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Abstract This paper addresses the problem of aggregating a number of expert 

opinions which have been expressed in some numerical form. An imponant 

feature of sets of ex-pert opinions is the possibility of stochastic dependence 

between members of the sets. \Ve develop an approach for combining ex-pert 

opinions which formally allows for such dependence. This approach is based on 

an extension of the Dempster-Shafer theory, a well-knov.n calculus for reasoning 

with uncertainty in anificial intelligence. 

1. Introduction 

Consider a project manager who must solve a problem for a project, and suppose 

that the manager consults several ex-perts who offer him their opinions. \Vb.at solution to 

the problem should the manager derive from these expert opinions? This is the problem 

of solving problems using opinions from more than one expert. This imponant and 

basic issue in decision-making processes appears in many application domains of 

artificial intelligence (AI). 

We do not restrict ourselves to combining expert opinions from human ex-perts; we 

can readily envision the need to combine expert advice from several distributed 

computer-based expert systems, or from mixtures of human and non-human opinion 

creators. In the follov.ri.ng, we shall not distinguish between human and non-human 

"experts." 

How should the manager arrive at a solution? First, because opinions provided by 

experts generally involve some degree of uncertainty, he or she should be able to "reason 
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with uncertainty." Experts often use phrases like "probably true", "might be", "likely", 

and "most likely" to qualify their opinions. Most expert systems that include reasoning 

with uncertainty assign numerical values to measures of uncertainty or to strengths of 

beliefs. 

In the rare situation in which each expert expresses precisely the same opinion as the 

others, then the manager might reasonably accept this opinion as a very plausible 

solution, particularly if the experts differ in their backgrounds, methodology, and in the 

knowledge they use in reaching their decisions. But in most cases experts disagree 

because they possess different sets of information and expertise. Therefore, the 

manager must reconcile differences between expert opinions and reach a composite 

solution that takes all different opinions into account. 

Experts differ in levels of expertise. Some experts are more expert than the others 

because of better training, more experience, and greater intelligence. Therefore, our 

manager, when she or he combines expert opinions, should treat opinions of different 

experts differently. We should pay the most attention, or weight most heavily, the 

opinions of the best experts. 

• While experts do not share precisely the same information and expertise, they often 

share some of these. For example, they may access certain data from the same 

information sources and they might base their opinions at least partially on this body of 

data. In cases like this, the opinions of experts are statistically dependent upon each 

other. Morris observed that the degrees of dependence between experts significantly 

affect combined results [Morris 1986]. He claims that "The issue of nonindependence 

among experts is critically important .... It is the single most important issue in practical 

applications. Yet, it is often ignored in many expert combination formulas, probably 

because it is extremely difficult to think about, much less quantify" 

This paper addresses these problems for an automatic manager of systems of multiple 

experts. The key method employed here is the Dempster-Shafer theory (D-S theory) 

[Shafer 1976, Dempster 1967], which is a well-known calculus for reasoning with 

uncertainty in AL There are two reasons why we chose this method: (1) the D-S theory 
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can be used to handle epistemic information -- information that is not necessarily 

constructed from precise mathematical information, which, for example, might be 

constructed from sometimes vague and sometimes confused perception [Shafer 1976); 

(2) the theory naturally and easily handles ignorance or lack of knowledge [Bhatnagar 

and Kanal 1986). Clearly, these properties are desired for our purpose of combining 

expert opinions since experts do offer their opinions with certain degrees of ignorance 

and, in most situations, at least some of the information they use is epistemic in nature. 

Unfortunately, the combination rule of the D-S theory is mathematically justified 

only if the information sources to combine are statistically independent [Dempster 1967). 

Since dependencies between experts generally exist, we must extend the combination 

rule must to deal with dependent evidence. We have developed a formal approach for 

combining dependent opinions of multiple experts. 

In the next section, we review some basic concepts of the D-S theory, illustrate how 

the theory can be used to combine results from independent experts, and suggest a 

method for weighting expertise. We then propose an approach for combining dependent 

experts for the situations where expert opinions can be represented as simple support 

functions. This method is an extension of the combination rule of the D-S theory. 

Finally, we discuss an approach for combining more complex opinions of experts and 

the problem of higher-order dependence. 

2. Combining Opinions from Independent Experts 

In this section, we briefly review some basic concepts of the D-S theory and 

illustrate these concepts by simple examples of medical reasoning. In these examples, 

we consider situations in which several physicians make diagnoses on a patient. Our 

objective is to combine opinions from experts who offer differing diagnoses to produce a 

composite diagnosis. For now we assume that these experts base their opinions on 

distinct observations (independence assumption). The examples we describe are 

extensions of those in Gordon and Shortliffe [1985). For details of D-S theory, see that 

article, [Shafer 1976), and [Dempster 1967). 
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Suppose that propositions h 1, h2 , ... , hn are all possible actual answers to the 

question Q that manager M asks experts to answer. The set H = { h 1, h2 , ... , hn}, is 

called the frame of discernment; each hi is a singleton hypothesis. The elements 

of H are to be mutually exclusive and exhaustive. The power set of the frame of 

discernment H, denoted by 2H, is a hypothesis space with respect to H, which is a 

set of all possible answers to the question Q. A non-singleton hypothesis, a subset of H 

with more than one member, should be interpreted as the hypothesis that one of the 

singletons in it is the correct answer to the question Q. 

Example 2.1. Suppose a physician is considering a case of cholestatic jaundice. 

This problem is caused by an inability of the liver to excrete bile normally. In a 

typical case of this type, the diagnostic hypothesis set might include hepatitis (Hep), 

cirrhosis (Cirr), Gallstones (Gall), and Pancreatic cancer (Pan). In terms of D-S 

theory, the set {.Hep, Cirr, Gall, Pan} is the frame of discernment H. The 

hypothesis space is the power set of the frame of discernment: { ¢, {Hep}, { Cirr}, 

{Gall}, {Pan}, {Hep Cirr}, {Hep, Gall}, {Hep, Pan}, {Cirr, Gall}, {Cirr Pan}, 

{Gall, Pan}, {Hep, Cirr, Gall}, {Hep, Cirr, Pan}, {Hep, Gall, Pan}, {Cirr, Gall, 

Pan}, H}. The hypothesis space is the set of all possible hypotheses. 

The D-S theory uses a number m(A) in the range [0,1] inclusive to indicate belief in 

the hypothesis A. This number is a measure of that portion of the total belief committed 

exactly to the hypothesis A. Thus the belief concerning the frame of discernment H can 

be represented as a function m: 2H-->[0, 1]. This function m is called a basic 

probability assignment (bpa) that must satisfy m(0) = 0 and I,m(A) = 1. We use 

this function to represent opinions of experts. A focal element F of a bpa m is the 

hypothesis F that satisfies m(F) > 0. Note that m(H) is a measure of the extent to which 

we can make no decision at all regarding any of the hypotheses; m(H) is a measure of 

our ignorance about the problem. 

Example 2.2. Let H be {Hep, Cirr, Gall, Pan}. Suppose a physician P 1 

observes some symptoms from a patient and he decides that these symptoms support 
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the diagnosis of {Hep, Cirr} to the degree 0.6, but do not support a choice between 

cirrhosis and hepatitis. The remaining belief, 1 - 0.6 = 0.4, denotes the degree of 

belief at which P 1 has not gathered any evidence that could be used to assign to any 

hypothesis in 2H. The unknown degree 0.4 is assigned to the frame H. Thus 

m 1 ( {Hep, Cirr}) = 0.6, m 1 (H) = 0.4, and the value of m 1 for every other 

hypothesis in 2H is 0. 

Given several bpas over the same frame of discernment but based on distinct 

independent pieces of evidence, Dempster's rule of combination [Dempster 1967] 

enables us to compute a new bpa which is a composite effect of the original bpas. 

Suppose m1, with focal elements A 1, ... , Ak, and m2, with focal elements B 1, ... , 

Bm, are bpas over the same frame H. The new bpa is defined by m(¢) = 0, and 

L(,\ n B?=C m 1 (Ai) * m2(Bj) 

m(C) = ------------------------------------------------ (2.1) 

1 - L(,\ n Bj)=¢ m1 (Ai) * m2(B} 

for all non-empty C in 2H. This combination rule can be repeatedly applied to any 

number of bpas and the final combined result does not depend on the order in which the 

combination is done ( [Shafer, 1976], p62). 

Example 2.3. Suppose a different physician P2 observes some symptoms from 

the same patient as that in Example 2.2. These symptoms lead her/him 

(independently) to a diagnosis of {Cir, Gall, Pan} with degree 0.7. Thus ~({Cir, 

Gall, Pan}) = 0.7, m2 (H) = 1-0.7 = 0.3, and the other values of m2 are 0. 

Combining m2 with m1, from Example 2.2, using (2.1), we obtain a new bpa m3: 

m3({Cirr}) = 0.42, m3({Hep, Cirr}) = 0.18, 

m3({Cirr, Gall, Pan})= 0.28, and m3(H) = 0.12. 

Notice that the bpa m3 assigns the highest degree to the hypothesis { Cirr}. This 

seems reasonable since both diagnoses agree that Cirr might be the correct diagnosis. 

If we completely trust P 1 and P2 and if we value their their opinions equally, we can 

claim that m3 is a composite opinion of P 1 and P 2 r:,:N e are implicitly assuming that P 1 

and P2 are independent. We discuss issues of dependence below). As we mentioned 
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earlier, however, opinions of experts should be treated differently according to the levels 

of their expertise. To do this, we assign weights s (0 ~ s ~ 1) to experts to indicate our 

level of trust in their opinions. Ifs = 1 is assigned to an expert, that expert is considered 

to be completely reliable or always correct in his/her opinion. Ifs= 0, his/her opinions 

are without value. If ( 0 < s < 1 ), the opinion of the expert is partially to be trusted. 

\Ve propose that a bpa that indicates the opinion of such an expert be modified as 

follows: 

m'(Ai) = s * m(Ai), for allAi in 2H - H, (2.2) 

m'(H) = 1 - I m'(Ai). (2.3) 

The resulting bpa m' is the weighted opinion of the expert. This weighting formula is 

motivated by the idea that if one only partially trusts in the expert, the discounted portion 

of the degree of belief in this expert should be considered to be "unknown." 

Example 2.4 . Let m 1 and m2 be_ the opinions of physicians P 1 and P2 in Example 

2.3. Suppose that P 1 is completely trusted because of his good reputation and that 

P 2 is highly trusted because of his frequent successes and occasional failures. We 

could assign s1 = 1 to P 1 and s2 = 0.7 to P2 . By (2.2) and (3.3), we obtain the 

weighted bpas m 1' and m2': 

m 1'({Hep, Cirr}) = 0.6, 

m 2 '( { Cirr, Gall, Pan}) = 0.49, 

Combining m1' with m2•, we obtain m 3', the composite opinion of P 1 and Pi: 

m 3'({Cirr}) = 0.294, m3'({Hep, Cirr}) = 0.306, 

m 3'({Cirr, Gall, Pan})= 0.196, m'(H) = 0.204. 

Comparing m3' with m3 of Example 2.3, we discover that the beliefs in { Cirr} and 

{ Cirr, Gall, Pan} have been significantly reduced and the belief in {Hep, Cirr} and 

the unknown belief m3'(H) have increased. This _seems reasonable since Cirr, Gall, 

or Pan are the solutions that P2 suggested, who has been discounted, and {Hep, 

Cirr} is the suggestion of P 1, who received higher weight. 

An alternative representation of opinions of experts is the belief function. A belief 
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function represents the total confidence in the truth of a hypothesis and any larger 

hypotheses that contain the hypothesis . Belief functions are interconvertible with their 

corresponding basic probability assignments. Let m be a bpa and Bel be its 

corresponding belief function. Then 

Bel(A) = LB in A m(B), and 

m(A) = LB in A (-l)IA-BIBel(B). 

(2.4) 

(2.5) 

Example 2.5. By (2.4), the belief function corresponding to m3• in Example 2.4 

is 

Bel(H) = 1, Bel{ {Cirr, Gall , Pan})= 0.49, 

Bel({Hep , Cirr}) = 0.6, Bel( { Cirr}) = 0.294. 

The fact that the belief in H is 1 simply means that one of the hypotheses in H must 

be true. The belief in { Cirr, Gall, Pan} is the sum of all m(A)s such that A is a 

subset of { Cirr, Gall , Pan} . 

Some of the other important concepts in the D-S theory, such as commonality 

numbers , degrees of doubt , upper probabilities , and weight of conflict are to be found in 

[Shafer 1976] and [Gordon and Shortliffe 1985]. 

3. Combining Dependent Opinions of Experts 

As we mentioned earlier, the combination rule (2.1) of the D-S theory can be used 

only for combining independent opinions of experts, and we have assumed that the 

experts were independent in the discussions above. We now propose an extension to the 

combination rule so that we can handle dependent expert opinions. For simplicity , we 

assume that opinions of experts to combine can be represented as simple support 

functions (simple support functions have unique foci). In the next section, we will 

discuss more general situations . 

The need to account properly for dependence between opinions is indicated most 

simply when we observe that if the D-S combining rule is applied twice to same opinion, 

the resulting beliefs are increased , even though no new information has been added . In 

example 3.6 below we explore this situation in more detail. We describe our approach 
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for pair-wise dependence here. We discuss higher order dependences later. 

Let E 1 and E2 be two bodies of evidence collected by P 1 and P2, respectively. 

Suppose that P 1 and P2 , using E 1 and E2, offer bpas m 1 and m2 as their opinions 

about the frame of discernment H. If m 1 and m2 are not independent, we could imagine 

that their derivations are based on certain common evidential sources, that is, E 1 and E2 

are overlap somehow. Let Ebe the overlapping evidence. Thus, we could view E 1 as a 

composition of two parts, the part E that is shared by E2, and and a part E1' that is 

completely disjoint from E2. Similarly, E2 could be viewed as a combination of E and 

E2' where E2' is completely disjoint from E 1. 

The weight of a piece of evidence is a positive measure of how strongly a piece of 

evidence supports the hypothesis it points to. Let w 1, w2 , w 1 ', w2•, and w be the 

weights for E 1, E2, E 1 ', E2', and E respectively. We make the following definition to 

connect weights of evidence with dependence: 

Definition 3.1. The dependence parameters between two information sources E 1 

and E2, denoted by D 12, which means how strongly E 1 depends upon E
2

, and D21, 

which means how strongly E2 depends upon E1, are defined as 

D 12 = w /w 1 and (3.1) 

D21 = w / W2· (3.2) 

According to the addition law of weights ( [Shafer 1976], p77), we have 

D 12 = w / (w 1' + w), and (3.3) 

D21 = w / (w2• + w). (3.4) 

From (3.3) and (3.4), we can easily deduce the following properties of dependence 

parameters: 

Theorem 3.1. 

(1) O~D 12,D 21 ~1, 

(2) D 12 = 0 iff D21 = 0 iff E 1 and E are independent, 

(3) D 12 = 1 iff E 1 logically implies E2 and 

D21 = 1 iff E2 logically implies E 1, and 
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(4) D12 = D21 = 1 iff E1 and E2 are logically equivalent. 

From these properties, we can see the intuitive appeal of our definition of dependence 

parameters. If two experts use completely distinct bodies of evidence, the weight of 

shared evidential source w must be O (since no evidence is shared at all). Therefore, E 1 

and E2 are independent. It immediately follows that the opinions of P1 and P2, m 1 and 

m2 must be independent. On the other hand, the more information sources P1 and P2 

share, the larger w is, and therefore, the larger the dependence parameters are. When E1 

= E2, that is, P1 and P2 share the exact same evidential sources for their judgements 

about H, it must be true that w = w1 = w2, which yields D12 = D21 = 1. 

In the general case, the determination of the dependence parameters Dij is not a 

trivial matter. Here we take a stochastic approach. We present a more detailed analysis 

of our approach to this problem in [Ling, Rudd, et al 1989]. 

Armed with dependence parameters, we can combine m 1 and m2 by a four-step 

computation: 

(1) decomposing m1 and m2 into independent pieces; 

(2) reconcile disagreements between P1 and P2; 

(3) weight P1 and P2; and 

( 4) combine those independent weighted pieces by our combination rule (2.1 ). 

Step One. Decomposing m1 and m2. 

Recall that m 1 is the opinion of P 1, which is derived based on E 1. E 1 is a 

composition of E 1' and E. We would like to decompose m1 into two bpas, m11 and 

m12. This decomposition should satisfy: 

(1) combining m11 with m12 produces m 1; 

(2) m11 is supported by E 1'; and 

(3) m12 is supported by E. 

We call the decomposition with these properties a legal decomposition. 

Theorem 3.2. The decomposition defined by 

m11 = 1 - (1 - m 1)1/(k+l), and 
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ml2 = 1 - (1 - ml)Cl - 1/(k+l)) 

where K = D 12 / (1 - D 12), is a legal decomposition. 

We construct the decomposition step by step, which shows that the 

resulting decomposition is a correct one. Clearly, the foci of m 11 and m 12 must be 

the same as the focus of m 1 because the combination of m 11 and m 12 must yield 

m 1. According to Shafer [Shafer 1976], the relationship between the weight of 

evidence w and the degree of belief b supported by this evidence should be 

w = - In (1-b). 

Therefore, we have 

w 1'=-ln(l-m 11) (3.5) 

w = - ln(l- m 12) (3.6) 

w = K * w 1' (3.7) 

where K = D 12 / (D 12 - 1) deduced from Definition 2.1. Thus we have 
. k 

(1 - mu) = (1 - m12), 

Let 

and 

V12 = 1- m12. 

We obtain V 11k = V 12. 

Combining m 11 and m 12 by combination rule (2.1), we have 

ml 1 + m12 - ml 1 *m12 =ml· 

Let V 1 = 1 - m 1, 

and notice (3.8) and (3.9). (3.11) becomes 

V11 *V12 =V1. 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

Solving (3.10) and (3.13), we obtain the decomposition formula described in the 

theorem. Notice that the resulting m 11 and m 12 satisfy (3.11). Therefore, 

combining them indeed yields m 1. And also notice that the definition of the 

dependence parameters Dij guarantees that the decomposition satisfies the other two 

properties of a legal decomposition. Thus we have proved the theorem. 

End of proof 
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Example 3.1. Again, suppose that physicians P1 and P2 are considering a case 

of cholestatic jaundice with the frame of discernment { Hep, Cirr, Gall, Pan}. 

Suppose that physician P1 collects distinct symptoms of the patient, e 1, e2, e3, and 

e 4, and he judges that these symptoms support the diagnosis of ( Hep, Cirr} to the 

degree 0.6 (m 1 ((Hep, Cirr}) = 0.6). And suppose that P2 gathers distinct 

symptoms from the same patient, e3, e4, e5, e6, and e7 and he decides that these 

symptoms support hypothesis ( Cirr, Gall, Pan} with degree 0.7 ( m2( ( Cirr, Gall, 

Pan})= 0.7). Thus, E 1 = {e1, e2, e3, e4 }, E2 = {e3, e4 , e5, e6, ~}, E 1' = (e 1, 

e2 }, E = (e3, e4 }, and E2' = (e5, e6, ~}. If we assume that every symptom 

equally supports the diagnosis (this assumption could be relaxed if we have the 

medical knowledge to distinguish between the strengths of these symptoms), we 

infer that D12 = 1/2 and D21 = 2/5. Applying Theorem 3.2 to m 1 and m2, we 

obtain the following decomposed pieces of opinions of P 1 and Pi 

m 11((Hep, Cirr}) =0.3675, m12({Hep, Cirr}) = 0.3675, 

m21((Cir, Gall, Pan})= 0.382, m22({Cir, Gall, Pan})= 0.5144. 

To check the decomposition, we combine m 11 with m 12, and m21 with m22 . 

Indeed, these combinations reproduce m 1 and m2. As a check, we use Shafer's 

formula 

w =-ln(l - m) to recover the weights w 11 , w12 , w21 , w22 and compute 

dependence parameters D12 and D21 by Definition 2.1, we discover that they indeed 

equal 1/2 and 2/5, respectively. 

Step Two. Reconciling Disagreement Between P1 and P2. 

Though m12 and m21 produced in the first step are based on the same evidential 

source E, they are not equal in general because they are derived by different experts. In 

this step, we must combine m12 and m21 into a single level of belief m' to be associated 

with the single underlying evidential source E. While there is no a priori reason for 

selecting a specific arithmetic rule for computing m', we suggest that a weighted average 

of m 12 and m21 would fit most applications. Suppose that P1 is assigned weight s1 and 
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P2 is assigned weight s2. m' can be computed by 

m'(A) = (s1/(s 1 + s2)) * m12(A) + (s2/(s 1 +s2)) * m21 (A) 

for each A in 2H and A -:t; H, and 

m'(H) = 1 - LA.tH m'(A) 

(3.13) 

(3.14) 

Example 3.2. Applying (3.13) to m 12 and m21 produced in the last step, and 

again assigning weight s1 = 1 to P1 and s2 = 0.7 to P2,we obtain the reconciled bpa 

m': 

m'({Hep Cirr}) = ( 1/1.7) * 0.3675 + (0.7/1.7) * 0 = 0.2162, 

m'({Cirr Gall Pan})= (1/1.7) * 0 + (0.7/1.7) * 0.3820 = 0.1573, 

m'(H) = 1 - 0.2162 - 0.1573 = 0.6265. 

Step Three . Weighting Opinions of Experts 

Apply the weighting formulae (2.2) and (2.3) to m11 and m22 produced in Step 

One. This yields the weighted expert opinions m11 • and m22'· 

Example 3.3. Let m1i and m22 be those in Example 3.1. Weighting m 11 and 

m22 yields 

m 11'({Hep Cirr}) = 0.3675 * 1 = 0.3675, m11'(H) = 1 - 0.3675 = 0.6325 , 

m22 ({Cir Gall Pan})= 0.5144 * 0.7 = 0.3601, m22(H) = 1 - 0.3601 = 0.6399. 

Step Four. Combining Weighted Independent Pieces of Opinions. 

Now, we have three bpas m11 •, m22 ', and m' which are based on independent 

evidential sources E 1 ', E2', and E. We can use the D-S combination rule (2.1) to 

combine them. The resulting bpa is a composite effect of dependent opinions of the two 

experts. 

Example 3.4. To continue our example, we combine m 11 ', m22 ', and m' 

produced in Example 3.2 and 3.3 . This combination gives the resulting bpa m: 

m({Cirr}) = 0.22, m({Hep, Cirr}) = 0.29, 

m({Cirr, Gall, Pan})= 0.244 , m(H) = 0.248. 

The belief function corresponding to the bpa m is 

Bel({Cirr}) = 0.22, Bel({Hep. Cirr}) = 0.51, 

Bel({ Cirr, Gall, Pan}) = 0.464, Bel(H) = 1. 
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The following are examples illustrating that if we treat dependent opinions of experts 

as if they are independent and combine them by the Dempster rule, we overestimate the 

degrees of beliefs. 

Example 3.5. Compare the belief function in Example 3.4 with the belief 

function in Example 2.5. Both of the two belief functions are produced from the 

exact same opinions of experts. But the belief function in Example 2.5 represents a 

higher degree of belief than that of Example 3.4 because it is combined under the 

independence assumption. 

Example 3.6. Suppose a physician P makes a diagnosis of {Cirr, Gall} with 

belief 0.45 for a patient (m 1 ( { Cirr, Gall}) = 0.45). A few days later, the physician 

P tells the patient the exact same diagnosis when he meets the patient in a 

supermarket (m2( { Cirr , Gall}) = 0.45). Clearly, m1 and m2 are completely 

dependent on each other (D12 = D21 = 1). Suppose that we trust the physician 

completely (weight = 1). Combining the two opinions of P by our approach 

proposed above yields a bpa that stays as same as the original bpa m 1 and m2. On 

the other hand, if we ignore the dependency and combine m 1 and m2 directly by 

Dempster rule, we produce a degree of belief 0.7 in {Cirr, Gall}. Notice that the 

combination greatly increases the degree of belief. This is not reasonable since we 

should not increase degree of belief only by stating the belief twice. In fact , by 

repeatedly combining a diagnosis with itself, we can make drive our belief in that 

diagnosis as close to certainty (m=l) as we wish. While repetition is an important 

tool we use to convince others of the validity of our views, it should have no impact 

on the results that are produced by formal or automated reasoning systems. 

Our presentation has concentrated on situations in which only two expert opinions are 

involved. Our approach can be applied pairwise to reconcile opinions from any number 

of experts, provided that there are no dependencies that cannot be decomposed into pairs 

of dependent sets. 
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4. Combining Separable Support Functions 

The approach we propose above is limited to the expert opinions that can be 

represented as bpas with unique foci (simple support functions). In this section, we 

extend this approach to handle more complex expert opinions that can be represented as 

separable support functions. A separable support function is a simple support 

function or a support function produced by combining simple support functions. 

Let m 1 and m2 be expert opinions about H that represent two separable support 

functions. Suppose that they are based on information sources E1 and E2. And 

suppose that the dependence parameters between E 1 and E2 are estimated as D 12 and 

D21. We might want to use our approach for simple support functions to combine m 1 

and m2. But in the case of non-simple separable support functions, the decomposition 

could be really difficult because such support functions have more than one focus. This 

might force us to solve a high order equation system. Fortunately, Shafer shows 

([Shafer 1976], p90) that separability means that there exists a collection of simple 

support functions that can be combined to yield the original separable support function. 

Under certain conditions, this collection of simple support functions, a canonical 

decomposition, is uniquely determined. 

In order to combine m 1 and m2 which correspond two separable support functions, 

we first use Shafer's canonical decomposition method to decompose m 1 into simple 

support functions m 11 , m 12, ... , m 1k, and decompose m2 into simple support 

functions m21 , m22 , ... , m2p. Given the dependence parameters D 12 and D21 

between E 1 and E2, the dependence parameters between m 1i and m2j could be defined 

as 

D1i,2j =D12, ( 1 :s;;i:s;;k, 1 :s;;j :s;;p) and 

D2j,li = D 21 ( 1 :s;; i :s;; k, 1 :s;; j :s;; p ). 

These definitions are imply that each smaller part of E1 depends to the same degree on 

every part of E2 and vice versa. This is a natural choice if we have no knowledge about 
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how dependence is distributed internally between E1 and E2. 

Now the problem of combining two separable support functions is changed to the 

problem of combining several simple support functions. We can use the approach 

described above to combine those simple support functions. The combination yields a 

composite effect of two separable support functions. 

5. Higher Order Dependencies 

For the sake of simplicity, in the discussion above we defined the dependence 

parameters in such a way that only two evidential sources are involved in each pairwise 

dependence. Theoretically, there is no inherent difficulty in extending the definitions to 

represent simultaneous dependencies among many evidential sources. But practically 

there would be two difficulties with applying this definition if all possible dependencies 

must be explicitly represented. First, the number of dependencies is exponential in the 

number of sources. And it is not clear that humans have the ability to assess and detect 

high order dependencies among a large number of sources. But these two difficulties are 

not unique to our approach. For instance, probability theories also have the same 

problems [Henrion, 1986]. In any event, it is apparently not necessary to consider every 

possible dependence; fortunately, it is not true that every event directly depends upon all 

others in the real world [Pearl 1986]. Therefore we could view world we are dealing 

with as sparsely connected, and extend our definition of dependence parameters without 

worrying too much about the complexity. For example, we can define the dependence 

parameter that represents how much E 1 depends on E2 and E3 as D112,3 = w123/w1 

where w123 is the weight of the evidential source that is shared by E1, E2, and E3; and 

w1 is the weight of E 1. 

With the extended definition, we can use the approach discussed in the last section to 

combine multiple expert opinions. The procedure involves more decompositions that 

decompose original opinions into independent pieces and more combinations that 

combine independent pieces into a final result. 
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6. Conclusions 

The approach investigated above provides a formal way to combine expert opinions 

which might be stochastically dependent. The initial evidence indicates that the 

combined results are quite sensitive to the degree of dependence. The higher the degree 

of dependence is, the lower the degrees of belief are obtained in comparison with 

degrees of belief derived under the assumption that the opinions are independent. 

The efficacy of our approach for practical problems in AI has yet to be fully 

established . We are implementing a system that will enable us to apply our results to 

realistic systems. 

One reason for combining expert opinions is to generate belief values in which we 

can have increased confidence over those produced by single experts. Another reason 

for combining opinions is that by doing so, we could, in principle, broaden the base of 

possible solutions to problems by including opinions from experts with differing frames 

of discernment. Our methodology applies to systems in which all the experts use the 

same frame of discernment (or frames that are at least compatible, see [Shafer, 1976]). 

We are working to extend our results to more general situations in which the experts 

have arbitrary frames of discernment. 

In summary, we have developed a framework for combining the opinions of 

experts. Further work will concentrate on methods for determining dependencies, on 

extending our results to more general situations, and on demonstrating the utility of our 

approach. 
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