
I···.~·
"

. ·-~ .
~~ ..
<·

)

DEPARTM~NT OF'"'
COf\'1fu-l ER SCIENCE

un~UEAS~TY

Hardware, Firmware, Software

Technology in Microcomputer Systems

T. G. Lewis
Computer Science Dept.

H. Jafari
Electrical Engineering Dept.

Oregon State University

HARDWARE, FIRMWARE, SOFTWARE
TECHNOLOGY IN MICROCOMPUTER SYSTEMS

T. G. LEWIS

COMPUTER SCIENCE DEPARTMENT
OREGON STATE UNIVERSITY

CORVALLIS, OREGON

For "Advances in Information s ,ystems Science,"
Julius Tou ed., Plenum Publishing Company , 227
West 17th Street New York, New York 10011

Editor: Julius Tou
University of Florida
Gainesville, Florida 32611

-

1.

1.1

Hardware Organization

Introduction

Computer systems advance by revolutions rather

than evolutions. The jump from vacuum tube -machines

to solid state transistor machines was revolutionary.

Never before had computers been reduced in size, cost,

and computation time until this revolution .

Computer revolutions are enumerated by a gener­

ation number. First generation computers were based

on vacuum tube technology, second generation was based

on transistors. We can say that the current generation

is based on large-scale-integration LSI.

The LSI age of computing is no longer denoted by

a single generation number because LSI is causing

many upheavals in computing. The upheavals are too

numerous and spread over too short a time for numbering

systems to keep up. Even the terminology needed to

describe the changes is hard pressed to keep pace.

It is important to realize the significance of

terminology. One measure of the rate of technological

change is the rate of semantic shifts occurring in

the language. For example, a microprocessor is a cpu

in a single LSI transistor wafer. A few years earlier,

however, a microprocessor was any microprogrammable

cpu. To avoid confusion, the following definitions will

be used throughout this chapter.

1

•

•

A microcomputer is a cpu memory, interfaces and

boards needed to package a microporcessor to make it

appear as a computer to the user. A microcomputer

may be microprogrammable if it has a control memory

and sequencing unit that allows firmware programming.

For the purpose of this chapter, a firmware program

will be any program residing in a read-only memory, ROM.

This definition sidesteps the problem posed by micro­

computers that emulate their instructions as compared

with microcomputers that take instructions from either

ROM or random-access-memory, RAM. In either case, a

microcomputer is said to be microprogrammed if programs

reside in ROM, regardless of the processor's archi­

tecture*.

A microcomputer that incorporates ROM and a

microprocessor in a single unit is called a grand-scale­

integration GSI microcomputer. An example of a GSI

microcomputer is the common pocket calculator. Each

calculator has a processor and a ROM containing the

instructions for executing each button stroke. Since

programming in the stored program tradition is not

possible by the user, the calculator is considered a

single unit of GSI equipment .

*Emulation can be roughly defined as simulation

of one computer on another computer. Typically, the

simulator resides in ROM as part of the control unit

of the host cpu.

2

•

0

Microprocessors are packaged in dual-in-line

packages called DIP chips. A DIP chip is typically a

40-pih ceramic package about one to two inches long,

one-fourth to one inch wide, and less than 1/2 inch

thick. Access to the resident circuitry is through

the 40 pins. Because of their size and packaging,

microprocessors are often called chip computers.

It is the decreased size, cost, and power

consumption that is responsible for the chip computer

revolution. This revolution permeates the application ,

design, programming, and manufacture of computers ,

their peripherals, and the people who use them. Such

pervasion into science , technology, and society will

have far reaching effects for the future.

The purpose of this chapter is to narrow the

discussion of this revolution to a specific technical

area . The discussion will focus on fundamental

technological concepts underlying the revolution. For

this purpose we examine three architectures , three soft­

ware systems, and conclude with an analysis of resource

sharing and the impact of microcomputing on sharing.

1.2 A Simple Microprossor

P·erhaps the simplest microprocessor would be

an LSI circuit for adding, subtracting, and performing

I/0 on a two-bit word of memory. Such a small pro­

cessor holds little interest because of the elaborate

3

•

•

encoding of data and extensive programming effort re­

quired to make the hypothetical processor useful. What

then, is the lower limit of "size" acceptable for

a practical microprocessor?

The first requirement for a practical _micro­

computer is that decimal numbers be easily represented

in the microprocessor storage unit. This means a

minimum word length of 4 bits, since digits 0-9 can be

encoded in BCD with 4 bits. A four bit computer can

perform most functions of a decimal calculator with

relative ease.

Greater parallelism leads to speed and the

potential for extensive programming. A four-bit word

can address only 16 locations in memory while an 8-bit

word can hold 256 addresses. Furthermore, an 8-bit

instruction word has greater capability for an improved

instruction set.

Obviously, the same arguments for 16-bit processors

can be applied to 8-bit processors. The improvements

of a 16-bit computer certainly make their development

inevitable.

Before any technological device is made avail-

able on a widespread basis, there must be a dollar­

volume force behind the technological device .

Dollar-volume force is defined as the product of unit­

price times market-volume.

4

•

•

$_VOL_FORCE = (Unit-price) (Market-volume)

A microcomputer valued at $10 and sold 10,000 times is

a technological device with a $100,000 dollar-volume

force behind it.

This leads to the concept of technology availability,

which in turn partially determines the design of a

simple microprocessor. An invention becomes available

only when the dollar-volume force is significantly in­

creased by the proposed invention*.

A two-bit microcomputer, while feasible for many

years before microcomputers were generally available,

lacked potential for increasing the dollar-volume force.

A four-bit computer, because of its usefulness in pocket

calculators and BCD processing machines successfully

increased the dollar-volume force thereby making the

first microprocessor available. Hence the simplest

microprocessor that was both technologically possible

and economically feasible was the 4-bit pro~essor.

An 8-bit microprocessor offers many technological

advantages over 4-bit processors. The advantages

in themselves are not sufficient to bring about a true

*It could be argued that television arose without

an initial dollar-volume force behind prior developments.

However, it is also possible to view TV as an outgrowth

of radio, in which case the dollar-volume force is

increased. In general, consumer electronics are marketed

only when new markets expand the dollar-volume.

5

rt

•

8-bit microcomputer. Instead, the dollar-volume force

had to increase before 8-bit microcomputers were possible.

The 8-bit microcomputer increased the dollar­

volume force sufficiently to drive 8-bit microprocessors

into general availability. The reason is that ASCII

and EBCDlC encoding are 8-bit codes, floating point

arithmetic is facilitated, and addressability is im­

proved. These primitive improvements manifest themselves

in more sophisticated software packages that in turn

expand the usefulness of 8-bit computers beyond the

pocket calculator market. Therefore, the 8-bit micro­

computer owes its driving dollar-volume force to

applications that transcend pocket calculators.

The 8-bit microcomputer architecture of Figure

1 shows a simple microprocessor organization that typifies

the early generation of microprocessorl. The machine

of Figure 1 is a register-transfer machine. This means

that all operands are either stored in the working registers

or they are accessed by pointers stored in the wor~ing

registers .

One of the dollar-volume driving forces behind

the eventual availabilty of 8-bit microprocessors was

the advantages of multiple precision calculators. This

advantage is noted in the double register feature
. -

of Figure 1. Registers B, D, and Hare treated as

16-bit operands in certain operations. Also, 4-bit

* The architecture of Figure 1 is an Intel ;8080, see reference 7.

6

fQ.i'Y' t6 9 D

8 B i C
~fcf

I
,s Cl)

D D
I SP
i E

H
. I

H L PC..
I

! '
I

I

) l ,.,,. ~
'- I

p
A ~

s i: R A
Is I R r;

{J

'- R B r R I 1) I

ALLL II d c.
'r' "

I I
D

S 6 B p
4. :

. I(STAtiAS 'C !

~
Cl,.

0

i 8
i
'

(A.
I
I

I «ttum "1a.-h>r s .
I I

i
I

j
I

I
I

! ; I
I r1

!
I

• I

j
! !

A dd.V'ess 6\.lS \ ..

•

7

\

•

precision is preserved by the "BCD CARRYn bit Bin

the status register. We will study the behavior of bit

Bin a later programming example.

Each instruction of the microprocessor of Figure

1 is one, two, or three bytes long. The niiadic

operators* such as "SET CARRY", "COMPLEMENT", and

"DECIMAL ADJUST" require only one byte of memory. The

monadic operators such as "ADD", "A.ND", and "COMPARE"

require two bytes because of extended addressing. The

dyadic operators such as "MOVE" and "LOAD INDEX" require

three bytes. In most cases operands are working

register or memory register, either one accessed through

the pointer loaded into register pair H-L.

The A, B, C, D, and E registers are used to

accumulate results from the ALU. The Hand L registers

combine to form a 16-bit memory address . The address

in H-L is used to load or store single bytes from or

to memory. The memory may be ROM, in which case store

operations via H-L are meaningless.

*Niladic operators have zero explicit operands,

monadic operators have one explicit operand, and

diadic operators have two explicit operands. For

example, in the DAA operation, the accumulator is

implied.

8

"
The memory of this 8-bit microprocessor is

hierarchial: Register A is immediately available while

registers B, C, D, E, H, and Lare available as

operands in the instruction set. Main memo!Y is at

a third level of access because bytes come from main

memory by way of the pointer in Hand L.

The program counter, PC and stack pointer, SP

operate as expected. The PC register holds the 16-bit

address oL the next instruction to be executed. The

SP register holds the address of the top element of

a push down stack. A "PUSH" operation causes 16 bits

to be placed on the stack after SP has been decremented

by two.

(SP) (SP) -- 2

After a "POP" operation, the SP register is

incremented. Therefore, the stack grows toward the

low end of memory. This feature guarantees that 16-bit

register pairs are loaded and unloaded in the order
.

needed during multiple precision calculations.

The stack facility provides recursive sub­

routining. During a "CAL" to subroutine, the "old PC"

is saved on the push down stack. During a return

from subroutine the "new PC" is popped from the stack.

9

•

Input and output is performed through the A

register under program control. The "IN" instruction

fetches an 8-bit byte from a specified device and

"OUT" copies the contents of register A onto the data

bus.

Interrupts are allowed with the "EI" instruction

and disabled with the "DI" instruction. There is no

automatic vectoring* of traps. This weakness must be

overcome through considerable programming by the user.

Figure 2 demonstrates a short segment of machine

level code for the microprocessor of Figure 1. The

program computes the sum of two 3-byte numbers stored

at symbolic locations, FIRST and SEC.ND. The answer is

stored back into FIRST.

+

32AF8A 16

84BA90 16

B76AlA 16

SECND_,

+ FIRST

FIRST (answer)

The program demonstrates how multiple precision

calculations are performed and how the lack of indexing

is overcome by programming. The "ADD:" segment o f c ode

initializes two pointers to the operands . The B-C

*Automatic I/0 or vectored I / 0 is a feature on

many minicomputers. An I / 0 vector is a memory cell

containing status information and a pointer to a

service routine. Upon interruption , the service

routine is called.

10

•

register pair point to FIRST . after the load-index­

immediate LXI instruction. The H-L pair points to

SECND after execution of the LXI instruction ·.

The "LOOP:" segment performs addition on three

bytes, from right (least significant byte) to left

(most significant byte) . This is done by accessing

the byte pointed to by B-C , accessing the byte pointed

to by H-L, and performing the ADC instruction. The

ADC adds with CARRY included so that multiple precision

carry-outs are saved in bit K=CARRY. The STAX

instruction us.es B-C as a pointer to FIRST. The DCR

decrement instruction subtracts one from register C

because this segment of code also uses register C as

a loop counter. This dual use of B-C (as pointer and

counter) may lead to errors in the program unless the

data is stored on a 256-byte page boundary. The next

instruction tests for completion.

The operand pointer B-C also is used as a loop

counter in the previous example. This is necessary in

the limited architecture of a simple microprocessor .

11

•

The result, however, is greater software overhead,

possible errors as pointed out above, and added effort.

Most microprocessors are oriented toward

decimal BCD calculations. The "DAA" decimal adjust

instruction is provided to translate partial binary

results back into BCD results after an aritqmetic

operation. The following example will demonstrate

25 BCD = 0010 01012
+

7BCD
+ 0000 01112

32 BCD 0010 11002

The BCD numbers 25 and 7 are stored as binary

nunbers, internally. When the microprocessor adds

them together, it produces the binary sum 0010 1100

this.

as shown to the right. This sum must now be converted

to a BCD numeral instead of a binary number. The DAA

instruction tests the BCD CARRY bit in the status

register. Depending upon the value of the BCD CARRY,

the upper and lower byte of the result, and the

condition of the CARRY bit, the DAA instruction will

either add +00 16 , +06 16 , + 60 16 , or+ 66 16 to the result.

In the case of the sample calculation, above,

the result is "corrected" by addition of +06 16 .

+
0010

0000

0011

1100

0110

0010

12

,/

The DAA operation produces a BCD result that would

have been obtained had the micropressor been capable

of direct decimal addition. Thus, 25+7 ~ 32 as

desired.

We could modify the sample program of Figure 2

to produce BCD results by giving the data in BCD

format and using a DAA instruction after each addition,

This would mean inserting a DAA instruction between

the ADC and STAX instruction in the LOOP segment of

code.

The simple microcomputer described here has an

extensive instruction set and a 16-bit addressing

capability. It has found applications in a variety

of first-time computer uses. Indeed, its simplicity

is a virtue in many new applications .

There are both obvious and subtle deficiencies

in the simple microprocessor design we have just

examined. Basically the deficiencies stem from the

microprocessors weak indexing and addressing capability

and underdeveloped interrupt handling facilities. The

next microprocessor studied partially overcomes these

deficiencies and represents a typical second generation

microcomputer processor.

13

Figure 2.

FIRST:

SECND:.

(A)

A Sample Program For the Microprocessor

of Figure 1.

DB

DB

90H

BAH

DB 84H

DB

DB

84H

AFH

DB 32H

Hexadecimal data bytes ...

stored in reverse order.

Hexadecimal data bytes ...

stored in reverse order.

sum of multiple precision add

*

*

*

*

(B-C) index to FIRST operand.

(C) length of operands, in bytes.

* (H-L) index to SECND operand

* FIRST operand and answer (sum).

* SECND operand

*

ADD LXI B,FIRST set (B-C) pointer to FIRST.

LXI H,SECND set (H-L) pointer to SECND

XRA A clear CARRY bit, set A=0.

LOOP: LDAX B get a byte of FIRST

ADC M (A) -(A) + (H-L) + (CARRY).

STAX B put a byte into FIRST

DCR C done ...

Ji DONE ... otherwise, continue.

14

r· I

DONE:

INX

INX

JMP

END

B

H

LOOP

increment to next byte of FIRST

increment to next byte of SECND

add next byte.

continue

15

,)

1.3 An Improved Microprocessor

Once a dollar-volume force is set into motion

by a technological breakthrough, many minor stepwise

improvements follow. The improvements act as minor

pertubations in the revolution. Nonetheless, it is

by way of these smaller steps that we build-up to a

subsequent breakthrough.

The advantages of 8-bit microcomputers soon

become obvious to many who would use them for purposes

not forseen by the designers. These new applications

were implemented by custom made software resident

in the microprocessor memories. It became evident

to many software engineers that the simple 8-bit

microprocessor studied in section12 could be improved

to alleviate some of the problems associated with more

general applications.

The improved microprocessor of Figure 3 gives

the false impression that the microprocessor is

* actually less capable than the one just studied .

Actually, the simpler organization belies a more power­

ful microprocessor instruction set. The reason for

its improved organization centers on the index

register, IX and 72 unique instructions .

* The architecture of Figure 3 is a Motorola 6800 MPU,

see reference (8).

16 . t

All operations are performed between registers

A, Band memory, or between registers A and B themselves.

For example, the "ADDA" and 'ADDB" instructions sum the

contents of a memory byte at the location specified by

register MAR. They also can sum the contents of

A or Band store the result back into A or B.

Instruction operand~ are fetched from either

A or Band via MAR from memory as stated before. The

index register, however, may enter into addressing

via MAR. The contents of IX are added to the address

in MAR to compute an effective address. This added

capability greatly simplifies programming and requires

smaller programs as illustrated in Figure 4.

The SP and PC registers operate as before with

the stack in main memory . The stack is used for

recursive subroutine calls but may also contain inter­

mediate results or parameters to a subroutine .

The condition codes include HALF CARRY, and

CARRY as in the simple microprocessor. This enables

the improved microprocessor to perform both BCD

arithmetic on single bytes and multiple precision

arithmetic on strings of bytes. The INTERRUPT MASK

bit provides control over interrupt enables. For

example, I is set (=O) with the "SE!" instruction .

Interrupt service routines are entered recursively.

17

a.etat-muk~

0

A
s .

/5 0
..---iALU

r)(

SP

Pt
,,....

MAR

JI

18

fi

Input/output is generalized through the use of

a central bus. The bus handles addressing of memory,

peripherals, and other microprocessors through

generalized interface chips. Each interface chip is

dedicated to either cycle - stealing direct .memory

access, or to jamming data into the A or B accumulator.

Therefore, to output a byte from register A, it is

necessary to perform a store instruction, STAA IOBUF.

This store accumulator A instruction addresses the

interface chip IOBUF as if it were a location in

memory. Whatever device is attached to IOBUF receives

the byte of data.

Examination of the multiple precision addition

of FIRST and SECND byte strings of Figure 4 rGveals

a much simpler, shorter, and understandable program

when compared with Figure 2.

In Figure 4 the microprocessor is programmed

to add together any two byte strings of length N and

store the result back in the FIRST string. This is

done by using the index register as a pointer into

the strings. The addition is done right-to-left with

the CARRY bit linking together partial results.

The DAA decimal adjust instruction can be in­

serted where shown if BCD arithmetic is desired. The

DEX decrement instruction sets the zero~ indicator

when X has been reduced to zero. This signifies termi­

nation of the loop.

19

f

l

Figure 4.

FIRST

SECND

N

1\

AD2N

LOOP

*

DONE

A Sample Program For the Microprocessor

of Figure 3.

FCB

FCB

$84

$BA

FCB $90

FCB

FCB

$32

$AF

FCB $84

EQU 3

CLC

LDX #N

LDAA FIRST,X

ADCA SECND,X

(DAA)

STAA FIRST,X

DEX

BNE LOOP

Hexadecimal data bytes ...

stored in forward order.

Form Constant Byte for . . .

second operand.

length of operands.

clear CARRY.

load length of operands ...

into index register .

get least significant byte

add with CARRY

(could go here for BCD add--

see text)

put result back into FIRST.

decrement index pointer.

Done?

20

I
[

The realization of greater capability in an

8-bit processor suggests that other improvements

may be possible. In the next demonstration micro­

processor we examine several areas of improvement

representing the third generation of microprocessor

organization.

21

1 . 4 A Sophisticated Microprocessor

While the 4 and 8-bit microprocessors discussed

earlier represent sophisticated programmable logic,

the truly sophisticated microprocessor has the re­

placement of mini and midi computers as its dollar­

volume driving force. For any microcomputer to move

into applications traditionally held by minicomputers

greater software development potential must be

possible through improved architecture . Therefore,

it is the software development capability that differ­

entiates the sophisticated microprocessor from earlier

generations of microprocessors.

The dollar-volume force is increased by a

microprocessor with ease of programming, sophisticated

memory addressing, and expansion capability built

into the chip . Such a microprocessor competes with

minicomputers for acceptance. For this reason, the

improved microcomputer must also be an improvement over

many contemporary minicomputer architectures. For

example , it must overcome limitations placed on main

memory size in favor of a large memory address space.

The sophisticated microprocessor is a 16-bit

parallel, word , byte, and bit addressable machine with

versatile memory addressing facilities, strong interrupt

handling features , automatic memory mapping , and context

22

switching* ability. How can all of these requirements

be met in a single microprocessor?

The first architectural innovation needed to

satisfy the stated requirements is the elimination

of working registers. Architectures based on working

registers as a separate resource invite inefficiencies

in at least two fundamental ways. First, they invite

unnecessary software overhead because the registers

must be loaded and stored, frequently. The loads

and stores do not produce results ; they only prepare

operands for · operations that produce results. It

would be more efficient to directly perform the

operations on the operands regardless of their location

in memory.

Secondly, the registers of a traditional

architecture are shared by every process in the system.

Whenever processing switches contexts, the registers

must be saved and then restored. Context switching

may occur whenever a subprocedure is invoked either

through an interrupt or else by normal program execution.

Clearly, the need to share working registers has caused

many problems in the design of operating sytems.

Register allocation and management problems are

avoided in machines organized around a pushdown stack

architecture. The stack is stored in memory and every

*Context switching is defined here as a state

change requiring a new environment. The context of

this machine changes whenever a subroutine, inter­

rupt, or process change occurs.

23

l

•

operation in the instruction set operates on the top

elements of the stack. Context switching is simple and

fast because the stack has the natural ability to nest

environments or mark the top of the stack iq order to

return later to a previous state. Unfortunately,

stack machines restrict access to other portions of

memory and require wasteful loads (push) and stores

(pop) to prepare operands for processing.

An example that illustrates an inherent weak­

ness of stack architectures is the process of dynamic

storage allocation. Dynamic storage allocation is

performed by programs written in block-structured

languages such as ALGOL and PL/1. Upon entry into a

nested block, the local variables are allocated

space by creating a segment of storage on the top

of the pushdown stack. As processing continues, the

stack continues to grow, and indeed when a second

nested block is encountered, it is possible to require

a second block of local storage to be allocated on

the top of the stack. At this point, the stack

24

architecture must be able to also access the data

stored in the outer block. This non-local data is

not on the top of the stack, but instead' it is many

stack frames into the stack. Thus, the top-of-stack

operations no longer are able to access the _outer

data without additional modes of addressing.

The stack machine can be stressed further with

the problem of global dynamic allocation posed by

PL/I derivatives. The ALLOCATE construct of PL/I

makes it possible for a programmer to create a variable

(and its space) at any time in the execution of a

program. Conversely the FREE construct allows a pro­

grammer to destroy the variable (and its space) at

any point in the program. These operations fragment

pushdown stack storage disciplines and the resultant

overhead becomes prohibitive. Typically, this problem

is handled by bypassing the stack and resorting the

traditional addressing modes and traditional load/store

overhead operations. In otherwords, pushdown stack

mechanisms have only limited advantages over traditional

organizations.

A sophisticated microprocessor must be able to

switch contexts as easily as a pushdown stack machine

and yet access data as randomly as a register machine.

25

In addition, it would be highly desirable to either

maintain a very large number of working registers or

else eliminate them entirely in favor of direct

access to memory words. The microprocessor and RAM

'
(random access memory) of Figure 5 is a step in this

direction.

The microprocessor of Figure 5 contains three

internal registers called CONTEXT POINTERS and

three files of 6 registers each called the MEMORY MAPS.

All other registers are part of main memory and are

accessed through the CONTEXT POINTERS working in

harmony with a MEMORY MAP.

The CONTEXT POINTER WP (working pointer) is a

16-bit address that is modified by BIAS i, where i is

determined by the value of WP and the LIMIT registers.

If LIMIT 2 < WP ~ LIMIT 1 then a 20-bit effective

address is formed by adding (BIAS 1) *2 5 to WP. The

BIAS register is shifted left 5 bits before addition

to effect the multiplication by 32. If LIMIT 2 < WP

-' LIMIT 3, then BIAS 2 is used to compute a 20-bit

effective address. Finally, when WP> LIMIT 3 the

BIAS 3 offset is used.

Clearly, the memory mechanism adds to the power

of this microprocessor. Programs and data are all

referenced through the MAP. This means that large

memory spaces can be addressed and segments containing

data or programs need not be contiguous.

* This is the Texas Instruments 990 ser1·es processor, see
reference (5).

26

.,,

Notice in the description thus far, that the

microprocessor manipulates pointers to data as opposed

to manipulating data directly in internal registers.

This level of indirection is the source of much of

the microprocessor's power and sophistication. In­

direction supplies the ability to do context switching

with the ease of a pushdown stack machine.

The WP pointer (with modification by the MAP)

references a segment of memory called the CURRENT

PROGRAM CONTEXT. The first 16 words of this context

serve as "workspace registers". WRO through WR15

appear to a programmer as working registers. Each

context has its own bank of workspace registers WRO

through WR15. Observe that WRll through WR15 are

special purpose registers as well as being general

registers. In particular, WR14 is used to hold the

OLD WP of the previous context. Thus the advantages

of a pushdown stack are realized while at the same

time the advantages of random access remain. Further­

more, local register space is protected from non-local

contexts that endanger the integrity of data stored

in the registers.

The example of Figure 5 also demonstrates how

interrupts are vectored to the appropriate service

routine. The INTERRUPT VECTORS contain "new WP"

27

,I

CoNTe.xr
P<l1AJTEf<S

WP
Pc.

ItJ'fUIJJ.PT

ve.cro~

ADt,eSs sr,4,e.
1:5 (.-1

0 l >1(1/J wp.,
"'~u)

I ,
'

, , ,

15 (_

?'REVtCUS
"'?R06l'Af1
SPAC.E.

1'PcVtcU.S
n~
C.ONTE.;<T

CJ.J.AA.,E>Jr

-PR06AAM .
CJJNTEXT'1

I

I
I

/ //

~3~
t----'='-"~-----l J~ ; /
1---;"'=~-_j 1- j

'--l 1-j
---:_ J

~---J ;I

·---=----- Cl I

28

(
w~s

/~f(Vlc.E. I
i

; l{OUTINE..
! r

,r

and "new PC" addresses that point to the service

routine and its workspace. Since the old WP and old

PC are automatically saved in the service routine

workspace, returns from interrupts are simplified.

Interrupts may be nested inside of interrupts.

The XOP (extended operations) register in

WRll of the workspace provides a means for extending

the hardware or software of the sophisticated micro­

processor. There are 16 instructions not implemented

in the processor. When one of the unimplemented

opcodes is encountered, a trap occurs and the micro­

processor tests the effective address generated by

the "illegal" opcode to determine if the address points

to hardware or software. This pointer is stored in

WRll (XOP) of the new context. If the instruction is

simulated by software, the routine at XOP is executed.

If the instruction is interpreted by hardware, the

execution at XOP is performed and the results returned

to the workspace. The reader is advised to keep

this feature in mind for a later discussion concerning

LSI software, see section 2.2.

The driving force behind the sophisticated

microprocessor is the dollar-volume expansion that

results from replacing minicomputers with microcomputers.

29

,.

.I

,,

Figure 6. A Sample Program For The Microprocessor

of Figure 5.

*

*

*

OS

ws

TITL

IDT

Set-up

DATA

DATA

DATA

DATA

BSS

FIRST DATA

SECND DATA

*

* COMPUTE SUM

*

CLC

'MULTIPLE BYTE ADD ROUTINE'

'ADDITION'

WP,PC,ST and Workspace Registers

WS, PC,)F

FIRST

SECND

initialize WP,PC and ST.

WRO points to FIRST

WRl points to SECND.

'> 3 WR2 indexes operands.

26 WR3-WR15 not used.

~ 0084, >BA90 right justified operand.

>0032, >AF84 right justified operand.

LOOP ABC @SECND(2),@FIRST(2)

clear carry bit in ST

add low-to-high bytes.

decrement WR2 index

done?

DEC 2

JNE LOOP

30

1/

This technological jump is reflected in greater

programming "power" when compared with the previous

microprocessors. Figure 6 illustrates how the 3-byte

addition routine of Figure 2 and Figure 4 appears if

p~ogrammed in the assembly language of the -

sophisticated microprocessor.

Notice the actual executable segment of Figure 6

is only 4 words long. This is a 50% reduction in

program length .and corresponding execution time over

the improved microprocessor routine in Figure 4.

The improvement is possible because memory-to-memory

operands are allowed and WR2 is used as an index­

counter. This mode of addressing is possible without

sacrificing the advantages of rapid context switching.

Also, a fair comparison of microprocessors must

account for the overhead required to set up the work­

space and data. This overhead was sizeable in the

sample of Figure 6, but of minor consequence in

realistically sized programs. Once the context environ­

ment is set up for each context, the advantages of

rapid switching offset the set-up inconvenience.

The OS statement illustrates how three words

are used to initialize WP, PC, and ST in the CONTEXT

POINTER registers. The > F bit pattern supplies

initial condition codes for the active ST register.

31

"

The WS statement initializes the workspace for

this context. A pointer to FIRST and SECND are set

up in WRO and WRl, and the length of operands is set

up in WR2. The BSS pseudoop simply reserves space

for the other workspace registers.

The FIRST and SECND operands are stored in two

16-bit words. They are hexadecimal constants designated

by the assembler 11 :>" notation.

The summation is performed by clearing the CARRY

bit in ST, performing an "add with carry" ABC, and

looping until all three bytes have been summed.

The@ notation indicates that the data is at

FIRST plus index register 2, and at SECND plus index

register 2 , respectively. The first operand is added

to the second operand. The sum is stored in FIRST.

Finally , the index register is decremented and

the loop is repeated as long as WR2 is not equal to

zero (NE). Execution of these four instructions takes

ten machine cycles to sum all three bytes.

The idea behind this microprocessor is to gain

sophistication through elegant simplicity. The

elegance of stack processing and direct memory-to-memory

random access processing are retained without loss of

sirnplici ty.

The goals of this microprocessor are futile if

we cannot find ways to tap the simple elegance of this

architecture. This requires programming in a form

32

rl

consistent with the cost of a microcomputer. How can

we cope with programming a microcomputer?

2. Firmware

2 . 1 Definitions

Firmware is programmed hardware. It is soft­

ware merged into hardward because it combines pro­

gramming with non-alterable hardware. How can this be?

A microprogram was defined earlier as a program

residing in ROM (read-only-memory). Because it is un­

alterable, the microprogram is called firmware.

Software for a microcomputer is turned into firm­

ware by storing* it in ROM. This means that constants

may be taken from the program space but that results

can never be returned to the program space. Thus

program and data must be separated. The side effects

of alterable program spaces are eliminated.

Traditionally, (and more precisely) the concept

of microprogramming applies to the firmware resident

in the control unit of a computer. Since the control

unit directs a computer during hardware interpretation

of machine language instructions, microprogramming

*The ROM is initially "burned" by passing

a high voltage through the memory. This high

voltage distructively alters the ROM leaving a

bit pattern which can be output during emulation.

33

.I

is meant to determine the nature of machine language.

In a sense, the control unit is another computer

inside of the machine language level computer.

The invention of microprocessors and micro­

computers blurred the precise meaning of micro­

programming. The trend is to accept the definition

used here. We will see why this definition may

persist when the concept of LSI software is expanded.

2.2 Software LSI

LSI (large scale integration) is responsible

for the microcomputer revolution. LSI hardware

technology reduced the cost of entire cpus, memory,

and peripherals to the point where hardware is "free".

Unfortunately, software costs have continued

to climb due to increased complexity in systems and

the fact that software production is essentially a

custom manufacturing process. Daily, software

programmers implement their customized versions of

matbematicalroutines, payroll routines, etc. Most of

34

these software packages have been written hundreds of

times with little knowledge of their duplication.

Manufacturing of software must turn to "software"

LSI techniques analogous with hardware LSI techniques

before advances can be made in reducing software costs.

An obvious step toward reducing the cost of soft­

ware is to share identical programs with many different

microcomputers. Pocket calculators, for example, share

the same SIN (x), %, and 1/x routines with thousands of

microcomputers. This is done by encapsulating software

in a ROM which is mass produced as an LSI software module.

An LSI software module is a microcomputer and com­

panion ROM memory containing firmware dedicated to a

specific function or functions. The scientific subroutine

package of a large computer can be economically replaced

by an LSI software module similar to the pocket calculator.

Once this module is 11plugged in" it is never "reinvented 11

by a software programmer. Instead, it is forever en­

capsulated in firmware.

A software module must be used frequently and be

thoroughly tested before it is committed to LSI en­

capsulation. Wide acceptance of the module is based upon

frequent use, and recognizing that the module is a

"primitive 11 • Obviously , since it is shared by thousands

of microcomputers, it must work properly.

35

l

A language interpreter such as BASIC or APL is

easily encapsulated as an LSI software module. These

languages have an ad hoc standard that assures relative

stability. Thus, the standard APL and BASIC are recognized

as primitives. Mass production of APL or BASIC interpreters .
/

is accomplished by mass production of ROMs containing

bit patterns for controlling a microcomputer. The result

is low cost "software".

The concept of pluggable LSI software leads to the

concept of distributed microcomputer processors. Such

processors are constructed from LSI software modules.

Each module is a ROM and microprocessor dedicated to a

specific function.

Distributed microcomputers must be managed in a

simple, yet elegant way or else the same complexities that

plague larger computers and networks will also plague

distributed LSI software microcomputers. The microcomputer

ring, Figure 7, is one such approach.

In Figure 7, two LSI software rings have been

formed from LSI software modules. The PROCESSOR ring is

formed by plugging APL, BASIC, a CALCULATOR, an OPERATING

SYSTEM, and two MEMORY units into a circular shift register.

In addition, an INTERCOMM module is plugged into both

rings to handle communication between the PROCESSOR ring

and the I/0 ring. Each ring consists of a large circulating

shift register memory. Information is introduced into the

36

,,.

.. -- --·· - - - - - - -· ·-- .. ----- - - ··- -- -·- -·· ---· --- -------- ·--- ----------- -------- - - ----- ·- - -··-·. - ·---

_ ... ____ R~ 7. ·n,.~ fl,,~ R•ttt ___ C,...~-t ___ ___________ _ __ _ __ .. __ ...
I
I

. ·-· ---! -···--·· ·· ·-·- ·•···----·--·-- -· -· ---·-· ···--·-·--- -·-·- - - ---··- --··· -·-· ····-··--· - ··-·····- - ------------·· ·

-- --- - __ ! -- - -·-·- -- - -- - - - ---·-. - ---- -- --- - - ---- -· -

- - - ·-· ·r -- --- --- - - --- - __.-......._ ··------- - - ----- -- ---- -· ---- -----

----- ~ - --- -------1 - - , - -------------- · ----
~ - - - - . - - ---- ---- - - ------- ---· ----------

~({
-- --- · RIN& -

- - ~ -- - . --- -·-- · -- - - . - ·- - -- . -

~ - --_ t I pl.. -I -~- . - -- ----
UMM --~ .

- . -- - - --- -· - -- . -

'
. . ,.. - - - - -· - -- - - - ---

- - - - ··- - - -- · ----· · - 1 1 -- ----r;~ ---- · - - -----l
---- --- - - \ ~ -- RJtJG ~

-- - - ----- -- -- - - - ,. -------

.. - - - . ---- -- -- - - - - - - - - - --- -
I

I

37

I

shift register by any LSI software module intertaced to

the ring. Each module has an address corresponding to

the address of the shift register word or words connected

to its LSI software module interface.

Information is circulated in the ring forever or

until removed by one · of the LSI software modules. Thus,

the counter clockwise circulating shift register provides

input on one side and output on the other side of each

interface.

The I/O ring consists of a circulating shift

register with LSI software modules for terminals plugged

into it, and a connection to the PROCESSOR ring. The

terminal LSI software modules consist of CRT/KEYBOARD

and local memory/microprocessor for controlling terminal

activities. The ring interface allows information to

1 flow to other terminals of the ring or to the PROCESSOR

ring via the INTERCOMM LSI software module.

The microcomputer ring concept eliminates system

software. System programs are LSI software programs en­

capsulated in ROM. The firmware eliminates the need for

protection and increases reliability.

As an example, suppose a terminal user decides to

execute an APL statement.

A 4--- +/A , -•
The user logs onto the I/O ring by typing a password into

his terminal. This password is copied into the circulating

38

l

I/O ring where it continues to circulate until the

INTERCOMM module takes it from the I/O ring and enters

it into the PROCESSOR ring.

Clearly the messages entered into a ring are

accompanied by a source and destination address. Hence,

at each interface these addresses are compared to determine

which LSI software module should respond. When the

addresses match, the LSI module may be busy, thus the

message is circulated one full cycle before reaching the

destination again. This process is repeated until the

message is absorbed by the destination LSI module.

The password is circulated in the PROCESSOR ring

until picked off by the OPERATING SYSTEM module . The

OPERATING SYSTEM module reverses source and destination

addresses and formats a return message. This process

also initiates the necessary control tables for this user.

These tables are kept in the OPERATING SYSTEM module's

local memory or in one ~f the MEMORY modules.

The terminal user types in a command , next:

APL

This command travels around to the OPERATING SYSTEM again

and when the APL statement is entered, the following steps

take place. The OPERATING SYSTEM intercepts the statement.

Since the user is in APL mode, the OPERATING SYSTEM forwards

the statement to the APL LSI software module. The APL

39

module parses the statement and sends out a series of

CALCULATOR messages to perform the+/, , and • -•
operations. These operations are eventually performed

and the results returned to the APL module. The APL

module returns a message to the OPERATING SYSTEM. Finally,

the user receives a message from the OPERATING SYSTEM

and the dialog continues.

The ring structured microcomputer is simple and

elegant. Network complexity is not allowed to get out

of control because a ring is the simplest kind of network.

System software is manageable in a ring micro­

computer because it is modular and encapsulated as firm­

ware primitives. Even when testing a new module, the

interaction between the untried module and the other

modules is localized. This eases system integration

problems in the same way that top-down structured pro­

gramming does.

The ring network of microcomputers is untested. For

example, when the ring shift register becomes full, a

contention will arise. In this sense, the ring is a buffer.

Further investigation into the properties of rings is

needed before conclusions can be drawn.

LSI software is an outgrowth of good programming

technique. Programming in single statements is analogous

to building a computer from flip-flops. Programming in

40

I}

subroutines or structured control structures with single

entry/single exit flow of control can be compared with

building a computer from medium scale integrated circuits.

Programming with firmware modules can be compared to

building microcomputers from LSI microprocess9r chips,

2.3 Grand Scale Integration

Grand scale integration, GSI is the concept of

combining LSI memory and microprocessor units into a

single chip. The memory is "charged., with a firmware

program at the factory. The firmware charge customizes

the GSI chip into a tailored device. A firmware charge

may turn one GSI chip into a memory management processor

and another chip into a language processor.

GSI chips may be used to build ring microcomputers,

or they may be used in applications previously untouched by

microcomputers. Since GSI expands the dollar-volume force,

we should expect to see GSI in widespread use in the future.

The author conjectures that GSI is the next step following

the LSI age.

In the next section we examine alternatives to the

problem of developing end-user applications through

programming LSI and GSI computers.

41

3. Software

3.1 Problems

The dollar-volume force driving a technological

advance ultimately owes its power to applicat~ons. In

microcomputer technology, applications are realized only

after considerable programming effort. Historically,

programming effort has grown to the point where software

cost is the economic determining factor.

In the previous section, we studied LSI software

approaches to reducing software costs. In both cases,

the cost is reduced after the software is produced. In

this section, we study methods of reducing the implementation

costs of first-time systems.

The problems associated with microcomputer program­

ming stem from 1) the limitations of the architecture,

2) the transient period of bootstrapping from one machine

to another machine, and 3) the problems that have always

plagued programming.

The previous study of three typical microprocessors

revealed features that facilitate assembly language program­

ming. The use of index registers and a pushdown stack

were noted as improvements over simple register transfer

architectures. The sophisticated microprocessor example

demonstrated how context switching and direct memory access

to operands can ease the burden of system implementation.

42

,,

Thus, the architecture of a microcomputer is fundamentally

important to software development.

Once an architecture manifests itself in the form

of a microcomputer, there is a time delay between hard­

ware design and software design. The contemp?rary gener­

ation of microcomputers suffer from a lack of software.

This shortage will continue until the transient period

passes. Several temporary solutions are employed to over­

come the software development transient.

A cross-translator is a program running on one

machine that produces object code for another machine.

The cross-translator runs on a parent computer and generates

code to be executed on a child computer. The parent

computer typically executes an assembler or high level

language compiler written in a common language like FORTRAN.

The output from the parent computer is loadable object code

for the child.

A portable software package is a software package

written in a language that is "easily" moved from machine

to machine. The mobility of a portable software package

may be due to its self-compiler feature or due to a collection

of primitives that can be easily transported onto another

machine.

In the case of self-compile portability, a cross­

compiler is employed on the parent computer. The cross­

compiler produces code for the child computer regardless

43

l

u

of source input.

compiler itself.

Suppose the source input is the cross­

Then the object code that results

from self-compile is used to transport the cross-compiler

onto the child computer. Once moved to the child, the

cross-compiler becomes a stand-alone compiler . and may

be used in the same way that it was used on the parent

computer.

A portability software package may also be written

in a primitive portable language. The primitive portable

language may actually consist of a set of macros whose

expansion is determined by the child computer's architecture.

A different prototype model is needed for each new child

computer.

The primitive portable language may manifest itself

as a hypothetical child machine. The hypothetical child

instruction set is used to implement all portable software.

When the software needs to be moved, a transportation program

is written that maps each hypothetical child instruction

into an equivalent actual child instruction (s).

Both approaches to portability are being used in

contemporary microcomputer systems. The central problem

hindering both approaches is code efficiency. Further work

is needed to improve the object code resulting from trans­

portation of software.

Ultimately ; the problems that microcomputer pro­

gramming faces are the general problems of software production.

44

The need for more "powerful" and expressive languages, for

example. There are some indications that programming is

about to make a grand departure from traditional procedural

language techniques to other forms of man-machine communi­

cation. In the following sections, we examine alternate

approaches to programming. In particular, we concentrate

on forms of man-machine communication that fit well into

the microcomputer dollar-volume force.

3.2 A System Implementation Language

The obvious approach to implementing software on a

microcomputer is to use a high level language. The high

level language should have several features of an assembler

language, however, because the language is used to implement

control programs, compilers, etc and requires the ability

to access machine level resources. Such languages are called

SIL's (system implementation languages).

Typically a SIL for a microcomputer executes as a

cross-compiler. Although, this may be a transient mode of

operation, the limited memory of many microcomputer systems

prevent implementation of sophisticated SIL's. Often the

resulting object code being produced is on the order of

16KB while the SIL translation may require 128KB of memory.

45

I I

Figure 8. Example Of A Systems Implementation Language

MATCH: PROCEDURE (PTRl, PTR2) BYTE

DELCARE (PTRl, PTR2) BYTE

DECLARE (STRl, BASED PTRl

STR2 BASED PTR2) ADDRESS

DECLARE I ADDRESS

DECLARE (Jl, J2) BYTE

Jl , J2, I = 0

LOOP: DO WHILE Jl = J2

IF Jl = OFFH THEN RETURN (O)

Jl = STRl (I)

J2 = STR2 (I)

I = I = 1

END LOOP:

RETURN (-1)

END MATCH

Return (-1) when no match , , 0 when match.

46

l

*

* Figure 8 illustrates a SIL for implementing soft-

ware on the microcomputer of Figure 1. This program

computes a zero if the two strings at location PTRl and

PTR2, respectively are equal. An 8-bit (-1) is returned

as a hexadecimal OFF, otherwise.

Upon entry into PROCEDURE MATCH, the first string

STRl is located by pointer PTRl and the second string STR2

is located by PTR2. This is indicated by the ADDRESS

attribute that declares STRl, STR2, and I as symbolic

labels for addresses in memory.

The BYTE sized pointers PTRl and PTR2 contain the

address of STRl and STR2. Since they are passed by value,

the MATCH routine is useful for comparing any two strings

at location specified by PTRl and PTR2.

In the sample program, each character of the two

strings is moved to Jl and J2, respectively. Jl and J2

are compared and as long as they are equal, the next byte

pair is compared. The code OFFH is used to indicate that

the end of the string STRl has been reached. In this case,

the strings are equal and a zero is assigned to location

MATCH.

The LOOP segment of the demonstration program

repeats as long as the character in Jl matches the character

in J2. When the value of Jl = OFF hexadecimal, the last

character of the string has been reached.

The SIL in this example is a version of PL/M for the Intell

8080 system.

47

Each byte of STRl is copied into Jl and each byte

of STR2 is copied into J2. This is done by indexing STRl

and STR2 by I. The index value stored at location I is in- •

cremented and the loop executed again unless Jl does not

match J2.

This program is compiled into machine language

for the microprocessor of Figure 1. Since the microcomputer

is an 8-bit architecture and we know that considerable effort

is required to overcome its limitations, this language

greatly improves the prospects for programming the machine ,

The language "covers-up" the limited architecture and yet

allows a programmer access to data bytes and addresses.

Perhaps the greatest improvement is that the SIL provides

indexing and addressing capability lacking in the machine

itself.

The SIL approach is an outgrowth of language develop­

ment on large machines. Since microcomputers are revo­

lutionizing the way we think about computing, perhaps it

is also time to question the SIL approach. Are there better

ways to program extremely low-cost hardware without paying

dearly for software?

3.3. Pushbutton Programming

One of the startling revelations of the LSI hardware

era was the significance of pocket calculators. Pocket

48

calculators are partially successful because of their

simple man-machine interface. Their interface eliminates

the traditional operating system, language processor,

utilities, and computer terminology and replaces them with

the finger. A pocket calculator is programmed by push­

button.

Pushbutton programming can be elegant and sophisti­

cated in spite of its simplicity. Elegance is usually

achieved in one of two ways, 1) identifying primitive

"button" operations for a given application, or 2) building

primitive "button" operations on top of other primitives

in a hierarchy of modules.

Primitive button operations are implemented in LSI

software modules or as software programs. The LSI software

module approach is based on firmware encapsulation of

accepted standards. We discussed the encapsulation pro­

cess for a ring structured microcomputer, earlier.

The software program approach typically represents

an experimental or intermediate step in developing a truly

pushbutton microcomputer system. Once the function

represented by each "button" is known to be primitive to

the application, the software program for the function should

be encapsulated as an LSI software module. This has been

done, for example, with BASIC interpreters and I/0

controllers.

49

l

Figure 9. Sample Pushbutton Program For Business Primitives

ACCOUNT

NUM

NO

INDEX

NAME

BALANCE

LENGTH

START

MOD

LOOK

ERROR

FILE

FORM 8

FORM 8

FORM 8

'DIM 40

FORM 5.2

FORM "3997 11

OPEN ACCOUNT, "LOOK UP"

DISPLAY "ENTER ACCOUNT NUMBER"

KEYIN *N, "ACCOUNT?", NUM

MOVE NUM TO INDEX

SUBTRACT LENGTH FROM INDEX

COMPARE LENGTH TO INDEX

GOTO MOD IF LESS

READ ACCOUNT, INDEX; NO, NAME, BALANCE

GOTO ERROR IF OVER

COMPARE NO TO NUM

GOTO LOOK IF NOT EQUAL

DISPLAY NAME, "HAS BALANCE=", BALANCE

GOTO START

DISPLAY "NO SUCH ACCOUNT IN FILE"

GOTO START

STOP

50

*

Figure 9 demonstrates a pushbutton program for a

* pushbutton microcomputer. The microcomputer is assumed

to consist of a CRT/Keyboard, microprocessor and memory,

and a diskette mass storage device for file storage.

The program of Figure 9 assumes a file containing

names and balances. Upon entry of a name, a balance is

retrieved and output to the CRT console.

The FILE button establishes a file named ACCOUNT.

The FORM buttons declare (NUM, NO, INDEX) as numbers re­

quiring 8-digit accuracy. The DIM button reserves space

for a 40-character string. The BALANCE number is a dollar

and cents figure with up to 5 digits for the dollar

amount and 2 digits for the cents amount.

The ACCOUNT file is OPENed for "look-up". The

DISPLAY and KEYIN buttons perform I/0 via the CRT/Keyboard.

The account number NUM is moved into variable INDEX where

it is reduced modulo LENGTH (notice that LENGTH is 3997).

The remainder produced by the MOD segment of code is used

to index into the ACCOUNT file.

The LOOK segment searches the ACCOUNT file by directly

indexing into the ACCOUNT file. If NO, NAME, and BALANCE

are not the desired matching record, then the file is searched

sequentially until the matching records are found. If no

matching records are found, then the search terminates

with a DISPLAY message at ERROR.

The language is DATABUS which is used on Datapoint computers,

see reference (4).

51

-'

Each time a READ is executed, the value of INDEX

is incremented to the next record in the file . Thus,

each time through the LOOK loop another record is re­

trieved from the diskette file.

The pushbutton microcomputer illustrates how

programming is simplified for business data processing

applications. The primitives are data processing primitives

as opposed to mathematical, word processing, or graphical

primitives .

The disadvantage of the type of microcomputer system

shown in figure 9 is that the system is limited. The

primitives are fixed, and although sufficient for the

intended novice user, they cannot be combined into sub­

procedures , " superbuttons", or extended by adding other

functions. The next section illustrates a more sophisti­

cated buttonpushing language that overcomes these limitations.

3 . 4 Improved Pushbutton Programming

It is desirable to have a powerful pushbutton language

-
that is simple and easy to use. Simplicity and power do

not always go hand-in-hand, however . How can we reach a

compromise between the two within the limits of microcomputer

based systems?

Suppose a primitive set of ' 'buttons" are used to

build more sophisticated structures through modular con-

52

l

t,

struction of "superbuttons". A superbutton is a procedure

that invokes many lower level buttons. It is the concept

of a subprocedure as applied to pushbutton programming.

Extension through superbutton programming requires

a table mechanism to manage the names of the buttons. A

dictionary and interpreter are needed to process the super­

button primitives.

The dictionary contains the name of each button and

a pointer to a code segment. The code segment is a chain

of other pushbuttons (all of which are contained in the

dictionary) or a segment of microcomputer executable machine

code.

Since each button could possibly have one or more

parameters passed to it or generated for it by another

button, a parameter passing mechanism is needed. Thus,

a pushdown stack processor is used to execute the superbuttons

and process their parameters.

The interpreter performs dictionary look-up and

manages the pushdown stack. Obviously, since the interpreter

is nothing more than a program, it too can be written in

the pushbutton language. In fact, the interpreter is an

example of a superbutton, see below.

:INTERPRET BEGIN

END

WORD FIND IF EXECUTE

ELSE NUMBER

THEN QUERY

53

The denotes that this is a superbutton named

INTERPRET. The chain of buttons to follow define what it

means to push INTERPRET. Since the interpreter runs for­

ever, the BEGIN-END pair brackets a never-ending loop.

WORD extracts the name of a button from , the input

device (we assume a microcomputer like the one in the previous

section). FIND searches the dictionary and returns TRUE

if the name previously input matches an entry in the

dictionary.

The pushdown stack maintained by the superbutton

processor contains either a TRUE or FALSE after FIND is

performed. The IF is performed if the stack contains a

TRUE. The ELSE clause is executed if a FALSE appears on

the stack. Suppose the TRUE condition results, then the

EXECUTE button performs the function indicated by the

button found in the dictionary.

If the FALSE condition results, then NUMBER is

executed. This button attempts to convert the input name

to a binary number. Failure aborts the execution of a

user's button stream. The interpreter expects either valid

names for buttons or valid numbers as input.

THEN marks the end of the IF-ELSE clauses. Control

returns to QUERY in either TRUE or FALSE cases. The QUERY

button puts the interpreter in idle mode until more input

is available.

54

,,

The dictionary and interpreter combine to give a

user powerful, yet simple access to increasingly complex

structures. Extensibility results from building super­

buttons on top of relatively low level primitives.

A simple pocket calculator example show$ how the

INTERPRET button processes an expression.

12 50 * 10 I

The 12 and 50 are pushed onto the stack as they are

input. This happens because the FIND button returned a

FALSE condition (12 and 50 do not occur in the dictionary).

The FIND button does locate on * in the dictionary,

though, and the result is that EXECUTE performs a multiply.

The result (600) is placed back on the stack and QUERY

waits for another input . The 10 is pushed onto the stack,

and the / is EXECUTED, leaving a 60 on the stack. The

period causes the 60 to be printed out.

idles.

The interpreter

As a final example, suppose we want a superbutton to

compute absolute value. Assuming that ABS is not a primitive

button already, we could add it to the dictionary merely

by defining it with an

ABS

DUP

0 <
IF MINUS

THEN

control character.

55

*

This code strings together a chain of buttons to

perform sign reversal when desired. DUP produces a

duplicate on the stack. This duplicate is absorbed by

the O .(test button that sets a TRUE or FALSE condition

on the stack. If a TRUE condition exists, the _n MINUS per­

forms a sign reversal, and replaces the number on the

stack, otherwise nothing is done to the number originally

on the stack.

Since the superbuttons are constructed from primitives,

the problem of portability is partially solved. Each

button is defined in terms of a particular microcomputer

machine language. A package of superbuttons for a special

application can be moved from one microcomputer to another

* by rewriting only the basic primitives. These primitives

occur in the dictionary, so the actual re-coding is done

by changing the code segment referenced by each dictionary

entry.

In summary, we can say that SIL ' s and - pushbutton

languages both strive to cover-up the limited architectures

underlying microcomputer design. The user sees only a

symbolic manifestation of the microcomputer.

In the transient period between the large machine

era and the LSI era, we should expect a re-examination of

the problems and solutions of the past. Pushbutton pro­

gramming has no precedent in earlier systems because of

the easy access by novice users. In the next section,

This is the approach taken by FORTH, Inc , see reference (3) .

56

we study some of the trends brought on by LSI hardware

and software.

4. What Computing Has Come To.

4.1 How Large Should a Computer Be?

The microcomputer invasion is bringing an end to the

Renaissance Computer* Age. The reasons for this are both

technological and economical .

Hardware costs have, because of LSI technology ,

dimi~ished below the cost of complexity making general

purpose k-way shared systems uneconomical for large values

of k. On the otherhand , software development costs remain

high due to complexity. Therefore, software complexit y is

forcing duplication of integrated hard / soft systems in place

of hardware systems running a variet y of programs.

The hardware shift, as it is called , is also responsible

for a shift in the type and number of computer applications.

Shifts in applications lead eventually to greater hardware

shifts. Viewed from an economic point-of-view , the hard ware

shift is an " acceleration force " whose rate of change

determines the size of future computers.

The first 3 computer generations were charaterized

* A Renaissance Computer is a general purpose , large,

central computer. Its purpose is to do all things. Its

size and cost are justified by its multipurpose , multi­

programmed, and often timeshared operation.

57

by cost and physical size. A typical computer installation

consisted of millions of dollars worth of hardware and

required massive support in terms of air conditioning, tape

libraries, programmers and administrative personnel.

These large, costly computers quickly became

Renaissance Computers or what IBM popularized as General

Purpose computers. A Renaissance Computer is capable of

doing a variety of things: business data processing ,

scientific calculations , telecommunications, word processing ,

information storage and retrieval, etc. Actually , however ,

it was only the very expensive processing problems that

were attacked by Renaissance Computers. That is, space age

calculations, business for large corporations, and information

storage and retrieval for large private universities that

could afford to experiment. Small scale computing was a

very expensive hobby carried out mostly by aerospace

engineers who bootlegged time on the company ' s Renaissance

Computer to simulate Las Vegas games of chance , or academic

people who experimented under the name of artificial

intelligence or CAI.

There were valid reasons for the Renaissance Com­

puter. Any computer was expensive to fabricate and main­

tain and so had to be multipurpose. The Renaissance

Computer, because of its cost, was an affordable machine

only for those with a variety of uses in mind.

58

'I

The emergence of minicomputers heralded the end of

the Renaissance Computer Age. LSI technology has greatly

accelerated the coming of the end by decreasing hardware

costs to the point where cpu costs were negligible. Indeed ,

the only obstacles remaining for "computing for the millions"

is the cost of peripherals and the amount of effort re­

quired in developing software.

The mini/microcomputer provides a hardware basis for

the emergence of the Common Computer Age. This age is

characterized by inexpensive hardware, novel I / 0 devices,

inexperienced users / programmers, and expanding market and

applications , and reorientation of the economics of

computing. As in the Renaissance Computer Age, the new

age will be governed by economic forces more than technical

forces (even though LSI technology brought about the

revoluti o n).

The logic of the economic force behind the Common

Computer Age goes as follows: The cost of computing is

controlled by the number and kind of applications. The

number and kind of applications are determined b y the c o st

of computing. Thus , a feedback loop is completed. The

delay in this loop is speculated to be 3-5 years , but

decreasing with each computer generation.

The topics of 1) novel I/0 devices , 2) inexperienced

users / programmers , and 3) applications are not central to

the issues addressed here, but suffice it to note that

TV/ keyboard devices are on the increase, BASIC as a pro-

59

gram.ming language is rampant, and computer games are in

tremendous demand. The reader can easily make predictions

based upon these trends.

4.2 The Cost of Complexity

A general system is a collection of interacting parts,

each part having well defined features. An understanding

of these features does not guarantee an equal understanding

of the general system. Indeed, a system often behaves

in unexpected ways even after careful study of its parts.

Unexpected behavior is frequently observed in computer

systems, much to the chagrin of programmers , hardware

designers , and users.

A simple model of complexity may be applied to computer

systems to determine optimal degree of sharing of hardware,

optimal degree of sharing in software design, and to make

conjectures about the best size for a " computer".

Suppose a system is made of 4 parts as shown below.

3 connections

The first part is allowed to interact in some way with the

other 3 parts, also shown above. "Interaction " is a

generalized concept. It may refer to communication, a

60

physical connection, an effect, or some other tangible or

intangible connection.

Let us define complexity and its corresponding

ncost" as follows:

= (the potential maximum number of inter­

actions possible in syste~ of n parts)

We can compute the potential maximum number of interactions

possible in a system of 4 parts by completing all of the

connections in the 4-part system, above.

0
2 connections

The remaining number of connecti o ns bet ween the second

part and all other parts is 2. The remaining number of

connections from part 3 is shown below.

0
1 connecti o n

3 i---------(4

The composite of all of the above shows that in a syst em

of n parts, there are (n-1) + (n-2) + ... l connections.

n-1

connecti o ns

i=l

61

Thus, the cost of complexity in an n-part general

system is proportional to the sum of the first (n-1)

integers.

= n(n-1)
2

4.3 Large-Scale Versus Micro Hardware

The Renaissance Computer was, and is, made affordable

by time-multiplexing the hardware. This is done in a variety

of ways, all falling under the misnomer of "timesharing" or

"multiprogramming''. Actually, what goes on inside of a multi­

plexed Renaissance Computer is a division of cpu power into

k parts by a k-way multiplexing scheme, The purpose of the

k-way division is to keep the exnensive cpu busy in order

to spread its cost k ways.

Extensive sharing is a modern day fallacy for two

reasons : 1) the cpu is no longer the most expensive part

of a system , and .2) t be ability o f the cpu to render ser v ice

increases as the cpu becomes idle. This is demonstrated

by the simple Markov model of a request for service, below.

REQUEST

time

RESPONSE

(IDLE 100(1-p)% of time

The request enters a WAIT state that may or may not hold

the request for W units of time, say , and then when the cpu

62

is idle, the response is given in R units of time. The

average delay is given by the simple formula, below.

Avg. Response Time= R +
p w

Examination of a plot of Avg. Response Time versus busy time

p shows that the smaller p (more idle time) the better is

the expected response.

In light of the Common Computer Age, the rule of

multiuser cpu design should be to keep the cpu idle as much

as possible. This can be done by increasing the cpu speed

so that every request takes zero time (R = 0), thus freeing

the cpu. Alternatively, we can decrease R by increasing

the number of cpu's. Hence, R is decreased, and so is p,

by incorporating multiple copies of cpu's .

Let us look now, at the cost of a k-way shared com­

puter. The cost is conjectured to be the sum of the single­

unit (k=l) system plus the cost of k-way complexity.

Hk = ho + hl
k(k-1)

2

where ho = cost of a single system

~d hl = cost of each additional unit

needed to provide shared service

The value of h 1 includes the cost of the added

complexity in hardware and software (reflected in main

memory size) needed to share the basic hardware. This

includes protection and addressing mechanisms, communications

equipment , large central stores, scheduling algorithms,

etc.

63

This model may seem pessimistib at first, but when

compared to other "laws of complexity" is actually rather

generous*. This cost is even more generous when distributed

over all k of the parts.

= +

The corresponding cost function for non-shared hard­

ware / software systems is obtained when k=l.

H = h
l 0

A collection of k non-shared "mini " systems would cost k.H1 .

When is it cheaper to use k.H1 systems in place of one Hk

system?

Set H1 = Hk/ k and solve fork. This produces the

quadratic formula:

k2 (1
2h 0

) k +
2h 0

0 [A] - + =
hl hl

with solution:

k = 2h 0

hl

*Grosh's Law states that doubling the cost of a

system can only be justified if its performance is

quadrupled. Why? Minsky's conjecture claims log 2k

utility in a k-way parallel system. Thus, we are en­

couraged to speculate that k-way redundancy will cost

somewhere between (h 1k 2) and (h 1 2k).

64

When h 0 and h 1 are known, formula A gives the

optimal k-way sharing strategy for a Renaissance Computer.

In the case h0 >) h 1 (expensive hardware) the result

is that k >> 2. Hence, multiplexing the hardware is indeed

a valid strategy.

In the case h 0 < < h 1 (cheap cpu hardware) the

optimal strategy is to limit sharing , k ~ <. 2. If more

than 2 users are to share the same cpu , we are advised to

duplicate the basic system instead of multiplexing it.

A balanced system is one in which k = 2. Thus, when

h 0 = h 1 , we see that there are advantages to foreground­

background processing. It is only fair to note, however,

that the cost of sharing, h1 , is also declining as memory ,

communications, and programming techniques decline in cost.

In summary, it appears to be wiser to expect shared systems

for small values of kin the future. The age of larger

scale k-way Renaissance systems has passed*.

*Large-scale special purpose systems~ expected, as

long as a narrow objective is kept in mind. The airlines

reservation systems, credit check systems, etc. are examples.

These systems minimize complexity by trading-off vast

objectives, and do not represent Renaissance Computer systems.

65

'

4.4 Large-Scale Versus Micro Software

Large-scale hardware systems imply large scale soft­

ware efforts. The exception, of course, is when the band

of applications is narrow or the system is designed for a

special purpose. The software effort expended on Renaissance

Computers is documented elsewhere and need not be repeated

here. Instead we seek to determine possible boundaries

on software effort regardless of hardware limits.

Brooks [1] reports that the effort needed to develop

M instructions of software is proportional to M1 · 5 . If we

divide the M instructions into n optimal-sized modules, we

can prove that

=

This is sketched for the reader as follows :

Given, s = co Ml . 5
n

M~.5
n

Let S. = co and s = L. S .
1 l n i=l l

66

The object function Fis minimized:

n

F = C 0

n

'f=:t L

dF = O; yields Mj = M/n
dMj

and substitution produces Sn.

i=l

A software project that is large enough to be broken­

up into n parts also suffers from a loss proportional to

the complexity of an n-part system. The cost function for

Sn must be amended to show this.

M + n(n-1)
2

c0 = man-months effort per instruction

c1 = man-months effort per interaction

The parameters of formula B depend upon vague quantities

like "human communication" and "type" of application. Brooks

[1] indicates that c0 - 0. 001 for operating systems

programming, while c0 = 0.01 for applications programming.

In general, very little is known about the behavior of c0

or c1 .

A plot of S versus n reveals an optimal value of n, n

see Figure 10. This point gives the smallest investment

needed to successfully complete the software.

Minimization of S gives the formula for software n

size as a function of the number of software parts.

M = n 3 / 2 (2n-l)

67

I

The inverse of this function is plotted in Figure 11.

It shows that even for small software projects, the number

of parts should be relatively large (8 to 12), unless

c1 ;c 0 is extremely large. In short, programming is costly

even though the software project is relatively small. There

is an "economy of scale" possible, however, because large

scale software projects diminish in cost as their size grows,

if subdivided into the proper number of parts and c1;c 0 is

large enough.

4.5 Summary

It is clear that a shift in hardware costs is causing

revolution in computing . In the past , a single piece of

hardware employed a variety of software to solve a (limited)

variety of problems. In the future, a (limited) variety

of hardware pieces will employ a single piece of software

to solve a variety of problems. The most dramatic contemporary

example of this Common Computer Age fact is the pocket calcu­

lator. The pocket calculator market is built from the

notion that a variety of hardware pieces can be applied to

a single software piece.

A subtle example of the effects of the hardware shift

is found in the many "turnkey" minicomputer systems designed

for business data processing. Duplicate hardware systems

are married to a single copy of software. The software is

68

I.

Figure 10, Software Effort versus n. The* marks the mini.mum
point for S .

n

s
n

n

\'i,.

69

C /C » 1 0 1

L

r

I
Figure .11 n versus M for software development

n

1

J'

70

...

packaged for "vertical" lines of applications, e.g., pay­

roll, accounts receivable/payable, etc. These packages

are called vertical because they cut across many industries

with small changes in parameters. These systems also

demonstrate the principle of limited k-way sh~ring, because

they are restricted to k <. 16 in most cases.

Application of the hardware shift to larger systems

leads us to believe that either 1) distributed network of

microcomputers, or 2) integrated network of microcomputers

are advisable. The distributed network consists of

isolated cpu's each with access to a common mass storage

unit (s). This provides a way of limiting the local com­

plexity by spreading it over several levels of the network

hierarchy.

The integrated network approach consists of a central

dispatching unit, cdu, and access to/from special purpose

"organs". The organ computers are actually special purpose

computers akin to the controllers of current Renaissance

computers. The integrated network system copes with

complexity by compartmentalizing it inside each special­

purpose organ. Before the total system can be made to

operate efficiently, however, some means of intercommunication

must be devised so that large-scale breakdowns can be

avoided. This problem has not been solved, but the ring

structured microcomputer represents an approach to coping

with network complexity.

71

In answer to the question posed by the title of this

section, we must say that a computer should be large

enough to support a limited application and a small number

of users. Additional applications and number of users

justifies additional systems rather than additional com~

plexity of a single system. The trend should be toward

dedicated microcomputer systems with large memories and

about 2 users. The number of users may be increased, but

the application must then be narrowed to compensate for the

added complexity.

Acknowledgements

The author gratefully appreciates the painstaking

review and comments of Ed Towster. His suggestions im­

proved the quality and style of this chapter.

72

r

REFERENCES

(1) Brooks, F. P., The Mythical Man-Month, DATAMATION,

20, 12 (Dec. 1974), p. 44-52.

(2) Lewis, T. G., How Large Should A Computer Be?

ACM SIGMINI NEWSLETTER, Vol. 2, No. 1, 1976.

(3) Rather, E. D., and Moore, C.H., Minicomputer

programming is FORTH, personal communication , 1976.

(FORTH, Inc., Manhattan Beach , California).

(4) Datashar 3.1 User's Guide, Datapoint Corp. San Antonio ,

Texas, 1975.

(5) 990 Computer Family Systems Handbook , # 945250-9701,

Texas Instruments, Inc. , Austin , Texas, 78767.

(6) Gorman, W. and Broussard, M. , Minicomputer Programming

Languages , Proc. ACM SIGMINI / SIGPLAN Interfa c e Meeting

On Programming Systems in the Small Processor Env iron­

ment. March 4-6, 1976. p.4-15.

(7) Intel 8080 Programmer's Referen c e Manual , Intel Corp.

Santa Clara, California, 1974.

(8) Motorola 6800 Applications Handbook, Motorola Corp.,

Phoenix, Arizona, 1974.

73

r

EVOLVING MINICOMPUTER ARCHITECTURE

T. G. Lewis

Associate Professor

Oregon State University

Corvallis, OR 97331
(503) 754-3278

Prepared for Minicomputer Systems Report, INFOTECH

International Ltd., Nicholson House,

Maidenhead, Berkshire SL6 lLD, England

May 1976

e-.,_

I. EVOLUTION OF MINICOMPUTERS (1,2,3,4)

The terms maxi, midi, mini, and micro recently

appeared in the computing literature. While it is

usually clear to the informed what a minicomputer is

and what a maxicomputer is, there have been few pre­

cise definitions of either. A working definition

offered by Lewis (4) proposes that a minicomputer is

a hypothetical computer designed with a minicomputer

attitude in mind. Thus, the discussion of mini­

computing centers on attitude about limited, special

purpose computing instead of concentrating on a

description of a representative machine.

The minicomputing attitude started in the mid

nineteen-sixties with the introduction of the Digital

Equipment Corp's PDP-8 computer. It is a 12-bit/word

minicomputer with limited instruction set, small

memory, and a low price tag. The first mini was de­

signed for limited applications, and yet it has become

one of the most prolific architectures ever designed.

This mini, in it's many reincarnations, sold over

40,000 units in its first ten years of production.

At the turn of the last decade, over 50 companies

were marketing minicomputers. The lower cost of limited

architecture machines was more important to a user than

the fact that the architecture delivered limited per­

formance. Consequently, new applications opened up

and the demand for more minicomputers accelerated their

development.

A revolution in electronic technology added

impetus to an already rapidly evolving minicomputer

industry. Large scale integration, LSI, lowered the

cost of cpu hardware to the point where basic philo-

sophies of computing are being questioned.

-1-

For example,

r

the maxicomputing attitude of sharing a central

processor may be threatened in light of the trend

toward "free" central processors.

A Renaissance Computer is the term used to describe

a large, general purpose, shared computer system (4).

Minicomputer attitudes are in conflict with the

Renaissance Computer attitude. The future of computing

depends upon the outcome of this conflict. The

philosophy of sharing, as it is currently practiced

by Renaissance Computer systems, may be misplaced

philosophy.

Perhaps this question and others being re-examined

by the minicomputer advocates can be answered by

looking at evolving minicomputer systems as they

have unfolded in recent designs. Basically, these

systems incorporate features derived from the need to

overcome limitations in past mini architectures. What

are these limitations?

The low-cost of minis has led to an expanding market.

These new applications require special purpose solutions,

and as a result there is an in c reasing need for soft­

ware aids. In response, a flourish of activity in

languages and operating s ys tems for minis has produced

a variety of novel s yste ms. In short, the demands of

an e nd-user market have led to an:

1) expanding market /a pplications, and

2) more software.

These top-level requirements eventually find their

way into the design phase of new systems. Ultimately,

the architecture of new systems must support these new

requirements.

Currently , the "power" of a typical minicomputer

architecture is limited because of:

-2-

1) small address spaces resulting in
small memory,

2) weak run-time support of high
level languages, and

3) limited operating systems, file
structures, and communications support.

In addition, it is clear that the same technology

that reduced the cost of central processing_ units must

be applied to the construction of peripherals and

memory before corresponding redu ct ions in overall

system cost are realized.

The move toward architectures that support user

requirements and the ever increasing need for peripherals

and memory indicate that minicomputers of the future

will continue the trends toward:

1) low-cost peripherals,

2) larger memories, and

3) architectural extension through micro­
programming.

The last trend above indicates continued interest

in firmware development. Indeed, it appears that

"firmware sets" in the form of add-on ROM (read-only­

memory) are becoming common place. For example, sort

packages, scientific subroutine packages, and text

editors are offered by several manufactures as ROM

firmware extensions to basic systems.

The evolution of minicomputer architecture can be

characterized in a variety of ways. The approach taken

in this presentation is to concentrate on two funda­

mental limitations: addressability and run-time

support mechanisms. These two basic properties of

computer architecture have far reaching implications

in terms of minicomputer processor "power " .

After establishing a formalism for describing

addressability and the run-time "environment", four

-3-

representative systems are used to illustrate the

evolution of minicomputer architectures.

II. EVOLUTION OF ADDRESSABILITY IN MINI ARCHITECTURES

The addressability, A, of a computer architecture

is said to be the total number of memory cells accessible

by a "typical" instruction defined within the archi­

tecture . Clearly , it is desirable to be able to address

all memory locations in main memory. On a 16-bit mini,

this usually sets a limit on A of 2 16 words or bytes.

A "typical instruction" is defined loosely as any

instruction requiring two operands. Thus, add, move,

and exclusive-or are considered typical while branch,

and shift are considered atypical instructions.

The addressabilit y of a two-operand instruction is

the cross product set of all locations potentially

containing operands . The cr oss product set of the

special register architecture of Figure 1 consists of

the ordered pairs obtained from register A and each of

the 2a memory cells plus the set obtained from register
a Band each of the 2 memory cells . The size of the

cross product set of accessible locations is used as

a measure of addressability:

ASR = (number of registers) X

(number of memory cells)

= (2) (2a)

= 2a+l

The value of ASR depends on the number of bits (a)

dedicated to the direct address of an operand. Sup­

pose a particular mini implemented an ADD instruction

in 16 bits, where a=lO bits. Then the two-register

SR architecture of Figure 1 would ha v e addressability

ASR = 2048.

-4-

FIGURE 1. ADDRESSABILITY OF AN SR ARCHITECTURE

WITH TWO WORKING REGISTERS.

" \.u'

..\ • 16 w •

A
M/ftlAI

13 Me>tdf(.'(

d.,

2..

A, B Working Registers

R Register Designation

D Direct Address

-5 -

"

L

The addressability of an SR architecture is

severely limited. Typically the SR design is modi­

fied by adding an index register. This results in an

SRX architecture with greater addressability, ASRX.

= (2) =

When an index word of length w bits is included,

the addressability of the two-register SR architecture

of Figure 1 is greatly increased. For example, when

w=l6 bits, a=lO bits, then ASRX = (2048) (65k) = 130K.

Minicomputer architectures rapidly evolved to

multiple, general purpose register architectures for

a variety of reasons.

General purpose register machines typically are

able to access data in working registers through index

registers, and by way of return address registers.

The addressability of GR architectures shown conceptually

in Figure 2 is even greater than special purpose . index

register organizations. When oerands are stored in the

GP registers , the value of AGR is n times that of a

single register SR architecture.

AGR (operand)= n (2a) = n2a

For example, when w=l6, a=lO , n=8 , the operand address­

ability of Figure 2 is 2 18 .

When operands are stored in main memory , but

accessed via the index mode, the addressability of the

n-register GR architecture is 2w times greater.

AGR (index)
w = n (2)

1

I

,.

FIGURE 2. ADDRESSABILITY OF GR ARCHITECTURE

WITH INDEX MODE OF ADDRESSING

w ~,
Ro

s • ~,
• •

• •
•
•

R rt-:L
• ' •

D

M Mode of Addressjng

-7-

•
' •

[

,._w ,,

M1+1AI

}-fe.144,e.y

Finally, minicomputer architectures have evolved

in two direction ~ beyond the classical register trans­

fer organization. The two-address organization employes

a variable word instruction format and relative or

direct address modes to improve addressability.

Figure 3 illustrates the TA (two-address) feature of

contemporary mini architectures .

The v alue of ATA is simply the size of the cross­

product set produced by the two pointers in the 3-word

instruction.

A (2w) ("-w) = 2 2w TA= -

When w~1e bits, this yields a nd addressability of

4225K. This dramatic increase in addressability is

costly, though, because the instruction occupies more

program space.

-8-

L

t4

FIGURE 3. ADDRESSABILITY OF TA ARCHITECTURE

WITH 3-WORD INSTRUCTION FORMAT.

ff

DeSTIJIA T7d A/

- 9 -

The second direction taken by minicomputer de­

signs was motivated not by addressability, but instead

by requirements for run-time support of high level

languages. The SA stack architecture of Figure 4 pur­

posely restricts addressability to gain control over

a name space called the environment. We discuss the

impact of environment upon architectures in the next

section.

The SA addressability of Figure 4 is limited by

either the stack limit register, SL, or by the width

of the stack pointer SP, plus the displacement field

in a "typical" stack instruction.

ASA = Min { (SL-SB+l) 2 , 2w+d }

-10-

FIGURE 4.

E:P

SL.

ADDRESSABILITY OF SA ARCHITECTURE

WITH ENVIRONMENT CONTROL

M)fl//

f1R/fK

D 11AM

-11-

r

..

The architecture of Figure 4 is designed around

the notion of an environment. The local environment

of data is established by a special cell called the

MARK. A set of pointers establish the location of one

or more MARKs. Addressing is relative to the MARK,

stack base SB, or stack pointer SP.

The data environment of Figure 4 is limited by

SB and stack limit register SL. Thus, (SB-SL+l) is

the size of the set of accessible data cells.

Furthermore, depending upon the value of din

the instruction format, the addressability may be limited

greater than indicated by the value stored in SB and

SL. For example, if w=l6, d=3, and SB= 0, SL= 65K,

then ASA= Min [4225K, 512K} = 512K.

The SA architecture evolved expressly for the

purpose of controlling high level language environ­

ments. What these environments are, and how they

influence architectural trends is discussed next.

III. THE EVOLVING E-SWITCH POTENTIAL IN MINI ARCHITECTURES

An environment is established in an active pro­

gram and its corresponding data. The activation of a

program is called a process. Thus, the environment of

a process is the set of resources accessible to the pro­

cess. Often the process runs in a nested environment

as in the case of recursive execution of code, or in

the case of block-structured run-time support for block­

structured languages.

An example of a single process environment is

shown in Figure 5.

L

FIGURE 5. SINGLE PROCESS ENVIRONMENT FOR THE

SR ARCHITECTURE

l A J

[] M1t1AJ Ei - a - Hl:Hd/tt
l pc. J
[STA-r-us J

A,B Speical Registers

PC Program Counter

STATUS Status Register

MAIN MEMORY Main Memory

E1 Environment for Process 1.

-13-
-

r

The SR architecture shown in Figure 5 easily sup­

ports a single process because there is a one-to-one

correspondence between machine resources and the

process.

When the architecture of Figure 5 is used to

support two or more processes, an environment is

needed for each process. Two or more process environ­

ments may be needed when resources of the architecture

are shared over time by multiplexing. The process that

performs this multiplexing is called an E-switch.

An E-switch, then, is a process that transforms en­

vironments into other environments.

Typically, the E-switch is performed by the hard­

ware, but when it is not, it must be protected from

the processes that it multiplexes. Such protection is

afforded by priviledged execution modes or other

operating system schemes. Dual state minicomputer

architectures have evolved for the purpose of pro­

tecting E-switch processes. It must be noted that

similar solutions for monostate architectures are

evolving. This topic is under study by Shriver et.al

(9).

Figure 6 shows the environments of two processes

running on a single SR architecture. During an E-switch,

resources belonging to the intersection of the two

process environments must be saved. This set of perish­

able resources is called the E-intersection, and is

one source of complexity in contemporary shared com­

puter systems. The evolution of minicomputer archi­

tectures is shown in the· following sections to be

-14-

r

I

r

'•

E1

f;_ ~

FIGURE 6. THE ENVIRONMENTS OF TWO PROCESSES

RUNNING ON AN SR ARCHITECTURE

I A,]
Ptvtt'J

[D,] - 11&ttwy -
[pc,] #j.

I S7Aj-u~J

. [Az.]
I B2-] pdrl1·J
[f-t.2- 1

MeMWj

I 571-inlS?.. 1
412...

E, fl E-z.. =
l A I
[B]

I pc_ J
(sT/fTUS)

-15-

partially governed by the E-intersection. This

observation follows from a rule governing secure

E-switch processes.

E-switch Rule #1: During an E-switch from

environment E1 to environment E2 , the E-intersection

set of resources, E 1 n E2 must be saved in the

complement address space of environment E1 .

Complement= E 1 - (E 1 n E2)

When this rule is app lied to the two environments

of Figure 6, the complement space is partial memory

#1. Thus, when switching from E1 to E2 we must save

the E-intersection set of resources in partial

memory #1.

The partial memory space #1, of Figure 6, contains

both program and data . Since we want to avoid des­

troying instructions and also to keep programs re­

entrant, the E-intersection resource set must be

saved in the data portion of E1 .

Two environments of a stack architecture are

shown in Figure 7. If the advise of the previous

argument for reentrant code is heeded, then the E­

intersection resources must be stored in the data

portion of each environment. Since the E-intersection

consists of the set of pointer registers, this leads

to storing the set

STATUS }

{ PB, PC, Pl, ' sB, EP, SP, SL ,

-16-

- --

[snn·us 2. J

s f'L :::r--------..b...)-t: -=-=-=-=_:::1

SL z. '1-----------..----1

FIGURE 7. ENVIRONMENTS FOR TWO PROCESSES ON A

STACK MACHINE -17-

Rule #2 for Nested E-switch Architectures: Save

the E-intersection in the data portion of the comple­

ment set, and provide a dynamic link between

environments.

This rule is implemented in the SA architecture

illustrated in Figure 8. The E-switch rule for non­

nested environments will be different than the one

proposed above. In general, the E-intersection resource

set is stored in a protected area managed b y the E-switch.

With these two fundamental c onsiderations in mind ,

the evolution of " typical" mini c omputer archite c tures

can be studied and evaluated. In the next four secti o ns ,

four architectures are shown to represent a progression

from limited addressability / E-s witch control. These

four architectures were selected from a variet y of

commercially available minicomputer s y st e ms to indicate

how far minicomputer architectures ha v e evolved

toward the goals of addressability and E-switch con­

trol.

-1 8-

;---

-

I
I

rr

FIGURE 8. IMPLEMENTATION OF E-INTERSECTION SAVE

ON AN SA ARCHITECTURE

- - 4 ~
-

1'8, -4 ...
pc.'

E, M14Rk pt..,
$~,
er,
SP,

~ SL,
ST117US I -=:

i t.o,k , j

- -('
•) • -0 ~

pe.
'PC. 'I.

Pt...~
se~

~,,. MARI< eP
SP ...
SL--

sTJITUS ~
LJAlk. ... --

-19-

IV. A LOW-COST MINI ARCHITECTURE (5)

The mini architecture LC of Figure 9 shows an

organization with 4 general purpose working registers,

and a typical instruction set format. Operands are

obtained from one of the registers, and either a

register or memory location. In addition there are

reserved memory locations dedicated to auto-increment,

or auto-decrement indexing. Each time one of the

INDEX words is used as a pointer to data, it is either

incremented or decremented by one. The idea is to

gain addressability and processing efficiency through

auto stepping combined with indirect addressing.

The working registers are used as operands. AC2

may also be used as an index and AC3 is used to save

the return address (old PC) during subroutine calls.

The addressability of LC is computed from the 4

accumulators ACO-AC3, the 2a direct address locations ,

and then INDEX locations each accessing 2 16 other

locations. This yields an addressability of 226 when

n=l6, a=4. If we include the index capability of AC2,

the result is an addressability of 4 (~+l) 2a+l 6 .

The following assembly language example demonstrates

the use of the indirect auto step registers in LC (1).

Suppose the problem is to move 30 words from location

2000 8 to 5205 8 in reverse order. The@ symbol indicates

an indirect address mode.

-20-
'

r

..
FIGURE 9. A LOW-COST ARCHITECTURE

JS 0
A(O
Ali -t

Al'2..
AC.3

1

'D

E-intersection = { ACO, ACl , AC2, AC3, PC, INDEX0 , ..

INDEX n-1 }

= 4.n.2a+l6

-21-

0

,4.UTO
sreP

-r

COPY: LDA
STA
LDA
STA

LOOP: LDA
STA
DSZ
JMP
JMP

CNT: 001777

005206
000036

0, CNT
0, 21
0, CNT+l
0, 35

o,@21
0,@35
CNT+2
LOOP
0,3

;Set-up autoincrement ...
; ... in INDEX location 21 8
; Set-up autodecrement. . . ·
, ... in INDEX location 35 8 .

; Get a word ...
, ... and move it.
;decrement counter and test ...
; ... otherwise repeat
;return thru AC3.

;2000 8 -1 pointer

;pointer to destination
;counter 36 8 + 30 . 10

This program initializes an autoincrement INDEX

located at memory address 21 to 001777 8 . It next utili­

zes the pointer at 35 wit 5206 8 . This is done by

copying the values from location CNT and CNT+l into ACO

and then from ACO into 21 and 35, respectively.

The loop is executed by indirectly loading a word

via 21 into ACO. The word is then stored indirectly via

35. The value of the pointer at location 21 is incre­

mented before being used, and the value at 35 is decre­

mented after being used.

The loop is exited when location CNT+2 has been de­

creased to zero by the decrement-skip-if-zero instruction

nsg. The JMP 0 , 3 instruction p e rforms a return to the

address saved in AC3.

Clearly , this architecture is weak in terms of its E­

switch potential. Each time an E-switch occurs, the E-inter­

section must be saved. The locations to be saved include

part of main memory since the auto step INDEX words reside

in main memory.

-22-

•

In addition, this architecture has limited sub­

routine capability because only one return address

register AC3 is provided. Thus, the nested E-switch

potential is limited as well.

The LC architecture sacrifices E-switch · potential

in exchange fo~ addressability. Without the INDEX set

and restricted subroutine return address register,

addressability would be severely limited.

V. AN ADDRESSABLE MINI ARCHITECTURE (6)

The architectures of Figures 2 and 3 provide the

greatest addressability of any architecture discussed

in section II. The next minicomputer discussed

incorporates both addressing mechanisms illustrated

in Figures 2 and 3, see Figure 10.

The addressable mini architecture, AM of Figure 10

consists of n=6 GP registers, a stack pointer, SP,

used for recursive subroutine calls, and a PC, PS

register pair.

The instruction format of AM allows GP index

addressing, SP operand addressing, and TA two-address

addressing.

A program to move 30 words from 2000 8 to 5206 in

reverse order is again used to demonstrate the AM

architecture. In the program below, % indicates that

an operand is a register, # indicates an immediate

operand, and () indicates that the register is being

used as a pointer instead of an operand.

-23-

r ,s () ,s I

Ro - :I:'Oo -'l:0 VEc."TD~) •
RI •

~ . -•

R'2.. - -rok'
R3 STIIUc. u~ur
R4
RS -- STAC/<.
R~=5P . -
R?= pc. ~771c.J<. eASE ~s =-IS ps •

• •
"I .. ~ /1, !) 14, O .,...

/

SOU1teE

cesr,AIA TIIN

~ - ~

-- - - -- -

~Do
• - • -• • - -

- ;:r:00, -;

...

FIGURE 10. AN ADDRESSABLE MINI ARCHITECTURE

-24-

..
COPY:

LOOP:

MOV
MOV
MOV

MOV
DEC
BNE
RTN

#2000,%1
#5206,%2
#36,%0

(%1) +, - (%2) ;
%0

LOOP
%7

initialize pointer
initialize pointer
initialize counter

copy and auto step
count down
repeat
return, recursively

The E-intersection of the AM architecture is very

large. Notice that the registers, stack, IO Vectors,

and IO devices are all shared resources. Therefore

the E-intersection contains these resources.

E-intersection (AM)

The I0 0 ... IOk vectors are useful for rapidly

selecting a proper IO service routine and executing

it to handle IO requests. The STACK assists in subroutining

and the IO/Devices are treated the same as memory

locations. This simplifies IO programming.

Actually , byte IO, when perf o rmed through working

registers instead of special locations, reduces the

E-intersection. Also, DMA (direct memory access) IO can

reduce the E-intersection if the device is protected

from interfering processes (an operating s y stem function).

The AM architecture is a step forward for address ­

ability, but still restricts the use of a minicomputer

in a shared fashion because of its large E-intersection.

(Obviously there are ways to minimize the harmful effects

of the E-intersection. We will not discuss them here ,

but merely point out their problems).

-25-

VI AN E-SWITCH MINI ARCHITECTURE (7).

The E-switch architecture of Figure 7 is

implemented in a var ietyof minicomputers designed to

support high level implementation languages. The

languages supported by nested E-switch machines are

block-structured. Therefore, the high level language

environments created to implement systems in these

architectures conform with machine environments estab­

lished by MARKs.

Since processes are possible that are not nested

within other processes, there must also be a mechanism

for saving E-intersection resources when switching to

non-nested environments. The E-machine of Figure 7

maintains a separate process stack for this purpose.

Furthermore, the E-switch of the E-switch mini runs in

a privileged mode to protect it from other (user)

processes.

A sample of E-machine implementation l anguage is

illustrated with a program that solves the problem of

moving 30 words of memory from location SRC to location

DEST in reverse order.

The high level language is translated into stack

architecture instructions that manipulate reverse

expressions.

-2 6 -

COPY

END COPY

PROCEDURE (SRC, DEST) ;
DECLARE (SRC (29), DEST (29)) Word;
DECLARE (I.J) Word;
DO I= 0 to 29;

J = 29 - I;
DEST (J) = SRC (I);

END;
RETURN;

This routine, when compiled and executed on the

stack architecture of Figure 7 creates an environment.

The environment consists of arrays SRC and DEST,

the code for COPY, the variables I, J, and a MARK in

addition to the pointer registers referencing the

stack.

Figure 11 illustrates the configuration of an

E-switch minicomputer based on the SA architecture

during execution of the COPY code. The MAIN program

that called COPY passes a pointer to the environment

containing arrays SRC and DEST. COPY is able to access

these values because their addresses have been

forwarded into the environment of COPY. Thus, the

values of SRC and DEST have become a part of the COPY

environment.

A Dynamic Link between the COPY MARK and the MAIN

MARK provides a return path to the outer environment.

Calculations for executing the DO loop and

arithmetic assignment statements are done by pushing/

popping values on the stack at location SP. The values

are loaded onto the stack by copying them from local

addresses (I,J) or from non-local addresses (SRC, DEST).

-27-

...

..

'liEST (.2'1)

re.
~
::i • •
\J • PL
~
? lru ~

/1M"< A
Fo~
copy

...__ ___ ➔_- 1 sli!'-
oes,

FIGURE 11. NESTED ENVIRONMENTS FOR SAMPLE PROGRAM

-28-

• • . .

CoPY
/P"66RAM

cooe
/

f

The stack architecture appears to be an efficient

E-switch architecture. The disadvantages of this

approach should be pointed out, also. The SA archi­

tecture's limited addressability results in a large

number of PUSH and POP operations being performed. It

is not unusual for 25-40% of treprogram code to con­

sist of PUSH and POP instructions. This means that

program space and execution time is being traded-off

for E-switch capability.

In the following section, a very recent architecture

is used to demonstrate a compromise between address­

ability and E-switch efficiency.

VII. A FUTURE MINI ARCHITECTURE (8)

Hardware advances have narrowed the gap between

main memory and logic speeds. In addition, the cost

of added cpu complexity of mini systems has decreased

to the point where future computers can take advantage

of architectures with large addressing capacity, E-switch

potential, and relatively large instruction sets.

A future organization should incorporate advances

in addressability, minimize the E-intersection of

resources, and facilitate the implementation of software

that meets the end-user requirements stated earlier.

The FS architecture of Figure 12 illustrates a re­

cent advance in minicomputer organization. The working

registers WRO--WRl0, X0P--OLD ST actually reside in

main memory rather than the cpu. There is a copy of

these registers in each environment, thus reducing the

E-intersection during E-switch. A dynamic link connects

-29-

FIGURE 12. ADDRESSABILITY AND ENVIRONMENTS OF THE

FS ARCHITECTURE.

..

J
) _.

"?REVt OUS

""PRCJ6 XAfv\
SPAC.E

TtJTfRMP1
V EC..TO~

~ R Rl t fr
fROGRAl•\
!Sp AC.E.

(
)
{

(
__ -

'fl i£V lt U.5

-PRC:6RA/"\
(oNTE.XT

Oi RJ,t)11

-PRcb M I"\

0 .
' ,

15

CoNre x r
POINTERS

. ClLKR.E,\JT
r RC{iRAf·\
.SPACE . ({) NTE).'T I

Pc.

- 30 -

L

t-

\
I
!

I
\

I

I
I

15 /)

l1u. .J W Pc
-,,, ew PC.a . ,

,
hl lu lvP " ,,,._,J Dr , .:

J
I

'

l---- - - - - ---

)
') _--- .-~-·-c,is_~:~~~~ :
l - --- -·- - -

--r .~ . ' ' -, -- -,

r' Rii 1/1 <'.illS , ', .

"'-.p1io6i£\r\ \'·,
"''··, ' ' ,

/ , , · . l ,l l<,O '· .

I ====\~f2--·.--------
- Llf. J

- - _ _ _Up_,:\,· ·---·
_ __ _ Lll 1'5 -- . - __

) -·-·- . ~~t;
. l l i~ \ - - - ----i...~, '{ _ __ ___ __

ltJR)O

__ xQP=---- li
l:3ASi.i.

o/JJ Wf --~ -----i
(

_OLO _ f"C..-- ---; ~,
-- OL.t:>~T __ __ _

\ -- - ------ - ----- -

. - -- ---------- --- ---- -

r
l
I

nested environments in a way that gives this architecture

a stack-like capability for nesting and recursion.

The cpu actually maintains three registers, WP

(work pointer), PC (program pointer), and the ST (status)

register. In addition, three memory maps are also main­

tained in the processor. These maps are used to extend

the addressability of the processor. When a memory

reference takes place, the value of WP or PC is modified

by one of three BIAS registers in the memory map. If

the reference falls between LIMIT. and LIMIT. ◄ . then
1 1-· .1

BIAS. is used in the following way. The BIAS. register
1 1

is shifted left 5 bit positions and added to either

of the pointer registers (PC or WP). This yields a

20-bit memory address, hence the addressability of this
h . . 220 mac ine is .

= 1 MB

The E-intersection of FS is seen to consist of the

memory maps (up : to 3 maps provide 3 process environ­

ments without saving), the three context pointers, and

the dedicated Interrupt vectors in low memory.

If the "previous" program calls the "current" pro­

gram either as a nested or non-nested environment, the

working registers need not be copied or saved because

each program carries its own copy of working registers

with itself. If the current program is a procedure

with parameters, then the dynamic link can be used to

access the parameters. Thus, nesting is accomplished

in a manner similar to the SAE-switch organization.

-31-

t

I

The WS (Work Space) registers, WRO-WRl0 are used

quite similar to the registers of the TA architecture

of Figure 10. This allows a programmer to use the

WS registers as pointer or operand. This feature is

exploited in the following programming example. Again,

the program moves 30 words from SRC to DEST in reverse

order.

Notice the mnemonic symbols for hexadecimal con­

stant > , indirect address@, and comment*

-32-

r

,,

*
* Set-up WP, PC, ST for operating system

*
OS DATA ws, PC,> F initialization

ws DATA SRC WRO points to SRC

DATA DEST WRl points to DEST

DATA > lE WR2 index and counter

DATA > 0 WR3 index

BSS 24 WR4-WR10 unused

SRC BSS 30 30 words

DEST BSS 30 30 words

*

* Move from SRC to DEST

*LOOP MOV @SRC (3) , @DEST (2) Copy in reverse
,..

INC 2 step index

INC 2 step index

DEC 3 step counter

DEC 3 step counter

JNE LOOP repeat

*

* register 2 and 3 are used as index registers

*

The XOP register shown as part of the WS registers

is used to extend the basic FS architecture. Un-

..:.33_

L

implemented instructions (there are 16 such op-codes)

cause a trap when encountered in a program. The

pointer stored in XOP is then used to locate a micro­

program, software program, or hardware module that

performs a dedicated operation on the data. With

this feature, the FS architecture is able to be ex­

tended beyond it's original design limitations.

The FS architecture represents one approach

to the ultimate in minicomputer evolution. There

still remain difficulties with this organization that

have not been discussed here (multiple precision

arithmetic is difficult to perform). But within the

goals of addressability and E-switch potential, the

FS architecture is at the apex of minicomputer evolution.

IIX SUMMARY AND CONCLUSIONS

The obvious goals of end-user support remain

a problem for minicomputer systems. It is not easy

to determine if a new architecture is able to solve

problems leading to better end user support. Therefore,

it is mere speculation to claim that the evolution

of minicomputer architectures is improving end-user

support. In fact, it is difficult to measure "success"

or "failure" of a given architecture in terms of the

applications supported.

What can be said from the analysis of contemporary

and new architectures is that they either facilitate

addressing and E-switching as demonstrated. The previous

discussion appears to support claims of an "improving"

collection of organizations.

· -3 4-

The importance of addressability and E-switching

is recognized and need not be justified. The impact

of these two features of minicomputer systems is not

recognized; however, nor have they been measured

and evaluated. We can only speculate, once again,

as to their impact.

It was noted that the necessity for sharing

hardware is being questioned. If we remove cpu time­

multiplexing from the list of requirements, then E­

switching may have little impact on future systems.

Currently, sharing is applied to the most

expensive subcomponent of a system. In the mini­

computer world, this means that printers and mass

storage should be shared, as opposed to the cpu.

Transaction computing is a form of interactive

comp uting where small bursts of data is processed

in a very short period of time. Typically transaction

computing requires access to large storage units.

As an example, updating a person's account with a

bank is a form of transaction computing.

A transaction requires very unsophisticated

computing, and yet access to a large data base is

necessary. If minis are to be used for transaction

computing, then the goals of future architectures

must be modified to meet this new requirement.

Perhaps mini architectures should evolve toward

supportof virtual databases, or perhaps to support

·-35-

I

r
I

r

virtual peripherals. Or perhaps the future mini­

computer will support communications operations , word

processing operations, or new operations not yet

conceived. If so, the current architectures must

evolve in new directions.

Acknowled gements: The author appreciates the

many thought provoking discussions with Bruce Shriver

during the development of this paper.

-36-

[

ti

, .. '

(1)

(2)

(3)

(4)

(5)

(6)

REFERENCES

Lewis, T.G. Minicomputers: An Attitud~, Soft­
ware Engineering Handbook, National Bureau of
Standards , Computer Science Section, Ed. Gordon
Lyon , Washington, D.C. 20234.

Withington, F.G., Beyond 1984: A Technology
Forecast, DATAMATION, Vol. 21, No. 1, Jan. 1975,
54-73.

Horn, B.K.P ., and Winston, P.H. Personal Computers
(who needs timesharing?), DATAMATION, Vol. 21,
No. 5, May 1975, 111.

Lewis, T.G., How Large Should A Computer Be?
SIGMINI NEWS, ACM, Vol. 2, No. 1 (1976).

Technical Publi cat ions, Data General Corp.,
Southboro, Mass. 01772, (a) How to Use The NOVA
Computers; (b) Introduction to RDOS (093-000083-00)

Software Distribution Center, Digital Equipment
Corp., 146 Main Street, Maynard, Mass. 01754
(a) PDP-11 Processor Handbook (1973);
(b) PDP-11 Handbook (1 969)

(7) Burns , R. and Savitt, D ., Microprogramming, Stack
Architecture Ease Minicomputer Programmer ' s
Burden, Electr o ni cs, Feb. 15, 1973, 95-101.

(8) T~S 990 Comput er Family Systems Handbook (94 5250-9701)
Texas Instruments, Inc., Austin, Tx . 78767.

(9) Shriver, B. D. , Anderson, J. W., Wagespack, and
Bambet, R., A Vi rtual Machine Monitor For Mini­
computers, Pro c ACM-76, October 1976. Houstin,
Tx.

-37-

r

r

A NEW LOOP STRUCTURE

FOR DISTRIBUTED MICROCOMPUTING SYSTEMS

H. Jafari

Electrical Engineering Department

T. Lewis

Computer Science Department

Oregon State University

Corvallis, Oregon 97331

• I

f

ABSTRACT

This paper presents a new distributed computer network struc­

ture appropriate for a network of microprocessors. The new network
fi

structure combines advantages of a ring structure; simplicity, high

line utilization, concurrent service, distributed control informa~

tion, _rninimurn delay for minimum cost, and high reliability. This is

accomplished using two loops.. The "inner 11 loop :.__is --for data transfer.

It is partitioned into N buses interconnecting N microprocessors.

The "outer" loop is for control information to pass along under the

guidance of a bus controller. Results for simulations of contemporary

proposals (Pierce, Newhall, and Reames et al.) and the new network

proposed in this paper show that the new structure substantially

improves throughput when compared to the other structures.

r

INTRODUCTION:

Researchers have proposed distribution of low-cost computing

processors throughout a network as an alternative to expensive and

highly centralized computer systems (SPAN 76). The results have

shown that completely distributed systems lead to a - great deal of

inefficiency due to increased hardware and software overhead and -

often fail to deliver acceptable throughput as expected. In addi­

tion a computer-;: -network introduces other complexities concerning

deadlocks, network reliability, traffic regulation> · and scheduling.

This paper introduces a new network topology with highthrough­

put rate for distributed computer systems. The network has an im-
• . .

proved response time, greater throughput, and is ' more reliable than

the Pierce, Newhall, or Reames - Liu loop network topologies.

I. DESIGN PHILOSOPHY

. A distributed computer system interconnects several hetero­

geneous or homogeneous nodes which communicate with each other

through network media. A heterogeneous net work is a collection of

architecturall~ different nodes while a homogeneous network is a

collection of architecturally similar processor nodes.

Farber (FARB 72) lists the motivations to develop a distributed

computer system as any or all of the following:

1)

2)

3)

4)

5)

6)

Modular Growth

System Reliability

Incremental Upgrading of Processor Nodes

Dynamic Restructing

Decreased Design Time

Ease of System Validation

In addition we include:

7) Tailored Deiign to the Users Needs

8) Better Throughput (Speed)

9) Less Cost

- 1 -

, ..

With these motivations in mind, several people have proposed

and implemented a variety of rietwork topologies in hopes of effi­

ciently managing distributed computer systems.

The topology of the interconnections in a network is of great

concern since it has a major effect on the performance of the dis­

tributed system. The most highly connected network is to connect

every computer to every other directly. This involves N(N-1)/2

interconnections for N nodes and is very costly unless N is
'..:-

very small. A less costly topology requiring N interconnections

and an additional central control processor is the star configuration.

The central control computer provides node-to-node interconnection ·

by switching from one node interconnection pattern .to another upon
. . - ' .

demand. Furthermore, each distributed star comput er system can be

connected to another star computer system by connecting the two

central control computers together, and with appropriate control

algorithms, this will allow any node in either subnetwork to com­

municate with any others.

A problem with star network computer distribution is reli­

ability of the __ system, for as soon as the central computer exhibits

faulty functions, the whole system breaks down. In addition, the

central control processor is an overhead cost added to the whole

system. If the number -of nodes around th e central proc e ssor is

small, then the ~dvantaie of this s y stem is its speed, also bec~u~e

the links bet ween computers are bidirectional, the system has a

very good throughput. We will not includ e the star net work in the

work reported here because of its poor reliability (ST RE 76).

Another philosophy is to connect all the processor nodes in a

loop or ring configuration. This is ca).l~d a loosely coupled

connection since each node is connected to others by only two links,

an input link which comes to the node and an output link that goes

away from the node. Loop systems are attractive for mini-micro

computer networks due to their possible high line utilization and

because they are simple. This last philos ophy has attracted the

attention of many researchers who have designed a variety of network

- 2 -

n

systems based on the simplicity of a loop. The new loop structure

will allow more parallel communications between nodes _, while . taking

advantage of loop simplicity.

II. PREVIOUS LOOP CONTROL- ALGORITHM

The first loop structure system was sugge~te? by }TEWHAJ;,L

(FA.RM 69). In the NEWHALL loop a round-robin control passing

mechanism circulates around the loop and allows only one node at ;:-

a time to transmit one or more messages through the loop. ';rhere-

fore, the rest of the nodes have to wait and this causes a queuing

time in sending the messages which limits the achievabl _e loop

utilization. ·

A version of a loop discipline similar to the NEWHALL discipline

is allowed with IBM's SDLC (DONN 74) (or with the · largely equival"ent

HDLC (DAVI 73)). In this discipline a central controller originally

sends a poll command around the loop. The first attached device

wishing to transmit is thereby enabl~d to iransmit. This devic~

then ends its transmission by passing the poll on, so that control

passes around the loop in a manner sL~ilar to the behavior of a

NEWHJl~LL loop. This variation is not explicitly studie~_here because

of its similarity to the NEWHALL loop. On the other hand, Pierce

(PIER 7 2) introduced a new mechanism that improves neti:,;ork utili­

zation by time multiplexing the loop . . That · is, the information · sent .

around the loop is divided into fixed-size packets and to send a

message, each node checks for an empt y packet before transferring

all or part of its message. If a message is smaller than the

fixed-size packet, the excess space is wasted. If the message is

too large to fit the packet, then the message is broken into two
, -, -

or more packet-sized messages. When a processor node transmits

a message, it must first check whether the next packet or time

slot passing by it is empty. If it is, control will pass to the

processor nodes transmitter to see if there is any information to

be transmitted. In case the packet is not empty, the processor

node checks to see if the destination address in the packet matches

- 3 -

the node address. If so, the processor node transfers the packet

information into its buffer. If the packet address does not ~atch

the processor node address, then the .processor simply . passes thi~.

packet to the next node. The transmission mechanism is as simple

as waiting for the beginning of an empty slot and filling it with

a packet, but disadvantages of this system include:

a) problem of dividing messages into . packets

b) problem of packet reassembly which occurs when messages

are divided into packets ari.d then sent separately, so a

sorting problem arises.

c) messages do not always fit into a fixed number of packets,

so there are some partially empty packets with corresponding ·
·p....... .. - . .

·w~ste of net~ork capacity.

Therefore, neither Newhall or Pierce loops make very efficient

use of loop topology. Reames and Liu CREAN 75) introduced a new

message transmission mechanism called DLCN (Distributed Lo op Computer

Network) which allows multiple messages in the loop as the Pierce

loop does and messages of variable length as the Newhall loop permits.

DLCN inc~rporates a variable l e ngth shift register before each

node's transmitter, see Figure 1. A message can b e tra 9 smitted

through the loop whenever no other message transmission is already
. .. -

in progress, or no other messages have start e d passing that node.

In this case, the variable shift re g isier piovides a delay in the

incoming message equal in size to at least the size of the message

to be inserted. Once an incoming message has bee n delay ed in this

manner, it is transmitted ahead of any incoming messages which are

in turn delayed during the time neede d to transmit. The contents

of the variable length shift register w,il)- gradually decrease in
. '

length and finally be eliminated if there is not enough traffic.

DLCN actually combines Newhall and Pierce loop advantages by

allowing simultaneous message arrival with message transmission,

and also provides automatic traffic regulation based on observed

system load, but DLCN favors infrequent requests while delaying

more frequent requests for network service.

- 4 -

r

A disadvantage of the DLCN is the complexity of .interface

mechanism and, therefore, the cost to build such an interface.

Secondly, inserting a variable shift register a.t · each node lov1ers

the ~eliability of the overall loop since it adds one new possible

failure mode. Also, when the number of nodes in the loop increases,

eventually the queuing time will increase drastically. This . limits

the ntunber of nodes inserted in a . loop.

Potvin (POl'V 71) introduced a generalized distributed computer

system call~d the - star ring system. It combines the -control feature

of a loop network with the message transmission features of a star

network. It is . somewhat similar to Newhall ts technique for passing

control along its loop and in its method of time ~multiplexing message

transmission. The system is restricted by the number of nodes on the

loop because the central star ring is common to all the nodes and,

therefore, not more than two nodes can talk to each other- at any time.

This slows the thro ughp ut of the system by a great amount. Potvin

considers only a very small number of nodes in the network.

All the above co mmunication loops s u ff e r from. the follo wing

corruuon shortcomings in addition to the probl ems discussed above.

1) The stream of data is in one direction a n d therefore, ·

sometimes the transmission of data from one node to its

neighbor node takes place through the rest of ··the no d es

causing more delay and less reliability than neces s~ ry.

2) If a node starts sending a strea m of mes s ages to another

node it will block out all other tr an s missions a nd networ k

performance will decrease by a great amount. Thus, the

networks mentioned abo v e are sensiti v e to local demands

that affect the performance of ~11 nodes~
. , '

3) If there are errors in the address fields of the message

and/or a node fails to function properly, messages will

saturate the loop, in all·the above systems. Several

different techniques have been used to recover from errors,

but this eventually slows down loop corri.rnunication.

- 5 -

4) If there is a failure in the loop, the whole network will

fail to operate.

A new experimental loop is proposed that will enable the whole

network to recover from the above shortcomings ► The concept •is to

distribute data and control into two different loops (a data loop

and a controller loop). The data loop is actually a segmented

loop consisting of a single segment connecting nodes. Each node

· is interfaced t .o the loops by a switch that may be ·turned 1ton" or , '

"off". The control loop operates by a simple arbiter, which accepts

requests for communication, decides the ,'minimum route, and sets up

the data paths .between nodes by turning appropriate _switches "on"

and non-appropriate switches "off!!.

III. DESCRIPTION OF NEW LOOP NETWORK

We suggest a modified loop network in which control messages

and data messages are transferred through two different communi­

cation lines. This adds flexibility to . the network for very little

increase in cost. The loop network system is configured from four

different components:

1) control line loop

2) data line loop

3) processor nodes

4-) a special processor node dedicated to line control.

The control line loop employs a polling technique to start

and stop the transfer of messages from a source node to a destina­

tion node. Transmission is accomplished . through a 11double hand­

shake" where a request to send ·is followed by an acknowledgement

that the message has been received. In particular> there are two
. ~ ' .

different possible types of messages, SYN/ACK and Relay Control

which can be sent over the control line.

SYN/ACK: When a node desires to communicate with another node

(SYN), or respond to end of communication (ACK), then it \vill send

a message to the controller containing the address of the source

node and the address of the destination node along with ·the command

- 6 -

r

\l

(either SYN or ACK) to be perfo r med by the controllerw Messages

of this type have the format shown in Figure 2(A).

Relay Control: _Messages sent from the controll _er ·to a source

or destination to inform the node that a message is being sent to

it (destination), or that a message has ·been received by the

destination node (sourc e), or directing other nodes to position ·

thei~ data switches to bypass the data and allow it to continue

along the data loop until reaching . its intended destination. The
~-

mes sages of thh, type are shown in Figure 2 (B).

The data line loop transfers all . the data messages from any

source node to any destination node through a minimum route which

has already been set up by the controller as explained above. The
.,

data line loop illustrated in Figure (3) is interfaced to each node

through a three-way switch at each node which enables the node to

connect segments of the data line tog e ther and either bypass the

node or connect the node to the data loop so that the node can

receive · or send data. The controller sets the three-way switches

before each data transmission is allowed. For example, if Node 1

of Figure (l~A) is to send data mess ag es to Node 3, then th e switches

and data segments are c onnected in one of the configurati ons s h own

in Figure (4). Obser v e that the conn e ction of segmentg of the data r
loop permit partial use of the entire data loop net ~ 6r k Figure (4).

Remaining segments of the data loop a r e available for concurrent

data transmission to other nodes in the syst e·m. · The r efore, simul­

taneous transfer over n on-interferin g segments of the net work is

quite possible. The combi ned eff ect of r e du ndant a l ·ter nat e pa.-ths

and concurrent trans mission over no n-interfe ~ ing se gments of the

loop adds to the network reliability and throughput .
.I -~

The partitionable loop structure described above is a general

structure. In addition to the loop topology studied here, there

is also the potential for other configurations. The topology of a

specific network may require high-speed transmission between two

or more nodes, depending upon the needs of these two processor

nodes. In such a special case, it may be expedient to include

additional "express 11 buses to supplement the basic loop. This can

- 7 -

IL

' J '

be done, for example, as shown in Figure (S), by merely increasing

the capability of · control line switches at these nodes. In the

examples Q;f figur:ie (S)_, supplemental_ da·ta buses may be used . to

establish high bandwidth communication between Node land Node 4-.

Alternatively, the response time of communication between Nodes'+

and 2 may justify an additional data line . as shown in Figure (SB).

Processor nodes are configured from . four elements:

A. A node control mechanism to perform data loop and control

loop functions.

B. Control switches to switch the data lines.

C. Transmitter and receiver.

D. Terminal processor which may be a simple I/0 device, a

microcomputer, or an interface to another network.

Figure (6) illustrates these four elements. Each node control

mechanism provides timing control, message detection,. decoding and

encoding of messag es , controlling the data switch es , transmitter

and receiver control, and communication with its riode -terminal.

The control switch is a modular unit easily extendable through

hardware chan ge s; for instance, a control switch can control two

data segments along with the receiver and trans~itter. - If the

number of data segments interfaced to the node increases, the com­

plexity of the switches will increase in a modular manner .
..

A simple transmitter-receiver can be time mul ·tiplex ed or

separated from each other by using separate chann els i-1hich · adds tc:i

complexity to the control switches. Figure (7) shows both a simple

and more complex transmitter receiver section.

The loop network interface is desi£n,ed as an 11intelligent

interface" so that no assumption about the processor terminal is

needed. Any device may be plugged into the loop networ k regardless

of its sophistication. All the control needed for any terminal to

talk to the receiver-transmitter section is provided by the node

control, thus allowing terminals to be of any type. The intelli­

gence of the node controller is easily provided by a low-cost

- 8 -

:..

r
I

microprocessor and PROM.

The loop controller functions are as follo ws :

A.

B.
c.

Sends and receives control messages to and from control

line.

Schedules node communications.

Finds the minimum path between the nodes which are to

. corrununicate.

D. Provides a timing mechanism .
.;:

The control messages have the formats of Figure 2(A) or Figure

2(B). The controller decodes or encodes them by managing the right

timing. Scheduling of nodal co .mmunication may be by any scheduling

algorithm as LIFO, . FIFO, round robin, or shortest-:-me~sages-fj_rs _t.

For the routing algorithm, any method can be considered, but since

all the needed information is within the controller, routing can be

tailored to special applications of the network. The timing mech­

inism can be part of the controller's frinction to synchronize all

- the nodes · or it can be varied in each individual node. Therefore,

nodes can work synchronously or asynchronously. The func t ion .of

· the controller is flowcharted in Figure (8). The functions of the

network controller are very straightforward and can be performed _

by any node in the network. We will assume a special control node

microprocess or is used to perform the controi functions for the

entire netw ork . In the com parisons to follow, we will includ e this

special-purpose control node as an overhead ·cost, but it should be

pointed -0ut that the control functions required by the proposed

loop can be carried out by any node. In terms of reliability, this

means that failure of the control node does not imply_failure of the

entire network, because control can be passed to another (working)

node on the loop.

IV. SIHULATION RESULTS

We modeled our simulation study after the work of Reames and

Liu (REAM 75). They simul ated the DLCN (Distributed Lo op Computer

Network), Newhall Loop, and Pierce Network. The results obtained

in our study will be compared with their results. Our results

- 9 -· .

I

f

,,

will extend their results . to provide an evaluation of all four

network topologies. In the DLCN simulation model, the length of

the shift register interface to the loop was 512 characters. For

the Pierce model, Reames and Liu selected a packet size of 36

characters. This is an optimal packet size obtained by minimizing

the product of average number of packets times the packet size.

In the Newhall network, they simulated passing the control token

only when the queue of messages in that node is empty instead of

passing one mes··sage at a time at each node. This produces a shorter

total r:i.essagetransmit time for theNewhall netw.ork.

For all of the systems simulated by Liu and Reames, message

length has a truncated negat~ve exponential distFibution with a

mean of 50 characters, minimum of 10, and maximum of 512 characters

of which the first nine characters are control characters. Message

arrival time obeys the Poisson distribution, and ·the number of nodes

is 6.

For the new experimental loop, the message length . and message

arrival stat istics, and the number of nodes are the same as above.

There is no need for control messages along with data in ·this neH

system. For reliability purposes, we used the same number of char­

acters by including control characters with the data. The mess2.ges

in this sjstem can be of any length without hardware or software

constraints.

The scheduling algorithm is simple FIFO and -the routing al­

gorithm . is to simply find the minimum path between two nodes in

either direction. If two paths have the same length> the clock-

wise direction is arbitrarily chosen. The new loop network improves

throughput when employing these simple algorithms for scheduling
• • > ·-

and routing.

Table 1 shows the average interarrival rate, data line usage,

waiting time for each message to be transmitted, transmission time

total transmission time, and control line usage for the new experi-

mental network, as well as for the other three networks. Figure (9)

shows the variatibn of mean total message transmission time versus

- 10

1'r·

,,

mean arrival rate for all four networks. Figu~e (10) shows the

changes in line utilizAtion versus changes in interarrival rate

for all systems, which indicates the load of the system, and finally,

Figure (11) is a graph of mean control line utilization versus the

mean interarrival rate for new experimental systems, only.

From Table 1, we see the Pierce and Newhall loops and new

experimental loop have almost a constant transmission time for any

load on the system (46 time units per packet for Pierce loop, and
,=-

63 time units _ per message for Newhall loop, and 52 time units for

the new experimental loop). This is due to a constant delay in

the transmission lines for Pierce and Newhall systems. For the

new experimental loop, there_ is no delay in tra!}_smission line.

Transmission time is equal to the transfer time of .the characters

in a message. For DLCN, message transmission time is variable and

as soon as the arrival rate increases (that is, the system load

increases) then the shift register delay line time will increase

leading to an increase in transmission time proportional to system

load. On the other hand, the queuing time at each node will not

increase as fast as transmission tLrne since whenever a message is

ready to go in the loop, the node will insert the variable delay

shift register in the loop and then the message does ncit have to

wait longer. This explains why DLCN is faster than the Pierce and

Newhall loops. The superior performance of the new experimental

loop is due to multiple concurrent transmission, variable message

length without any additional hard ware or software overhead, and

the ability to select the shortest path from the bidirectional

segments of the loop. As we see from Figure (9), to~al t~ansmisiion

time for Neivhall, DLCN, and the new experimental loop is the same

for very low system load. But as soori~~the load on the system

goes higher, the total transmission time for the new experimental

loop shows . improvement over the others. In the Pierce loop, a

message always has a mean wait equal to one-half of the packet

size and must then be transmitted in several packets. For this

reason, the Pierce loop can not compete with the others for low

systems loads. As soon as the system load goes higher, the Pierce

- 11 -

r

Io _

,,

,,.

loop exhibits concurrency (simultaneous packets . on the loop) and

-its performance improves over the Newhall loop which shows its

inherent serial nature leading to poorer performance.

In our new experimental loop there is a minimum queuing time

for SYN/ACK and relay control messages. For low loading of the

network this overhead shows up as a significant part of the over~

all delay, but since these two control messages cause a constant

average delay they contribute a smaller proportion of .the delay -as

the network load increases. Typically me-ssages are queued before

being transmitted and the delay due to control messages is over­

lapped with the fixed control message's queuing time.

The greatest advantage of the new network fs that - segments of

the loop can be activated simultaneously. The added concurrency

of the new loop explains its increased throughput when compared

with the other networks. From Figure (10) we see the mean line ·

utilization is very lo w for all the networks. As system load in­

creases the line ·utilization for- Newhall network levels off at about

50 percent. For Pierce and DLCN systems, line utilization increases

as system load increases. However, when the loop is utilized up

to its maximu,u, the waiting time will increase drastically. The

_proposed network requires nearly half of the line utilization of

the other loops simulated. Figure (11) shows a linear relationship

between the mean control line usage and system load. This is due

to constant delay for SYN/ACK messages, however the relay control

message is of variable length, (changes are within 7 p e rcent).

CONCLUSION:

The main goal of this work was to 'improve the throughput of a

microcomputer network using a flexible, simple, and reliable loop

topology.

The results of our simulation have shown that completely de­

centralizing microcomputers leads to a decreas~ in throughput com­

pared to the expected throughput of n processors. The loss in

throughput resulting from networking multiple processors can be

- 12 -

r

(/

partially compensated for by careful design of the network and its

interfaces. Reliability can be achieved by permitting any node to

take over the con-troller I s job.

The hardware implementations given for the interface and line

controller show compatibility of this system with microprocessor ,
technology. Because microprocassors are low cost, this type of

network can be constructed inexpensively.

Future research in this area will be done using different

scheduling · algorithms for the controller, usirig _a different number

of nodes, And with different types of loop structures. Also an

investigation of a mathematical model for such a loop structure,

as has been done in the past for other loop structures is needed.

(SPRA 72), (HAYE 74), (KO.NH 72), and (KAYE 72).

ACK.N"OWLEDGEMENT:

The authors wi~h to express their appreci~tion to J. Spragins

for his advice and consultation during this research, and to C.

Reames for supplying us with his GPSS simula·tion progrci.m. Also

we are thankf~l for the participation of W.R. Adrion.

REFERENCES:

DAVI 73 - Davies, D. W., Barber, D. L. A. , "Corrurrunication

Networks for Computers 11 , John Wiley, London, 1973,

pp. 234,235.

DONN 74 - Donnan, R. A., Kersey, J. R., 11 Synchronous Data

Link Control: A Perspective'', IBM Systems Journal,

13 , No . 2 , 19 7 4 , pp . 14 0 ...:,16:2 •

FARB 72 - Farber, D. J. , Larson, K. , 11The Structure of a

Distributed Computer System - The Cornmunication System",

Proc. Symp. on Computer Communications, Networks and

Teletraffic, Polytechnic Institute of Brooklyn Press,

1972, pp. 21-27.

- 13 -

FARM 6 9 - Farmer, W. W. , Newhall, E. E. , "An Experimental

Distributed Switching System to Handle Bursty Computer

Traffic", Proc. ACM Sympo sium.

"Problems in the Optimization of Data Comr;iunications

System", Pine Mtn. ·_ Georgia, Oct. 1969.

HAYE 7 1+ - Hayes, J. F. , IIPerformance Models of an Experimental
- .

Computer Communication Network", BSTJ, Vol. 53, No. 2,

19~4, pp. 225-259.

KAYE 7 2 - Kaye, A. R. , "Analysis of a Distribut ed Control Loop _

for Data Transmission", Proc. Symp. on Computer

Communication Networks and Teletraffic, Polytechnic ·-

Institute of Brooklyn Press, 1972, pp. 47-58.

KONH 72 - Konheim, A. L., Meister, B., "Service in a Loop

System", Journal ACM, Vol. 19, No. 1, 1972, pp. 92-108.

PIER 72 - Pierce, J. R., "Network for Block Switching of Da·ta 11 ,

BSTJ, Vol. 51, No. 6, 197 2 , pp. 1133-1145~

POTV 71 - Potvin, J. N . T., "The Star-Ring System

Coupled Digital Devices", University of

of Loosely
rr -'-
1. OrOD i..O,

Computer Systems Research Group Report No.·,, 1971.

REAM 7 5 - Reaiiles, C. C., Liu, H. T. , "Design and Simulation

of the Distributed Loop Computer Network (DLCN) 11 , in

Proc. 3rd Annual Symposium on Computer Architecture,

Clearwater, Florida, January 1975, pp. 7-12.

SPAN 76 - Spang, III, H. A., ' 1Distribu t ed Compui:e1, Systems for

SPRA 72 -

STRE 76 -

Cont1,ol n, General Electric Technical Information

Series Report No. 76CRD049, ._ April 1976.
. , ~

Spragins, J. D.' ' 1 Loop Transmission Systems - Mean

Value Analysis", I.E.E.E. Trans. Comrnunica t ions >

Vol. COM-20, No. 3 , 1972, pp. 592-602.

Strevens, C. w. ' 11Current Research in Computer Networkrr,

ACM Computer Communication Review, April 1976, Vol. 6,

No. 2, pp. 13-40.

- 14 -

,..,

. 1

·r l!E'.-f LOOP
x DLCt·i
- PIEF!Cl~
* HEWHALL T NB LE

INTERARRIVAL DATA LINE! QUEUING
RAT~ USAG8 rrI(·IE

3600. ., .. 025 19.LJ.2
1.500. .065 30.33
900. .100 39.66
600. • 155 61.00
480. '.''~ 18.5 '(?J.25
420. .218 107.79
3l1-0. .275 160.00 .
JOO. .324 266.78
270 .. .340 335.58
240. -.J8?' . .596.43
220. .1J.J2 1134.11:

3600. .056 2 .10
1.500. .138 6.40
900. .235 12.20
600. ,:,/5 .,.;o 19.40
480. .lJ.74 30.10
420. 54'"' . ,) 39.90
JlJ.2. .677 64,20
300. .759 101.60
270. .844 181..50
2z1-o. .937 303 .10

2700. .098 10.90
1800. , 147 18.70
1200. .200 27.90
900. .293 h7 .10
720. .367 69.10
600. .430 7'!•,90
540. .l~79 119.10
l} 80 . . , .513 ~-1/.~8.l,0
Li-20. ·:633 21.5. 60
360. , 717 257.70
3JO, .762 360.90
JOOo .801 587,20
270. .935 141.2,00

2100. .153 1_5.JO
1.500. .183 21.10
900. .24 ,2 3b.60
600. .328 7.5 • .50
480, .378 135~20
4-20. .11-2l1- 283.60
360. , 1}87 611.60
330. • 518 J2:l.O.OO
JOO. • .511 65&~. 00

1

TOTAL COii'TROL
TR.i\NSI-1ISSION TRAHSHISSIOiI LINS

TIME THlS USAGE

51.36 70.78 0.020 + I
.53~58 83 ,li,j_ 0~051 +
51.28 90.94 o. 08_3 +
52.36 HJ. 36 0.123 . +
.50.25 · 12.J, _50 0.1~ +
51.86 1.59 .. 80 0.179 +
51.27 211.27 0.222 +
_54.28 321.06 0.247 +
51.09 386.67 0.276 +·
51 • .51 648.95 0.307 +
52.77 1186. 88--· . ·0.342 +
58.60 7l1,,jQ l)_, ·• 1~~ -':.

\.-' • · 'r'"'v\. ..,. X . -
61.30 . . 86. 70 (!-;-~'..;''., . X

67.80 103.90 o~~~~)- x ·
79.60 136.10 (.:-;--- X

102.1 O 17.5.20 ·--- X

115.90 210.20 --·- X

150.80 297.70 ---· X

210.30 40L1-. 00 ·--- X

332.70 61~8.l~0 --- X

64-8, 90 · 900.60 ·--- X

1 OLJ.. JO 115.20 ---
10_5,'?0 121.1-.40 ·4--
10_5.80 133.70 . ----
10.5. 00 1.52 .10 ---
105.00 171!-.10 ---
106. 00 180,90 ---
106.20 215.30 ---
103.li-o 2_51.80 ---
110 • .50 326.1 O --- -:-

:i. 07. 60 365,30 ---
102. 80 l-1,63, 70 ---
1 OJ. _50 690.70 ---
99,00 1.511. 00 ---
62.60 77. 80 ---
7J,JO > 8!-~. l1-0 ---
62)1-0 101.00 ---
62.20 137,70 ---
63.30 198.50 ---
62.90 J46 • .50 --- ·X-

63,80 675.40 ---
59.00 3269.00 --- ·r.

68.00 6632.00 ---

C>Jl.~y
b'..!:"f~!."

pol lin~r t•ource
in for mation node

FIG. (2a)

FIG. (l.b)

dcst.
node

t
I

Cel. .!;t
bt.:ffcr

node 2 0

(a)

0
.,

no0e

(b l

node l

0

0
node 3

data line ·

0

(c)

2

node 1
,I

node 1

3

FIG, (Sa)

node 4
0

o ·
nod e 2

FIG. (4a) ·

4

no<le l Ho<le l

2 tj ?.

3

FIG. (5b) FIG. (5c)

_·

no<le 4

node 3 node 1
node 3

FIGURF; G

i

,J

·r

/~Oolaloopy
t:onr rnl . , __ _

::Hl t.<:~

TERNINAL

nc_(Jal

NO

Update the st~t us
o f

use a sch?.Guting
al<i'o ci th ~m to find
thP. ?\1:"Xt c;onnect.i o n4

ll,r<la t r,,,rh,:, c:t ,1tti,;

<lut,1 l oo!) ::;tructuc .::

T'r epar0 a Ptf':-;;,;1~1~ for
rt?l <.ty ct, n t:rnl

'i'F.RMHV'll, •

J'lG,('lh)

•➔
0 ,, .. ,: ,.
u

....

I.

\.

fl

~;
►·
;.!
() ,,
1:1
H ~:
Ill
;-:
<1
IC •·
• J
<t
f-·
0 •·

<I
<t
0

%
CJ
H
►· <t
N

_J
H
::,

lJ

~
.J

. .J
0
cc
?.
CJ
(.)

lo/ ~. _,

~l!JU.U

Un.3.U.

'/QO.U

t;oo.o

~iOll.Q.

~00 .Q

300 .0 .

2110.Q

100.0 .

--1--1--1--' f-·+-+-f-~f ·•)-, f-l--l-•·1--1--f--)­
N N N ~ ~ ~ ~

~ ~ ~ ~ m G •
.... ,.

LI
., 01 N ;,,

MEAN AR~IVAL f,ATE:: •1GE+3

N~W LOOP +
DLCN X
Pffr-CE
NEWHALL ,.

.9 .

. 8

.7

. 5 .

.5 .

·"·
.J

.2 .

. l

FlGUf<E:: 10

,
.5

. 4

.3

. l .

0 • I -f-• --1 • ·l ·•+•l ·-1 ·• I •I · • I ·• i •I• · I •I •·f-•· I •I·• · I-- ! •-f-• I· •· I· • f-• ·f
._.)• f'> !•J ~l ~•I l~I ,I , .1 ..

J, to N Ol < 1 t-. (, I N (11 Cl f.

t,UJ LOOI-'

f ' l CIJPF 11

.J

Some Laws of Personal Computing

T. G. Lewis, Ph.D.
Computer Science De.partment

Oregon State University
Corvallis, Oregon 97331

(503) 754-3273

-,
J

.J

THE ORIGINS OF PERSONAL COMPUTING

In the beginning, man created pocket calculators to do rote arithmetic. The

"four banger" solved a well known problem, e.g. addition, subtraction, multipli­

cation, and division. Few people involved in the pocket calculator industry

realized that pocket calculation was merely an initial thrust into the "computing

for the millions" consumer market. Indeed, the millions of dollars made by this

computer consumer product is paying for the development of more sophisticated

devices we now call "personal computers".

Computing is the orphan of modern science, that is, computer science "ain't

got no father". Isaac Newton, Albert Einstein, and others built the foundation

of Physics. Freud gave birth to modern psychology, and biology has its origins

with Darwin. But computing lacks a definite starting point. The works of Charles

Babbage, and possibly Alan Turing, have little impact upon daily computing (some

will argue that these two pioneers have everything to do with modern computing,

but I speak of practical rather than theoretical computing). So where are the

fundamental theorems of computing? Are there a set of "equations of motion" for

programming?

This article contains ten empirical observations dubbed, "laws of personal

computing". They are rules derived from personal experience with person computers

in the real world of business. While many of the rules are controversial, I believe

most can be proven to be true.

The first law of personal computing is of the form "action equals reaction".

The law is derived by historical observation.

The first electronic computers were personal computers. That is, only a few

programmers had access to the ENIAC, WHIRLWIND, and ATLAS. This one-on-one mode

of interaction rapidly faded in favor of batch operation and multiprogrammed

operating systems. Clearly, the shift away from one-on-one was the result of

economic decisions. Large corporations poured large sums of money into data pro­

cessing departments. For their investment, they demanded efficiency. Military

installations required security and performance as their return on investment.

Batch operation satisfied their demands.

Soon, however, users (programmers mostly) were able to show economics of

scale and efficiency of operation by installing a limited form of interaction

called remote-job-entry. R.JE rapidly moved into timesharing with terminals because

r

.:!

this increased the man-machine interaction. Finally, we have come full circle to

dispersed, stand-alone, turnkey computers dedicated to a few users.

The key feature of the historical . evolution of computing is "interactiveness".

In fact, the more we are allowed to communicate with a computer system, the more

we enjoy using the system (within limits), and the more "personal" computing

becomes. This leads to the first law of personal computing.

[l] Personal Computing Equals Interactive Computing: The personalness of a
computer system increases directly proportional to its interactiveness.

p = k I

where p . personalness =
k = constant of proportionality
I = interactiveness

Of course, we have not quantified (or defined) what P, k, and I really are in

the formula.

In the following derivations, we determine at least a qualitative measure of

several other variables in the laws of personal computing. In some cases we can

represent the law with an equation, but in most cases this is not possible.

THE NEW ECONOMICS OF COMPUTING

Personal computing is governed by economics as much as by technology. Indeed,

the directions taken by technology are governed by economics. Therefore, we must

study economics in order to derive other laws of computing.

The concepts of programming, microprogramming, and chip design span the spec­

trum of software, firmware, and hardware. Why is it more suitable to microprogram

the IBM 370/168 (model 370 hardware, model 168 firmware) and not microprogram the

Intel 8080? Where is the trade-off between an "expensive" system and an "inex­

pensive" system when all features of such a system are considered?

A system designer can choose to build a cheap processor (like the 8080, say)

and save money on production, design, and maintenance of the cheap processor.

The same designer can elect to build a (expensive) sophisticated computer system

and as a result increase the cost of hardware. Why would he choose to construct

an expensive computer? The answer lies in looking at the total cost of a computer

system. Lets take an example.

- 2 -

t

The Intel 8080 requires that the HL registers be loaded each time a memory

reference is made. This feature is simple to implement and saves hardware dollars.

However, every program that is written for the 8080 must pay the price of this

simplicity. Typically, a macro called HL is used to relieve the programmer of this

chore.

The Motorola 6800 includes a more sophisticated addressing mechanism using

an index register for assisting in memory references. The addressability features

of the 6800 often lead to 25% reduction in the number of instructions needed to

perform the same function as performed by the 8080.

Both 6800 and 8080 architectures are more time consuming to program than the

Texas Instruments 9900 chip due to the 9900's greater sophistication. Furthermore,

the Microdata 32/S and Hewlett-Packard 3000 are stack machines supporting a high

level language. Hence they are "easier" to program than any of the chips discussed

above. But of course, the 32/S and 3000 are more expensive hardware machines than

the chip machines.

Where is there a trade-off between complexity in hardware, complexity in

firmware, and complexity in software? The trade-off is strictly economic, and

leads to the second law of personal computing.

[2] Conservation Of Agony: The work expended to program a computer to solve
a problem plus the work expended to construct the computer system remains
constant for that problem.

+ = C

where
ws = software work,

WH = hardware work,

C = constant for a specific problem.

Again, the numerical values for each of the quantities above are not easily

determined. We suspect a curve similar to the one in Figure 1.

The second law of personal computing actually states that the problem solution

remains at a constant level states no of complexity regardless of the system used

to solve the problem.

The cost per unit of effort in building hardware may decrease (LSI chips), and

the cost of programming may increase (due to unsophisticated microcomputers). The

curve of Figure 1 traces the "best" point at which an economical blend of hardware and

software meet. Therefore, in 1980, the most economical systems will be mainly E:..:-

hardware (due to its low cost) and a small share in software (due to the conservati0n

of agony) .

- 3 - .
r

...,
'

J

C - --

Work

Softwarel
Work J

Register-Register
Machines

1950 1960

[Hardware
l Work

1970

State-of-the-art

History, years

Firmware High
Level Languages
e.g. BASIC

1980

Figure 1. Point At Which WH Equals W5

Machines
or

Robots

1990

}

The results of law two actually saY something about the "power" of a computer

system. We can state a macroscale formula for computer power as follows:

power = . [(MIPS)(STORAGE CAPACITY)]/COST

This overly simple formula gives a broad measure of power in byte-cycles per

dollar-second. Hence, increasing speed or storage capacity increases power. Con­

versely, decreasing cost increases power of a personal computer. For example, the

Intel 4040 (four-bit pocket calculator chip) increased personal computing power

because it was cheap even though it was slow and of low storage capacity.

Now, if we look at history once again, it is clear that an acceleration force

is at work. Increasing capability in the past lead to increasing the number of

applications in which a computer is useful. In turn, the increased use of a com­

puter system in new applications results in increased sales. The sales stimulate

mass production and further cost reductions. The end result is decreased unit

cost of the computer system.

We can demonstrate this counter-intuitive notion as follows. In the mid

t sixties, processor speed increased dramatically. This increased capability moti­

vated timesharing of the central processor. The support of many terminals reduced

the cost per terminal, and in the final analysis, the cost of the unit of compu­

tation. Increased capability lead to reduced cost of computation.

In the seventies, the capacity of storage is increasing dramatically. We are

witnessing a surge of activity in database applications with the corresponding

decrease in cost of storage. In short, we are witnessing the third law of personal

computing in action.

[3] As The Power Of A Personal Computer Increases, Its Price Decreases.

The equation for the exact form of _diminishing cost expounded in law three is

highly complex. To derive the equation would require a model of the economy, a

predictive model of advances in technology, and a psychological study of people's

acceptance of computerization of sensitive applications (making medical diagnosis,

for example).

The third law deals only with hardware capability. Earlier, we stated that

hardware capability plays a decreasingly important role in personal computing.

Indeed, the effects of the third law of personal computing are rapidly diminishing

(due to the fourth law.

- 4 -

-,
J

[4] Software Is Hard; Hardware Is Soft: It is economically more feasible
to build a computer than to program it.

It is economically easier to design, implement, and mass produce a machine

like the Intel 8080 or IBM 360 than it is to design and implement an operating

system, compiler, or sophisticated application program. The cost of a chip may

run to $250,000 when design and initial production is totaled. The cost of firm­

ware BASIC may not exceed $100,000 (many often do, however), but the auxilliary

cost of docwnents, service, training, and marketing may exceed one million dollars.

A company contemplating a new hardware architecture is gravely penalized for

making radical changes to the instruction set of their existing computer. Is it

not to be expected that the IBM 370 is only an evolutionary departure from the IBM

360? Why is the Z80 processor nearly as successful in the market place as the 8080?

The high cost of programming as opposed to the cost of a chip is reversing the

traditional roles of software and hardware. In the future, more emphasis will be

placed on the software and less emphasis will be placed on the machine architecture.

Indeed, much of the current software will become "hard", by placing it in firmware

and distributing it in hardware ROMs.

One result of law four is the following corollary. Corollary A states the

rule that governs pocket calculators, today.

[A] Programs and data should be shared; but hardware should be replicated.

The only item in a computer system that must be shared, from a technological

standpoint, is data. Common access to information stored in a database may be

logically justified by an application. Whether the access is done via timesharing

or dispersed processors is inunaterial. Also, whether the data is copied for trans­,
mission, or the program that intends to process the data is copied for transmission

to the database machine, is again immaterial.

The computer business has been over enthusiastic about timesharing in the

past. We must recall that timesharing was invented to lower the cost of hardware.

Now that hardware is no longer the major cost item in a system, timesharing is not

justifiable in most cases. In fact, timesharing failed.

Timesharing failed because people couldn't understand it. Only computer ex­

perts are able to use MULTICS, VM/370, and other extremely capable timesharing

systems. The average person will not tolerate JCL, telephone lines, computer

jargon, and unreliable central computers that loose their files. In short, time­

shared computers are useless due to their prerequisite of knowledge.

- 5 -

The computer utility concept of the late sixties failed because of the lack

of expertise on the part of the users. The high level of sophistication needed

i to use a utility doomed it to failure. It also put a bad name on. personal computers.

In effect, the "guilt-by-association" syndrome plagues personal computing,

today. Myths (its too complicated), training (what is a byte?), and service (how

do I get statements printed?) are three of the remnants of the computer utility

that have turned people away from computing.

We can now state a conclusion called the fifth law of personal computing.

[SJ Knowledge Costs More Than Software And Hardware: The usefulness of
personal computers increases inversely proportional to how much people
must know in order to use them.

The lesson is clear: any consumer product that is successful, must be simple.

The pocket calculators that solve known problems (arithmetic) are successful. The

pocket calculators that solve unknown or unrecognized problems are failures (the

HP-85 for financial analysts solves an unknown or unrecognized problem).

The facts of life are even more severe for computers sold to the consumer

market. The final economic law succinctly summarizes the fickle buyer's attitude.

[6] The Color, Shape, And Size Of A Personal Computer Is More Important To
A Buyer Than What Is Inside Of It.

Once the personal computer system overcomes all other economic obstacles it

must be packaged and maintained by a reputable service organization.

Packaging - eliminate buttons, switches, and knobs. The manuals must reduce

jargon, and the software must be tailored to a particular industry.

The SOL-20 system from Processor Technology and the NOVAL from Gremlin

Industries are vivid examples of packaging in the personal computer hobby market.

Datapoint, Wangco, and Basic-Four demonstrate the law with tailored software

packages for small businesses.

Service - fills the gap between the user's knowledge, and the personal

computer's lack of capability. Service rescues the user when the personal computer

J" cannot repair itself . It is service that counts when the manuals do a poor job

of explaining a feature of the system . Finally, service is perfonned by humans,

and so far, humans understand other humans vastly better than they understand a

machine.

- 6 -

r
\

We can now turn to . some interesti _ng examples that lead to the final laws of

personal computing. In particular, these laws . impact directly on the majority of

computer experts engaged in applications implementation~

IMPLICATIONS OF INTERACTIVE-NESS

The first law of personal computing equates "interactiveness" with "personal­

ness". This means that in order to achieve a high degree of interactive computing,

the personal computers of the future must be oriented toward languages and systems

with a high degree of interpretation .. Compiler languages, for example, have been

shown to require from three to ten times as much effort to implement a given program

as required to implement the same program using an interpreter.

It is little wonder that BASIC has achieved the title, "language of the masses".

It is a simple interpretive language easy to implement on a modest processor.

Unfortunately, it is extremely inappropriate for major applications requiring typical

business data processing.

[7] BASIC Is To Personal Computing, As Sign Language Is To English.

BASIC is the "pig latin" of programming languages. BASIC programs are easy

to write, naturally, but like pig latin, they are difficult to understand, and

provide inadequate control of a personal computer system. Few dialects of BASIC

permit indentation, structuring, comments (without memory penalty) or error control

and recovery. Here are a few objections to BASIC as a serious, professional im­

plementation language.

a) poor error recovery facilities - e.g. the application program must be
capable of detecting file access errors, etc. and then calling an ex­
ception handling routine.

b) no dynamic overlapping or memory mapping of programs too large to fit
in main memory.

c) restricted data structures - e.g. linked lists, trees, dynamic memory
allocation for data, mixed data types.

d) limited user prompting - e.g. forms handling, menus, cursor control,
scrolling, audio signals.

e) inadequate software security and protection - e.g. file security locks,
interlock mechanisms for shared files, inadequate source code shielding.

f)

g)

slow execution due to poor interpretation.

inadequate primitives for standard data processing - e.g. no sorting,
file access constructs, forms handling for report generation, or
communications access constructs.

- 7 -

L

I
I
I

In short, BASIC is . useful for beginners developi .ng small programs for an un- .

sophisticated application, qr for programs that will be thrown away rather than

modified.

The area of system control is no better off than the system languages area

of personal computing . At least BASIC is partially standardized and widely known.

Operating systems, on the other hand, have no consistent basis to begin with.

Indeed, we question the utility of an operating system in interactive computing.

This is pointed out in the eighth law of personal computing .

[8] An Operating System Is A Feeble Attempt To Include What Was Overlooked
In The Design Of A Programming Language .

This heritical notion is fully obvious in systems employing interpretive

BASIC to the hilt. The Wangco, Tektronix 4051, and similar small scale interpretive

BASIC systems have no visible operating system. All commands normally associated

in traditional operating systems are put into extended BASIC in these personal

computers. In . general, interpretive systems (and thus interactive systems} have

no need for an operating system.

In future personal computers it is likely that a network of loosely coupled

~ processors will communicate data and programs to one another. In such a network,

concurrent processes will be allowed, and often compete for limited resources.

In this situation, the synchronizing primitives of today's operating systems will

be migrated to hardware (or firmware) and not be of concern to the language in­

terpreter.

THE ULTIMATE LAWS

We have covered the econo-technical motivations for personal computing and

stated eight laws along the way. In the final analysis we can derive two ultimate

laws of computing used (knowingly or otherwise) by computer manufacturers.

[g] The Ultimate Personal Computer Is A Robot: The goal of personal computing
is to reduce the differences between humans and computers.

In effect we are striving to make personal computers do what people can do,

only faster, more accurately, and cheaper. We seek a partnership with personal

computers akin to the symbiosis between humans and household pets.

A faster personal computer allows us to process census information in 2-3 years

instead of 15 years. Speed is essential in a lunar landing, and so is accuracy.

- 8 -

1

)

An air traffic control computer is much more accurate than a human operator. The

result is safer air transportation for people ..

A computer that can do your job faster; more accurately, and cheaper than you

can do your job is a threat to you. In fact, a cheaper computer is threatening

jobs everywhere today. This aspect of computing is being ignored by computer

scientists because it represents an undesirable aspect of computing. None the

less, we must face this problem before the ultimate law is enacted.

[10] Knowledge Is Power: Information is the fabric of knowledge, and he who
controls it, wields power.

Good versus evil. While personal computers are fast, accurate, and cheap,

they also ·cause high speed propagation of errors, speed-of-light crime, and loss

of life when they fail.

Politicians are able to push a button . and disseminate campaign propaganda ta

the millions. Factories can replace entire vocations by automating production.

Financial institutions are at the mercy of their data processing centers.

Is it possible that personal computing will lead to a caste society? When

all menial tasks, management decisions, and control of production has been turned

over to computers, what will mankind do? Will the elite of the future be those

who can create, invent, entertain, and be humane, while everyone else is relegated

to welfare?

The laws of personal computing are not only important to computer scientists,

but also to society as a whole. Perhaps there is a place today for the futurologist,

that is, a philosopher of computer science. I wait.

- 9 -

	20221117134815390.pdf
	Lewis_Jafari_78_01_01.pdf
	page51.pdf
	Lewis_Jafari_78_01_01.pdf
	Lewis_Jafari_78_01_01_A
	Lewis_Jafari_78_01_01_B
	Lewis_Jafari_78_01_01_C

