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1. 

1.1 

Hardware Organization 

Introduction 

Computer systems advance by revolutions rather 

than evolutions. The jump from vacuum tube -machines 

to solid state transistor machines was revolutionary. 

Never before had computers been reduced in size, cost, 

and computation time until this revolution . 

Computer revolutions are enumerated by a gener­

ation number. First generation computers were based 

on vacuum tube technology, second generation was based 

on transistors. We can say that the current generation 

is based on large-scale-integration LSI. 

The LSI age of computing is no longer denoted by 

a single generation number because LSI is causing 

many upheavals in computing. The upheavals are too 

numerous and spread over too short a time for numbering 

systems to keep up. Even the terminology needed to 

describe the changes is hard pressed to keep pace. 

It is important to realize the significance of 

terminology. One measure of the rate of technological 

change is the rate of semantic shifts occurring in 

the language. For example, a microprocessor is a cpu 

in a single LSI transistor wafer. A few years earlier, 

however, a microprocessor was any microprogrammable 

cpu. To avoid confusion, the following definitions will 

be used throughout this chapter. 
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A microcomputer is a cpu memory, interfaces and 

boards needed to package a microporcessor to make it 

appear as a computer to the user. A microcomputer 

may be microprogrammable if it has a control memory 

and sequencing unit that allows firmware programming. 

For the purpose of this chapter, a firmware program 

will be any program residing in a read-only memory, ROM. 

This definition sidesteps the problem posed by micro­

computers that emulate their instructions as compared 

with microcomputers that take instructions from either 

ROM or random-access-memory, RAM. In either case, a 

microcomputer is said to be microprogrammed if programs 

reside in ROM, regardless of the processor's archi­

tecture*. 

A microcomputer that incorporates ROM and a 

microprocessor in a single unit is called a grand-scale­

integration GSI microcomputer. An example of a GSI 

microcomputer is the common pocket calculator. Each 

calculator has a processor and a ROM containing the 

instructions for executing each button stroke. Since 

programming in the stored program tradition is not 

possible by the user, the calculator is considered a 

single unit of GSI equipment . 

*Emulation can be roughly defined as simulation 

of one computer on another computer. Typically, the 

simulator resides in ROM as part of the control unit 

of the host cpu. 
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Microprocessors are packaged in dual-in-line 

packages called DIP chips. A DIP chip is typically a 

40-pih ceramic package about one to two inches long, 

one-fourth to one inch wide, and less than 1/2 inch 

thick. Access to the resident circuitry is through 

the 40 pins. Because of their size and packaging, 

microprocessors are often called chip computers. 

It is the decreased size, cost, and power 

consumption that is responsible for the chip computer 

revolution. This revolution permeates the application , 

design, programming, and manufacture of computers , 

their peripherals, and the people who use them. Such 

pervasion into science , technology, and society will 

have far reaching effects for the future. 

The purpose of this chapter is to narrow the 

discussion of this revolution to a specific technical 

area . The discussion will focus on fundamental 

technological concepts underlying the revolution. For 

this purpose we examine three architectures , three soft­

ware systems, and conclude with an analysis of resource 

sharing and the impact of microcomputing on sharing. 

1.2 A Simple Microprossor 

P·erhaps the simplest microprocessor would be 

an LSI circuit for adding, subtracting, and performing 

I/0 on a two-bit word of memory. Such a small pro­

cessor holds little interest because of the elaborate 
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encoding of data and extensive programming effort re­

quired to make the hypothetical processor useful. What 

then, is the lower limit of "size" acceptable for 

a practical microprocessor? 

The first requirement for a practical _micro­

computer is that decimal numbers be easily represented 

in the microprocessor storage unit. This means a 

minimum word length of 4 bits, since digits 0-9 can be 

encoded in BCD with 4 bits. A four bit computer can 

perform most functions of a decimal calculator with 

relative ease. 

Greater parallelism leads to speed and the 

potential for extensive programming. A four-bit word 

can address only 16 locations in memory while an 8-bit 

word can hold 256 addresses. Furthermore, an 8-bit 

instruction word has greater capability for an improved 

instruction set. 

Obviously, the same arguments for 16-bit processors 

can be applied to 8-bit processors. The improvements 

of a 16-bit computer certainly make their development 

inevitable. 

Before any technological device is made avail-

able on a widespread basis, there must be a dollar­

volume force behind the technological device . 

Dollar-volume force is defined as the product of unit­

price times market-volume. 
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$_VOL_FORCE = (Unit-price) (Market-volume) 

A microcomputer valued at $10 and sold 10,000 times is 

a technological device with a $100,000 dollar-volume 

force behind it. 

This leads to the concept of technology availability, 

which in turn partially determines the design of a 

simple microprocessor. An invention becomes available 

only when the dollar-volume force is significantly in­

creased by the proposed invention*. 

A two-bit microcomputer, while feasible for many 

years before microcomputers were generally available, 

lacked potential for increasing the dollar-volume force. 

A four-bit computer, because of its usefulness in pocket 

calculators and BCD processing machines successfully 

increased the dollar-volume force thereby making the 

first microprocessor available. Hence the simplest 

microprocessor that was both technologically possible 

and economically feasible was the 4-bit pro~essor. 

An 8-bit microprocessor offers many technological 

advantages over 4-bit processors. The advantages 

in themselves are not sufficient to bring about a true 

*It could be argued that television arose without 

an initial dollar-volume force behind prior developments. 

However, it is also possible to view TV as an outgrowth 

of radio, in which case the dollar-volume force is 

increased. In general, consumer electronics are marketed 

only when new markets expand the dollar-volume. 
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8-bit microcomputer. Instead, the dollar-volume force 

had to increase before 8-bit microcomputers were possible. 

The 8-bit microcomputer increased the dollar­

volume force sufficiently to drive 8-bit microprocessors 

into general availability. The reason is that ASCII 

and EBCDlC encoding are 8-bit codes, floating point 

arithmetic is facilitated, and addressability is im­

proved. These primitive improvements manifest themselves 

in more sophisticated software packages that in turn 

expand the usefulness of 8-bit computers beyond the 

pocket calculator market. Therefore, the 8-bit micro­

computer owes its driving dollar-volume force to 

applications that transcend pocket calculators. 

The 8-bit microcomputer architecture of Figure 

1 shows a simple microprocessor organization that typifies 

the early generation of microprocessorl. The machine 

of Figure 1 is a register-transfer machine. This means 

that all operands are either stored in the working registers 

or they are accessed by pointers stored in the wor~ing 

registers . 

One of the dollar-volume driving forces behind 

the eventual availabilty of 8-bit microprocessors was 

the advantages of multiple precision calculators. This 

advantage is noted in the double register feature 
. .... -

of Figure 1. Registers B, D, and Hare treated as 

16-bit operands in certain operations. Also, 4-bit 

* The architecture of Figure 1 is an Intel ;8080, see reference 7. 
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precision is preserved by the "BCD CARRYn bit Bin 

the status register. We will study the behavior of bit 

Bin a later programming example. 

Each instruction of the microprocessor of Figure 

1 is one, two, or three bytes long. The niiadic 

operators* such as "SET CARRY", "COMPLEMENT", and 

"DECIMAL ADJUST" require only one byte of memory. The 

monadic operators such as "ADD", "A.ND", and "COMPARE" 

require two bytes because of extended addressing. The 

dyadic operators such as "MOVE" and "LOAD INDEX" require 

three bytes. In most cases operands are working 

register or memory register, either one accessed through 

the pointer loaded into register pair H-L. 

The A, B, C, D, and E registers are used to 

accumulate results from the ALU. The Hand L registers 

combine to form a 16-bit memory address . The address 

in H-L is used to load or store single bytes from or 

to memory. The memory may be ROM, in which case store 

operations via H-L are meaningless. 

*Niladic operators have zero explicit operands, 

monadic operators have one explicit operand, and 

diadic operators have two explicit operands. For 

example, in the DAA operation, the accumulator is 

implied. 
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The memory of this 8-bit microprocessor is 

hierarchial: Register A is immediately available while 

registers B, C, D, E, H, and Lare available as 

operands in the instruction set. Main memo!Y is at 

a third level of access because bytes come from main 

memory by way of the pointer in Hand L. 

The program counter, PC and stack pointer, SP 

operate as expected. The PC register holds the 16-bit 

address oL the next instruction to be executed. The 

SP register holds the address of the top element of 

a push down stack. A "PUSH" operation causes 16 bits 

to be placed on the stack after SP has been decremented 

by two. 

(SP) (SP) -- 2 

After a "POP" operation, the SP register is 

incremented. Therefore, the stack grows toward the 

low end of memory. This feature guarantees that 16-bit 

register pairs are loaded and unloaded in the order 
. 

needed during multiple precision calculations. 

The stack facility provides recursive sub­

routining. During a "CAL" to subroutine, the "old PC" 

is saved on the push down stack. During a return 

from subroutine the "new PC" is popped from the stack. 
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Input and output is performed through the A 

register under program control. The "IN" instruction 

fetches an 8-bit byte from a specified device and 

"OUT" copies the contents of register A onto the data 

bus. 

Interrupts are allowed with the "EI" instruction 

and disabled with the "DI" instruction. There is no 

automatic vectoring* of traps. This weakness must be 

overcome through considerable programming by the user. 

Figure 2 demonstrates a short segment of machine 

level code for the microprocessor of Figure 1. The 

program computes the sum of two 3-byte numbers stored 

at symbolic locations, FIRST and SEC.ND. The answer is 

stored back into FIRST. 

+ 

32AF8A 16 

84BA90 16 

B76AlA 16 

SECND_, 

+ FIRST 

FIRST (answer) 

The program demonstrates how multiple precision 

calculations are performed and how the lack of indexing 

is overcome by programming. The "ADD:" segment o f c ode 

initializes two pointers to the operands . The B-C 

*Automatic I/0 or vectored I / 0 is a feature on 

many minicomputers. An I / 0 vector is a memory cell 

containing status information and a pointer to a 

service routine. Upon interruption , the service 

routine is called. 

10 
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register pair point to FIRST . after the load-index­

immediate LXI instruction. The H-L pair points to 

SECND after execution of the LXI instruction ·. 

The "LOOP:" segment performs addition on three 

bytes, from right (least significant byte) to left 

(most significant byte) . This is done by accessing 

the byte pointed to by B-C , accessing the byte pointed 

to by H-L, and performing the ADC instruction. The 

ADC adds with CARRY included so that multiple precision 

carry-outs are saved in bit K=CARRY. The STAX 

instruction us.es B-C as a pointer to FIRST. The DCR 

decrement instruction subtracts one from register C 

because this segment of code also uses register C as 

a loop counter. This dual use of B-C (as pointer and 

counter) may lead to errors in the program unless the 

data is stored on a 256-byte page boundary. The next 

instruction tests for completion. 

The operand pointer B-C also is used as a loop 

counter in the previous example. This is necessary in 

the limited architecture of a simple microprocessor . 

11 
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The result, however, is greater software overhead, 

possible errors as pointed out above, and added effort. 

Most microprocessors are oriented toward 

decimal BCD calculations. The "DAA" decimal adjust 

instruction is provided to translate partial binary 

results back into BCD results after an aritqmetic 

operation. The following example will demonstrate 

25 BCD = 0010 01012 
+ 

7BCD 
+ 0000 01112 

32 BCD 0010 11002 

The BCD numbers 25 and 7 are stored as binary 

nunbers, internally. When the microprocessor adds 

them together, it produces the binary sum 0010 1100 

this. 

as shown to the right. This sum must now be converted 

to a BCD numeral instead of a binary number. The DAA 

instruction tests the BCD CARRY bit in the status 

register. Depending upon the value of the BCD CARRY, 

the upper and lower byte of the result, and the 

condition of the CARRY bit, the DAA instruction will 

either add +00 16 , +06 16 , + 60 16 , or+ 66 16 to the result. 

In the case of the sample calculation, above, 

the result is "corrected" by addition of +06 16 . 

+ 
0010 

0000 

0011 

1100 

0110 

0010 

12 
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The DAA operation produces a BCD result that would 

have been obtained had the micropressor been capable 

of direct decimal addition. Thus, 25+7 ~ 32 as 

desired. 

We could modify the sample program of Figure 2 

to produce BCD results by giving the data in BCD 

format and using a DAA instruction after each addition, 

This would mean inserting a DAA instruction between 

the ADC and STAX instruction in the LOOP segment of 

code. 

The simple microcomputer described here has an 

extensive instruction set and a 16-bit addressing 

capability. It has found applications in a variety 

of first-time computer uses. Indeed, its simplicity 

is a virtue in many new applications . 

There are both obvious and subtle deficiencies 

in the simple microprocessor design we have just 

examined. Basically the deficiencies stem from the 

microprocessors weak indexing and addressing capability 

and underdeveloped interrupt handling facilities. The 

next microprocessor studied partially overcomes these 

deficiencies and represents a typical second generation 

microcomputer processor. 

13 



Figure 2. 

FIRST: 

SECND:. 

(A) 

A Sample Program For the Microprocessor 

of Figure 1. 

DB 

DB 

90H 

BAH 

DB 84H 

DB 

DB 

84H 

AFH 

DB 32H 

Hexadecimal data bytes ... 

stored in reverse order. 

Hexadecimal data bytes ... 

stored in reverse order. 

sum of multiple precision add 

* 

* 

* 

* 

(B-C) index to FIRST operand. 

(C) length of operands, in bytes. 

* (H-L) index to SECND operand 

* FIRST operand and answer (sum). 

* SECND operand 

* 

ADD LXI B,FIRST set (B-C) pointer to FIRST. 

LXI H,SECND set (H-L) pointer to SECND 

XRA A clear CARRY bit, set A=0. 

LOOP: LDAX B get a byte of FIRST 

ADC M (A) -(A) + (H-L) + (CARRY). 

STAX B put a byte into FIRST 

DCR C done ... 

Ji DONE ... otherwise, continue. 

14 
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DONE: 

INX 

INX 

JMP 

END 

B 

H 

LOOP 

increment to next byte of FIRST 

increment to next byte of SECND 

add next byte. 

continue 

15 
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1.3 An Improved Microprocessor 

Once a dollar-volume force is set into motion 

by a technological breakthrough, many minor stepwise 

improvements follow. The improvements act as minor 

pertubations in the revolution. Nonetheless, it is 

by way of these smaller steps that we build-up to a 

subsequent breakthrough. 

The advantages of 8-bit microcomputers soon 

become obvious to many who would use them for purposes 

not forseen by the designers. These new applications 

were implemented by custom made software resident 

in the microprocessor memories. It became evident 

to many software engineers that the simple 8-bit 

microprocessor studied in section12 could be improved 

to alleviate some of the problems associated with more 

general applications. 

The improved microprocessor of Figure 3 gives 

the false impression that the microprocessor is 

* actually less capable than the one just studied . 

Actually, the simpler organization belies a more power­

ful microprocessor instruction set. The reason for 

its improved organization centers on the index 

register, IX and 72 unique instructions . 

* The architecture of Figure 3 is a Motorola 6800 MPU, 

see reference (8). 
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All operations are performed between registers 

A, Band memory, or between registers A and B themselves. 

For example, the "ADDA" and 'ADDB" instructions sum the 

contents of a memory byte at the location specified by 

register MAR. They also can sum the contents of 

A or Band store the result back into A or B. 

Instruction operand~ are fetched from either 

A or Band via MAR from memory as stated before. The 

index register, however, may enter into addressing 

via MAR. The contents of IX are added to the address 

in MAR to compute an effective address. This added 

capability greatly simplifies programming and requires 

smaller programs as illustrated in Figure 4. 

The SP and PC registers operate as before with 

the stack in main memory . The stack is used for 

recursive subroutine calls but may also contain inter­

mediate results or parameters to a subroutine . 

The condition codes include HALF CARRY, and 

CARRY as in the simple microprocessor. This enables 

the improved microprocessor to perform both BCD 

arithmetic on single bytes and multiple precision 

arithmetic on strings of bytes. The INTERRUPT MASK 

bit provides control over interrupt enables. For 

example, I is set (=O) with the "SE!" instruction . 

Interrupt service routines are entered recursively. 

17 
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Input/output is generalized through the use of 

a central bus. The bus handles addressing of memory, 

peripherals, and other microprocessors through 

generalized interface chips. Each interface chip is 

dedicated to either cycle - stealing direct .memory 

access, or to jamming data into the A or B accumulator. 

Therefore, to output a byte from register A, it is 

necessary to perform a store instruction, STAA IOBUF. 

This store accumulator A instruction addresses the 

interface chip IOBUF as if it were a location in 

memory. Whatever device is attached to IOBUF receives 

the byte of data. 

Examination of the multiple precision addition 

of FIRST and SECND byte strings of Figure 4 rGveals 

a much simpler, shorter, and understandable program 

when compared with Figure 2. 

In Figure 4 the microprocessor is programmed 

to add together any two byte strings of length N and 

store the result back in the FIRST string. This is 

done by using the index register as a pointer into 

the strings. The addition is done right-to-left with 

the CARRY bit linking together partial results. 

The DAA decimal adjust instruction can be in­

serted where shown if BCD arithmetic is desired. The 

DEX decrement instruction sets the zero~ indicator 

when X has been reduced to zero. This signifies termi­

nation of the loop. 

19 
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Figure 4. 

FIRST 

SECND 

N 

1\ 

AD2N 

LOOP 

* 

DONE 

A Sample Program For the Microprocessor 

of Figure 3. 

FCB 

FCB 

$84 

$BA 

FCB $90 

FCB 

FCB 

$32 

$AF 

FCB $84 

EQU 3 

CLC 

LDX #N 

LDAA FIRST,X 

ADCA SECND,X 

(DAA) 

STAA FIRST,X 

DEX 

BNE LOOP 

Hexadecimal data bytes ... 

stored in forward order. 

Form Constant Byte for . . . 

second operand. 

length of operands. 

clear CARRY. 

load length of operands ... 

into index register . 

get least significant byte 

add with CARRY 

(could go here for BCD add--

see text) 

put result back into FIRST. 

decrement index pointer. 

Done? 

20 
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The realization of greater capability in an 

8-bit processor suggests that other improvements 

may be possible. In the next demonstration micro­

processor we examine several areas of improvement 

representing the third generation of microprocessor 

organization. 

21 



1 . 4 A Sophisticated Microprocessor 

While the 4 and 8-bit microprocessors discussed 

earlier represent sophisticated programmable logic, 

the truly sophisticated microprocessor has the re­

placement of mini and midi computers as its dollar­

volume driving force. For any microcomputer to move 

into applications traditionally held by minicomputers 

greater software development potential must be 

possible through improved architecture . Therefore, 

it is the software development capability that differ­

entiates the sophisticated microprocessor from earlier 

generations of microprocessors. 

The dollar-volume force is increased by a 

microprocessor with ease of programming, sophisticated 

memory addressing, and expansion capability built 

into the chip . Such a microprocessor competes with 

minicomputers for acceptance. For this reason, the 

improved microcomputer must also be an improvement over 

many contemporary minicomputer architectures. For 

example , it must overcome limitations placed on main 

memory size in favor of a large memory address space. 

The sophisticated microprocessor is a 16-bit 

parallel, word , byte, and bit addressable machine with 

versatile memory addressing facilities, strong interrupt 

handling features , automatic memory mapping , and context 

22 



switching* ability. How can all of these requirements 

be met in a single microprocessor? 

The first architectural innovation needed to 

satisfy the stated requirements is the elimination 

of working registers. Architectures based on working 

registers as a separate resource invite inefficiencies 

in at least two fundamental ways. First, they invite 

unnecessary software overhead because the registers 

must be loaded and stored, frequently. The loads 

and stores do not produce results ; they only prepare 

operands for · operations that produce results. It 

would be more efficient to directly perform the 

operations on the operands regardless of their location 

in memory. 

Secondly, the registers of a traditional 

architecture are shared by every process in the system. 

Whenever processing switches contexts, the registers 

must be saved and then restored. Context switching 

may occur whenever a subprocedure is invoked either 

through an interrupt or else by normal program execution. 

Clearly, the need to share working registers has caused 

many problems in the design of operating sytems. 

Register allocation and management problems are 

avoided in machines organized around a pushdown stack 

architecture. The stack is stored in memory and every 

*Context switching is defined here as a state 

change requiring a new environment. The context of 

this machine changes whenever a subroutine, inter­

rupt, or process change occurs. 

23 
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operation in the instruction set operates on the top 

elements of the stack. Context switching is simple and 

fast because the stack has the natural ability to nest 

environments or mark the top of the stack iq order to 

return later to a previous state. Unfortunately, 

stack machines restrict access to other portions of 

memory and require wasteful loads (push) and stores 

(pop) to prepare operands for processing. 

An example that illustrates an inherent weak­

ness of stack architectures is the process of dynamic 

storage allocation. Dynamic storage allocation is 

performed by programs written in block-structured 

languages such as ALGOL and PL/1. Upon entry into a 

nested block, the local variables are allocated 

space by creating a segment of storage on the top 

of the pushdown stack. As processing continues, the 

stack continues to grow, and indeed when a second 

nested block is encountered, it is possible to require 

a second block of local storage to be allocated on 

the top of the stack. At this point, the stack 

24 



architecture must be able to also access the data 

stored in the outer block. This non-local data is 

not on the top of the stack, but instead' it is many 

stack frames into the stack. Thus, the top-of-stack 

operations no longer are able to access the _outer 

data without additional modes of addressing. 

The stack machine can be stressed further with 

the problem of global dynamic allocation posed by 

PL/I derivatives. The ALLOCATE construct of PL/I 

makes it possible for a programmer to create a variable 

(and its space) at any time in the execution of a 

program. Conversely the FREE construct allows a pro­

grammer to destroy the variable (and its space) at 

any point in the program. These operations fragment 

pushdown stack storage disciplines and the resultant 

overhead becomes prohibitive. Typically, this problem 

is handled by bypassing the stack and resorting the 

traditional addressing modes and traditional load/store 

overhead operations. In otherwords, pushdown stack 

mechanisms have only limited advantages over traditional 

organizations. 

A sophisticated microprocessor must be able to 

switch contexts as easily as a pushdown stack machine 

and yet access data as randomly as a register machine. 

25 



In addition, it would be highly desirable to either 

maintain a very large number of working registers or 

else eliminate them entirely in favor of direct 

access to memory words. The microprocessor and RAM 

' 
(random access memory) of Figure 5 is a step in this 

direction. 

The microprocessor of Figure 5 contains three 

internal registers called CONTEXT POINTERS and 

three files of 6 registers each called the MEMORY MAPS. 

All other registers are part of main memory and are 

accessed through the CONTEXT POINTERS working in 

harmony with a MEMORY MAP. 

The CONTEXT POINTER WP (working pointer) is a 

16-bit address that is modified by BIAS i, where i is 

determined by the value of WP and the LIMIT registers. 

If LIMIT 2 < WP ~ LIMIT 1 then a 20-bit effective 

address is formed by adding (BIAS 1) *2 5 to WP. The 

BIAS register is shifted left 5 bits before addition 

to effect the multiplication by 32. If LIMIT 2 < WP 

-' LIMIT 3, then BIAS 2 is used to compute a 20-bit 

effective address. Finally, when WP> LIMIT 3 the 

BIAS 3 offset is used. 

Clearly, the memory mechanism adds to the power 

of this microprocessor. Programs and data are all 

referenced through the MAP. This means that large 

memory spaces can be addressed and segments containing 

data or programs need not be contiguous. 

* This is the Texas Instruments 990 ser1·es processor, see 
reference (5). 
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Notice in the description thus far, that the 

microprocessor manipulates pointers to data as opposed 

to manipulating data directly in internal registers. 

This level of indirection is the source of much of 

the microprocessor's power and sophistication. In­

direction supplies the ability to do context switching 

with the ease of a pushdown stack machine. 

The WP pointer (with modification by the MAP) 

references a segment of memory called the CURRENT 

PROGRAM CONTEXT. The first 16 words of this context 

serve as "workspace registers". WRO through WR15 

appear to a programmer as working registers. Each 

context has its own bank of workspace registers WRO 

through WR15. Observe that WRll through WR15 are 

special purpose registers as well as being general 

registers. In particular, WR14 is used to hold the 

OLD WP of the previous context. Thus the advantages 

of a pushdown stack are realized while at the same 

time the advantages of random access remain. Further­

more, local register space is protected from non-local 

contexts that endanger the integrity of data stored 

in the registers. 

The example of Figure 5 also demonstrates how 

interrupts are vectored to the appropriate service 

routine. The INTERRUPT VECTORS contain "new WP" 

27 
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and "new PC" addresses that point to the service 

routine and its workspace. Since the old WP and old 

PC are automatically saved in the service routine 

workspace, returns from interrupts are simplified. 

Interrupts may be nested inside of interrupts. 

The XOP (extended operations) register in 

WRll of the workspace provides a means for extending 

the hardware or software of the sophisticated micro­

processor. There are 16 instructions not implemented 

in the processor. When one of the unimplemented 

opcodes is encountered, a trap occurs and the micro­

processor tests the effective address generated by 

the "illegal" opcode to determine if the address points 

to hardware or software. This pointer is stored in 

WRll (XOP) of the new context. If the instruction is 

simulated by software, the routine at XOP is executed. 

If the instruction is interpreted by hardware, the 

execution at XOP is performed and the results returned 

to the workspace. The reader is advised to keep 

this feature in mind for a later discussion concerning 

LSI software, see section 2.2. 

The driving force behind the sophisticated 

microprocessor is the dollar-volume expansion that 

results from replacing minicomputers with microcomputers. 
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Figure 6. A Sample Program For The Microprocessor 

of Figure 5. 

* 

* 

* 

OS 

ws 

TITL 

IDT 

Set-up 

DATA 

DATA 

DATA 

DATA 

BSS 

FIRST DATA 

SECND DATA 

* 

* COMPUTE SUM 

* 

CLC 

'MULTIPLE BYTE ADD ROUTINE' 

'ADDITION' 

WP,PC,ST and Workspace Registers 

WS, PC, )F 

FIRST 

SECND 

initialize WP,PC and ST. 

WRO points to FIRST 

WRl points to SECND. 

'> 3 WR2 indexes operands. 

26 WR3-WR15 not used. 

~ 0084, >BA90 right justified operand. 

>0032, >AF84 right justified operand. 

LOOP ABC @SECND(2),@FIRST(2) 

clear carry bit in ST 

add low-to-high bytes. 

decrement WR2 index 

done? 

DEC 2 

JNE LOOP 
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This technological jump is reflected in greater 

programming "power" when compared with the previous 

microprocessors. Figure 6 illustrates how the 3-byte 

addition routine of Figure 2 and Figure 4 appears if 

p~ogrammed in the assembly language of the -

sophisticated microprocessor. 

Notice the actual executable segment of Figure 6 

is only 4 words long. This is a 50% reduction in 

program length .and corresponding execution time over 

the improved microprocessor routine in Figure 4. 

The improvement is possible because memory-to-memory 

operands are allowed and WR2 is used as an index­

counter. This mode of addressing is possible without 

sacrificing the advantages of rapid context switching. 

Also, a fair comparison of microprocessors must 

account for the overhead required to set up the work­

space and data. This overhead was sizeable in the 

sample of Figure 6, but of minor consequence in 

realistically sized programs. Once the context environ­

ment is set up for each context, the advantages of 

rapid switching offset the set-up inconvenience. 

The OS statement illustrates how three words 

are used to initialize WP, PC, and ST in the CONTEXT 

POINTER registers. The > F bit pattern supplies 

initial condition codes for the active ST register. 
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The WS statement initializes the workspace for 

this context. A pointer to FIRST and SECND are set 

up in WRO and WRl, and the length of operands is set 

up in WR2. The BSS pseudoop simply reserves space 

for the other workspace registers. 

The FIRST and SECND operands are stored in two 

16-bit words. They are hexadecimal constants designated 

by the assembler 11 :>" notation. 

The summation is performed by clearing the CARRY 

bit in ST, performing an "add with carry" ABC, and 

looping until all three bytes have been summed. 

The@ notation indicates that the data is at 

FIRST plus index register 2, and at SECND plus index 

register 2 , respectively. The first operand is added 

to the second operand. The sum is stored in FIRST. 

Finally , the index register is decremented and 

the loop is repeated as long as WR2 is not equal to 

zero (NE). Execution of these four instructions takes 

ten machine cycles to sum all three bytes. 

The idea behind this microprocessor is to gain 

sophistication through elegant simplicity. The 

elegance of stack processing and direct memory-to-memory 

random access processing are retained without loss of 

sirnplici ty. 

The goals of this microprocessor are futile if 

we cannot find ways to tap the simple elegance of this 

architecture. This requires programming in a form 
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consistent with the cost of a microcomputer. How can 

we cope with programming a microcomputer? 

2. Firmware 

2 . 1 Definitions 

Firmware is programmed hardware. It is soft­

ware merged into hardward because it combines pro­

gramming with non-alterable hardware. How can this be? 

A microprogram was defined earlier as a program 

residing in ROM (read-only-memory). Because it is un­

alterable, the microprogram is called firmware. 

Software for a microcomputer is turned into firm­

ware by storing* it in ROM. This means that constants 

may be taken from the program space but that results 

can never be returned to the program space. Thus 

program and data must be separated. The side effects 

of alterable program spaces are eliminated. 

Traditionally, (and more precisely) the concept 

of microprogramming applies to the firmware resident 

in the control unit of a computer. Since the control 

unit directs a computer during hardware interpretation 

of machine language instructions, microprogramming 

*The ROM is initially "burned" by passing 

a high voltage through the memory. This high 

voltage distructively alters the ROM leaving a 

bit pattern which can be output during emulation. 
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is meant to determine the nature of machine language. 

In a sense, the control unit is another computer 

inside of the machine language level computer. 

The invention of microprocessors and micro­

computers blurred the precise meaning of micro­

programming. The trend is to accept the definition 

used here. We will see why this definition may 

persist when the concept of LSI software is expanded. 

2.2 Software LSI 

LSI (large scale integration) is responsible 

for the microcomputer revolution. LSI hardware 

technology reduced the cost of entire cpus, memory, 

and peripherals to the point where hardware is "free". 

Unfortunately, software costs have continued 

to climb due to increased complexity in systems and 

the fact that software production is essentially a 

custom manufacturing process. Daily, software 

programmers implement their customized versions of 

matbematicalroutines, payroll routines, etc. Most of 
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these software packages have been written hundreds of 

times with little knowledge of their duplication. 

Manufacturing of software must turn to "software" 

LSI techniques analogous with hardware LSI techniques 

before advances can be made in reducing software costs. 

An obvious step toward reducing the cost of soft­

ware is to share identical programs with many different 

microcomputers. Pocket calculators, for example, share 

the same SIN (x), %, and 1/x routines with thousands of 

microcomputers. This is done by encapsulating software 

in a ROM which is mass produced as an LSI software module. 

An LSI software module is a microcomputer and com­

panion ROM memory containing firmware dedicated to a 

specific function or functions. The scientific subroutine 

package of a large computer can be economically replaced 

by an LSI software module similar to the pocket calculator. 

Once this module is 11plugged in" it is never "reinvented 11 

by a software programmer. Instead, it is forever en­

capsulated in firmware. 

A software module must be used frequently and be 

thoroughly tested before it is committed to LSI en­

capsulation. Wide acceptance of the module is based upon 

frequent use, and recognizing that the module is a 

"primitive 11 • Obviously , since it is shared by thousands 

of microcomputers, it must work properly. 
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A language interpreter such as BASIC or APL is 

easily encapsulated as an LSI software module. These 

languages have an ad hoc standard that assures relative 

stability. Thus, the standard APL and BASIC are recognized 

as primitives. Mass production of APL or BASIC interpreters . 
/ 

is accomplished by mass production of ROMs containing 

bit patterns for controlling a microcomputer. The result 

is low cost "software". 

The concept of pluggable LSI software leads to the 

concept of distributed microcomputer processors. Such 

processors are constructed from LSI software modules. 

Each module is a ROM and microprocessor dedicated to a 

specific function. 

Distributed microcomputers must be managed in a 

simple, yet elegant way or else the same complexities that 

plague larger computers and networks will also plague 

distributed LSI software microcomputers. The microcomputer 

ring, Figure 7, is one such approach. 

In Figure 7, two LSI software rings have been 

formed from LSI software modules. The PROCESSOR ring is 

formed by plugging APL, BASIC, a CALCULATOR, an OPERATING 

SYSTEM, and two MEMORY units into a circular shift register. 

In addition, an INTERCOMM module is plugged into both 

rings to handle communication between the PROCESSOR ring 

and the I/0 ring. Each ring consists of a large circulating 

shift register memory. Information is introduced into the 
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shift register by any LSI software module intertaced to 

the ring. Each module has an address corresponding to 

the address of the shift register word or words connected 

to its LSI software module interface. 

Information is circulated in the ring forever or 

until removed by one · of the LSI software modules. Thus, 

the counter clockwise circulating shift register provides 

input on one side and output on the other side of each 

interface. 

The I/O ring consists of a circulating shift 

register with LSI software modules for terminals plugged 

into it, and a connection to the PROCESSOR ring. The 

terminal LSI software modules consist of CRT/KEYBOARD 

and local memory/microprocessor for controlling terminal 

activities. The ring interface allows information to 

1 flow to other terminals of the ring or to the PROCESSOR 

ring via the INTERCOMM LSI software module. 

The microcomputer ring concept eliminates system 

software. System programs are LSI software programs en­

capsulated in ROM. The firmware eliminates the need for 

protection and increases reliability. 

As an example, suppose a terminal user decides to 

execute an APL statement. 

A 4--- +/A , -• 
The user logs onto the I/O ring by typing a password into 

his terminal. This password is copied into the circulating 
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I/O ring where it continues to circulate until the 

INTERCOMM module takes it from the I/O ring and enters 

it into the PROCESSOR ring. 

Clearly the messages entered into a ring are 

accompanied by a source and destination address. Hence, 

at each interface these addresses are compared to determine 

which LSI software module should respond. When the 

addresses match, the LSI module may be busy, thus the 

message is circulated one full cycle before reaching the 

destination again. This process is repeated until the 

message is absorbed by the destination LSI module. 

The password is circulated in the PROCESSOR ring 

until picked off by the OPERATING SYSTEM module . The 

OPERATING SYSTEM module reverses source and destination 

addresses and formats a return message. This process 

also initiates the necessary control tables for this user. 

These tables are kept in the OPERATING SYSTEM module's 

local memory or in one ~f the MEMORY modules. 

The terminal user types in a command , next: 

APL 

This command travels around to the OPERATING SYSTEM again 

and when the APL statement is entered, the following steps 

take place. The OPERATING SYSTEM intercepts the statement. 

Since the user is in APL mode, the OPERATING SYSTEM forwards 

the statement to the APL LSI software module. The APL 
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module parses the statement and sends out a series of 

CALCULATOR messages to perform the+/, , and • -• 
operations. These operations are eventually performed 

and the results returned to the APL module. The APL 

module returns a message to the OPERATING SYSTEM. Finally, 

the user receives a message from the OPERATING SYSTEM 

and the dialog continues. 

The ring structured microcomputer is simple and 

elegant. Network complexity is not allowed to get out 

of control because a ring is the simplest kind of network. 

System software is manageable in a ring micro­

computer because it is modular and encapsulated as firm­

ware primitives. Even when testing a new module, the 

interaction between the untried module and the other 

modules is localized. This eases system integration 

problems in the same way that top-down structured pro­

gramming does. 

The ring network of microcomputers is untested. For 

example, when the ring shift register becomes full, a 

contention will arise. In this sense, the ring is a buffer. 

Further investigation into the properties of rings is 

needed before conclusions can be drawn. 

LSI software is an outgrowth of good programming 

technique. Programming in single statements is analogous 

to building a computer from flip-flops. Programming in 
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subroutines or structured control structures with single 

entry/single exit flow of control can be compared with 

building a computer from medium scale integrated circuits. 

Programming with firmware modules can be compared to 

building microcomputers from LSI microprocess9r chips, 

2.3 Grand Scale Integration 

Grand scale integration, GSI is the concept of 

combining LSI memory and microprocessor units into a 

single chip. The memory is "charged., with a firmware 

program at the factory. The firmware charge customizes 

the GSI chip into a tailored device. A firmware charge 

may turn one GSI chip into a memory management processor 

and another chip into a language processor. 

GSI chips may be used to build ring microcomputers, 

or they may be used in applications previously untouched by 

microcomputers. Since GSI expands the dollar-volume force, 

we should expect to see GSI in widespread use in the future. 

The author conjectures that GSI is the next step following 

the LSI age. 

In the next section we examine alternatives to the 

problem of developing end-user applications through 

programming LSI and GSI computers. 
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3. Software 

3.1 Problems 

The dollar-volume force driving a technological 

advance ultimately owes its power to applicat~ons. In 

microcomputer technology, applications are realized only 

after considerable programming effort. Historically, 

programming effort has grown to the point where software 

cost is the economic determining factor. 

In the previous section, we studied LSI software 

approaches to reducing software costs. In both cases, 

the cost is reduced after the software is produced. In 

this section, we study methods of reducing the implementation 

costs of first-time systems. 

The problems associated with microcomputer program­

ming stem from 1) the limitations of the architecture, 

2) the transient period of bootstrapping from one machine 

to another machine, and 3) the problems that have always 

plagued programming. 

The previous study of three typical microprocessors 

revealed features that facilitate assembly language program­

ming. The use of index registers and a pushdown stack 

were noted as improvements over simple register transfer 

architectures. The sophisticated microprocessor example 

demonstrated how context switching and direct memory access 

to operands can ease the burden of system implementation. 
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Thus, the architecture of a microcomputer is fundamentally 

important to software development. 

Once an architecture manifests itself in the form 

of a microcomputer, there is a time delay between hard­

ware design and software design. The contemp?rary gener­

ation of microcomputers suffer from a lack of software. 

This shortage will continue until the transient period 

passes. Several temporary solutions are employed to over­

come the software development transient. 

A cross-translator is a program running on one 

machine that produces object code for another machine. 

The cross-translator runs on a parent computer and generates 

code to be executed on a child computer. The parent 

computer typically executes an assembler or high level 

language compiler written in a common language like FORTRAN. 

The output from the parent computer is loadable object code 

for the child. 

A portable software package is a software package 

written in a language that is "easily" moved from machine 

to machine. The mobility of a portable software package 

may be due to its self-compiler feature or due to a collection 

of primitives that can be easily transported onto another 

machine. 

In the case of self-compile portability, a cross­

compiler is employed on the parent computer. The cross­

compiler produces code for the child computer regardless 
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of source input. 

compiler itself. 

Suppose the source input is the cross­

Then the object code that results 

from self-compile is used to transport the cross-compiler 

onto the child computer. Once moved to the child, the 

cross-compiler becomes a stand-alone compiler . and may 

be used in the same way that it was used on the parent 

computer. 

A portability software package may also be written 

in a primitive portable language. The primitive portable 

language may actually consist of a set of macros whose 

expansion is determined by the child computer's architecture. 

A different prototype model is needed for each new child 

computer. 

The primitive portable language may manifest itself 

as a hypothetical child machine. The hypothetical child 

instruction set is used to implement all portable software. 

When the software needs to be moved, a transportation program 

is written that maps each hypothetical child instruction 

into an equivalent actual child instruction (s). 

Both approaches to portability are being used in 

contemporary microcomputer systems. The central problem 

hindering both approaches is code efficiency. Further work 

is needed to improve the object code resulting from trans­

portation of software. 

Ultimately ; the problems that microcomputer pro­

gramming faces are the general problems of software production. 
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The need for more "powerful" and expressive languages, for 

example. There are some indications that programming is 

about to make a grand departure from traditional procedural 

language techniques to other forms of man-machine communi­

cation. In the following sections, we examine alternate 

approaches to programming. In particular, we concentrate 

on forms of man-machine communication that fit well into 

the microcomputer dollar-volume force. 

3.2 A System Implementation Language 

The obvious approach to implementing software on a 

microcomputer is to use a high level language. The high 

level language should have several features of an assembler 

language, however, because the language is used to implement 

control programs, compilers, etc and requires the ability 

to access machine level resources. Such languages are called 

SIL's (system implementation languages). 

Typically a SIL for a microcomputer executes as a 

cross-compiler. Although, this may be a transient mode of 

operation, the limited memory of many microcomputer systems 

prevent implementation of sophisticated SIL's. Often the 

resulting object code being produced is on the order of 

16KB while the SIL translation may require 128KB of memory. 
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Figure 8. Example Of A Systems Implementation Language 

MATCH: PROCEDURE (PTRl, PTR2) BYTE 

DELCARE (PTRl, PTR2) BYTE 

DECLARE (STRl, BASED PTRl 

STR2 BASED PTR2) ADDRESS 

DECLARE I ADDRESS 

DECLARE (Jl, J2) BYTE 

Jl , J2, I = 0 

LOOP: DO WHILE Jl = J2 

IF Jl = OFFH THEN RETURN (O) 

Jl = STRl (I) 

J2 = STR2 (I) 

I = I = 1 

END LOOP: 

RETURN (-1) 

END MATCH 

Return (-1) when no match , , 0 when match. 
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* Figure 8 illustrates a SIL for implementing soft-

ware on the microcomputer of Figure 1. This program 

computes a zero if the two strings at location PTRl and 

PTR2, respectively are equal. An 8-bit (-1) is returned 

as a hexadecimal OFF, otherwise. 

Upon entry into PROCEDURE MATCH, the first string 

STRl is located by pointer PTRl and the second string STR2 

is located by PTR2. This is indicated by the ADDRESS 

attribute that declares STRl, STR2, and I as symbolic 

labels for addresses in memory. 

The BYTE sized pointers PTRl and PTR2 contain the 

address of STRl and STR2. Since they are passed by value, 

the MATCH routine is useful for comparing any two strings 

at location specified by PTRl and PTR2. 

In the sample program, each character of the two 

strings is moved to Jl and J2, respectively. Jl and J2 

are compared and as long as they are equal, the next byte 

pair is compared. The code OFFH is used to indicate that 

the end of the string STRl has been reached. In this case, 

the strings are equal and a zero is assigned to location 

MATCH. 

The LOOP segment of the demonstration program 

repeats as long as the character in Jl matches the character 

in J2. When the value of Jl = OFF hexadecimal, the last 

character of the string has been reached. 

The SIL in this example is a version of PL/M for the Intell 

8080 system. 
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Each byte of STRl is copied into Jl and each byte 

of STR2 is copied into J2. This is done by indexing STRl 

and STR2 by I. The index value stored at location I is in- • 

cremented and the loop executed again unless Jl does not 

match J2. 

This program is compiled into machine language 

for the microprocessor of Figure 1. Since the microcomputer 

is an 8-bit architecture and we know that considerable effort 

is required to overcome its limitations, this language 

greatly improves the prospects for programming the machine , 

The language "covers-up" the limited architecture and yet 

allows a programmer access to data bytes and addresses. 

Perhaps the greatest improvement is that the SIL provides 

indexing and addressing capability lacking in the machine 

itself. 

The SIL approach is an outgrowth of language develop­

ment on large machines. Since microcomputers are revo­

lutionizing the way we think about computing, perhaps it 

is also time to question the SIL approach. Are there better 

ways to program extremely low-cost hardware without paying 

dearly for software? 

3.3. Pushbutton Programming 

One of the startling revelations of the LSI hardware 

era was the significance of pocket calculators. Pocket 
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calculators are partially successful because of their 

simple man-machine interface. Their interface eliminates 

the traditional operating system, language processor, 

utilities, and computer terminology and replaces them with 

the finger. A pocket calculator is programmed by push­

button. 

Pushbutton programming can be elegant and sophisti­

cated in spite of its simplicity. Elegance is usually 

achieved in one of two ways, 1) identifying primitive 

"button" operations for a given application, or 2) building 

primitive "button" operations on top of other primitives 

in a hierarchy of modules. 

Primitive button operations are implemented in LSI 

software modules or as software programs. The LSI software 

module approach is based on firmware encapsulation of 

accepted standards. We discussed the encapsulation pro­

cess for a ring structured microcomputer, earlier. 

The software program approach typically represents 

an experimental or intermediate step in developing a truly 

pushbutton microcomputer system. Once the function 

represented by each "button" is known to be primitive to 

the application, the software program for the function should 

be encapsulated as an LSI software module. This has been 

done, for example, with BASIC interpreters and I/0 

controllers. 
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Figure 9. Sample Pushbutton Program For Business Primitives 

ACCOUNT 

NUM 

NO 

INDEX 

NAME 

BALANCE 

LENGTH 

START 

MOD 

LOOK 

ERROR 

FILE 

FORM 8 

FORM 8 

FORM 8 

'DIM 40 

FORM 5.2 

FORM "3997 11 

OPEN ACCOUNT, "LOOK UP" 

DISPLAY "ENTER ACCOUNT NUMBER" 

KEYIN *N, "ACCOUNT?", NUM 

MOVE NUM TO INDEX 

SUBTRACT LENGTH FROM INDEX 

COMPARE LENGTH TO INDEX 

GOTO MOD IF LESS 

READ ACCOUNT, INDEX; NO, NAME, BALANCE 

GOTO ERROR IF OVER 

COMPARE NO TO NUM 

GOTO LOOK IF NOT EQUAL 

DISPLAY NAME, "HAS BALANCE=", BALANCE 

GOTO START 

DISPLAY "NO SUCH ACCOUNT IN FILE" 

GOTO START 

STOP 
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Figure 9 demonstrates a pushbutton program for a 

* pushbutton microcomputer. The microcomputer is assumed 

to consist of a CRT/Keyboard, microprocessor and memory, 

and a diskette mass storage device for file storage. 

The program of Figure 9 assumes a file containing 

names and balances. Upon entry of a name, a balance is 

retrieved and output to the CRT console. 

The FILE button establishes a file named ACCOUNT. 

The FORM buttons declare (NUM, NO, INDEX) as numbers re­

quiring 8-digit accuracy. The DIM button reserves space 

for a 40-character string. The BALANCE number is a dollar 

and cents figure with up to 5 digits for the dollar 

amount and 2 digits for the cents amount. 

The ACCOUNT file is OPENed for "look-up". The 

DISPLAY and KEYIN buttons perform I/0 via the CRT/Keyboard. 

The account number NUM is moved into variable INDEX where 

it is reduced modulo LENGTH (notice that LENGTH is 3997). 

The remainder produced by the MOD segment of code is used 

to index into the ACCOUNT file. 

The LOOK segment searches the ACCOUNT file by directly 

indexing into the ACCOUNT file. If NO, NAME, and BALANCE 

are not the desired matching record, then the file is searched 

sequentially until the matching records are found. If no 

matching records are found, then the search terminates 

with a DISPLAY message at ERROR. 

The language is DATABUS which is used on Datapoint computers, 

see reference (4). 
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Each time a READ is executed, the value of INDEX 

is incremented to the next record in the file . Thus, 

each time through the LOOK loop another record is re­

trieved from the diskette file. 

The pushbutton microcomputer illustrates how 

programming is simplified for business data processing 

applications. The primitives are data processing primitives 

as opposed to mathematical, word processing, or graphical 

primitives . 

The disadvantage of the type of microcomputer system 

shown in figure 9 is that the system is limited. The 

primitives are fixed, and although sufficient for the 

intended novice user, they cannot be combined into sub­

procedures , " superbuttons", or extended by adding other 

functions. The next section illustrates a more sophisti­

cated buttonpushing language that overcomes these limitations. 

3 . 4 Improved Pushbutton Programming 

It is desirable to have a powerful pushbutton language 

-
that is simple and easy to use. Simplicity and power do 

not always go hand-in-hand, however . How can we reach a 

compromise between the two within the limits of microcomputer 

based systems? 

Suppose a primitive set of ' 'buttons" are used to 

build more sophisticated structures through modular con-
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struction of "superbuttons". A superbutton is a procedure 

that invokes many lower level buttons. It is the concept 

of a subprocedure as applied to pushbutton programming. 

Extension through superbutton programming requires 

a table mechanism to manage the names of the buttons. A 

dictionary and interpreter are needed to process the super­

button primitives. 

The dictionary contains the name of each button and 

a pointer to a code segment. The code segment is a chain 

of other pushbuttons (all of which are contained in the 

dictionary) or a segment of microcomputer executable machine 

code. 

Since each button could possibly have one or more 

parameters passed to it or generated for it by another 

button, a parameter passing mechanism is needed. Thus, 

a pushdown stack processor is used to execute the superbuttons 

and process their parameters. 

The interpreter performs dictionary look-up and 

manages the pushdown stack. Obviously, since the interpreter 

is nothing more than a program, it too can be written in 

the pushbutton language. In fact, the interpreter is an 

example of a superbutton, see below. 

:INTERPRET BEGIN 

END 

WORD FIND IF EXECUTE 

ELSE NUMBER 

THEN QUERY 
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The denotes that this is a superbutton named 

INTERPRET. The chain of buttons to follow define what it 

means to push INTERPRET. Since the interpreter runs for­

ever, the BEGIN-END pair brackets a never-ending loop. 

WORD extracts the name of a button from , the input 

device (we assume a microcomputer like the one in the previous 

section). FIND searches the dictionary and returns TRUE 

if the name previously input matches an entry in the 

dictionary. 

The pushdown stack maintained by the superbutton 

processor contains either a TRUE or FALSE after FIND is 

performed. The IF is performed if the stack contains a 

TRUE. The ELSE clause is executed if a FALSE appears on 

the stack. Suppose the TRUE condition results, then the 

EXECUTE button performs the function indicated by the 

button found in the dictionary. 

If the FALSE condition results, then NUMBER is 

executed. This button attempts to convert the input name 

to a binary number. Failure aborts the execution of a 

user's button stream. The interpreter expects either valid 

names for buttons or valid numbers as input. 

THEN marks the end of the IF-ELSE clauses. Control 

returns to QUERY in either TRUE or FALSE cases. The QUERY 

button puts the interpreter in idle mode until more input 

is available. 
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The dictionary and interpreter combine to give a 

user powerful, yet simple access to increasingly complex 

structures. Extensibility results from building super­

buttons on top of relatively low level primitives. 

A simple pocket calculator example show$ how the 

INTERPRET button processes an expression. 

12 50 * 10 I 

The 12 and 50 are pushed onto the stack as they are 

input. This happens because the FIND button returned a 

FALSE condition (12 and 50 do not occur in the dictionary). 

The FIND button does locate on * in the dictionary, 

though, and the result is that EXECUTE performs a multiply. 

The result (600) is placed back on the stack and QUERY 

waits for another input . The 10 is pushed onto the stack, 

and the / is EXECUTED, leaving a 60 on the stack. The 

period causes the 60 to be printed out. 

idles. 

The interpreter 

As a final example, suppose we want a superbutton to 

compute absolute value. Assuming that ABS is not a primitive 

button already, we could add it to the dictionary merely 

by defining it with an 

ABS 

DUP 

0 < 
IF MINUS 

THEN 

control character. 
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This code strings together a chain of buttons to 

perform sign reversal when desired. DUP produces a 

duplicate on the stack. This duplicate is absorbed by 

the O .( test button that sets a TRUE or FALSE condition 

on the stack. If a TRUE condition exists, the _n MINUS per­

forms a sign reversal, and replaces the number on the 

stack, otherwise nothing is done to the number originally 

on the stack. 

Since the superbuttons are constructed from primitives, 

the problem of portability is partially solved. Each 

button is defined in terms of a particular microcomputer 

machine language. A package of superbuttons for a special 

application can be moved from one microcomputer to another 

* by rewriting only the basic primitives. These primitives 

occur in the dictionary, so the actual re-coding is done 

by changing the code segment referenced by each dictionary 

entry. 

In summary, we can say that SIL ' s and - pushbutton 

languages both strive to cover-up the limited architectures 

underlying microcomputer design. The user sees only a 

symbolic manifestation of the microcomputer. 

In the transient period between the large machine 

era and the LSI era, we should expect a re-examination of 

the problems and solutions of the past. Pushbutton pro­

gramming has no precedent in earlier systems because of 

the easy access by novice users. In the next section, 

This is the approach taken by FORTH, Inc , see reference (3) . 
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we study some of the trends brought on by LSI hardware 

and software. 

4. What Computing Has Come To. 

4.1 How Large Should a Computer Be? 

The microcomputer invasion is bringing an end to the 

Renaissance Computer* Age. The reasons for this are both 

technological and economical . 

Hardware costs have, because of LSI technology , 

dimi~ished below the cost of complexity making general 

purpose k-way shared systems uneconomical for large values 

of k. On the otherhand , software development costs remain 

high due to complexity. Therefore, software complexit y is 

forcing duplication of integrated hard / soft systems in place 

of hardware systems running a variet y of programs. 

The hardware shift, as it is called , is also responsible 

for a shift in the type and number of computer applications. 

Shifts in applications lead eventually to greater hardware 

shifts. Viewed from an economic point-of-view , the hard ware 

shift is an " acceleration force " whose rate of change 

determines the size of future computers. 

The first 3 computer generations were charaterized 

* A Renaissance Computer is a general purpose , large, 

central computer. Its purpose is to do all things. Its 

size and cost are justified by its multipurpose , multi­

programmed, and often timeshared operation. 
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by cost and physical size. A typical computer installation 

consisted of millions of dollars worth of hardware and 

required massive support in terms of air conditioning, tape 

libraries, programmers and administrative personnel. 

These large, costly computers quickly became 

Renaissance Computers or what IBM popularized as General 

Purpose computers. A Renaissance Computer is capable of 

doing a variety of things: business data processing , 

scientific calculations , telecommunications, word processing , 

information storage and retrieval, etc. Actually , however , 

it was only the very expensive processing problems that 

were attacked by Renaissance Computers. That is, space age 

calculations, business for large corporations, and information 

storage and retrieval for large private universities that 

could afford to experiment. Small scale computing was a 

very expensive hobby carried out mostly by aerospace 

engineers who bootlegged time on the company ' s Renaissance 

Computer to simulate Las Vegas games of chance , or academic 

people who experimented under the name of artificial 

intelligence or CAI. 

There were valid reasons for the Renaissance Com­

puter. Any computer was expensive to fabricate and main­

tain and so had to be multipurpose. The Renaissance 

Computer, because of its cost, was an affordable machine 

only for those with a variety of uses in mind. 
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The emergence of minicomputers heralded the end of 

the Renaissance Computer Age. LSI technology has greatly 

accelerated the coming of the end by decreasing hardware 

costs to the point where cpu costs were negligible. Indeed , 

the only obstacles remaining for "computing for the millions" 

is the cost of peripherals and the amount of effort re­

quired in developing software. 

The mini/microcomputer provides a hardware basis for 

the emergence of the Common Computer Age. This age is 

characterized by inexpensive hardware, novel I / 0 devices, 

inexperienced users / programmers, and expanding market and 

applications , and reorientation of the economics of 

computing. As in the Renaissance Computer Age, the new 

age will be governed by economic forces more than technical 

forces ( even though LSI technology brought about the 

revoluti o n). 

The logic of the economic force behind the Common 

Computer Age goes as follows: The cost of computing is 

controlled by the number and kind of applications. The 

number and kind of applications are determined b y the c o st 

of computing. Thus , a feedback loop is completed. The 

delay in this loop is speculated to be 3-5 years , but 

decreasing with each computer generation. 

The topics of 1) novel I/0 devices , 2) inexperienced 

users / programmers , and 3) applications are not central to 

the issues addressed here, but suffice it to note that 

TV/ keyboard devices are on the increase, BASIC as a pro-
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gram.ming language is rampant, and computer games are in 

tremendous demand. The reader can easily make predictions 

based upon these trends. 

4.2 The Cost of Complexity 

A general system is a collection of interacting parts, 

each part having well defined features. An understanding 

of these features does not guarantee an equal understanding 

of the general system. Indeed, a system often behaves 

in unexpected ways even after careful study of its parts. 

Unexpected behavior is frequently observed in computer 

systems, much to the chagrin of programmers , hardware 

designers , and users. 

A simple model of complexity may be applied to computer 

systems to determine optimal degree of sharing of hardware, 

optimal degree of sharing in software design, and to make 

conjectures about the best size for a " computer". 

Suppose a system is made of 4 parts as shown below. 

3 connections 

The first part is allowed to interact in some way with the 

other 3 parts, also shown above. "Interaction " is a 

generalized concept. It may refer to communication, a 
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physical connection, an effect, or some other tangible or 

intangible connection. 

Let us define complexity and its corresponding 

ncost" as follows: 

= (the potential maximum number of inter­

actions possible in syste~ of n parts) 

We can compute the potential maximum number of interactions 

possible in a system of 4 parts by completing all of the 

connections in the 4-part system, above. 

0 
2 connections 

The remaining number of connecti o ns bet ween the second 

part and all other parts is 2. The remaining number of 

connections from part 3 is shown below. 

0 
1 connecti o n 

3 i---------(4 

The composite of all of the above shows that in a syst em 

of n parts, there are (n-1) + (n-2) + ... l connections. 

n-1 

connecti o ns 

i=l 
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Thus, the cost of complexity in an n-part general 

system is proportional to the sum of the first (n-1) 

integers. 

= n(n-1) 
2 

4.3 Large-Scale Versus Micro Hardware 

The Renaissance Computer was, and is, made affordable 

by time-multiplexing the hardware. This is done in a variety 

of ways, all falling under the misnomer of "timesharing" or 

"multiprogramming''. Actually, what goes on inside of a multi­

plexed Renaissance Computer is a division of cpu power into 

k parts by a k-way multiplexing scheme, The purpose of the 

k-way division is to keep the exnensive cpu busy in order 

to spread its cost k ways. 

Extensive sharing is a modern day fallacy for two 

reasons : 1) the cpu is no longer the most expensive part 

of a system , and .2) t be ability o f the cpu to render ser v ice 

increases as the cpu becomes idle. This is demonstrated 

by the simple Markov model of a request for service, below. 

REQUEST 

time 

RESPONSE 

(IDLE 100(1-p )% of time 

The request enters a WAIT state that may or may not hold 

the request for W units of time, say , and then when the cpu 
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is idle, the response is given in R units of time. The 

average delay is given by the simple formula, below. 

Avg. Response Time= R + 
p w 

Examination of a plot of Avg. Response Time versus busy time 

p shows that the smaller p (more idle time) the better is 

the expected response. 

In light of the Common Computer Age, the rule of 

multiuser cpu design should be to keep the cpu idle as much 

as possible. This can be done by increasing the cpu speed 

so that every request takes zero time (R = 0), thus freeing 

the cpu. Alternatively, we can decrease R by increasing 

the number of cpu's. Hence, R is decreased, and so is p, 

by incorporating multiple copies of cpu's . 

Let us look now, at the cost of a k-way shared com­

puter. The cost is conjectured to be the sum of the single­

unit (k=l) system plus the cost of k-way complexity. 

Hk = ho + hl 
k(k-1) 

2 

where ho = cost of a single system 

~d hl = cost of each additional unit 

needed to provide shared service 

The value of h 1 includes the cost of the added 

complexity in hardware and software (reflected in main 

memory size) needed to share the basic hardware. This 

includes protection and addressing mechanisms, communications 

equipment , large central stores, scheduling algorithms, 

etc. 
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This model may seem pessimistib at first, but when 

compared to other "laws of complexity" is actually rather 

generous*. This cost is even more generous when distributed 

over all k of the parts. 

= + 

The corresponding cost function for non-shared hard­

ware / software systems is obtained when k=l. 

H = h 
l 0 

A collection of k non-shared "mini " systems would cost k.H1 . 

When is it cheaper to use k.H1 systems in place of one Hk 

system? 

Set H1 = Hk/ k and solve fork. This produces the 

quadratic formula: 

k2 (1 
2h 0 

) k + 
2h 0 

0 [A] - + = 
hl hl 

with solution: 

k = 2h 0 

hl 

*Grosh's Law states that doubling the cost of a 

system can only be justified if its performance is 

quadrupled. Why? Minsky's conjecture claims log 2k 

utility in a k-way parallel system. Thus, we are en­

couraged to speculate that k-way redundancy will cost 

somewhere between (h 1k 2 ) and (h 1 2k). 
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When h 0 and h 1 are known, formula A gives the 

optimal k-way sharing strategy for a Renaissance Computer. 

In the case h0 >) h 1 (expensive hardware) the result 

is that k >> 2. Hence, multiplexing the hardware is indeed 

a valid strategy. 

In the case h 0 < < h 1 ( cheap cpu hardware) the 

optimal strategy is to limit sharing , k ~ <. 2. If more 

than 2 users are to share the same cpu , we are advised to 

duplicate the basic system instead of multiplexing it. 

A balanced system is one in which k = 2. Thus, when 

h 0 = h 1 , we see that there are advantages to foreground­

background processing. It is only fair to note, however, 

that the cost of sharing, h1 , is also declining as memory , 

communications, and programming techniques decline in cost. 

In summary, it appears to be wiser to expect shared systems 

for small values of kin the future. The age of larger 

scale k-way Renaissance systems has passed*. 

*Large-scale special purpose systems~ expected, as 

long as a narrow objective is kept in mind. The airlines 

reservation systems, credit check systems, etc. are examples. 

These systems minimize complexity by trading-off vast 

objectives, and do not represent Renaissance Computer systems. 
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4.4 Large-Scale Versus Micro Software 

Large-scale hardware systems imply large scale soft­

ware efforts. The exception, of course, is when the band 

of applications is narrow or the system is designed for a 

special purpose. The software effort expended on Renaissance 

Computers is documented elsewhere and need not be repeated 

here. Instead we seek to determine possible boundaries 

on software effort regardless of hardware limits. 

Brooks [1] reports that the effort needed to develop 

M instructions of software is proportional to M1 · 5 . If we 

divide the M instructions into n optimal-sized modules, we 

can prove that 

= 

This is sketched for the reader as follows : 

Given, s = co Ml . 5 
n 

M~.5 
n 

Let S. = co and s = L. S . 
1 l n i=l l 
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The object function Fis minimized: 

n 

F = C 0 

n 

'f=:t L 

dF = O; yields Mj = M/n 
dMj 

and substitution produces Sn. 

i=l 

A software project that is large enough to be broken­

up into n parts also suffers from a loss proportional to 

the complexity of an n-part system. The cost function for 

Sn must be amended to show this. 

M + n(n-1) 
2 

c0 = man-months effort per instruction 

c1 = man-months effort per interaction 

The parameters of formula B depend upon vague quantities 

like "human communication" and "type" of application. Brooks 

[ 1 ] indicates that c0 - 0. 001 for operating systems 

programming, while c0 = 0.01 for applications programming. 

In general, very little is known about the behavior of c0 

or c1 . 

A plot of S versus n reveals an optimal value of n, n 

see Figure 10. This point gives the smallest investment 

needed to successfully complete the software. 

Minimization of S gives the formula for software n 

size as a function of the number of software parts. 

M = n 3 / 2 (2n-l) 
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The inverse of this function is plotted in Figure 11. 

It shows that even for small software projects, the number 

of parts should be relatively large (8 to 12), unless 

c1 ;c 0 is extremely large. In short, programming is costly 

even though the software project is relatively small. There 

is an "economy of scale" possible, however, because large 

scale software projects diminish in cost as their size grows, 

if subdivided into the proper number of parts and c1;c 0 is 

large enough. 

4.5 Summary 

It is clear that a shift in hardware costs is causing 

revolution in computing . In the past , a single piece of 

hardware employed a variety of software to solve a (limited) 

variety of problems. In the future, a (limited) variety 

of hardware pieces will employ a single piece of software 

to solve a variety of problems. The most dramatic contemporary 

example of this Common Computer Age fact is the pocket calcu­

lator. The pocket calculator market is built from the 

notion that a variety of hardware pieces can be applied to 

a single software piece. 

A subtle example of the effects of the hardware shift 

is found in the many "turnkey" minicomputer systems designed 

for business data processing. Duplicate hardware systems 

are married to a single copy of software. The software is 
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Figure 10, Software Effort versus n. The* marks the mini.mum 
point for S . 
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Figure .11 n versus M for software development 
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packaged for "vertical" lines of applications, e.g., pay­

roll, accounts receivable/payable, etc. These packages 

are called vertical because they cut across many industries 

with small changes in parameters. These systems also 

demonstrate the principle of limited k-way sh~ring, because 

they are restricted to k <. 16 in most cases. 

Application of the hardware shift to larger systems 

leads us to believe that either 1) distributed network of 

microcomputers, or 2) integrated network of microcomputers 

are advisable. The distributed network consists of 

isolated cpu's each with access to a common mass storage 

unit (s). This provides a way of limiting the local com­

plexity by spreading it over several levels of the network 

hierarchy. 

The integrated network approach consists of a central 

dispatching unit, cdu, and access to/from special purpose 

"organs". The organ computers are actually special purpose 

computers akin to the controllers of current Renaissance 

computers. The integrated network system copes with 

complexity by compartmentalizing it inside each special­

purpose organ. Before the total system can be made to 

operate efficiently, however, some means of intercommunication 

must be devised so that large-scale breakdowns can be 

avoided. This problem has not been solved, but the ring 

structured microcomputer represents an approach to coping 

with network complexity. 
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In answer to the question posed by the title of this 

section, we must say that a computer should be large 

enough to support a limited application and a small number 

of users. Additional applications and number of users 

justifies additional systems rather than additional com~ 

plexity of a single system. The trend should be toward 

dedicated microcomputer systems with large memories and 

about 2 users. The number of users may be increased, but 

the application must then be narrowed to compensate for the 

added complexity. 
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I. EVOLUTION OF MINICOMPUTERS (1,2,3,4) 

The terms maxi, midi, mini, and micro recently 

appeared in the computing literature. While it is 

usually clear to the informed what a minicomputer is 

and what a maxicomputer is, there have been few pre­

cise definitions of either. A working definition 

offered by Lewis (4) proposes that a minicomputer is 

a hypothetical computer designed with a minicomputer 

attitude in mind. Thus, the discussion of mini­

computing centers on attitude about limited, special 

purpose computing instead of concentrating on a 

description of a representative machine. 

The minicomputing attitude started in the mid 

nineteen-sixties with the introduction of the Digital 

Equipment Corp's PDP-8 computer. It is a 12-bit/word 

minicomputer with limited instruction set, small 

memory, and a low price tag. The first mini was de­

signed for limited applications, and yet it has become 

one of the most prolific architectures ever designed. 

This mini, in it's many reincarnations, sold over 

40,000 units in its first ten years of production. 

At the turn of the last decade, over 50 companies 

were marketing minicomputers. The lower cost of limited 

architecture machines was more important to a user than 

the fact that the architecture delivered limited per­

formance. Consequently, new applications opened up 

and the demand for more minicomputers accelerated their 

development. 

A revolution in electronic technology added 

impetus to an already rapidly evolving minicomputer 

industry. Large scale integration, LSI, lowered the 

cost of cpu hardware to the point where basic philo-

sophies of computing are being questioned. 

-1-

For example, 

r 



the maxicomputing attitude of sharing a central 

processor may be threatened in light of the trend 

toward "free" central processors. 

A Renaissance Computer is the term used to describe 

a large, general purpose, shared computer system (4). 

Minicomputer attitudes are in conflict with the 

Renaissance Computer attitude. The future of computing 

depends upon the outcome of this conflict. The 

philosophy of sharing, as it is currently practiced 

by Renaissance Computer systems, may be misplaced 

philosophy. 

Perhaps this question and others being re-examined 

by the minicomputer advocates can be answered by 

looking at evolving minicomputer systems as they 

have unfolded in recent designs. Basically, these 

systems incorporate features derived from the need to 

overcome limitations in past mini architectures. What 

are these limitations? 

The low-cost of minis has led to an expanding market. 

These new applications require special purpose solutions, 

and as a result there is an in c reasing need for soft­

ware aids. In response, a flourish of activity in 

languages and operating s ys tems for minis has produced 

a variety of novel s yste ms. In short, the demands of 

an e nd-user market have led to an: 

1) expanding market /a pplications, and 

2) more software. 

These top-level requirements eventually find their 

way into the design phase of new systems. Ultimately, 

the architecture of new systems must support these new 

requirements. 

Currently , the "power" of a typical minicomputer 

architecture is limited because of: 
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1) small address spaces resulting in 
small memory, 

2) weak run-time support of high 
level languages, and 

3) limited operating systems, file 
structures, and communications support. 

In addition, it is clear that the same technology 

that reduced the cost of central processing_ units must 

be applied to the construction of peripherals and 

memory before corresponding redu ct ions in overall 

system cost are realized. 

The move toward architectures that support user 

requirements and the ever increasing need for peripherals 

and memory indicate that minicomputers of the future 

will continue the trends toward: 

1) low-cost peripherals, 

2) larger memories, and 

3) architectural extension through micro­
programming. 

The last trend above indicates continued interest 

in firmware development. Indeed, it appears that 

"firmware sets" in the form of add-on ROM (read-only­

memory) are becoming common place. For example, sort 

packages, scientific subroutine packages, and text 

editors are offered by several manufactures as ROM 

firmware extensions to basic systems. 

The evolution of minicomputer architecture can be 

characterized in a variety of ways. The approach taken 

in this presentation is to concentrate on two funda­

mental limitations: addressability and run-time 

support mechanisms. These two basic properties of 

computer architecture have far reaching implications 

in terms of minicomputer processor "power " . 

After establishing a formalism for describing 

addressability and the run-time "environment", four 
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representative systems are used to illustrate the 

evolution of minicomputer architectures. 

II. EVOLUTION OF ADDRESSABILITY IN MINI ARCHITECTURES 

The addressability, A, of a computer architecture 

is said to be the total number of memory cells accessible 

by a "typical" instruction defined within the archi­

tecture . Clearly , it is desirable to be able to address 

all memory locations in main memory. On a 16-bit mini, 

this usually sets a limit on A of 2 16 words or bytes. 

A "typical instruction" is defined loosely as any 

instruction requiring two operands. Thus, add, move, 

and exclusive-or are considered typical while branch, 

and shift are considered atypical instructions. 

The addressabilit y of a two-operand instruction is 

the cross product set of all locations potentially 

containing operands . The cr oss product set of the 

special register architecture of Figure 1 consists of 

the ordered pairs obtained from register A and each of 

the 2a memory cells plus the set obtained from register 
a Band each of the 2 memory cells . The size of the 

cross product set of accessible locations is used as 

a measure of addressability: 

ASR = (number of registers) X 

(number of memory cells) 

= ( 2) (2a) 

= 2a+l 

The value of ASR depends on the number of bits (a) 

dedicated to the direct address of an operand. Sup­

pose a particular mini implemented an ADD instruction 

in 16 bits, where a=lO bits. Then the two-register 

SR architecture of Figure 1 would ha v e addressability 

ASR = 2048. 
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FIGURE 1. ADDRESSABILITY OF AN SR ARCHITECTURE 

WITH TWO WORKING REGISTERS. 
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The addressability of an SR architecture is 

severely limited. Typically the SR design is modi­

fied by adding an index register. This results in an 

SRX architecture with greater addressability, ASRX. 

= (2) = 

When an index word of length w bits is included, 

the addressability of the two-register SR architecture 

of Figure 1 is greatly increased. For example, when 

w=l6 bits, a=lO bits, then ASRX = (2048) (65k) = 130K. 

Minicomputer architectures rapidly evolved to 

multiple, general purpose register architectures for 

a variety of reasons. 

General purpose register machines typically are 

able to access data in working registers through index 

registers, and by way of return address registers. 

The addressability of GR architectures shown conceptually 

in Figure 2 is even greater than special purpose . index 

register organizations. When oerands are stored in the 

GP registers , the value of AGR is n times that of a 

single register SR architecture. 

AGR (operand)= n (2a) = n2a 

For example, when w=l6, a=lO , n=8 , the operand address­

ability of Figure 2 is 2 18 . 

When operands are stored in main memory , but 

accessed via the index mode, the addressability of the 

n-register GR architecture is 2w times greater. 

AGR (index) 
w = n (2 ) 

1 
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FIGURE 2. ADDRESSABILITY OF GR ARCHITECTURE 

WITH INDEX MODE OF ADDRESSING 
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Finally, minicomputer architectures have evolved 

in two direction ~ beyond the classical register trans­

fer organization. The two-address organization employes 

a variable word instruction format and relative or 

direct address modes to improve addressability. 

Figure 3 illustrates the TA (two-address) feature of 

contemporary mini architectures . 

The v alue of ATA is simply the size of the cross­

product set produced by the two pointers in the 3-word 

instruction. 

A ( 2w) ( "-w) = 2 2w TA= -

When w~1e bits, this yields a nd addressability of 

4225K. This dramatic increase in addressability is 

costly, though, because the instruction occupies more 

program space. 
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FIGURE 3. ADDRESSABILITY OF TA ARCHITECTURE 

WITH 3-WORD INSTRUCTION FORMAT. 
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The second direction taken by minicomputer de­

signs was motivated not by addressability, but instead 

by requirements for run-time support of high level 

languages. The SA stack architecture of Figure 4 pur­

posely restricts addressability to gain control over 

a name space called the environment. We discuss the 

impact of environment upon architectures in the next 

section. 

The SA addressability of Figure 4 is limited by 

either the stack limit register, SL, or by the width 

of the stack pointer SP, plus the displacement field 

in a "typical" stack instruction. 

ASA = Min { ( SL-SB+l ) 2 , 2w+d } 

-10-
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The architecture of Figure 4 is designed around 

the notion of an environment. The local environment 

of data is established by a special cell called the 

MARK. A set of pointers establish the location of one 

or more MARKs. Addressing is relative to the MARK, 

stack base SB, or stack pointer SP. 

The data environment of Figure 4 is limited by 

SB and stack limit register SL. Thus, (SB-SL+l) is 

the size of the set of accessible data cells. 

Furthermore, depending upon the value of din 

the instruction format, the addressability may be limited 

greater than indicated by the value stored in SB and 

SL. For example, if w=l6, d=3, and SB= 0, SL= 65K, 

then ASA= Min [ 4225K, 512K} = 512K. 

The SA architecture evolved expressly for the 

purpose of controlling high level language environ­

ments. What these environments are, and how they 

influence architectural trends is discussed next. 

III. THE EVOLVING E-SWITCH POTENTIAL IN MINI ARCHITECTURES 

An environment is established in an active pro­

gram and its corresponding data. The activation of a 

program is called a process. Thus, the environment of 

a process is the set of resources accessible to the pro­

cess. Often the process runs in a nested environment 

as in the case of recursive execution of code, or in 

the case of block-structured run-time support for block­

structured languages. 

An example of a single process environment is 

shown in Figure 5. 

L 



FIGURE 5. SINGLE PROCESS ENVIRONMENT FOR THE 

SR ARCHITECTURE 
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The SR architecture shown in Figure 5 easily sup­

ports a single process because there is a one-to-one 

correspondence between machine resources and the 

process. 

When the architecture of Figure 5 is used to 

support two or more processes, an environment is 

needed for each process. Two or more process environ­

ments may be needed when resources of the architecture 

are shared over time by multiplexing. The process that 

performs this multiplexing is called an E-switch. 

An E-switch, then, is a process that transforms en­

vironments into other environments. 

Typically, the E-switch is performed by the hard­

ware, but when it is not, it must be protected from 

the processes that it multiplexes. Such protection is 

afforded by priviledged execution modes or other 

operating system schemes. Dual state minicomputer 

architectures have evolved for the purpose of pro­

tecting E-switch processes. It must be noted that 

similar solutions for monostate architectures are 

evolving. This topic is under study by Shriver et.al 

( 9). 

Figure 6 shows the environments of two processes 

running on a single SR architecture. During an E-switch, 

resources belonging to the intersection of the two 

process environments must be saved. This set of perish­

able resources is called the E-intersection, and is 

one source of complexity in contemporary shared com­

puter systems. The evolution of minicomputer archi­

tectures is shown in the· following sections to be 

-14-

r 

I 

r 



'• 

E1 

f;_ ~ 

FIGURE 6. THE ENVIRONMENTS OF TWO PROCESSES 

RUNNING ON AN SR ARCHITECTURE 

I A, ] 
Ptvtt'J 

[ D, ] - 11&ttwy -
[ pc, ] #j. 

I S7Aj-u~J 

. [ Az. ] 
I B2- ] pdrl1·J 
[ f-t.2- 1 

MeMWj 

I 571-inlS?.. 1 
412... 

E, fl E-z.. = 
l A I 
[ B ] 

I pc_ J 
(sT/fTUS ) 

-15-



partially governed by the E-intersection. This 

observation follows from a rule governing secure 

E-switch processes. 

E-switch Rule #1: During an E-switch from 

environment E1 to environment E2 , the E-intersection 

set of resources, E 1 n E2 must be saved in the 

complement address space of environment E1 . 

Complement= E 1 - (E 1 n E2 ) 

When this rule is app lied to the two environments 

of Figure 6, the complement space is partial memory 

#1. Thus, when switching from E1 to E2 we must save 

the E-intersection set of resources in partial 

memory #1. 

The partial memory space #1, of Figure 6, contains 

both program and data . Since we want to avoid des­

troying instructions and also to keep programs re­

entrant, the E-intersection resource set must be 

saved in the data portion of E1 . 

Two environments of a stack architecture are 

shown in Figure 7. If the advise of the previous 

argument for reentrant code is heeded, then the E­

intersection resources must be stored in the data 

portion of each environment. Since the E-intersection 

consists of the set of pointer registers, this leads 

to storing the set 

STATUS } 

{ PB, PC, Pl, ' sB, EP, SP, SL , 
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Rule #2 for Nested E-switch Architectures: Save 

the E-intersection in the data portion of the comple­

ment set, and provide a dynamic link between 

environments. 

This rule is implemented in the SA architecture 

illustrated in Figure 8. The E-switch rule for non­

nested environments will be different than the one 

proposed above. In general, the E-intersection resource 

set is stored in a protected area managed b y the E-switch. 

With these two fundamental c onsiderations in mind , 

the evolution of " typical" mini c omputer archite c tures 

can be studied and evaluated. In the next four secti o ns , 

four architectures are shown to represent a progression 

from limited addressability / E-s witch control. These 

four architectures were selected from a variet y of 

commercially available minicomputer s y st e ms to indicate 

how far minicomputer architectures ha v e evolved 

toward the goals of addressability and E-switch con­

trol. 
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IV. A LOW-COST MINI ARCHITECTURE (5) 

The mini architecture LC of Figure 9 shows an 

organization with 4 general purpose working registers, 

and a typical instruction set format. Operands are 

obtained from one of the registers, and either a 

register or memory location. In addition there are 

reserved memory locations dedicated to auto-increment, 

or auto-decrement indexing. Each time one of the 

INDEX words is used as a pointer to data, it is either 

incremented or decremented by one. The idea is to 

gain addressability and processing efficiency through 

auto stepping combined with indirect addressing. 

The working registers are used as operands. AC2 

may also be used as an index and AC3 is used to save 

the return address (old PC) during subroutine calls. 

The addressability of LC is computed from the 4 

accumulators ACO-AC3, the 2a direct address locations , 

and then INDEX locations each accessing 2 16 other 

locations. This yields an addressability of 226 when 

n=l6, a=4. If we include the index capability of AC2, 

the result is an addressability of 4 (~+l) 2a+l 6 . 

The following assembly language example demonstrates 

the use of the indirect auto step registers in LC (1). 

Suppose the problem is to move 30 words from location 

2000 8 to 5205 8 in reverse order. The@ symbol indicates 

an indirect address mode. 
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FIGURE 9. A LOW-COST ARCHITECTURE 
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COPY: LDA 
STA 
LDA 
STA 

LOOP: LDA 
STA 
DSZ 
JMP 
JMP 

CNT: 001777 

005206 
000036 

0, CNT 
0, 21 
0, CNT+l 
0, 35 

o,@21 
0,@35 
CNT+2 
LOOP 
0,3 

;Set-up autoincrement ... 
; ... in INDEX location 21 8 
; Set-up autodecrement. . . · 
, ... in INDEX location 35 8 . 

; Get a word ... 
, ... and move it. 
;decrement counter and test ... 
; ... otherwise repeat 
;return thru AC3. 

;2000 8 -1 pointer 

;pointer to destination 
;counter 36 8 + 30 . 10 

This program initializes an autoincrement INDEX 

located at memory address 21 to 001777 8 . It next utili­

zes the pointer at 35 wit 5206 8 . This is done by 

copying the values from location CNT and CNT+l into ACO 

and then from ACO into 21 and 35, respectively. 

The loop is executed by indirectly loading a word 

via 21 into ACO. The word is then stored indirectly via 

35. The value of the pointer at location 21 is incre­

mented before being used, and the value at 35 is decre­

mented after being used. 

The loop is exited when location CNT+2 has been de­

creased to zero by the decrement-skip-if-zero instruction 

nsg. The JMP 0 , 3 instruction p e rforms a return to the 

address saved in AC3. 

Clearly , this architecture is weak in terms of its E­

switch potential. Each time an E-switch occurs, the E-inter­

section must be saved. The locations to be saved include 

part of main memory since the auto step INDEX words reside 

in main memory. 
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In addition, this architecture has limited sub­

routine capability because only one return address 

register AC3 is provided. Thus, the nested E-switch 

potential is limited as well. 

The LC architecture sacrifices E-switch · potential 

in exchange fo~ addressability. Without the INDEX set 

and restricted subroutine return address register, 

addressability would be severely limited. 

V. AN ADDRESSABLE MINI ARCHITECTURE (6) 

The architectures of Figures 2 and 3 provide the 

greatest addressability of any architecture discussed 

in section II. The next minicomputer discussed 

incorporates both addressing mechanisms illustrated 

in Figures 2 and 3, see Figure 10. 

The addressable mini architecture, AM of Figure 10 

consists of n=6 GP registers, a stack pointer, SP, 

used for recursive subroutine calls, and a PC, PS 

register pair. 

The instruction format of AM allows GP index 

addressing, SP operand addressing, and TA two-address 

addressing. 

A program to move 30 words from 2000 8 to 5206 in 

reverse order is again used to demonstrate the AM 

architecture. In the program below, % indicates that 

an operand is a register, # indicates an immediate 

operand, and ( ) indicates that the register is being 

used as a pointer instead of an operand. 
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COPY: 

LOOP: 

MOV 
MOV 
MOV 

MOV 
DEC 
BNE 
RTN 

#2000,%1 
#5206,%2 
#36,%0 

( %1) +, - ( %2) ; 
%0 

LOOP 
%7 

initialize pointer 
initialize pointer 
initialize counter 

copy and auto step 
count down 
repeat 
return, recursively 

The E-intersection of the AM architecture is very 

large. Notice that the registers, stack, IO Vectors, 

and IO devices are all shared resources. Therefore 

the E-intersection contains these resources. 

E-intersection (AM) 

The I0 0 ... IOk vectors are useful for rapidly 

selecting a proper IO service routine and executing 

it to handle IO requests. The STACK assists in subroutining 

and the IO/Devices are treated the same as memory 

locations. This simplifies IO programming. 

Actually , byte IO, when perf o rmed through working 

registers instead of special locations, reduces the 

E-intersection. Also, DMA (direct memory access) IO can 

reduce the E-intersection if the device is protected 

from interfering processes (an operating s y stem function). 

The AM architecture is a step forward for address ­

ability, but still restricts the use of a minicomputer 

in a shared fashion because of its large E-intersection. 

(Obviously there are ways to minimize the harmful effects 

of the E-intersection. We will not discuss them here , 

but merely point out their problems). 

-25-



VI AN E-SWITCH MINI ARCHITECTURE (7). 

The E-switch architecture of Figure 7 is 

implemented in a var ietyof minicomputers designed to 

support high level implementation languages. The 

languages supported by nested E-switch machines are 

block-structured. Therefore, the high level language 

environments created to implement systems in these 

architectures conform with machine environments estab­

lished by MARKs. 

Since processes are possible that are not nested 

within other processes, there must also be a mechanism 

for saving E-intersection resources when switching to 

non-nested environments. The E-machine of Figure 7 

maintains a separate process stack for this purpose. 

Furthermore, the E-switch of the E-switch mini runs in 

a privileged mode to protect it from other (user) 

processes. 

A sample of E-machine implementation l anguage is 

illustrated with a program that solves the problem of 

moving 30 words of memory from location SRC to location 

DEST in reverse order. 

The high level language is translated into stack 

architecture instructions that manipulate reverse 

expressions. 
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COPY 

END COPY 

PROCEDURE (SRC, DEST) ; 
DECLARE (SRC (29), DEST (29)) Word; 
DECLARE (I.J) Word; 
DO I= 0 to 29; 

J = 29 - I; 
DEST (J) = SRC (I); 

END; 
RETURN; 

This routine, when compiled and executed on the 

stack architecture of Figure 7 creates an environment. 

The environment consists of arrays SRC and DEST, 

the code for COPY, the variables I, J, and a MARK in 

addition to the pointer registers referencing the 

stack. 

Figure 11 illustrates the configuration of an 

E-switch minicomputer based on the SA architecture 

during execution of the COPY code. The MAIN program 

that called COPY passes a pointer to the environment 

containing arrays SRC and DEST. COPY is able to access 

these values because their addresses have been 

forwarded into the environment of COPY. Thus, the 

values of SRC and DEST have become a part of the COPY 

environment. 

A Dynamic Link between the COPY MARK and the MAIN 

MARK provides a return path to the outer environment. 

Calculations for executing the DO loop and 

arithmetic assignment statements are done by pushing/ 

popping values on the stack at location SP. The values 

are loaded onto the stack by copying them from local 

addresses (I,J) or from non-local addresses (SRC, DEST). 
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The stack architecture appears to be an efficient 

E-switch architecture. The disadvantages of this 

approach should be pointed out, also. The SA archi­

tecture's limited addressability results in a large 

number of PUSH and POP operations being performed. It 

is not unusual for 25-40% of treprogram code to con­

sist of PUSH and POP instructions. This means that 

program space and execution time is being traded-off 

for E-switch capability. 

In the following section, a very recent architecture 

is used to demonstrate a compromise between address­

ability and E-switch efficiency. 

VII. A FUTURE MINI ARCHITECTURE (8) 

Hardware advances have narrowed the gap between 

main memory and logic speeds. In addition, the cost 

of added cpu complexity of mini systems has decreased 

to the point where future computers can take advantage 

of architectures with large addressing capacity, E-switch 

potential, and relatively large instruction sets. 

A future organization should incorporate advances 

in addressability, minimize the E-intersection of 

resources, and facilitate the implementation of software 

that meets the end-user requirements stated earlier. 

The FS architecture of Figure 12 illustrates a re­

cent advance in minicomputer organization. The working 

registers WRO--WRl0, X0P--OLD ST actually reside in 

main memory rather than the cpu. There is a copy of 

these registers in each environment, thus reducing the 

E-intersection during E-switch. A dynamic link connects 
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FIGURE 12. ADDRESSABILITY AND ENVIRONMENTS OF THE 

FS ARCHITECTURE. 
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nested environments in a way that gives this architecture 

a stack-like capability for nesting and recursion. 

The cpu actually maintains three registers, WP 

(work pointer), PC (program pointer), and the ST (status) 

register. In addition, three memory maps are also main­

tained in the processor. These maps are used to extend 

the addressability of the processor. When a memory 

reference takes place, the value of WP or PC is modified 

by one of three BIAS registers in the memory map. If 

the reference falls between LIMIT. and LIMIT. ◄ . then 
1 1-· .1 

BIAS. is used in the following way. The BIAS. register 
1 1 

is shifted left 5 bit positions and added to either 

of the pointer registers (PC or WP). This yields a 

20-bit memory address, hence the addressability of this 
h . . 220 mac ine is . 

= 1 MB 

The E-intersection of FS is seen to consist of the 

memory maps (up : to 3 maps provide 3 process environ­

ments without saving), the three context pointers, and 

the dedicated Interrupt vectors in low memory. 

If the "previous" program calls the "current" pro­

gram either as a nested or non-nested environment, the 

working registers need not be copied or saved because 

each program carries its own copy of working registers 

with itself. If the current program is a procedure 

with parameters, then the dynamic link can be used to 

access the parameters. Thus, nesting is accomplished 

in a manner similar to the SAE-switch organization. 
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The WS (Work Space) registers, WRO-WRl0 are used 

quite similar to the registers of the TA architecture 

of Figure 10. This allows a programmer to use the 

WS registers as pointer or operand. This feature is 

exploited in the following programming example. Again, 

the program moves 30 words from SRC to DEST in reverse 

order. 

Notice the mnemonic symbols for hexadecimal con­

stant > , indirect address@, and comment* 
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* 
* Set-up WP, PC, ST for operating system 

* 
OS DATA ws, PC,> F initialization 

ws DATA SRC WRO points to SRC 

DATA DEST WRl points to DEST 

DATA > lE WR2 index and counter 

DATA > 0 WR3 index 

BSS 24 WR4-WR10 unused 

SRC BSS 30 30 words 

DEST BSS 30 30 words 

* 

* Move from SRC to DEST 

*LOOP MOV @SRC ( 3) , @DEST ( 2) Copy in reverse 
,.. 

INC 2 step index 

INC 2 step index 

DEC 3 step counter 

DEC 3 step counter 

JNE LOOP repeat 

* 

* register 2 and 3 are used as index registers 

* 

The XOP register shown as part of the WS registers 

is used to extend the basic FS architecture. Un-

..:.33_ 
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implemented instructions (there are 16 such op-codes) 

cause a trap when encountered in a program. The 

pointer stored in XOP is then used to locate a micro­

program, software program, or hardware module that 

performs a dedicated operation on the data. With 

this feature, the FS architecture is able to be ex­

tended beyond it's original design limitations. 

The FS architecture represents one approach 

to the ultimate in minicomputer evolution. There 

still remain difficulties with this organization that 

have not been discussed here (multiple precision 

arithmetic is difficult to perform). But within the 

goals of addressability and E-switch potential, the 

FS architecture is at the apex of minicomputer evolution. 

IIX SUMMARY AND CONCLUSIONS 

The obvious goals of end-user support remain 

a problem for minicomputer systems. It is not easy 

to determine if a new architecture is able to solve 

problems leading to better end user support. Therefore, 

it is mere speculation to claim that the evolution 

of minicomputer architectures is improving end-user 

support. In fact, it is difficult to measure "success" 

or "failure" of a given architecture in terms of the 

applications supported. 

What can be said from the analysis of contemporary 

and new architectures is that they either facilitate 

addressing and E-switching as demonstrated. The previous 

discussion appears to support claims of an "improving" 

collection of organizations. 
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The importance of addressability and E-switching 

is recognized and need not be justified. The impact 

of these two features of minicomputer systems is not 

recognized; however, nor have they been measured 

and evaluated. We can only speculate, once again, 

as to their impact. 

It was noted that the necessity for sharing 

hardware is being questioned. If we remove cpu time­

multiplexing from the list of requirements, then E­

switching may have little impact on future systems. 

Currently, sharing is applied to the most 

expensive subcomponent of a system. In the mini­

computer world, this means that printers and mass 

storage should be shared, as opposed to the cpu. 

Transaction computing is a form of interactive 

comp uting where small bursts of data is processed 

in a very short period of time. Typically transaction 

computing requires access to large storage units. 

As an example, updating a person's account with a 

bank is a form of transaction computing. 

A transaction requires very unsophisticated 

computing, and yet access to a large data base is 

necessary. If minis are to be used for transaction 

computing, then the goals of future architectures 

must be modified to meet this new requirement. 

Perhaps mini architectures should evolve toward 

supportof virtual databases, or perhaps to support 
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virtual peripherals. Or perhaps the future mini­

computer will support communications operations , word 

processing operations, or new operations not yet 

conceived. If so, the current architectures must 

evolve in new directions. 
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ABSTRACT 

This paper presents a new distributed computer network struc­

ture appropriate for a network of microprocessors. The new network 
fi 

structure combines advantages of a ring structure; simplicity, high 

line utilization, concurrent service, distributed control informa~ 

tion, _rninimurn delay for minimum cost, and high reliability. This is 

accomplished using two loops.. The "inner 11 loop :.__is --for data transfer. 

It is partitioned into N buses interconnecting N microprocessors. 

The "outer" loop is for control information to pass along under the 

guidance of a bus controller. Results for simulations of contemporary 

proposals (Pierce, Newhall, and Reames et al.) and the new network 

proposed in this paper show that the new structure substantially 

improves throughput when compared to the other structures. 
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INTRODUCTION: 

Researchers have proposed distribution of low-cost computing 

processors throughout a network as an alternative to expensive and 

highly centralized computer systems (SPAN 76). The results have 

shown that completely distributed systems lead to a - great deal of 

inefficiency due to increased hardware and software overhead and -

often fail to deliver acceptable throughput as expected. In addi­

tion a computer-;: -network introduces other complexities concerning 

deadlocks, network reliability, traffic regulation> · and scheduling. 

This paper introduces a new network topology with highthrough­

put rate for distributed computer systems. The network has an im-
• . . 

proved response time, greater throughput, and is ' more reliable than 

the Pierce, Newhall, or Reames - Liu loop network topologies. 

I. DESIGN PHILOSOPHY 

. A distributed computer system interconnects several hetero­

geneous or homogeneous nodes which communicate with each other 

through network media. A heterogeneous net work is a collection of 

architecturall~ different nodes while a homogeneous network is a 

collection of architecturally similar processor nodes. 

Farber (FARB 72) lists the motivations to develop a distributed 

computer system as any or all of the following: 

1) 

2) 

3) 

4) 

5) 

6) 

Modular Growth 

System Reliability 

Incremental Upgrading of Processor Nodes 

Dynamic Restructing 

Decreased Design Time 

Ease of System Validation 

In addition we include: 

7) Tailored Deiign to the Users Needs 

8) Better Throughput (Speed) 

9) Less Cost 
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With these motivations in mind, several people have proposed 

and implemented a variety of rietwork topologies in hopes of effi­

ciently managing distributed computer systems. 

The topology of the interconnections in a network is of great 

concern since it has a major effect on the performance of the dis­

tributed system. The most highly connected network is to connect 

every computer to every other directly. This involves N(N-1)/2 

interconnections for N nodes and is very costly unless N is 
'..:-

very small. A less costly topology requiring N interconnections 

and an additional central control processor is the star configuration. 

The central control computer provides node-to-node interconnection · 

by switching from one node interconnection pattern .to another upon 
. . - ' . 

demand. Furthermore, each distributed star comput er system can be 

connected to another star computer system by connecting the two 

central control computers together, and with appropriate control 

algorithms, this will allow any node in either subnetwork to com­

municate with any others. 

A problem with star network computer distribution is reli­

ability of the __ system, for as soon as the central computer exhibits 

faulty functions, the whole system breaks down. In addition, the 

central control processor is an overhead cost added to the whole 

system. If the number -of nodes around th e central proc e ssor is 

small, then the ~dvantaie of this s y stem is its speed, also bec~u~e 

the links bet ween computers are bidirectional, the system has a 

very good throughput. We will not includ e the star net work in the 

work reported here because of its poor reliability (ST RE 76). 

Another philosophy is to connect all the processor nodes in a 

loop or ring configuration. This is ca).l~d a loosely coupled 

connection since each node is connected to others by only two links, 

an input link which comes to the node and an output link that goes 

away from the node. Loop systems are attractive for mini-micro 

computer networks due to their possible high line utilization and 

because they are simple. This last philos ophy has attracted the 

attention of many researchers who have designed a variety of network 
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systems based on the simplicity of a loop. The new loop structure 

will allow more parallel communications between nodes _, while . taking 

advantage of loop simplicity. 

II. PREVIOUS LOOP CONTROL- ALGORITHM 

The first loop structure system was sugge~te? by }TEWHAJ;,L 

(FA.RM 69). In the NEWHALL loop a round-robin control passing 

mechanism circulates around the loop and allows only one node at ;:-

a time to transmit one or more messages through the loop. ';rhere-

fore, the rest of the nodes have to wait and this causes a queuing 

time in sending the messages which limits the achievabl _e loop 

utilization. · 

A version of a loop discipline similar to the NEWHALL discipline 

is allowed with IBM's SDLC (DONN 74) (or with the · largely equival"ent 

HDLC (DAVI 73)). In this discipline a central controller originally 

sends a poll command around the loop. The first attached device 

wishing to transmit is thereby enabl~d to iransmit. This devic~ 

then ends its transmission by passing the poll on, so that control 

passes around the loop in a manner sL~ilar to the behavior of a 

NEWHJl~LL loop. This variation is not explicitly studie~_here because 

of its similarity to the NEWHALL loop. On the other hand, Pierce 

(PIER 7 2) introduced a new mechanism that improves neti:,;ork utili­

zation by time multiplexing the loop . . That · is, the information · sent . 

around the loop is divided into fixed-size packets and to send a 

message, each node checks for an empt y packet before transferring 

all or part of its message. If a message is smaller than the 

fixed-size packet, the excess space is wasted. If the message is 

too large to fit the packet, then the message is broken into two 
, -, -

or more packet-sized messages. When a processor node transmits 

a message, it must first check whether the next packet or time 

slot passing by it is empty. If it is, control will pass to the 

processor nodes transmitter to see if there is any information to 

be transmitted. In case the packet is not empty, the processor 

node checks to see if the destination address in the packet matches 
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the node address. If so, the processor node transfers the packet 

information into its buffer. If the packet address does not ~atch 

the processor node address, then the .processor simply . passes thi~. 

packet to the next node. The transmission mechanism is as simple 

as waiting for the beginning of an empty slot and filling it with 

a packet, but disadvantages of this system include: 

a) problem of dividing messages into . packets 

b) problem of packet reassembly which occurs when messages 

are divided into packets ari.d then sent separately, so a 

sorting problem arises. 

c) messages do not always fit into a fixed number of packets, 

so there are some partially empty packets with corresponding · 
·p....... .. - . . 

·w~ste of net~ork capacity. 

Therefore, neither Newhall or Pierce loops make very efficient 

use of loop topology. Reames and Liu CREAN 75) introduced a new 

message transmission mechanism called DLCN (Distributed Lo op Computer 

Network) which allows multiple messages in the loop as the Pierce 

loop does and messages of variable length as the Newhall loop permits. 

DLCN inc~rporates a variable l e ngth shift register before each 

node's transmitter, see Figure 1. A message can b e tra 9 smitted 

through the loop whenever no other message transmission is already 
. .. -

in progress, or no other messages have start e d passing that node. 

In this case, the variable shift re g isier piovides a delay in the 

incoming message equal in size to at least the size of the message 

to be inserted. Once an incoming message has bee n delay ed in this 

manner, it is transmitted ahead of any incoming messages which are 

in turn delayed during the time neede d to transmit. The contents 

of the variable length shift register w,il)- gradually decrease in 
. ' 

length and finally be eliminated if there is not enough traffic. 

DLCN actually combines Newhall and Pierce loop advantages by 

allowing simultaneous message arrival with message transmission, 

and also provides automatic traffic regulation based on observed 

system load, but DLCN favors infrequent requests while delaying 

more frequent requests for network service. 
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A disadvantage of the DLCN is the complexity of .interface 

mechanism and, therefore, the cost to build such an interface. 

Secondly, inserting a variable shift register a.t · each node lov1ers 

the ~eliability of the overall loop since it adds one new possible 

failure mode. Also, when the number of nodes in the loop increases, 

eventually the queuing time will increase drastically. This . limits 

the ntunber of nodes inserted in a . loop. 

Potvin (POl'V 71) introduced a generalized distributed computer 

system call~d the - star ring system. It combines the -control feature 

of a loop network with the message transmission features of a star 

network. It is . somewhat similar to Newhall ts technique for passing 

control along its loop and in its method of time ~multiplexing message 

transmission. The system is restricted by the number of nodes on the 

loop because the central star ring is common to all the nodes and, 

therefore, not more than two nodes can talk to each other- at any time. 

This slows the thro ughp ut of the system by a great amount. Potvin 

considers only a very small number of nodes in the network. 

All the above co mmunication loops s u ff e r from. the follo wing 

corruuon shortcomings in addition to the probl ems discussed above. 

1) The stream of data is in one direction a n d therefore, · 

sometimes the transmission of data from one node to its 

neighbor node takes place through the rest of ··the no d es 

causing more delay and less reliability than neces s~ ry. 

2) If a node starts sending a strea m of mes s ages to another 

node it will block out all other tr an s missions a nd networ k 

performance will decrease by a great amount. Thus, the 

networks mentioned abo v e are sensiti v e to local demands 

that affect the performance of ~11 nodes~ 
. , ' 

3) If there are errors in the address fields of the message 

and/or a node fails to function properly, messages will 

saturate the loop, in all·the above systems. Several 

different techniques have been used to recover from errors, 

but this eventually slows down loop corri.rnunication. 
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4) If there is a failure in the loop, the whole network will 

fail to operate. 

A new experimental loop is proposed that will enable the whole 

network to recover from the above shortcomings ► The concept •is to 

distribute data and control into two different loops (a data loop 

and a controller loop). The data loop is actually a segmented 

loop consisting of a single segment connecting nodes. Each node 

· is interfaced t .o the loops by a switch that may be ·turned 1ton" or , ' 

"off". The control loop operates by a simple arbiter, which accepts 

requests for communication, decides the ,'minimum route, and sets up 

the data paths .between nodes by turning appropriate _switches "on" 

and non-appropriate switches "off!!. 

III. DESCRIPTION OF NEW LOOP NETWORK 

We suggest a modified loop network in which control messages 

and data messages are transferred through two different communi­

cation lines. This adds flexibility to . the network for very little 

increase in cost. The loop network system is configured from four 

different components: 

1) control line loop 

2) data line loop 

3) processor nodes 

4-) a special processor node dedicated to line control. 

The control line loop employs a polling technique to start 

and stop the transfer of messages from a source node to a destina­

tion node. Transmission is accomplished . through a 11double hand­

shake" where a request to send ·is followed by an acknowledgement 

that the message has been received. In particular> there are two 
. ~ ' . 

different possible types of messages, SYN/ACK and Relay Control 

which can be sent over the control line. 

SYN/ACK: When a node desires to communicate with another node 

(SYN), or respond to end of communication (ACK), then it \vill send 

a message to the controller containing the address of the source 

node and the address of the destination node along with ·the command 
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(either SYN or ACK) to be perfo r med by the controllerw Messages 

of this type have the format shown in Figure 2(A). 

Relay Control: _Messages sent from the controll _er ·to a source 

or destination to inform the node that a message is being sent to 

it (destination), or that a message has ·been received by the 

destination node (sourc e ), or directing other nodes to position · 

thei~ data switches to bypass the data and allow it to continue 

along the data loop until reaching . its intended destination. The 
~-

mes sages of thh, type are shown in Figure 2 (B). 

The data line loop transfers all . the data messages from any 

source node to any destination node through a minimum route which 

has already been set up by the controller as explained above. The 
., 

data line loop illustrated in Figure (3) is interfaced to each node 

through a three-way switch at each node which enables the node to 

connect segments of the data line tog e ther and either bypass the 

node or connect the node to the data loop so that the node can 

receive · or send data. The controller sets the three-way switches 

before each data transmission is allowed. For example, if Node 1 

of Figure ( l~A) is to send data mess ag es to Node 3, then th e switches 

and data segments are c onnected in one of the configurati ons s h own 

in Figure (4). Obser v e that the conn e ction of segmentg of the data r 
loop permit partial use of the entire data loop net ~ 6r k Figure (4). 

Remaining segments of the data loop a r e available for concurrent 

data transmission to other nodes in the syst e·m. · The r efore, simul­

taneous transfer over n on-interferin g segments of the net work is 

quite possible. The combi ned eff ect of r e du ndant a l ·ter nat e pa.-ths 

and concurrent trans mission over no n-interfe ~ ing se gments of the 

loop adds to the network reliability and throughput . 
.I -~ 

The partitionable loop structure described above is a general 

structure. In addition to the loop topology studied here, there 

is also the potential for other configurations. The topology of a 

specific network may require high-speed transmission between two 

or more nodes, depending upon the needs of these two processor 

nodes. In such a special case, it may be expedient to include 

additional "express 11 buses to supplement the basic loop. This can 
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be done, for example, as shown in Figure (S), by merely increasing 

the capability of · control line switches at these nodes. In the 

examples Q;f figur:ie ( S )_, supplemental_ da·ta buses may be used . to 

establish high bandwidth communication between Node land Node 4-. 

Alternatively, the response time of communication between Nodes'+ 

and 2 may justify an additional data line . as shown in Figure (SB). 

Processor nodes are configured from . four elements: 

A. A node control mechanism to perform data loop and control 

loop functions. 

B. Control switches to switch the data lines. 

C. Transmitter and receiver. 

D. Terminal processor which may be a simple I/0 device, a 

microcomputer, or an interface to another network. 

Figure (6) illustrates these four elements. Each node control 

mechanism provides timing control, message detection,. decoding and 

encoding of messag es , controlling the data switch es , transmitter 

and receiver control, and communication with its riode -terminal. 

The control switch is a modular unit easily extendable through 

hardware chan ge s; for instance, a control switch can control two 

data segments along with the receiver and trans~itter. - If the 

number of data segments interfaced to the node increases, the com­

plexity of the switches will increase in a modular manner . 
.. 

A simple transmitter-receiver can be time mul ·tiplex ed or 

separated from each other by using separate chann els i-1hich · adds tc:i 

complexity to the control switches. Figure (7) shows both a simple 

and more complex transmitter receiver section. 

The loop network interface is desi£n,ed as an 11intelligent 

interface" so that no assumption about the processor terminal is 

needed. Any device may be plugged into the loop networ k regardless 

of its sophistication. All the control needed for any terminal to 

talk to the receiver-transmitter section is provided by the node 

control, thus allowing terminals to be of any type. The intelli­

gence of the node controller is easily provided by a low-cost 
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microprocessor and PROM. 

The loop controller functions are as follo ws : 

A. 

B. 
c. 

Sends and receives control messages to and from control 

line. 

Schedules node communications. 

Finds the minimum path between the nodes which are to 

. corrununicate. 

D. Provides a timing mechanism . 
.;: 

The control messages have the formats of Figure 2(A) or Figure 

2(B). The controller decodes or encodes them by managing the right 

timing. Scheduling of nodal co .mmunication may be by any scheduling 

algorithm as LIFO, . FIFO, round robin, or shortest-:-me~sages-fj_rs _t. 

For the routing algorithm, any method can be considered, but since 

all the needed information is within the controller, routing can be 

tailored to special applications of the network. The timing mech­

inism can be part of the controller's frinction to synchronize all 

- the nodes · or it can be varied in each individual node. Therefore, 

nodes can work synchronously or asynchronously. The func t ion .of 

· the controller is flowcharted in Figure (8). The functions of the 

network controller are very straightforward and can be performed _ 

by any node in the network. We will assume a special control node 

microprocess or is used to perform the controi functions for the 

entire netw ork . In the com parisons to follow, we will includ e this 

special-purpose control node as an overhead ·cost, but it should be 

pointed -0ut that the control functions required by the proposed 

loop can be carried out by any node. In terms of reliability, this 

means that failure of the control node does not imply_failure of the 

entire network, because control can be passed to another (working) 

node on the loop. 

IV. SIHULATION RESULTS 

We modeled our simulation study after the work of Reames and 

Liu (REAM 75). They simul ated the DLCN (Distributed Lo op Computer 

Network), Newhall Loop, and Pierce Network. The results obtained 

in our study will be compared with their results. Our results 
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will extend their results . to provide an evaluation of all four 

network topologies. In the DLCN simulation model, the length of 

the shift register interface to the loop was 512 characters. For 

the Pierce model, Reames and Liu selected a packet size of 36 

characters. This is an optimal packet size obtained by minimizing 

the product of average number of packets times the packet size. 

In the Newhall network, they simulated passing the control token 

only when the queue of messages in that node is empty instead of 

passing one mes··sage at a time at each node. This produces a shorter 

total r:i.essagetransmit time for theNewhall netw.ork. 

For all of the systems simulated by Liu and Reames, message 

length has a truncated negat~ve exponential distFibution with a 

mean of 50 characters, minimum of 10, and maximum of 512 characters 

of which the first nine characters are control characters. Message 

arrival time obeys the Poisson distribution, and ·the number of nodes 

is 6. 

For the new experimental loop, the message length . and message 

arrival stat istics, and the number of nodes are the same as above. 

There is no need for control messages along with data in ·this neH 

system. For reliability purposes, we used the same number of char­

acters by including control characters with the data. The mess2.ges 

in this sjstem can be of any length without hardware or software 

constraints. 

The scheduling algorithm is simple FIFO and -the routing al­

gorithm . is to simply find the minimum path between two nodes in 

either direction. If two paths have the same length> the clock-

wise direction is arbitrarily chosen. The new loop network improves 

throughput when employing these simple algorithms for scheduling 
• • > ·-

and routing. 

Table 1 shows the average interarrival rate, data line usage, 

waiting time for each message to be transmitted, transmission time 

total transmission time, and control line usage for the new experi-

mental network, as well as for the other three networks. Figure (9) 

shows the variatibn of mean total message transmission time versus 
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mean arrival rate for all four networks. Figu~e (10) shows the 

changes in line utilizAtion versus changes in interarrival rate 

for all systems, which indicates the load of the system, and finally, 

Figure (11) is a graph of mean control line utilization versus the 

mean interarrival rate for new experimental systems, only. 

From Table 1, we see the Pierce and Newhall loops and new 

experimental loop have almost a constant transmission time for any 

load on the system (46 time units per packet for Pierce loop, and 
,=-

63 time units _ per message for Newhall loop, and 52 time units for 

the new experimental loop). This is due to a constant delay in 

the transmission lines for Pierce and Newhall systems. For the 

new experimental loop, there_ is no delay in tra!}_smission line. 

Transmission time is equal to the transfer time of .the characters 

in a message. For DLCN, message transmission time is variable and 

as soon as the arrival rate increases ( that is, the system load 

increases) then the shift register delay line time will increase 

leading to an increase in transmission time proportional to system 

load. On the other hand, the queuing time at each node will not 

increase as fast as transmission tLrne since whenever a message is 

ready to go in the loop, the node will insert the variable delay 

shift register in the loop and then the message does ncit have to 

wait longer. This explains why DLCN is faster than the Pierce and 

Newhall loops. The superior performance of the new experimental 

loop is due to multiple concurrent transmission, variable message 

length without any additional hard ware or software overhead, and 

the ability to select the shortest path from the bidirectional 

segments of the loop. As we see from Figure (9), to~al t~ansmisiion 

time for Neivhall, DLCN, and the new experimental loop is the same 

for very low system load. But as soori~~the load on the system 

goes higher, the total transmission time for the new experimental 

loop shows . improvement over the others. In the Pierce loop, a 

message always has a mean wait equal to one-half of the packet 

size and must then be transmitted in several packets. For this 

reason, the Pierce loop can not compete with the others for low 

systems loads. As soon as the system load goes higher, the Pierce 
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loop exhibits concurrency (simultaneous packets . on the loop) and 

-its performance improves over the Newhall loop which shows its 

inherent serial nature leading to poorer performance. 

In our new experimental loop there is a minimum queuing time 

for SYN/ACK and relay control messages. For low loading of the 

network this overhead shows up as a significant part of the over~ 

all delay, but since these two control messages cause a constant 

average delay they contribute a smaller proportion of .the delay -as 

the network load increases. Typically me-ssages are queued before 

being transmitted and the delay due to control messages is over­

lapped with the fixed control message's queuing time. 

The greatest advantage of the new network fs that - segments of 

the loop can be activated simultaneously. The added concurrency 

of the new loop explains its increased throughput when compared 

with the other networks. From Figure (10) we see the mean line · 

utilization is very lo w for all the networks. As system load in­

creases the line ·utilization for- Newhall network levels off at about 

50 percent. For Pierce and DLCN systems, line utilization increases 

as system load increases. However, when the loop is utilized up 

to its maximu,u, the waiting time will increase drastically. The 

_proposed network requires nearly half of the line utilization of 

the other loops simulated. Figure (11) shows a linear relationship 

between the mean control line usage and system load. This is due 

to constant delay for SYN/ACK messages, however the relay control 

message is of variable length, (changes are within 7 p e rcent). 

CONCLUSION: 

The main goal of this work was to 'improve the throughput of a 

microcomputer network using a flexible, simple, and reliable loop 

topology. 

The results of our simulation have shown that completely de­

centralizing microcomputers leads to a decreas~ in throughput com­

pared to the expected throughput of n processors. The loss in 

throughput resulting from networking multiple processors can be 

- 12 -

r 



(/ 

partially compensated for by careful design of the network and its 

interfaces. Reliability can be achieved by permitting any node to 

take over the con-troller I s job. 

The hardware implementations given for the interface and line 

controller show compatibility of this system with microprocessor , 
technology. Because microprocassors are low cost, this type of 

network can be constructed inexpensively. 

Future research in this area will be done using different 

scheduling · algorithms for the controller, usirig _a different number 

of nodes, And with different types of loop structures. Also an 

investigation of a mathematical model for such a loop structure, 

as has been done in the past for other loop structures is needed. 

(SPRA 72), (HAYE 74), (KO.NH 72), and ( KAYE 72). 
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51.86 1.59 .. 80 0.179 + 
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52.77 1186. 88--· . ·0.342 + 
58.60 7l1,,jQ l)_, ·• 1~~ -':. 

\.-' • · 'r'"'v\. ..,. X . -
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105.00 171!-.10 ---
106. 00 180,90 ---
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110 • .50 326.1 O --- -:-

:i. 07. 60 365,30 ---
102. 80 l-1,63, 70 ---
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99,00 1.511. 00 ---
62.60 77. 80 ---
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62)1-0 101.00 ---
62.20 137,70 ---
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59.00 3269.00 --- ·r. 

68.00 6632.00 ---
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THE ORIGINS OF PERSONAL COMPUTING 

In the beginning, man created pocket calculators to do rote arithmetic. The 

"four banger" solved a well known problem, e.g. addition, subtraction, multipli­

cation, and division. Few people involved in the pocket calculator industry 

realized that pocket calculation was merely an initial thrust into the "computing 

for the millions" consumer market. Indeed, the millions of dollars made by this 

computer consumer product is paying for the development of more sophisticated 

devices we now call "personal computers". 

Computing is the orphan of modern science, that is, computer science "ain't 

got no father". Isaac Newton, Albert Einstein, and others built the foundation 

of Physics. Freud gave birth to modern psychology, and biology has its origins 

with Darwin. But computing lacks a definite starting point. The works of Charles 

Babbage, and possibly Alan Turing, have little impact upon daily computing (some 

will argue that these two pioneers have everything to do with modern computing, 

but I speak of practical rather than theoretical computing). So where are the 

fundamental theorems of computing? Are there a set of "equations of motion" for 

programming? 

This article contains ten empirical observations dubbed, "laws of personal 

computing". They are rules derived from personal experience with person computers 

in the real world of business. While many of the rules are controversial, I believe 

most can be proven to be true. 

The first law of personal computing is of the form "action equals reaction". 

The law is derived by historical observation. 

The first electronic computers were personal computers. That is, only a few 

programmers had access to the ENIAC, WHIRLWIND, and ATLAS. This one-on-one mode 

of interaction rapidly faded in favor of batch operation and multiprogrammed 

operating systems. Clearly, the shift away from one-on-one was the result of 

economic decisions. Large corporations poured large sums of money into data pro­

cessing departments. For their investment, they demanded efficiency. Military 

installations required security and performance as their return on investment. 

Batch operation satisfied their demands. 

Soon, however, users (programmers mostly) were able to show economics of 

scale and efficiency of operation by installing a limited form of interaction 

called remote-job-entry. R.JE rapidly moved into timesharing with terminals because 

r 
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this increased the man-machine interaction. Finally, we have come full circle to 

dispersed, stand-alone, turnkey computers dedicated to a few users. 

The key feature of the historical . evolution of computing is "interactiveness". 

In fact, the more we are allowed to communicate with a computer system, the more 

we enjoy using the system (within limits), and the more "personal" computing 

becomes. This leads to the first law of personal computing. 

[l] Personal Computing Equals Interactive Computing: The personalness of a 
computer system increases directly proportional to its interactiveness. 

p = k I 

where p . personalness = 
k = constant of proportionality 
I = interactiveness 

Of course, we have not quantified (or defined) what P, k, and I really are in 

the formula. 

In the following derivations, we determine at least a qualitative measure of 

several other variables in the laws of personal computing. In some cases we can 

represent the law with an equation, but in most cases this is not possible. 

THE NEW ECONOMICS OF COMPUTING 

Personal computing is governed by economics as much as by technology. Indeed, 

the directions taken by technology are governed by economics. Therefore, we must 

study economics in order to derive other laws of computing. 

The concepts of programming, microprogramming, and chip design span the spec­

trum of software, firmware, and hardware. Why is it more suitable to microprogram 

the IBM 370/168 (model 370 hardware, model 168 firmware) and not microprogram the 

Intel 8080? Where is the trade-off between an "expensive" system and an "inex­

pensive" system when all features of such a system are considered? 

A system designer can choose to build a cheap processor (like the 8080, say) 

and save money on production, design, and maintenance of the cheap processor. 

The same designer can elect to build a (expensive) sophisticated computer system 

and as a result increase the cost of hardware. Why would he choose to construct 

an expensive computer? The answer lies in looking at the total cost of a computer 

system. Lets take an example. 
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The Intel 8080 requires that the HL registers be loaded each time a memory 

reference is made. This feature is simple to implement and saves hardware dollars. 

However, every program that is written for the 8080 must pay the price of this 

simplicity. Typically, a macro called HL is used to relieve the programmer of this 

chore. 

The Motorola 6800 includes a more sophisticated addressing mechanism using 

an index register for assisting in memory references. The addressability features 

of the 6800 often lead to 25% reduction in the number of instructions needed to 

perform the same function as performed by the 8080. 

Both 6800 and 8080 architectures are more time consuming to program than the 

Texas Instruments 9900 chip due to the 9900's greater sophistication. Furthermore, 

the Microdata 32/S and Hewlett-Packard 3000 are stack machines supporting a high 

level language. Hence they are "easier" to program than any of the chips discussed 

above. But of course, the 32/S and 3000 are more expensive hardware machines than 

the chip machines. 

Where is there a trade-off between complexity in hardware, complexity in 

firmware, and complexity in software? The trade-off is strictly economic, and 

leads to the second law of personal computing. 

[2] Conservation Of Agony: The work expended to program a computer to solve 
a problem plus the work expended to construct the computer system remains 
constant for that problem. 

+ = C 

where 
ws = software work, 

WH = hardware work, 

C = constant for a specific problem. 

Again, the numerical values for each of the quantities above are not easily 

determined. We suspect a curve similar to the one in Figure 1. 

The second law of personal computing actually states that the problem solution 

remains at a constant level states no of complexity regardless of the system used 

to solve the problem. 

The cost per unit of effort in building hardware may decrease (LSI chips ), and 

the cost of programming may increase (due to unsophisticated microcomputers). The 

curve of Figure 1 traces the "best" point at which an economical blend of hardware and 

software meet. Therefore, in 1980, the most economical systems will be mainly E:..:-

hardware (due to its low cost) and a small share in software (due to the conservati0n 

of agony ) . 
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The results of law two actually saY something about the "power" of a computer 

system. We can state a macroscale formula for computer power as follows: 

power = . [(MIPS)(STORAGE CAPACITY)]/COST 

This overly simple formula gives a broad measure of power in byte-cycles per 

dollar-second. Hence, increasing speed or storage capacity increases power. Con­

versely, decreasing cost increases power of a personal computer. For example, the 

Intel 4040 (four-bit pocket calculator chip) increased personal computing power 

because it was cheap even though it was slow and of low storage capacity. 

Now, if we look at history once again, it is clear that an acceleration force 

is at work. Increasing capability in the past lead to increasing the number of 

applications in which a computer is useful. In turn, the increased use of a com­

puter system in new applications results in increased sales. The sales stimulate 

mass production and further cost reductions. The end result is decreased unit 

cost of the computer system. 

We can demonstrate this counter-intuitive notion as follows. In the mid 

t sixties, processor speed increased dramatically. This increased capability moti­

vated timesharing of the central processor. The support of many terminals reduced 

the cost per terminal, and in the final analysis, the cost of the unit of compu­

tation. Increased capability lead to reduced cost of computation. 

In the seventies, the capacity of storage is increasing dramatically. We are 

witnessing a surge of activity in database applications with the corresponding 

decrease in cost of storage. In short, we are witnessing the third law of personal 

computing in action. 

[3] As The Power Of A Personal Computer Increases, Its Price Decreases. 

The equation for the exact form of _diminishing cost expounded in law three is 

highly complex. To derive the equation would require a model of the economy, a 

predictive model of advances in technology, and a psychological study of people's 

acceptance of computerization of sensitive applications (making medical diagnosis, 

for example). 

The third law deals only with hardware capability. Earlier, we stated that 

hardware capability plays a decreasingly important role in personal computing. 

Indeed, the effects of the third law of personal computing are rapidly diminishing 

( due to the fourth law. 
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[4] Software Is Hard; Hardware Is Soft: It is economically more feasible 
to build a computer than to program it. 

It is economically easier to design, implement, and mass produce a machine 

like the Intel 8080 or IBM 360 than it is to design and implement an operating 

system, compiler, or sophisticated application program. The cost of a chip may 

run to $250,000 when design and initial production is totaled. The cost of firm­

ware BASIC may not exceed $100,000 (many often do, however), but the auxilliary 

cost of docwnents, service, training, and marketing may exceed one million dollars. 

A company contemplating a new hardware architecture is gravely penalized for 

making radical changes to the instruction set of their existing computer. Is it 

not to be expected that the IBM 370 is only an evolutionary departure from the IBM 

360? Why is the Z80 processor nearly as successful in the market place as the 8080? 

The high cost of programming as opposed to the cost of a chip is reversing the 

traditional roles of software and hardware. In the future, more emphasis will be 

placed on the software and less emphasis will be placed on the machine architecture. 

Indeed, much of the current software will become "hard", by placing it in firmware 

and distributing it in hardware ROMs. 

One result of law four is the following corollary. Corollary A states the 

rule that governs pocket calculators, today. 

[A] Programs and data should be shared; but hardware should be replicated. 

The only item in a computer system that must be shared, from a technological 

standpoint, is data. Common access to information stored in a database may be 

logically justified by an application. Whether the access is done via timesharing 

or dispersed processors is inunaterial. Also, whether the data is copied for trans­, 
mission, or the program that intends to process the data is copied for transmission 

to the database machine, is again immaterial. 

The computer business has been over enthusiastic about timesharing in the 

past. We must recall that timesharing was invented to lower the cost of hardware. 

Now that hardware is no longer the major cost item in a system, timesharing is not 

justifiable in most cases. In fact, timesharing failed. 

Timesharing failed because people couldn't understand it. Only computer ex­

perts are able to use MULTICS, VM/370, and other extremely capable timesharing 

systems. The average person will not tolerate JCL, telephone lines, computer 

jargon, and unreliable central computers that loose their files. In short, time­

shared computers are useless due to their prerequisite of knowledge. 

- 5 -



The computer utility concept of the late sixties failed because of the lack 

of expertise on the part of the users. The high level of sophistication needed 

i to use a utility doomed it to failure. It also put a bad name on. personal computers. 

In effect, the "guilt-by-association" syndrome plagues personal computing, 

today. Myths (its too complicated), training (what is a byte?), and service (how 

do I get statements printed?) are three of the remnants of the computer utility 

that have turned people away from computing. 

We can now state a conclusion called the fifth law of personal computing. 

[SJ Knowledge Costs More Than Software And Hardware: The usefulness of 
personal computers increases inversely proportional to how much people 
must know in order to use them. 

The lesson is clear: any consumer product that is successful, must be simple. 

The pocket calculators that solve known problems (arithmetic) are successful. The 

pocket calculators that solve unknown or unrecognized problems are failures (the 

HP-85 for financial analysts solves an unknown or unrecognized problem). 

The facts of life are even more severe for computers sold to the consumer 

market. The final economic law succinctly summarizes the fickle buyer's attitude. 

[6] The Color, Shape, And Size Of A Personal Computer Is More Important To 
A Buyer Than What Is Inside Of It. 

Once the personal computer system overcomes all other economic obstacles it 

must be packaged and maintained by a reputable service organization. 

Packaging - eliminate buttons, switches, and knobs. The manuals must reduce 

jargon, and the software must be tailored to a particular industry. 

The SOL-20 system from Processor Technology and the NOVAL from Gremlin 

Industries are vivid examples of packaging in the personal computer hobby market. 

Datapoint, Wangco, and Basic-Four demonstrate the law with tailored software 

packages for small businesses. 

Service - fills the gap between the user's knowledge, and the personal 

computer's lack of capability. Service rescues the user when the personal computer 

J" cannot repair itself . It is service that counts when the manuals do a poor job 

of explaining a feature of the system . Finally, service is perfonned by humans, 

and so far, humans understand other humans vastly better than they understand a 

machine. 
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We can now turn to . some interesti _ng examples that lead to the final laws of 

personal computing. In particular, these laws . impact directly on the majority of 

computer experts engaged in applications implementation~ 

IMPLICATIONS OF INTERACTIVE-NESS 

The first law of personal computing equates "interactiveness" with "personal­

ness". This means that in order to achieve a high degree of interactive computing, 

the personal computers of the future must be oriented toward languages and systems 

with a high degree of interpretation .. Compiler languages, for example, have been 

shown to require from three to ten times as much effort to implement a given program 

as required to implement the same program using an interpreter. 

It is little wonder that BASIC has achieved the title, "language of the masses". 

It is a simple interpretive language easy to implement on a modest processor. 

Unfortunately, it is extremely inappropriate for major applications requiring typical 

business data processing. 

[7] BASIC Is To Personal Computing, As Sign Language Is To English. 

BASIC is the "pig latin" of programming languages. BASIC programs are easy 

to write, naturally, but like pig latin, they are difficult to understand, and 

provide inadequate control of a personal computer system. Few dialects of BASIC 

permit indentation, structuring, comments (without memory penalty) or error control 

and recovery. Here are a few objections to BASIC as a serious, professional im­

plementation language. 

a) poor error recovery facilities - e.g. the application program must be 
capable of detecting file access errors, etc. and then calling an ex­
ception handling routine. 

b) no dynamic overlapping or memory mapping of programs too large to fit 
in main memory. 

c) restricted data structures - e.g. linked lists, trees, dynamic memory 
allocation for data, mixed data types. 

d) limited user prompting - e.g. forms handling, menus, cursor control, 
scrolling, audio signals. 

e) inadequate software security and protection - e.g. file security locks, 
interlock mechanisms for shared files, inadequate source code shielding. 

f) 

g) 

slow execution due to poor interpretation. 

inadequate primitives for standard data processing - e.g. no sorting, 
file access constructs, forms handling for report generation, or 
communications access constructs. 
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In short, BASIC is . useful for beginners developi .ng small programs for an un- . 

sophisticated application, qr for programs that will be thrown away rather than 

modified. 

The area of system control is no better off than the system languages area 

of personal computing . At least BASIC is partially standardized and widely known. 

Operating systems, on the other hand, have no consistent basis to begin with. 

Indeed, we question the utility of an operating system in interactive computing. 

This is pointed out in the eighth law of personal computing . 

[8] An Operating System Is A Feeble Attempt To Include What Was Overlooked 
In The Design Of A Programming Language . 

This heritical notion is fully obvious in systems employing interpretive 

BASIC to the hilt. The Wangco, Tektronix 4051, and similar small scale interpretive 

BASIC systems have no visible operating system. All commands normally associated 

in traditional operating systems are put into extended BASIC in these personal 

computers. In . general, interpretive systems (and thus interactive systems} have 

no need for an operating system. 

In future personal computers it is likely that a network of loosely coupled 

~ processors will communicate data and programs to one another. In such a network, 

concurrent processes will be allowed, and often compete for limited resources. 

In this situation, the synchronizing primitives of today's operating systems will 

be migrated to hardware (or firmware) and not be of concern to the language in­

terpreter. 

THE ULTIMATE LAWS 

We have covered the econo-technical motivations for personal computing and 

stated eight laws along the way. In the final analysis we can derive two ultimate 

laws of computing used (knowingly or otherwise) by computer manufacturers. 

[g] The Ultimate Personal Computer Is A Robot: The goal of personal computing 
is to reduce the differences between humans and computers. 

In effect we are striving to make personal computers do what people can do, 

only faster, more accurately, and cheaper. We seek a partnership with personal 

computers akin to the symbiosis between humans and household pets. 

A faster personal computer allows us to process census information in 2-3 years 

instead of 15 years. Speed is essential in a lunar landing, and so is accuracy. 
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An air traffic control computer is much more accurate than a human operator. The 

result is safer air transportation for people .. 

A computer that can do your job faster; more accurately, and cheaper than you 

can do your job is a threat to you. In fact, a cheaper computer is threatening 

jobs everywhere today. This aspect of computing is being ignored by computer 

scientists because it represents an undesirable aspect of computing. None the 

less, we must face this problem before the ultimate law is enacted. 

[10] Knowledge Is Power: Information is the fabric of knowledge, and he who 
controls it, wields power. 

Good versus evil. While personal computers are fast, accurate, and cheap, 

they also ·cause high speed propagation of errors, speed-of-light crime, and loss 

of life when they fail. 

Politicians are able to push a button . and disseminate campaign propaganda ta 

the millions. Factories can replace entire vocations by automating production. 

Financial institutions are at the mercy of their data processing centers. 

Is it possible that personal computing will lead to a caste society? When 

all menial tasks, management decisions, and control of production has been turned 

over to computers, what will mankind do? Will the elite of the future be those 

who can create, invent, entertain, and be humane, while everyone else is relegated 

to welfare? 

The laws of personal computing are not only important to computer scientists, 

but also to society as a whole. Perhaps there is a place today for the futurologist, 

that is, a philosopher of computer science. I wait. 
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