
I

89- 60-3

Parallelism Encapsulation in C++

Youfeng ~!u
Ted G. Lewis

Department of Comput~r Science
Oreoon State University

Corvallis, Oregon 97331-3902

•

Parallelism Encapsulation

Youfeng Wui

Ted G. Lewis2

.
1n

1 Sequent Computer Systems, Inc.

C++

2 Oregon Advanced Computing Institute (OACIS)
wu@sequent.com

lewis@mist.cs.orst.edu

abstract

Object oriented programming features information hiding and
encapsulation, meaning that 1) each object hides the the implementation
details from access from outside and only a set of methods (interface
routines) are visible outside of the object, and 2) changes to the
implementation of the object do not require changes to the code that uses
the object, so long as the interface is stable. However, the interface
mechanism in C++ is not adequate to achieve information hiding and
encapsulation when writing parallel C++ programs, since the methods are
assumed to be invoked in sequence and no parallel interactions are
represented by them. Also, even when the methods are the same, changes
to the implementation details of the methods often affect the interaction
pattern of the methods so the parallel code that uses the methods must be
rewitten. To achieve information hiding and encapsulation, we propose
adding path expressions to the class interface. Thus either dynamic or
automatic parallelization can be used to achieve parallelism encapsulation.
A new concept of data dependence analysis is introduced which uses the
parallelism described by path expressions to efficiently and automatically
parallelize an object-oriented program.

1. Introduction.

Features of object-oriented programming ([COX-86],
[STROUSTRUP-88a]), such as information hiding and encapsulation
appear to make the implementation of large systems more feasible
and easier to maintain. Well defined interfaces and limited side
effect reduce the chance of programing errors and encourage re
-using of code. Encapsulation makes change to the inside of objects

- 1 -

I

transparent to how they are used and makes software evolution less
painful. It is conceivable that these concepts are also helpful in
designing parallel programs as parallel programs are known to be
hard to design and maintain.

Parallel programs are hard to design because a programmer
must consider multiple program execution threads instead of a
single thread, and must take care of all possible interactions among
the threads. Parallel programs are hard to maintain because
numerous interactions may have been hard-wired into the code and a
simple change may affect the interaction pattern and result in
global modification. We would like to extend the concept of
information hiding to reduce the number of possible interactions
that have to be considered, and to extend the concept of
encapsulation to minimize the maintenance effort when changes are
made to existing software.

The mechanisms used in object oriented programming
languages for information hiding and encapsulation are not adequate
in parallel programming, since the methods (interface routines) are
assumed to be invoked in sequence and no parallel interactions are
represented by them. Even when the methods remain unchanged,
changes to the implementation details often affect the interaction
pattern of the methods and the parallel code that uses the methods
must be rewitten.

Among the object-oriented programming languages, C++
([STROUSTRUP-86], [WIENDE-88]) is the most widely used object
oriented language in system programming. But there is no parallel
programming support for C++ that preserves information hiding and
encapsulation (e.g. Presto, [BERSHAD-88], is not compatible with the
rules of information hiding and encapsulation). In this study, we
propose a high level parallel programming approach in which
parallelism is encapsulated within objects and thus leads . to easier
design and better maintainability.

- 2 -

2. Object-oriented Programming.

Large scale programming is by nature incremental, meaning
that a larger program is built from lower level components, and
these components are in turn comprised of even lower level
components, and so on. In the terminology of C++ (or other object
oriented programming languages), these components are called
objects. However, for a component . to be an object it must follow
three disciplines in its design and usage. First, each object appears
to the rest of the world as a few methods that can access the data
of the object and the physical appearance of the data are hidden
(information hiding). Secondly, only through the methods can one
access the object (encapsulation). Third, objects can be organized
hierarchically, with children level objects inheriting the properties
of the parent level objects (inheritance). We can call the methods
that use objects subjects, although they may be methods in other
objects.

As an example, consider a program for matrix multiplication.
The main body of the program inputs two matrices and computes a
third matrix which is the product of the two input matrices.

canst N=1 O;
main()
{

Matrix M1 (N);
Matrix M2(N);
Matrix M3(N);

/* input M1, M2 */
M3 = M1 .multiply(&M2);

/* print M3 */
}

The main program uses three objects which are of class
Matrix, and uses the multiply method of a Matrix object:

- 3 -

I

Class Matrix
{

}

vector *mat;
numv n;
transpose(); /* transpose m * /

public
Matrix(int n); /* constructor */
&Matrix multiply(&Matrix m);
operator[];

&Matrix
Matrix::multiply(&Matrix m)
{

}

int i, j;
Matrix mtemp(m.numv);

m.transpose(); /* transpose matrix m * /
for (i=1; i<=numv; i++)

for (j=1; j<=numv; j++)
mtemp[i]U] = mat[i].innerProd(mLi]);

return &mtemp;

Each object Matrix is implemented as an array of vector
objects and matrix multiplication is implemented using the vector
method innerProd:

Class Vector
{

real *vec;
int numelms;

public
Vector(int n); /* constructor */
operator[];
real innerProd(&Vector v);
&Vector sum(&Vector v);
reverse();

- 4 -

}

real
Vector::innerProd(&Vector v)
{

}

int i;
real temp = 0.0;

for (i=1; i<=numelms; i++)
temp = temp + v[i]*vec[i];

return tmp;

In this example, we see that at the top level, only the method
multiply (of matrix object) is used and no detail about its
implementation is important. Similarly, when implementing the
method multiply, the method innerProd of vector object is used,
without concern for implementation details.

3. Existing Method for Specifying Parallelism in C++ Programs.

Typically, parallelism inside a C++ program is specified by
inserting parallel primitives. For example, the following code
implements a parallel version of matrix multiplication using Presto
library objects Thread, Condition, and Monitor.

&Matrix
Matrix::multiply(&Matrix m)
{

int i, j;
Matrix mtemp(m.numv);
Monitor alldonemon = new Monitor("any");
Condition alldone = new Condition(alldonemon, "waiting");

m.transpose(); /* transpose matrix m */

/* nThreads is a new data in Matrix */
this->nThreads = numv * numv;

- 5 -

I

}

for (i=1; i<=numv; i++)
for (j=1; j<=m.numv; j++) {

Thread *t = new Thread("mul", i*numv+j,STKSZ);
t->start(this,

mat[i].innerProd, /* method */
mU], /* parameter */
mtemp[i,j], /* result */

alldone); /* a monitor */

while (this->nThread) alldone->wait();

return &mtemp;

In the above, all of the invocations of innerProd() are done in
parallel. This is achieved through creating and starting a thread in
place of calling an innerProd. Since all threads must be finished
before the resultant matrix can be returned, busy-waiting is
accomplished using condition and monitor so that only when all of
the threads have finished the resultant matrix is returned. Note that
in Presto, a condition object contains a monitor. The monitor
controls exclusive access to the methods in the condition object
(such as create, wait, signal, etc.).

The parallel solution above heavily depends on the
understanding of implementation of the method innerProd. For
example, for the parallel program to work correctly, it is essential
that different invocations of innerProd operate independently. Also,
innerProd must decrement variable nThread before it finishes its
job, or the multiply method will wait forever. Furthermore, if the
implementation of innerProd changes to an implementation strategy
that makes different invocations of innerPord dependent, then all
code that use method innerProd must be modified. These effectively
break the golden rules of information hiding and encapsulation.

Parallelizing a subject by executing in parallel the methods of
the lower level objects usually requires knowledge about how the
methods interact. Without a systematic mechanism to abstract
parallelism and hide the low level interaction details, the designer

- 6 -

has no choice except to break the rule of information hiding, or
refrain from using lower level objects by put everything in a single
object. In fact, the parallel solution for matrix multiplication
provided by Presto [BERSHAD-88, p713] includes innerProd as a
private method in the Matrix object. This is necessary to simplify
the communication between the subject and objects (modify and
check state variable nThread) and also necessary to preserve object
oriented programming principles . But a Matrix object is certainly a
wrong place to consider vector operations, and when a vector class
is already available it is unwise to have to use primitive objects
such as integer and real. Since the above parallel programming 1s
done at the subject level without any knowledge of parallel
interaction among the objects it uses, we call this approach
"subject centered".

4. Path Expression and Information Hiding .

What we need is a way to specify the allowed parallelism
among the methods inside each object and define the allowed
parallelism in the interface to the outside world. This may require a
little additional work by the designer of the object, but this is
negligible since the designer has all the knowledge of the details of
the object. Also, by forcing the designer to specify the interaction
among the methods within an object, usually a better and cleaner
design will result. Another side benefit is that the specification
need be done only once and used repeatedly to save the time of all
programmers who use this object.

Path Expressions [CAMBELL-74] have been studied extensively
in the literature to abstractly specify synchronization among
parallel activities. The typical use of a path expression is in the
explicit parallel program languages ([LAUER-79], [KOLSTAD-SO]), 1n
which constructs are provided for designing "processes" that run in
parallel. Path expressions are used to constrain the parallel
activities. For example, the following code specifies a parallel
program in which two processes cycle through operations (a; b) and
(c; b) respectively. The path expression indicates that an invocation
of operation b must be preceded by an operation a. The scenario in
Figure 1 (a) is not allowed since the second operation b cannot

- 7 -

I

execute before operation a executes. The path expression forces the
scenario as in Figure 1 (b).

begin
path a; b end;

P1: process a; c end;
P2: process c; b end;
end;

P1 - P2 P1 P2
a C a C

C b C b
C C

a--b
~~ C C

(a) (b)

Figure 1. Process Synchronization.

Since the purpose of path expressions is to constrain parallel
activities, they usually impose sequencing instead of indicating
parallelism, such as "a must precede b", "a and b must not run in
parallel", etc. For purposes of parallelism encapsulation, we are
more interested in specifying parallelism, such as "a can run in
parallel with b", "unlimited instances of a can be run in parallel",
etc.

Assume a, b, c, ... is a set of methods defined in an object. The
parallelism among the methods can be defined using extended path
expressions ([HABERMANN-75]):

1. A method by itself is a path expression.
2. If e, e"1, and e2 are path expressions, then the following are

path expressions:

- 8 -

Notations

e1 , e2
{e}
e1 + e2

Meanings

e 1 and e2 can be run in parallel
0 or more e in parallel
e1 and e2 must not run in parallel (e1
and e2 are mutually exclusive)

As an example, we take a look at the Vector class, which
includes innerProd(), sum(), a reverse(), and [] met~ods. Suppose in
our implementation, innerProd() and sum() do not alter the private
data, and thus they can be done in parallel. On the other hand,
reverse() changes the private data (method reverse() converts a
vector (x1, x2, ... , xn) to a vector (xn, xn-1, ... , x1)) and it can not be
executed while the other methods are going on. Thus we can specify
the following path expression among the methods.

{innerProd, sum, []} + reverse

As a syntactical addition to class definition, a path expression
such as shown above must be given in the public area, and enclosed
within key words PATH and END. The Vector class with a path
expression is shown below.

Class Vector
{

real *vec;
int numelms;

public

}

PATH {innerProd, sum, []} + reverse END; .
Vector(int n); /* constructor */
operator[];
real innerProd(&Vector v);
&Vector sum(&Vector v);
reverse();

A path expression in a class describes the interactions among
the methods in the class. When the methods are invoked in parallel,

- 9 -

I

only the interaction patterns compatible with the path expression
are allowed . Note that not all of the methods have to be included in
a path expression. When a method (p) is omitted, it is assumed that
the method is executed mutually exclusive of all of the other
methods (p + others). If a class does not have a path expression at
all, the default assumption is that all of the methods are mutually
exclusive of one another.

Although a path expression is defined in a class, it specifies
the parallelism among the methods that are associated with
individual objects. Methods that are of the same name but
associated with different objects are considered independent
(except when the class has static data. In this case, a method can be
prefixed by key word CLASSWISE indicating that the method in
different objects conflict each other). For example, if we have two
Vector objects V1 and V2. V1 .reverse() only conflicts with
V1 .innerProd(), but not with V2.innerProd().

Note that there are two levels of parallelism we are
considering: that within an object, and that within a subject that
uses objects. A path expression describes only the parallelism
within an object. The parallelism existing in a subject is limited to
the parallelism allowed by path expressions, possibly less if the
subject lets one method use the result of another method.

Parallelism specified by path expressions, can be used by
programmers to write parallel subjects, or by automatic tools to
convert sequential programs to parallel programs. Explicitly using
the parallelism specified in path expressions to write parallel
programs is not recommended, because the parallelism described in
path expressions tends to change when implementation of the object
changes. In other words, the interactions described in path
expression is not as stable as the method interfaces over software
evolution. Explicit use of the parallelism may require that the
parallel program be frequently modified. So, path expressions only
provide the mechanism for parallel information hiding and not
parallelism encapsulation. Parallelism encapsulation requires that
changes to the parallelism within an object should not affect the
rest of the world that uses the object. There are two ways to
achieve parallelism encapsulation: dynamic parallelization and

- "1 0 -

automatic parallelization.

5. Parallelism Encapsulation through Dynamic Parallelization.

Dynamic parallelization was used in Path Pascal ([CAMBELL-
80]) to achieve parallelism encapsulation. At compile time, each
path expression is converted into a control engine. At runtime
whenever an object is created, a control engine is implicitly created
for it. Every invocation of a method is passed through the control
engine, which may grant the invocation, or delay it, depending on the
current state of the control engine. Also, every termination of a
method must go through the control engine to update the state of the
control engine.

For example, assume an object has the following methods and
path expression:

Class Sample
{ public

}

PATH {a}+ b END;
a();
b();

The path expression PATH {a} + b END can be translated to a control
engine consisting of the following two procedures, start and depart,
and the two state variables, #a for the number of active operations
a and #b for the number of active operations b:

int start(operation)
{

case operation {
a: if (#b == 0)

#a++; start a; return 1
else

put a in waiting queue; return O;
break;

b: if (#a = 0 && #b = 0)
#b++; start b; return 1

- "1 "1 -

r

I

} }

else
put b in waiting queue; return O;

break;

int depart(operation)
{

case operation {

}

a: #a--; break;
b: #b--; break;

if (waiting queue not empty) {

} }

op = dequeue(waiting queue);
while (sta~t(op) && ! empty(waiting queue))

op = dequeue(waiting queue);

The state variables #a and #b are added to the private data of
the object and the procedures start and depart are two private
methods of every object of class Sample. For the control engine to
work correctly, calls to start and depart must be serialized (such
serialization mechanism is not mentioned in the above code). Every
method of a Sample object invokes the start method as its first
operation and invokes the depart method as its last operation.

With dynamic parallelization, parallelism is completely
encapsulated inside the object, and any change to the path
expression of an object requires only a recompilation of the object
(recoding the control engine). However this method assumes that
there are parallel processes issuing parallel operations to the
control engine. In C++ we don't have language constructs for
specifying processes, but we can use the following method to create
parallel processes.

Asynchronous Light Weight Processes.

Under the assumption that process creation and termination
are cheap, we can convert each call to a method to an activation of a
(light weight) process to execute the method. If the results of its
execution (function result or new values of reference parameters)

- i 2 -

are used in a later computation, an explicit wait call is issued to
delay the computation until the process terminates. Other than this
kind of result-use relation, all processes (calls to methods) are
assumed independent and their interactions are controlled by the
control engines of the objects. For example, in the following code
(a), the result of variable m is not used until the return statement.
So all of the calls to method innerProd can be activated as processes
that run in parallel, as in (b).

(a) for (i=i; k=N; i++)
m[i]Li] = mat1 [i].innerProd(mat2[i]);

return m;

(b) for (i=1; k=N; i++)
p id [i] = activate (m [i] [j] , mat 1 [i] . i n n e r P r o d , m at 2 [i]) ;

for (i=i; k=N; i++)
wait(pid[i]);

return m;

To improve the parallelism in the method, compiler techniques
can be used to advance calls and delay access to the result.

A non-trivial problem is that when a statement needs the
result of a procedure call it must decide which process(es) to wait
for returned data. A simple way is to count the total number of
activate processes, and when a result is wanted, wait until all
processes finish. More selectively issuing waits can improve
parallelism.

Although the above method is simple, a major problem is that
the required dynamic conflict resolution introduces runtime
overhead. First the cost of executing the control engine may be more
than the time saving through parallel execution, especially when the
methods are small. Secondly, the control engine always has to
consider all methods that might be involved in the conflict, although
in reality only a few methods may be used in a particular program.
The control engine may become the bottleneck for the parallel
execution.

- 1 3 -

6. Parallelism Encapsulation through Automatic
1
Parallelization.

Another approach for parallelism encapsulation is Automatic
Parallelization, Given a C++ program (or a subject) that uses the
objects whose parallelism are described by path expressions, a
restructuring tool converts the sequential program to a parallel one
by consulting the parallelism described in the path expressions.
When the parallel pattern in an object changes, only recompilation of
the parts of the program that uses the object need be done to ensure
correct parallelization of the program, without any global code
modification by the programmer.

Parallelism encapsulation through automatic parallelization is
interesting because it takes advantage of both explicit
parallelization (path expression) and implicit restructuring
technology. Without parallelization tools parallel programming is
too tedious ([APPELBE-85], [LUBECK-85]). On the other hand,
achievable parallelism is very limited without explicit parallel
programming effort ([WOLFE-87], [LEE-85]). Specifying a path
expression is relatively easy since it is only necessary to consider
object-local parallel activities. Still, we anticipate that highly
parallel objects will result in highly parallel programs when using
objects properly, although statistics are needed to support this
expectation. When path expressions have been specified,
restructuring becomes much easier (to be discussed soon).
Parallelism encapsulation through automatic parallelization offers a
natural combination of explicit and implicit parallel programming
efforts.

Restructuring is centered around data dependence analysis
([KUCK-81]). Normally, to analyze whether or not two statements
are dependent, the sets of used variables U and modified variables M
are first determined. Two statements S1 and S2 are dependent if
S1 .U * S2.M, or S1 .M * S2.U, or S1 .M * S2.M is not empty. To analyze
data dependence among the statements that involve procedure calls,
interprocedural analysis is required to find the summary
information, namely the sets of variables that may be used or
modified by the procedure ([BART-78], [COOPER-88], [Ll-88]).
lnterprocedual analysis is hard with little reward because
procedural side effect forces the analysis to make conservative

- i 4 -
,.

only if there exists a call obj1 .method1 () in S1 .C and a call
obj2.method2() in S2.C, such that

1. obj1 = obj2 and
2. (method1, method2) is not compatible with the path
expression in obj1.

For example, in the following,

S1: r1 = v.innerProd(v);
S2: r2 = v1 .innerProd(v2);
S3: v1. reverse();
S4: v2. reverse();

S1 .C = (r1 .=, v.innerProd, v.[]), S2.C = (r2.=, v1 .innerProd, v2.[]), S3.C =
(v1 .reverse), and S4.C = (v2.reverse). Statements S1 and S2 are
independent since they call methods of different objects. S2 and S3
are dependent because they call methods in the same object and
(innerProd, reverse) is not compatible with the path expression for
vector object. S2 and S4 are also dependent since object v2.0 is
called in S2 and v2.reverse is called in S4 and ([], reverse) is not
compatible with the path expression for object vector.

Similarly, two statements S1, S2 have loop carried dependence
([ALLEN-83]) if and only if there are two iteration vectors I= (i1, i2,
... , in), J= (j1, j2, ... , jn) and calls obj1 .method1 in S1 (l).C,
obj2.method2 in S2(J).C, such that

1. I-:;:. J;
2. obj1 = obj2;
3. {method1; method2} is not compatible with the path
expression of obj1.

As another example, in the following loop, statements S1 and
S2 have no loop carried dependence since they call methods in
different objects. However, S2 and S3 have loop carried dependence
because iteration vector (i) -:;:. (i+ 1), method v1 [i+ 1].reverse() is
called by S2(i+1), method v1 [i+1].innerProd() is called by S3(i), and
{innerProd, reverse} is not compatible with the path expression for
object vector.

- 1 6 -

,I

for (i=1; i<=n; i++) {
S1: ri [i] = v[i].innerProd(v[i]);
S2: vi [i].reverse();
S3: r2[i] = vi [i+"1].innerProd(v2);

}

Determining Compatible Path Expressions.

To check whether or not a path expression e2 is compatible
with another path expression ei, we need the following concepts.

1) The projection of path expression e1 to e2, projection(ei,
e2), is the path expression obtained by removing the methods in e1
that are not in e2.

2) The standard form of a path expression e, standard(e), is the
path expression obtained after re-arranging e so that the operands
of the commutative operators "+", and "," are in a specific order (e.g.
the lexical order of the operands).

3) Assume e1, e2, e3, e4 are path expressions. The relation ~s

(Strictly compatible relation) on the set of path expressions can be
defined as follows.

. If e1 = e2, then e1 ~s e2.

If ei ~s e2 and e3 ~s e4, then
(ei , e3) ~s (e2 , e4);

(e1 + e3) ~s (e2 + e4);
{ e 1 } ~s { e 2} .

If ei ~s e2, then ei ~s { e2}.

Path expression e2 is compatible with path expression ei if
and only if standard(e2) ~s standard(projection(ei, e2)).

For example, assume ei = {innerProd, sum, []} + reverse, and e2

- i 7 -

= (sum, innerProd). Since standard(e2) = (innerProd, sum) ~s

{innerProd, sum} = standard(projection(e1, e2)), we conclude that e2
is compatible with e1. On the other hand, e2 = {innerProd, reverse}
is not compatible with e1 = {innerProd, sum, []} + reverse, since
projection(e1, e2) = {innerProd} + reverse, whose standard form is
not strictly compatible with standard({innerProd, reverse}).

Determining Indirect Calls.

The problem of determining the set of indirect calls in method
p(V) is to find the set of methods that are associated with the
reference parameters in V and are called inside p. We don't need to
consider the methods of the value parameters because the methods
of the value parameters do not conflict with any other methods at
the call site. So we can assume V contains only reference
parameters.

Assume method p has formal parameters FV. We fomulate the
following flow problem for the set of indirect calls of p(V).

. For the set of reference formal parameters FV of p, we
denote the set of calls to FV's methods directly issued inside p as
DC(p, FV).

. For each nested call qi, let FVi be the set of formal

parameters of p passed to it (FV :::> FVi). We denote the set of
indirect calls of qi(FVi) as IDC(qi, FVi).

Then the methods indirectly called by p(FV) are

IDC(p, FV) = DC(p, FV) U U IDC(q., FV.)
1 1

V q. called by p with FV.
1 1

The methods indirectly called by p(V) are IDC(p, FV) with FV
replaced by the corresponding objects in V.

Note that a method indirectly called by p(V) does not have to
be a method of any object in V. For example, in the following,
method obj1 .[](1).= is indirectly called which is a method of object
returned by the call to obj1 .[](1). Similarly obj2.subm(x, y) .= is

- 1 8 - I

·I
I

indirectly called even though it Is neither a method of obj1 nor a
method of obj2.

mtd(&OBJECT obj1, obj2);
{

obj 1 [1] = data 1 ;
obj2.subm(obj1, y) = data2;

The above example implies that an indirectly called method
can be a variable . Thus sometime it is impossible to determine the
precise set of indirectly called methods. When this happens, we
have to conservatively assume a large set of calls covering the
uncertainty.

Relation to Normal Data Dependence Analysis.

In a non-object oriented programming language, accesses to a
variable are classified as either using or modifying and the two
accesses are considered in conflict when they are performed in
parallel with the same data (we do not distinguish between the false
dependences and the true dependence [KUCK-81] since most false
dependences can be removed by renaming and using temporary
variables). In C++, accesses to objects are no longer either using or
modifying. Instead, every method is a unique type of access to an
object. Whether or not the methods are in conflict is described in
the path expression. So normal data dependence analysis is a more
primitive form of data dependence analysis using path expressions.
In particular, data dependence analysis using path expressions can
be used to simulate normal data dependence as follows.

Consider every variable in a non-object oriented program as
belonging to the same univeral class UNIVERSE with two public
methods use() and modify(), and with path expression PATH use +
modify END. Each use of a variable x is a call to x. use(), and each
modification of variable x is a call to x.mod(). Then for any
statement S, S.C = S.U + S.M, and the result of whether statements
S1 and S2 are dependent will be the same either by normal data
dependence analysis or by analysis using path expressions.

- 1 9 -

The ability to simulate normal data dependence analysis is of
particular interest because C++ can be used as a non-object oriented
"better" C ([STROUSTRUP-88b], [WIENER-88]), as well as an object
oriented programming language. When a C++ program is written
including non-object oriented features, such as free variables (the
variables that are not encapsulated inside an object) and free
functions (the functions that are not methods of any object), the
same data dependence analysis frame work can be used by simply
assuming that all free variables are the objects of the universal
class with methods use() and modify() and path expression PATH use
+ modify END. When a statement calls a free function, determining
the set of indirect calls is the same as normal interprocedural
analysis.

7. Conclusions and Open Problems.

In realizing that current techniques for parallel programming
in C++ destroy features like information hiding and encapsulation,
we propose to extend the C++ interfacing mechanism by adding path
expressions to describe parallel interactions among the interface
methods and to hide the details of parallel interactions from the
outside. Furthermore, since parallel interactions among the
interface methods tend to change when the implementation strategy
changes, we propose two methods, dynamic parallelization and
restructuring, to automatically propagate parallelism from the
inside of objects to the code that uses the objects.

Automatic propagation of parallelism through restructuring
can be done efficiently by taking advantage of the information
available in path expressions. This method is shown to be more
general than the normal restructuring approach, and thus the frame
work presented here can be used when non-object oriented features
are mixtured with objects in a single C++ program. Being able to
work with non-object oreinted features is of particular importance
in C++ since C++ is not a "pure" object oriented programming
language.

We have used examples of the simplest form of C++ objects,
namely the objects that have no public data, friend methods, derived

- 2 0-

,..

•

IJ

classes, static data, virtual functions, overloaded functions, or
multiple inheritance ([STROUSTRUP-86, -87]). We can show (omitted
here to save space) that these present no difficulty (except dynamic
binding of virtual functions) to our parallelism encapsulation
strategies.

Since the operands in our path expression are functions, we are
assuming large grain parallelization. It is interesting to study the
possibility of extending path expressions to allow finer grain
parallelism ([BRUEGGER-83]). Another open problem is posed by
conditional path expression ([ANDLER-79]), since two methods may
be run in parallel under certain conditions, but not always. Allowing
a conditional path expression will increase the parallelism. Our
method does not allow conditional parallelism.

8. References.

[ALLEN-83] Allen, J. R., Dependence Analysis for Subscripted
Variables and Its Applications to Program Transformations,
Ph.D. Thesis, Rice University, Houston, April 1983.

[ANDLER-79] Andler, Sten, "Predicate Path Expressions: A High
Level Synchronization Mechanism," Ph. D. Thesis, Carnegie
Mellon University, Aug. 1979.

[APPELBE-85] Appelbe, W. F. and C. McDowell, "Anomaly Detection in
Parallel Fortran Programs," Proc. Workshop on Parallel
Processing Using the HEP, May 1985.

[BARTH-78] Barth, J.M., "A Practical lnterprocedural Data Flow
Analysis Algorithm," CACM 21 (9), Sept. 1978.

[BERSHAD-88] Bershad, Brian N., Edward D. Lazowska and Henry M.
Levy, "PRESTO: A System for Object-oriented Parallel
Programming," Software-Practice and Experience, Vol. 18(8),
713-732 (Aug. 1988).

- 2 1 -

[BRUEGGER-83] Bruegger, Bernd, and Peter Hibbard, "Generalized
Path Expressions: A High Level Debugging Mechanism," The
Journal of System and Software 2(3), 265-276, 1983.

[CAMBELL-74] Cambell, R. H., and A. N. Habermann, "The Specification
of Process Synchronization by Path Expressions," In G. Goos and
J. Hartmanis (ed), Lecture Notes in Computer Science. Vol. 16,
Operating Systems, pp89-102. Springer-Verlag, Berlin, 1974.

[CAMBELL-SO] Cambell, R. H. and R. B. Kostad, "A Practical
Implementation of Path Pascal," Tech Report, Dept of Computer
Science, University of Illinois at Urbana-Champaign, UIUCDCS
R-80-1008, 1980.

[COOPER-88] Cooper, Keith D. "Fast lnterprocedural Alias Analysis,"
Dept. of Computer Science, Rice University, Rice COMP TR88-
80, Nov. 1988.

[COX-86] Cox, Brad, "Object Oriented Programming -- An
Evolutionary Approach," Addison-Wesley, 1986.

[HABERMANN-75] Habermann, A. N., "Path Expressions," Tech Report,
Dept of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA, June, 1975.

[KOLSTAD-SO] Kolstad, Robert B. and Roy H. Cambell, "Path Pascal
User Manual," ACM SIG PLAN Notices (Sept ~ 980), 15, 9, pp 15-
25.

[KUCK-81] Kuck, D. J., R. H. Kuhn, D. A. Padua, B. Leasure, and M.
Wolfe, "Dependence Graphs and Compiler Optimizations," Proc.
8th ACM Symp. Principles Programming Languages, Jan. 1981,
pp. 207-218.

[LAUER-79] Lauer, P. E, P. R. Torrigian, and M. W. Shields, "COSY - A
System Specification Language Based on Paths and Processes,"
Acta Informatica 12, 109-158 (1979).

- 2 2-

If

[LEE-85] Lee, Gyungho, Clyde P. Kruskal, and David J. Kuck, An
Empirical Study of Automatic Restructuring of Nonnumerical
Programs for Parallel Processors, IEEE Trans. on Computers,
Vol. c-34, No. 10, October 1985.

[Ll-88] Li, Zhiyuan, Pen-Chung Yew, "lnterprocedural Analysis for
Parallel Computing," Proc. of 1988 ICPP, Vol. II, pp 221-228.

[LUBECK-85] Lubeck, 0. M., P. 0. Frederickson, R. E. Hiromoto, and J.
W. Moore, "Los Alamos Experiences with the HEP Computer," in
Parallel MIMD Computation: HEP Supercomputer and Its ·
Applications (MIT Press, 1985).

[STROUSTRUP-86] Stroustrup, Bjarne, "The C++ Programming
Language," Addison-Wesley Publishing Company, Inc, 1986.

[STROUSTRUP-87] Stroustrup, Bjarne, "Multiple Inheritance for C++,"
Proceedings of the Spring' 87 BUUG Conference, Helsinki, May,
1987.

[STROUSTRUP-88a] Stroustrup, Bjarne, "What is "Object Oriented
Programming"?," IEEE Software, Vol. 5 No. 3, May, 1988, pp 10-
20.

[STROUSTRUP-88b] Stroustrup, Bjarne, "A Better C?," Byte
Magazine, Aug. 1988, pp 215-216D.

[WIENDE-88] Wiener, Richard S., Pinson, Lewis J., "An Introduction
to Object-Oriented Programming and C++," Addison-Wesley
Publishing Company, Inc, 1988.

[WOLFE-87] Wolfe, M.J. and Utpal Banerjee, "Data Dependence for
Parallelism Detection," lnt'I Journal of Parallel Programming,
Vol. 15, No. 2, April, i 987.

-23-

	Wu_Lewis_89_60_03_A
	Wu_Lewis_89_60_03_B

