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This tutorial discusses one of the oldest problems in computing: how to search and 
retrieve keyed information from a list in the least amount of time. Hashing -- a 
technique that mathematically converts a key into a storage address -- is one of the 
best methods of finding and retrieving information associated with a unique identifying 
key. We briefly survey techniques which have evolved over the past 25 years and then 
introduce more recent research results for extremely compact and fast methods based 
on perfect and minimal perfect hashing. Perfect and minimal perfect hashing is useful 
for rapid lookup of keywords in a compiler, spelling checkers, and database 
management systems. The results presented here show techniques for constructing long 
lists which can be searched in one memory reference. 
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INTRODUCTION 

A classic problem in computer science is how to store information so that it can be 

searched efficiently. That is, given a set of records R, 

where 

R = { r1, r2, ... rk} 

ri = (Ki,Di), 

Di is a data part, and 

Ki is an identification part called the key. 

We want to retrieve arbitrary records from R with the fewest possible number of 

comparisons of keys. R is typically stored as an array or array-like structure. For 

example, R might be stored as a direct access file when used in a database management 
system, or as a simple array when used to hold tabular data in a running program. 

An Example: The Calendar Problem 

It will be helpful to illustrate the techniques described in this paper by example. The 

calendar problem typifies the class of problems well suited for hashing. Suppose R is a 
calendar containing 3-letter abbreviations for the months of the year and their number 
of days: 

R = { (JAN, 31), (FEB, 28), (MAR, 31), (APR, 30), (MAY, 31), (JUN, 30), 
(JUL, 31), (AUG, 31), (SEP, 30), (OCT, 31), (NOV, 30), (DEC, 31) } 

Obviously, ri is the ith month of the year and Di is the number of days in the ith month. 

Each record contains both key and data fields -- Ko= JAN, and Do= 31, for example. To 

find how many days are in the month of August, R must be searched for matching key 
Ki=AUG and the corresponding value i=7 returned. The value D7=31 tells how many days 

are in August. The problem, then, is to find ways to store R such that retrieval of the 
number of days in a specific month is fast and storage efficient. 

Solutions to the Calendar Problem 

The calendar problem can be solved in a number of ways. First, we can store R in an 
array and the array can be searched sequentially from top-to-bottom using a linear 
search algorithm. An average search would require (12 + 1 )/2 = 6.5 comparisons to find 
an arbitrary month. This solution is memory efficient, but the search time grows 

linearly with the size of R -- doubling the size of the list also doubles the average 
time to locate an item. In many applications, linear growth in search time with 
increase in list size is not acceptable performance. 



A second way to solve the calendar problem is to sort the list of months and use an 
ordered table searching algorithm, such as a binary search. Binary search requires an 
average of log2(12) = 3.5 comparisons to locate a record. While the binary search 

solution is a dramatic improvement over linear searching, it has two major drawbacks. 

First, the set R must be sorted, and sorting is in general very time-consuming even if 

it is done only once when R is entered into computer memory. Second, even though the 
average lookup time grows more slowly than does linear search, search time is still a 

function of the size of R. 

A third way to solve the calendar problem is to use hashing. The records in Rare 
stored in an array indexed from zero to some upper limit, and a mathematical function 
is used to convert each key into a unique array index. When searching the array for a 
certain month, the mathematical function transforms the search key into the 
corresponding array index so the desired month and day are retrieved in one comparison. 
The success of such a scheme depends on finding the appropriate mathematical 
function. 

A hash function maps each key to a unique array index. There may be many hash 
functions which solve the calendar problem. One such hash function is given below. 

h(KEY) = (first_letter(KEY) + second_letter(KEY) ) mod 13 

This hashing function maps each key of R into a corresponding number between O and 12 
by summing together the ASCII code equivalent of the first and second letters in each 
key. The remainder of the sum is used to "scale" the index value to a number between 0 
and 12 -- correponding to the index of each array element. Assuming the keys arrive in 

chronological order, the following mapping is obtained for all 12 months in R. 

KEY h(KEY) Comparisons 

0 MAY 12 2 
1 NOV 1 1 
2 APR 2 1 
3 JUN 3 1 
4 JUL 3 2 
5 OCT 3 3 
6 
7 AUG 7 1 
8 DEC 7 2 
9 JAN 9 1 
10 FEB 9 2 
11 SEP 9 3 
12 MAR 12 1 

Figure 1 



The hashing function must produce unique correspondences between key and index, but 
as shown in the calendar problem, uniqueness is not guaranteed by the mathematical 
function. This occurs because conversion of alphanumeric strings into relatively small 
integers often results in a collision - two or more different keys map into an identical 
integer. Keys that collide in this manner are called synonyms. For example, (JUN, JUL, 
OCT), (AUG, DEC), (JAN, FEB, SEP), and (MAR, MAY) collide in the hash table shown in 
Figure 1. 

Various offset rules have been proposed to "correct" the problem caused by collisions. 
The simplest rule is called linear offset, because it finds unique index correspondences 
by searching forward in the table using a linear search. 

We resolved collisons in Figure 1 by searching forward for the next empty slot in the 
array. Each forward search increases the number of comparisons needed to map the key 
into its index. Thus, imperfect mapping leads to an inefficiency in subsequent searches. 
The comparison column shown in Figure 1 gives the number of comparisons to locate 
each key in the hash table. The average number of comparisons is 1.67 -- a number 
which is an improvement over either linear or binary search. 

The calendar problem illustrates how hashing can be used to advantage, but it also 
illustrates some of the difficulties inherent in the general problem of hashing. The 
purpose of this paper is to show how to apply hashing to various applications, indicate 
the problems to be overcome, and to introduce new techniques for solving some of the 
problems which have previously restricted hashing to a narrow class of problems. 

In the next section we survey the classical literature on Hashing. The subsequent 
sections review traditional hashing techniques, including sections on selection of 
hashing functions, collision resolution, chaining, open addressing, overflow, and 
deletion. The final section introduces the more recent research on perfect hashing and 
gives a minimal perfect hashing algorithm which can be used for extremely fast 
searches on minimal storage tables. 



KEY-TO-ADDRESS TRANSFORMATIONS 

Hashing is a class of techniques for performing rapid associative searches of random or 
direct access memory. The term hashing first appeared in the mid-1960's in reference 
to a class of rapid table search techniques found useful in compiler construction, but 
hashing techniques have been used by programmers since the early days of the direct 
access disk drive( circa 1957) [ PRIC 71, MAUL 75 ]. When used to quickly retreive a 
record from a disk drive, hashing is known as a key-to-address transformation, and 
when used to search a table, hashing is often called a scatter-table technique. 

Hashing techniques are an alternative to "classical" search techniques because they, 

(1 ). Permit arbitrarily fast retrievals independent of the size of the table, i.e. number 

of records in R, 

(2). Rely on simple data structures, and therefore, are easy to implement and maintain, 
and 

(3). Do not place constraints on the data, e.g. no ordering or special placement in the 
data structure is required. 

Problems With Hashing 

Hashing poses several problems. First, a suitable hashing function that distributes the 
keys in a uniform manner must be found, and if the hashing function permits collisions, 
an acceptable method must be devised to deal with them. Other problems are: 

1. How to select the size of the hashing table and handle problems such as overflow of 

arrays when R becomes larger than the initial table size, 

2. How to handle difficulties associated with removing records from R. 

One way to avoid many of the problems created by hashing functions is to prevent 
collisions. A hash function is perfect if no two keys hash to the same table address. 
Recent advances in the theory of hashing have made it possible to devise a perfect 

hashing function when R is known in advance. R is said to be a static set if all the 

elements of Rare initially known, otherwise, R is said to be a dynamic set of records. 

While restrictive, the class of perfect hashing functions is most useful for 
applications in compiling ( keywords in a programming language are known in advance 
of writing the compiler), database retrieval( we often manage known tables of data in a 
database system, e.g. the calendar), and text processing (electronic dictionaries 
contain static sets of words). 



Perfect hash tables are very fast because only one probe is needed to retreive an 
arbitrary record. This is due to the simplicity of retrieval as follows: 

Lookup 

Step 1. Compute the Location from the perfect hash function, say Location = i, 

Step 2. Compare the key at location i with the search key. 

Step 3. If the keys match, the desired record has been found; if the keys do not match, 
we know the desired record does not exist without searching the entire table. 

It is the ability to return "not-found" from a failed lookup without searching the entire 
table that makes perfect hashing extremely attractive for many applications . 

In a perfect hashing function the keys must map into unique integers corresponding to 
table locations, but the mapping need not be compact, i.e. the table may contain empty 
slots. A perfect hash function is minimal if the set to be hashed and the hash table are 
the same size, e,g, the hash table has no empty slots. Besides the highly efficient 
comparison property, minimal perfect hash functions have the additional property that 
the hash table has no unused space. 

While fast and simple, perfect hashing is limited by the need to know the 
never-changing keys in advance. This restriction can be overcome by other techniques, 
but not without paying a price in terms of decreased performance, increased demands 
for memory space, and increased complexity in the design and coding of search 
algorithms. 

If both the number and the nature of the keys are unknown then we must approximate 
these attributes. For example, we might assume all records will fit into an array of 
size N and use a key-to-address transformation that sometimes yields collisions. Then 
we can devise various strategies for dealing with imminent overflow and collision. 
This leads to the traditional approach to hashing which we briefly survey before 
developing the more recent perfect hashing function techniques in greater depth. 



TRADITIONAL HASHING 

In traditional hashing a dynamic set R = { r 1, r2, ... rk, .... } is mapped into an array of 

length N. The size of Rand the value of the keys in Rare not known in advance. The 
table must cope with new records being added to Ras well as deletions of records from 

R 

The three major steps in developing a hash table are: 

Scatter Table Design 

Step 1 . Find a hashing function that distributes as evenly as possible the various 

possible sets of keys in R. 

Step 2. Select a scheme for resolving collisions. 

Step 3. Select schemes for expanding the table if it overflows and for handling 
deletions of records. 

These steps involve a certain amount of ingenuity. The literature of the past 25 years 
has been concerned with overcoming the problems inherent in these steps. The first 
problem is to find a hashing function. 

Hash Functions 

Mapping a key to a table address is normally a two stage process. First, we must 
convert the alphanumeric key into an integer, then map this integer into a table 
address. In some instances, such as when the key is short, the alphanumeric key can be 
interpreted as an integer and the first stage bypassed. 

Folding is a common method of converting a long alphanumeric key into an integer. 
Two common folding schemes are: (1) adding, shifting and exclusive-or'ing the 
characters in the key; and (2) converting the key into a base K number by treating each 
character in the key as a digit in a base K number; where K is the number of possible 
distinct characters, and then take this number modulo a large prime. Ramakrishna 
[RAMA 86] found less clustering (keys that map to same integer) for the latter folding 
algorithm. 

Extensive tests have shown that once the key is converted into an integer, functions 
based on multiplication and division work well [KNUT73]. For example, the division 
scheme, 

h( numeric_key) = numeric_key mod N 



produces an integer in the range [O, (N-1 )], corresponding to index numbers of an array 
with elements [ 0, (N-1 )]. In the division scheme the table size, N, should be a prime 
number to assure full-table searching. 

Collison Resolution 

Because of the large number of possible sets of keys, collisions are inevitable. A good 
hashing function minimizes the number of collisions but does not eliminate them 
altogether. Thus, some scheme for resolving collisions is necessary. The two general 
classes of collision resolution schemes are: 

1. Chaining: Instead of a key, each table entry is the head of a linked list of records 
with keys that map to that table location. 

2. Open Addressing : Specification of an offset rule for the sequence of table locations 
to be searched until one of the following conditions occur: 

a. The record containing the key is found (success) 
b. An empty location is found (failure), 
c. The complete table is searched without success (failure). 

These two collision resolution techniques can be illustrated by revisiting the calendar 
problem. What happens when two or more keys map into the same table location? 

Chaining 

To illustrate chaining let h be the hash function given earlier for the calendar problem. 
Using chaining, we re-compute the mapping of Figure 1 (First_letter(KEY) + 
Second_letter(KEY) Mod 13) with the exception that synonyms are placed in a linked 
list rooted in the hash table. The resulting chained hash table for the calendar problem 
is shown in Figure 2. 
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This type of chaining is called separate chaining. The average number of comparisons 
to find a key is 1.67. Note that there is an obvious space-time trade-off: the larger the 
table, the smaller the average chain size -- hence fewer comparisons are needed to 
find a key. 

Another chaining technique is to have the synonym chain pointers point to locations in 
the table itself. This is called coalesced hashing. [VIT83]. For the calendar problem, 
the next available location for colliding keys is found at location 12 -- and working 
back up the table. The coalesced table shown in Figure 3 illustrates this. Note that 
h(MAR) = 12, but since FEB collided with JAN and was placed at location 12, MAR is 
placed in the next available location -- working back up the table from 12 yields 11. 
The average number of comparisons for the coalesced table is 1.75. · 

Open Addressing 
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Open addressing is illustrated by the mapping in Figure 1. The offset rule is given by: 

location(KEY) = (h(KEY) + j) mod 13; where j = probe number. 

This collision resolution function is called a linear offset function because it scans the 
array linearly, looking for an "empty" element. That is, the /h probe is made at the ith 

element beyond the initial mapping. For example, when SEP was encountered, h(SEP) = 
9, but this table location was already filled so location1 O was examined and found to 
be empty. 



Notice that colliding keys tend to cluster around the synonym's initial location. This is 
called primary clustering and may cause the hash function to degenerate into a linear 
search. We could have used any increment (such as a number relatively prime to the 
table size) as long as the offset function guarantees that all possible table locations 
will be examined. However, synonyms still tend to pile-up into secondary clusters. 

A variety of solutions to clustering have been proposed [MAUL 75, PRIG 71, MORR 68]. 
For example, open hashing suggests that an overflow area be used to hold synonyms. The 
synonyms are linked together in a chain via pointers and stored outside the array. This 
approach may have some value when the array is implemented as a direct access disk 
file and more than one record fits into a single disk "bucket" -- a track, cylinder or 
sector. But the maintenance and management of such a system makes it inferior to 
alternate approaches [LUMY 71 ]. 

One way to remedy both primary and secondary clustering is to let the increment 
depend on the value of the key. Double-hashing, or quotient-offset hashing is the best 
known hash function for dynamic sets [ MAUL 75]. Cleverly, the quotient-offset function 
uses the fact that every integer is uniquely characterized by its remainder and 
quotient. 

w(KEY) = First_Letter(KEY) + Second_Letter(KEY) 
h(KEY) = w(KEY) mod N; 
q = w(KEY) div N; 
location(KEY) = ( h(KEY) + q*j) mod N; for the fh probe 

This function uses the (unique) quotient of transformed key was the offset value 
whenever a collision occurs. Thus, for the example, SEP collides with JAN and FEB, but 
w(SEP) = 152 and q(SEP) = 11 while w(JAN) = w(FEB) = 139 and q(JAN) = q(FEB) = 10. 
The important point is that the quotient-offset function spreads the keys across the 
table by searching out different sequences of elements even though colliding keys are 
synonyms. 

Overflow 

One of the most damaging limitations of dynamic hashing into fixed-size scatter 
storage tables is the problem of predicting the best size for the array. In fact, we 

stated that the performance of hashing was invariant with respect to the size of R, and 
depends entirely on the density of the storage array. Let density be measured by the 
loading factor of the storage array: 

f = ( number elements of the array that are occupied)/ N 

Thus, if only one-half of the array contains hashed keys, then the loading factor is 0.5 
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and we say the density is 50%. 

Performance can be roughly estimated by ignoring clustering effects and assuming N is 
very large. 

average number of probes to lookup an existing key @ 1 / ( 1- f) 

For example, a scatter table with 50% of its elements occupied will require 
approximately 2 probes per lookup. The formula does not consider all effects of 
hashing, however, and should be used only as an estimate of performance. It fails, for 
instance, to accurately estimate the number of probes expected when f approaches 
unity, e.g. an infinite number of probes is estimated when the table becomes full and f = 
1. 

The point of this analysis is to suggest that arrays not be allowed to fill up before we 
become concerned with overflow. Rather, suppose an overflow condition is defined, 
based on performance requirements: 

Overflow= ( f > maxf ); where maxf is given 

For example, overflow might be defined as the condition arising when f > 0.8, which 
corresponds to a performance estimate of 5 probes per lookup . 

Overflow can be accommodated in one of two ways: 

(1) allocate a larger array and move the contents of the old array into the new array by 
hashing all records a second time, or 

(2) incrementally extending the old array to accomodate growth. 

The first method is simple and slow while the second method is clever and fast. 

An extendible hash table is a hashing function and scatter table data structure for 
accommodating growth in the table [FAGN 79]. The idea is to divide the storage array 
into fixed-length blocks and allocate one block at a time, as needed. The blocks are 
managed by a directory table containing pointers to each block, and a number telling 
how many bits of each key to examine during a lookup. 

Suppose, for purposes of illustration, the calendar information is stored in an 
extendible hash table. Each block of the table is 5 elements long, and we define 
overflow to arise whenever maxf = 3/5 is exceeded. This means a maximum of 3 of the 
5 elements of each block are occupied -- never more. 

Initially, the directory table contains· 2 ele·ments and a flag set to 1, indicating that 
one least significant bit is used to decide which of the two blocks to search. The first 



block contains all keys ending in a O bit, and the second block contains all keys ending 
in a binary 1. We use the quotient offset hashing function to place each key in its 
appropriate block. 

When an overflow condition arises and a new block allocated to accomodate the 
overflow, 

1. The directory table is doubled in size and its flag is incremented, e.g. the flag is 
bumped up to 2, 

2. A new block is allocated and the directory pointer made to point to it. The new block 
will be used to hold the overflow from one of the existing blocks, 

3. The overflowed block is "split" -- all keys whose least significant bits are the same 
are placed in the same block, e.g. the 2 least significant bits are used to determine 
which block to relocate each key to. 

The extendible hash scheme is clever because it preserves a measure of performance 
while at the same time using a relatively simple extension technique to overcome the 
limitation of the fixed-length array structure. Performance studies suggest that this 
method is very competitive with other methods of storing and retreiving records from 
disk files. 

Deletion 

A final problem must be overcome -- deletion. For hash tables using chaining to resolve 
collisions, deletion is straightforward. However for open addressing, collision 
resolution schemes are complicated by the fact that a deleted record leaves a "gap" in 
the probe sequence. This gap can cause failure in subsequent lookups because a search 
is (prematurely) terminated as soon as an "empty" cell is encountered. If the "empty" 
cell previously held a colliding key, the search path leading to the correct key is 
destroyed by removing the colliding key. 

A simple solution is to add an additional field to each record. This new field can take 
on one of three values: Empty, Occupied, or Deleted. Then when searching for a 
particular key, treat deleted records the same as occupied ones, but when 
inserting a record treat deleted records the same as empty ones. 

The presence of Deleted elements increases the effective loading factor, which 
increases the number of probes during a lookup operation. In fact, an overflow condition 
can arise even when most of the array contains Deleted elements! 

This solution to the deletion problem is not exceptional, and points to the need for 
more research into deletion techniques. If a storage table is predominately used for 
lookups then the high cost of deletion may not be a major concern, but if inserts and . 

r 



deletes are the predominate operations on the structure, then other techniques should 
be considered. 

PERFECT HASHING 

Now we turn our attention to perfect hashing functions, a class of hashing functions 
without collision resolution problems since each key maps to a unique table location. 
Perfect hashing is also defined for external files. A hash table for an external file 
consists of buckets or pages each with a capacity of, say b records. An external 
hashing function is perfect if no bucket receives more than b records. In this paper we 
will be concerned with internal hash tables only. 

Perfect hashing functions are rare. Knuth [KNUT 73] showed that in the set of all 
possible mappings of a set with 31 records to a table with 41 locations, only about one 
in ten million of the mappings is perfect. 

The first scheme for finding perfect hashing functions appeared in 1963 [GREN63]. 
However, it was not general and the resulting function was complicated. Spugnoli 
[SPUG 77] developed two systematic schemes, Quotient Reduction and Remainder 
Reduction, for generating perfect hashing functions. Assuming the KEY has been 
converted into an integer w, the quotient reduction scheme involves finding integers s 
and N so that 

h(w) = (w + s) / N 

is perfect while the remainder reduction scheme involves find integers d, q, M, and N so 
that 

h(w) = ((d + qw) Mod M) / N 

is perfect. 

The table below illustrates the remainder reduction scheme for the calendar problem. 
The function E2+3(KEY) is the sum of the EBCDIC codings of the second and third letters 
in the KEY. 



KEY v = E2+3(KEY) ((3v+4) Mod 23)/2 

JAN 49621 5 
FEB 50626 6 
MAR 49625 0 
APR 55257 7 
MAY 49640 11 
JUN 58581 2 
JUL 58579 10 
AUG 58567 4 
SEP 50647 3 
OCT 50147 1 
NOV 55013 9 
DEC 50627 8 

Figure 4. 

Neither of Sprugnoli's schemes guarantee that the needed integers can be 
found nor are they practical for sets with more than 15 elements. However , for larger 
sets, Sprugnoli suggested a two stage hashing scheme called segmentation. 

In segmentation, the first stage hash function is applied to the entire set R to hash all 
records into synonym buckets -- each synonym bucket contains all records with the 
same hash value. In the second stage , a different perfect hashing function for each 
bucket maps the keys in the bucket to unique locations in the segment of the hash table 
for that bucket. 

By adjusting the first hashing function, the bucket size can be made small enough so 
that it is not too difficult to find a perfect hashing function for each bucket. The table 
below illustrates this two stage process for the calendar set. The FIRST(KEY) function 
is simply the ASCII coding of the first letter of the KEY Mod 2 and the function 
A2+3(KEY) is the sum of the ASCII codings of the second and third letters in KEY. 

I 



KEY FIRST(KEY) (A2+3(KEY)) MOD 12 

JAN 0 11 
FEB 0 3 
JUN 0 7 
JUL 0 5 
NOV 0 9 
CEC 0 6 

KEY FIRST(KEY) 12 + (A2+3(KEY)) MOD 10 

MAR 1 19 
APR 1 14 
MAY 1 16 
AUG 1 18 
SEP 1 21 
CCT 1 13 

Figure 5. 

The segmentation scheme requires two probes -- one to determine the bucket and 
obtain the information for the second hashing function for that bucket, and a second 
probe to access the table location that contains the KEY. Perfect hashing usually 

requires that the records in R be known in advance, but the segmentation scheme can be 
modified to handle updates (insertions and deletions) in a reasonable amount of time. 

Deletions are simple and for a limited number of insertions the effort is localized to 
the perfect hashing function for that bucket. If a bucket overflows then the entire table 
must be rehashed or a special overflow area used. In the latter case the number of 
probes may greatly exceed two. 

Minimal Perfect Hashing 

Recall that a hashing function is minimal if there are no empty table locations. The 
hashing function in Figure 4 is both minimal and perfect. Minimal perfect hash 
functions have two desirable propertie ·s: 

(1) One can, in exactly one probe, determine the table address of the item with the 
search key or conclude that the item is not present, and 

(2) the hash table has no unused space. 

Minimal perfect hash functions are ideally suited for compact storage and fast 



retrieval of frequently searched static sets such as reserved or predefined words in 
programming languages, operation codes in assembly languages, or frequently used 
words in a natural language. 

There has been a recent flurry of theoretical and heuristic algorithms for minimal 
perfect hash functions. The reciprocal hashing scheme of Jaeschke [JAES 81] is an 

example of a theoretical algorithm. The hash function for key win R (set of distinct 
positive integers) is 

h(w) = ( C/(Dw + E)) mod N 

where C, D, and E are integer constants computed by special algorithms and N is the 

size of the set R. 

Although the existence of the function h is guaranteed, there are several practical 

problems with this scheme. First, it is assumed that R is a set of distinct positive 
integers. Second, the reciprocal hashing algorithm has exponential time complexity and 
hence is not practical for sets with more than twenty elements. Finally, the constant C 
may become very large. 

Chang [CHAN 84] developed a theoretical scheme similar to Jaeschke's based on the 
Chinese Remainder Theorem. His hash function is of the form 

h(w) = C mod p(w) 

where C is an integer constant computed by his algorithm and p(w) is a prime number 
function, e.g, p(w) is a different prime for each integer w. Unfortunately the number of 

bits to represent C is proportional to m(log2m) where m is the size of Rand Chang 

gives no general method of finding the prime number function. 

Cichelli [CICH 80] presented a simple heuristic hash function for small static sets. His 
hash function for a word w is an extension of the First/Last function introduced 
earlier: 

h(w) = Value( First_Letter(w)) + Value( Last_Letter(w) )+ Length(w) 

Figure 6 gives the letter values and resulting hash table for R = { JANUARY, FEBRUARY, 
MARCH, APRIL, MAY, JUNE, JULY, AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, 
DECEMBER} 



LETTER VALUE(LETTER) KEY h(KEY) 

A 0 JANUARY 7 
D -7 FEBRUARY 2 
E 5 MARCH 10 
F -6 APRIL 11 
H 5 MAY 3 
J 0 JUNE 9 
L 6 JULY 4 
M 0 AUGUST 12 
N -3 SEPTEMBER 8 
0 -1 OCTOBER 6 
R 0 NOVEMBER 5 
s -1 DECEMBER 1 
T 6 
y 0 

Figure 6 

Building the hash table in Figure 6 involves finding the Value function that makes h(w) 
a perfect minimal hash function, i.e. finding a set of character values that map each 
word in the set to a unique table address such that the table contains no internal blank 
slots. To find the character value assignments, Cichelli's algorithm uses an 
intelligent, exhaustive search with backtracking that considers one key at a time. 

Cichelli successfully applied his algorithm to several sets -- the 31 most common 
English words and the 36 Pascal reserved words. 

Cook and Oldehoeft [COOO 85] improved the performance of Cichelli's backtracking 
algorithm by developing a letter-oriented algorithm that considers groups of key words 
rather than a single word in finding letter value assignments. Also when the letter 
value assignment algorithm reaches an impasse, Cichelli's algorithm backtracks one 
word at a time while the Cook and Oldehoeft algorithm immediately backs up to the 
prior letter value assignment that caused the impasse. 

Cichelli's hash function is simple, fast, and machine independent. The latter property 
is especially important because once a hash function has been found for a word set, the 
same hash function (assignment of character values) can be used for the word set on 
any computer. 

However, Cichelli's algorithm has several shortcomings. Because the letter value 
assignment process uses an exhaustive search with backtracking its time complexity is 
exponential. Hence it is only practical for small static sets with less than 45 wor~s. 
In addition, the algorithm is not guaranteed to work for all sets . For example it cannot 



work for sets with conflicting word pairs, two words with the same length and same 
pair of characters at their ends ( e.g. JAN and JUN, or TYPE and EXIT). (This is why we 
used the full calendar month names for Figure 6 rather than the three letter 
abbreviations used in previous examples). 

Conflicting word pairs are common in moderate-sized sets of English words as shown 
by a Monte Carlo study [SELF 83] in which random word sets with English-language 
probabilities of first letters, last letters, and word length were generated. About half 
of the sets with 30 words were found to contain conflicting pairs of letters. Choosing 
other letter positions is not a solution either, for example, every pair of letters 

conflict in the seven word set R ={CASE, ELSE, PAGE, READ, REAL, TRUE, TYPE} [HA 
86]. Jaeschke and Osterburg [JAEO 80] point out many other cases for which Cichelli's 
heuristic does not work. 

Chang and Lee [ CHAL 86] developed a letter-oriented minimal perfect algorithm based 
on ideas from Chang's previous algorithm and Cichelli's algorithm. The hashing function 
for a set of words is 

where Li and Lj are the ith and /h letters in the KEY; d and Care integer valued 

functions, and pis a prime number function. They give algorithms for finding the 
functions d, C, and p. The hashing function for the full word calendar set is given 
below. Second and third letters were selected for the letter pairs because they are all 
unique. 



LETTER d(LETTER) C(LETTER) p(LETTER) 

A 0 119 
B 5 
C 3 1 7 
E 4 
G 11 
L 13 
N 2 
0 7 1 
p 8 1 17 
R 3 
T 19 
u 9 211 
V 23 
y 29 

KEY LETTER PAIR h(KEY) 

JANUARY (A,N) 1 
FEBRUARY (E,B) 5 
MARCH (A,R) 2 
APRIL (P,R) 9 
MAY (A,Y) 3 
JUNE (U,N) 10 
JULY (U,L) 12 
AUGUST (U,G) 11 
SEPTEMBER (E,P) 7 
OCTOBER (,C,T) 4 
NOVEMBER (E,V) 8 
DECEMBER (E,C) 6 

Figure 7. 

Thus h(SEPTEMBER) = d(E) + ( C(E) mod p(P) ) = 4 + (156 mod 17) = 7. However, they 
not give a method for selecting the pair of letter positions nor the general prime 
number function. 

Extensions To Cichelli's Hash Function 

Cichelli's hash function is attractive because of its simplicity and machine 
independence. There have been several attempts at extensions of his function that 



preserve its attractiveness. Several of these extensions handle large static sets with 
up to several thousand words while preserving both its simplicity and machine 
independence and at the same time overcome its word pairs conflict problem. The 
extensions are significant because they extend minimal perfect hashing to practical 
applications in electronic dictionaries, natural language processing, and textual 
database processing. 

The two general extension schemes are: 

1. Modify Cichelli's hash function by adding more terms, changing the character 
evaluation function, and considering different character positions in a word. 

2. Segment or partition the large set into small sets (buckets) and find minimal 
perfect hashing functions for each bucket. 

1. MODIFICATIONS OF CICHELLl'S HASH FUNCTION 

Many modifications of Cichelli's hash function have involved adding terms or changing 
the letter positions used. For example the 63 reserved words of Ada™ contain three 
pairs of conflicting words (EXIT-TYPE, RAISE-RANGE, PRIVATE-PACKAGE) and the 40 
reserved words of Modula-2 contain one conflicting pair (TYPE-EXIT). Sebesta and 
Taylor [SEBT 85, SEBT 86] found a minimal perfect hash function for the Modula-2 
words by adding the term 

alphabetic position of second to last character in word 

to Cichelli's hash function, and a minimal perfect hash function for the Ada™ reserved 
words by adding twice the same term to Cichelli's hash function. 

Cercone, Boates, and Krause [CEBK 85] developed an interactive system that allows the 
user to specify the set of character positions and whether or not to include the key 
length in the hash function. Their algorithm uses a non-backtracking, intelligent, 
enumerative search to find the character value assignments. If the user's selection of 
character positions results in a conflict, the system invites the user to make another 
selection. The user may also specify the hash table loading factor (1 for a minimal 
perfect hash and less than 1 for a non-minimal perfect hash). Their algorithm found 
minimal perfect hash functions for sets with up to 64 elements and almost minimal 
solution for sets with up to 500 elements. 

Haggard and Karplus [HAGK 86] generalized Cichelli's hash function by considering 
every character position in a key. They search for functions of the form 

h(w) = length(w) + g1 (first_char(w)) + g2(second_char(w)) + ... + gk(last_char(w)) 

where the gi's are called selector functions . Their algorithm finds a set of selector 



functions that uniquely identify each word and then uses backtracking heuristics to 
find the character value assignments for each selector function. They found minimal 
perfect hash functions for sets with up to 181 words and non-minimal perfect hash 
functions for sets with up to 667 words. 

Sager [SAGE 85] developed a hash function of the form 

where ho h1, h2 are pseudorandom functions, g is the function found by his mincycle 
' 

algorithm, and N is the size of the set of words. Cichelli's hash function is a special 
case of Sager's hash function where ho (w) is the length of w, h1 (w) is the first 

character in w, h2(w) is the last character in w, and g is the character value 

assignments. Sager gives several choices of pseudorandom functions that "seem to 
work well", but he did not give a general scheme for choosing the pseudorandom 
functions. He claims his algorithm is practical for sets with 512 or more words. 

These modification schemes seem to be aimed primarily at overcoming the conflicting 
word pair problem and, even though they handle larger sets, they do not represent a 
general solution for very large sets with several thousand words. In addition many of 
the schemes generate perfect, but not minimal hash functions. Hence it appears that 
these schemes are limited to minimal perfect hash functions for sets with at most 500 
words. 

2. SEGMENTATION SCHEMES 

Segmentation, the second type of extension scheme seems to be more promising for 
very large sets. Several papers [SPRU 77, COHK 85, FRKS 82, LARR 85] suggest buildin 
perfect hash tables for large sets of words by finding one hash function to partition the 
large set into synonym buckets (all words with same hash value are in the same bucket) 
and then finding individual (minimal) perfect hash functions for each of the buckets. 

Sprugnoli called the first hash function a grouping function [SPRU 77]. The task of the 
grouping function is to partition the large set into buckets with at most maxsize 
words, where maxsize is the practicl limit for the minimal perfect 
hashing function. Buckets are stored in unique segments (consecutive locations) in 
the hash table. Thus the hash function is 

where i is the grouping hash function value for w; bi is the base address for bucket i in 

the hash table, and hi is the perfect hash function words in bucket i. 



In the segmentation schemes of Cormack [COHK 85], Fredman [FRKS 82] , and Larson ar 
Ramakrishna [LARR 85] the hash table consists of two parts: a table D containing the 
actual data elements and their keys and a header table H with an entry for each bucket 
containing the information needed to compute the exact address of an element in that 
bucket. Buckets are stored in unique segments in table D. The first hash function 
computes the location in the header of the bucket information -- base address for 
segment and constants in the perfect hash function for the bucket. A trial-and -error 
approach is used to select the perfect hash function from a family of functions. 

Cormack [ COHK 85] obtained a family of hash functions for buckets of size r, of the 
form: 

hi(w) = (w mod c) mod r 

where c is a randomly generated integer. 

Larson and Ramakrishna were primarily concerned with finding a perfect hash function 
for large external files. Their hash table (hash file) consisted of m pages each with a 
capacity of b records. It maps each record onto a page. A hash function is said to be 
perfect if no page receives more than b records. The family of hash functions that 
worked well were of the form 

h(w) = ((c * w + d) mod p) mod m 

where c and d are integers, p is a prime number greater than the largest key, and m is 
the size of a page. They successfully hashed files ranging from 3,000 to 24,000 
records. Significantly, they showed it was practical to find a perfect hash function 
from the family by randomly generating (c,d)-integer pairs. Depending on the load 
factor of the tables, only a small n.umber of (c,d) pairs need be generated to find a 
perfect hash function. For example, for a load factor less than 70% , the probability of a 
randomly chosen (c,d) pair yielding a perfect hash function is greater than 0.5. 

We investigated a minimal perfect extension of Cichelli's hash function based on 
Larson and Ramakrishna's scheme. They were interested in finding a hash function that 
partitioned the set of records into pages with at most b records. We were interested in 
finding a hash function that partitions the set of words into small buckets with at 
most 40 words such that no bucket contains a conflicting word pair (two words with 
the same length and same pair of characters at their ends). We chose the same family 
of hash functions for the grouping function to compute the bucket number of a word, 
where c , d and pare the same and m is the number of buckets . Hence our minimal 
perfect hash function is 

h(w) = offset(b#(w)) + value(b#(w), first_char(w)) + value(b#(w), last_char(w)) 
+ length(w) 



where b#(w) is the bucket number computed by the grouping function, value(n,ch) is the 
character values for characters in bucket number n, and offset(n) is where the segment 
of words in bucket number n begins in the hash table. Thus the algorithm to determine 
the location of a word in the table or to conclude that it is not present is a simple two 
step process: first compute the bucket number and length of the word; then perform a 
table look-up to find the values of first and last characters of the word and to find the 
offset of the bucket. 

A perfect minimal hash table for the calendar problem (3 letter abbreviations) 
constructed via the segmentation scheme is given in Figure 8. 



BUCKET#1 = { JAN, MAR, MAY, JUL, SEP, NOV, DEC} 

BUCKET#2 = { FEB, APR, JUN, AUG, OCT} 

LETTER BUCKET#1 BUCKET#2 

A 0 
B 2 
C 0 
D 3 
F 0 
G -1 
J 0 2 
L 1 
M 0 
N -2 -1 
0 0 
p 1 
R 2 -2 
s 3 
T 0 
V 2 
y 1 

BUCKET#1 BUCKET#2 

OFFSET 0 7 

KEY h(KEY) 

JAN 1 
MAR 5 
MAY 4 
JUL 2 
SEP 7 
NOV 3 
CEC 6 
FEB 12 
APR 8 
JUN 11 



AUG 
OCT 

9 
10 

Thus for SEP, the bucket number is 1 so 

Figure 8. 

h(SEP) = OFFSET(1) + VALUE(1,S) + VALUE(1,P) +LENGTH= 0 + 3 + 1 + 3 = 7. 

Larson and Ramakrishna [LARR 85] and Ramakrishna [RAMA 86] found their perfect hash 
function through a trial-and-error process by fixing p and generating random (c,d) 
pairs. We wanted a more systematic method. We found that selecting c, d, and p from 
different small sets of prime numbers partitioned the word sets into relatively 
uniform size buckets. A (c, d, p) triple is successful if no bucket contains a conflicting 
word pair. 

Our scheme worked successfully for the 447 FORTH words, the 288 FORTH Assembler 

3.1 

words, and sets of 500 and 1000 random words. However, for the 1000 most common L' 

English words and 2000 random words the same exhaustive generation scheme was 
unsuccessful unless we reduced the bucket size to near 10 because of the skewed 
distribution of the word lengths and the letters at the ends of the words. We did 
notice that very few of the buckets contained word pair conflicts. This suggested 
modifying our scheme to move the second word of a word pair conflict to a special 
extra bucket. After this process none of the original buckets contained word pair 
conflicts and only the extra bucket needed to be checked for word pair conflicts. Using 
the extra bucket decreased the effort and increased the bucket sizes for the solutions 
to the 1000 English words and 2000 random words. The additional cost for this scheme 
was slight since the number of words in the extra table is small relative to the size of 
the set. 

This points out the two major difficulties with the segmentation approach: 

1. Finding a general segmentation scheme that partitions the words into buckets such 
that the words in-each bucket have the required properties for a minimal perfect hash 
function. 

2. There is no systematic and practical scheme for generating minimal perfect hashing 
functions. We only considered Cichelli's minimal perfect hashing function. Additional 
research needs to be done which considers different variations of Cichelli's scheme or 
other types of minimal perfect hash functions for the buckets. 

CONCLUSIONS 

A large class of problems can be solved with hashing functions. For dynamic sets the 
best techniques are based on simple prime division hashing functions, and where 
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