which could be obtained either by default, by ob­
servation, or directly from the user. The procedure assumes that we are performing 
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Parameter QPA EQPA I OPA EQPA 
Heater Heater Reactants Reactants 

P ( reactants bin) - - ? -
A ( reactants bin) - - ? -
T ( reactants bin) 0 0 + + 
P ( reactants furnace) - - ? -
A ( reactants furnace) - - ? -
T (reactants furnace) + + ? + 
P (product furnace) + I ? + T 

A (product furnace) + + ? + 
T (product furnace) + + ? -
P ( ofLgas furnace) + + ? + 
A ( off ..gas furnace) + + ? + 
T ( off _gas furnace) + + ? -
P ( off _gas offta.ke) + + ? + 
A ( o:ff..gas offta.ke) + + ? + 
T ( off _gas offta.ke) ? + + + 
Temperature (htr) + + 0 0 

Flow _Rate (reactants) + + ', + 
Flow _Rate ( off _gas) + + ? + 
Flow _rate (heat) + + + + 
G_Rate (reaction) + + ? + 
Temperatu.re_Lost ? 7 - -
Temperatu.re_GainE:d + + - -

Figure 10: Extended QP A Example Summary 
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the perturbation analysis around some state for which we know the quantitative ex­
tension base values for both the source and target parameters. If we have not been 
able to establish these values either by observation or by influence resolution , then we 
assume that the extension base values are established by a Correspondence provided 
to the system. The four steps are listed below and detailed in subsequent paragraphs: 

1. Compute input influence. 

2. Propagate influence through influence graph. 

3. Convert computed influence into new target parameter value. 

4. Check reasonableness of result. 

For purpose of illustration, we will follow the problem of estimating the effect on 
reaction rate and off-gas exit temperature if we increase the temperature of the heat 
source from low to medium. We assume that the extension base values are provided 
from observation. Computing the input influence is a knowledge-based process. We 
assume that the system has available a mapping function (parameter-specific) which 
maps from an old and new input parameter value pair to an influence strength 5 • 

This mapping function can be expressed as a fuzzy relation between input values and 
influence magnitudes. Given a matrix IR specifying this mapping function, we can 
compute the influence equivalent of the delta as: 

Influence= N ew_valu.e 0 Cu.rrenLvalu.e 0 Influ.ence..Relation 

µ1v(k) = I: µNew(i) I\ µold(j) I\ µrn(i,j, k) 
iJ 

Propagating this influence through the view and process structure of the state 
uses the extended perturbation analysis algorithm described earlier . The coarseness 
of the influence representation needed is in general a function of the coarseness of the 
discretization of the goal parameter as well as the number of influence annotations 
made and their coarseness. We provide no procedure for computing this, but assume 
the user has selected an appropriate discretization. In general this must be main­
tained as relatively coarse: as it gets finer and finer, it approaches assuming a linear 
model, which is an invalid assumption in most cases. One problem arises, however, 

5 A Temperature increase from 90 degrees C to 110 degrees C might be a big or little change 
- there is no information internal to the theory which can be used to determine this. Since all 
parameters in a quantity space share a single value discretization, number of discrete steps in the 
change does not directly provide this information . 
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in using the extended qualitative perturbation analysis algorithm to estimate quan­
titative changes. Influence relations (I+ /I-) are qualitative abstractions of equations 
with a temporal aspect[deKleer and Bobrow, 1984]. In general, in order to obtain a 
quantitative estimate of the effect of propagating a delta through a direct influence, 
we must know how long the delta is in effect. We could ignore this problem in the 
qualitative analysis for three reasons: 

1. dt is simply a scaling parameter which affects all direct influences proportion­
ately, and therefore does not affect their relative magnitudes when combining 
conflicting direct influences. 

2. Most directly influenced variables, as we saw in section 4, exist in feedback loops 
which control their values. When considering only the change in equilibrium 
due to a control action, time no longer need be considered. The amount of the 
shift in the equilibrium value is determined solely by the relative strengths of 
the direct and indirect influences in the feedback loops around the equilibrium 
variable. 6 · 

3. When combining direct and indirect influences for a parameter not in equilib­
rium, we can assume that the strength annotation on a direct influence is chosen 
to reflect its effect after some nominal time period. 

The first and second of these three assumptions are still valid for quantitative (Lin­
guistic) analysis, but the third might not be. The extended qualitative perturbation 
analysis algorithm presented earlier must therefore be extended to scale influences 
propagated through direct influence arcs (I+/I-) by a user specified time delta. How­
ever, in accordance with assumption two above, this must only be done for influences 
which are not part of feedback loops for variables in equilibrium. The example in fig. 
11 does not incorporate this extension, and must be viewed as estimating results for 
some standard nominal time delay after the change action is taken. 

The next step is the inverse of the first step, combining the resulting influence 
with the initial goal_ parameter value to obtain a final result. Assuming the influence 
relation (IR) is represented in matrix form, this inverse relation is straightforward to 
compute: 

Fig. 11 shows the result of a linguistic perturbation analysis for a moderate 
increase in heater temperature. The system is able to make several interesting dis­
tinctions, such as the fact that, while the temperature of the product in the furnace 

6Note that while this argument and the previous one are each independently reasonable, each is 
based on assumptions which contradict the assumptions of the other! 
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is unlikely to change much, the off-gas temperature in the offtake may change signifi­
cantly. Such approximations are subject to substantial inaccuracy , and a person who 
attempts such rough estimates will try to verify their reasonableness somehow. We 
can do this by testing whether the results satisfy the quantity restrictions 7 • for the 
state. 

We can perform the reasonableness test in either of two ways . First, we can directly 
test whether or not the estimated value for the target parameter is within its quantit y 
restriction. The restriction values are automatically derived by our implementation 
for each possible system state. Alternately, a more extensive test can be performed 
by estimating the final values of all parameters of the state, and testing whether or 
not all parameter pairs satisfy all quantity conditions imposed on them by the state . 
This is a more restrictive test, since testing each parameter in isolation may miss 
relational constraints of the state. 

5 .4 Summary 

In this section we have developed a technique for using QP theory to reason about the 
consequences of continuous control actions within a qualitative state. Starting from 
the classical method of small signal analysis, we developed a qualitative notion of 
small signal analysis, and extended the basic influence resolution algorithm of Forbus 
to perform this analysis. We then combined this basic algorithm with the quantita­
tive extensions for parameter values developed earlier , and presented a technique for 
estimating the effects of continuous control actions within a qualitative state. 

6 Evaluation 

Each of the above algorithms requires different information from the user and makes 
certain assumptions about the information provided which might limit the applica­
bility of the algorithm. 

Linguistic influence resolution derives its power from two sources, functional strength 
annotations and an -appropriate discretization of the influence propagation parame­
ter. We have already identified four classes of annotation: universal, system specific, 
state specific, and query specific. Of these, query-specific annotations are potentially 
the most troubling. While we have specifically excluded from consideration here the 
source of annotation information , it still remains to demonstrate that it is at least 
feasible that some external knowledge source could provide the required information. 
Recognizing that an annotation is appropriate requires that sufficient information 

7 A quantity restriction is the possibility distribution representing the union of all possible values 
the parameter can have in a particular system state . 
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Values prior to control action: 

Domain for Heater and Product Temperature (in degrees C): 
50, 100, 150, 200, 1000, 1500, 2000, 2500, 3000, 3500 

Domain for generation rate (in arbitrary mass units per minute): 
100, 125, 150, 175, 200 

Domain for off-gas Temperature in offtake (in degrees C): 
100 200 300 400 500 

Observations are expressed as D/S belief distributions over 
possible values: [belief,plausibility]/value + [bel,plaus]/val + ... for all 
values with plausibility > 0: 

(Temp heater): [1, 1)/2500 
(Temp product): [O, 0.01)/1000 + [.84, 1)/1500 + [0, .01)/2000 
G-Rate: [.95, .97]/125 + [.03, .05)/150 
(Temp (c-s off-gas offtake)): [.95, .97)/200 + [.03, .05)/300 

Now do LP analysis - new heater temp is one discretization element higher 
than before: 

(lpa h new_value = [1, 1)/3000) 

Estimates of system parameter values following control action: 

(Temp heater): [1, 1)/3000 
(Temp product): 
[0, .01)/1000 +· [0, 1)/1500 + [0, 1)/2000 + [0, .01)/2500 
G-rate: [0, 1)/125 + [0, 1)/150 + [0, 1)/175 
(Temp ( c-s off-gas offtake): [0, 1)/200 + [0, 1)/300 + [0, 1)/400 

Figure 11: Linguistic Perturbation Analysis Example 
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be available at the time the annotation is requested. A query specific annotation is 
requested when preliminary application of the influence resolution algorithm reveals 
an ambiguity in the result for some interesting parameter. At that time, several facts 
are available to aid the search for relevant query-specific annotations: 

1. The subgraph causing the ambiguity can be recognized using graph matching 
techniques. 

2. The entry point of the change into the graph is readily identifiable by examining 
the change values of the nodes influencing subgraph nodes. 

3. The component(s) which generated the subgraph can be identified as long as 
this information is recorded when the influence graph is constructed ( the current 
implementation does not do this). 

These facts seem to be exactly those which might be expected to trigger recognition 
of the relevant query-specific patch. 

The second problem is the choice of an appropriate discretization for the influence 
parameter. This has been discussed earlier and shown not to be as critical as it might 
seem. The worst result of choosing too coarse a discretization is that some ambiguity 
remains in the final result which might have been eliminable. Also, a discretization 
finer than that of the control and observable variable values is only necessary when 
combining annotated influences, not whenever computing individual annotated influ­
ences. Thus, the minimum discretization needed to maintain full information grows 
more slowly than might be expected. We have obtained adequate results on the ex­
ample used in this paper using an influence discretization with the same coarseness 
as the discretization for functional strength anriotations. 

Finally, we note an implicit assumption that annotations are intended to resolve 1~ 
cal ambiguities. There may be a danger when an influence computed using a strength 
annotation propagates outside the locale where it is valid and combines with an influ­
ence from another, unrelated annotation. It is partially for this reason that we have 
adopted the _approach of only adding those annotations actually needed to resolve 
ambiguity, rather than all possible annotations. This procedure has been sufficient 
for all examples studied so far. Should it turn out inadequate in other applications, 
another alternative would be to "age" influences, that is, to broaden or fuzzify them at 
each propagation step. This would serve to nullify the effect of strength annotations 
outside the immediate environment for which they are intended. 

The second and more complex of the procedures we have described in linguistic 
perturbation analysis. It depends on the ability of the user to establish suitable dis­
cretizations for parameters of interest, in addition to all of the information needed for 
linguistic influence resolution. It also places special demands on the functional ann~ 
tations. These annotations must now describe quantized partial sensitivities of one 
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parameter with respect to another. ,,'bile this use of annotations is consistent with 
the use made by linguistic influence resolution ( and in fact solves the problems cre­
ated by propagation beyond local domain of applicability described abo,·e), it makes 
far more intensive use of the annotation mecharnsm. This therefore raises again, and 
even more strongly, the problem of establishing an appropriate discretization for the 
influence parameter. However, the same comments made earlier apply here - the only 
danger of an insufficient discretization is an increase in the ambiguity of the result. 
In fact, establishing a fairly coarse discretization can be a useful wa.y to prevent over 
reliance on the linearity assumption inherent in LPA. Our development of the LPA 
algorithm depended on equilibrium assumptions. An e)..'iension of this to nonequi­
librium situations is necessary. Finally, it is not yet clear that the use of the same 
annotations is valid when a direct influence is used to estimate a second derivative in 
the basic QPA algorithm. 

7 Summary 

7.1 Review 

We began this work · with an interest in pursuing a symbolic, knowledge-based ap­
proach to the control of complex engineered systems. The work presented here has 
been based on two premises. First, we believe that Qualitative Process (QP) the­
ory offers potential for reasoning about the control of complex engineered physical 
systems, especially when they are poorly understood or the capability for making ob­
servations of the systems is limited. Second, we surmise that problem solving in this 
domain proceeds by an iterative process of building, applying, and patching models 
of the system under consideration. 

On the basis of these premises we examined QP theory and found it severely 
limited in its present form. First, it is often unable to determine unambiguously 
the qualitative value of system parameters. Often, when information is available 
which could potentially serve to disambiguate results, there is no way to express 
the information within QP tbeory. Second, QP theory in its current form provides 
no facility for performing quantitative reasornng. Many of the tasks involved in 
control of engineered systems involve adjustments of continuous control parameters, or 
estimation of effects relative to some scale external to the system under consideration. 
Both of these reasoning tasks require some form of quantitative capability. 

In order to surmount these problems, we have developed a set of extensions to QP 
theory which reduce internal ambiguity and expand the scope of QP theory, by pro­
viding an extension theory which can reason semi-quantitatively about consequences 
of external control actions. These extensions are based on the use of linguistic vari-
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ables to represent the uncertain or imprecise system-specific information typically 
available to supplement models built from a domain theory. The extension set has 
three basic components: 

1. A Linguistic Quantity Space, which can represent partial information about 
quantity conditions and relate quantity orderings with linguistic descriptions of 
parameter magnitudes. These linguistic parameter values make user rele vant 
distinctions. 

2. Linguistic functional strength annotations and an extension to the influence 
resolution algorithm which makes use of these annotations to resolve ambiguity. 

3. Linguistic Perturbation analysis, which builds on all of the above mechanisms 
and provides a way to estimate the effects of hypothetical control actions. 

We have shown, at least for the example problem, that these extensions can be 
used to derive answers to several qualitative and quantitative questions which cannot 
be answered using basic QP theory. Specifically, we have demonstrated: 

• The unambiguous determination of qualitative parameter values given linguistic 
functional strength characterizations (linguistic influence resolution). 

• The semi-quantitative estimation of the effects of adjustments to continuous 
control parameters (linguistic perturbation analysis). 

7 .2 Further Research 

Much work remains to be done. Most importantly, the work described here must be 
extended to include limit analysis, the fourth basic deduction in QP theory. With 
semi-quantitative estimates of both parameter values and change rates, it should 
be possible to choose between possible future states which basic QP theory cannot 
disambiguate, as well as estil_Ilate state durations. 

Also, we have given only the briefest sketch of possible kinds of additional func­
tional description which could be used to reduce the ambiguity of the results of the 
basic QP theory deductions. Functional relationships often have a temporal character 
as well as relative strengths. What characteristics of relationships between contin­
uous parameters of a situation do people observe? How are these characteristics 
remembered, and how are they used in problem solving? 

This last question touches on another major research area, the subject of our 
second basic premise. What is the nature of the overall problem solving architec­
ture? What other kinds of knowledge are available during reasoning about physical 
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systems besides domain theories of the kind representable in QP theory? Hmv are 
they combined? \Ve have suggested ambiguity-based model patching as one possible 
mechanism for interaction of different kinds of knowledge: there must be others . 
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