
88-60-8 

LifUUEAS~ Y 

Smalltalk and Exploratory Programming* 

David W. Sandberg 
Computer Science Department 

Oregon State University 
Corvallis, Oregon 97331 



Smalltalk and Exploratory Programming* 

David W. Sandberg 
Oregon State University 

Using Smalltalk-80, programmers can produce prototypes much faster than with C or Pascal. 
What techniques do Smalltalk-80 programmers use to produce these prototypes? What is special 
about Smalltalk-80 that enables them to uses these techniques? Can these techniques be used 
with conventional languages such as C? In an attempt to answer these questions we interviewed 
experienced Smalltalk programmers and asked how they approach programming in Smalltalk. Such 
introspective interviews that are conducted after completion of a project are known to be somewhat 
unreliable, but not enough is known to use any other methodology. What follows is a summary of 
the interviews, followed by an explanation of the results. Finally we discuss some of the weaknesses 
of Smalltalk and some possible solutions. 

The interviews 

We interviewed seven Smalltalk programmers at Tektronix. Most of the programmers were not 
directly involved in developing the Smalltalk system, but were using the Smalltalk system to solve 
their problems. All of these programmers had successfully completed some Smalltalk project. Three 
of these programmers were working on products that Tektronix is considering marketing . Another 
was working on a product that is expected to receive widespread use within Tektronix. All of these 
projects involved user interfaces. Two of the programmers had about 6 months experience with 
Smalltalk. The others had a year or more experience. All had extensive experience developing 
software before turning to Smalltalk. 

The interviews were conducted informally and were from an hour to an hour and a half long . 
We were looking for what makes programming in Smalltalk different from programming in other 
languages. We did not poll the programmers on specific issues, because we had no idea what the 
important issues were. 

To summarize what the Smalltalk programmers said, we have constructed a composite mono
logue . Most of the themes in this monoluge are common to all of the interviews although a few 
of the points were brought out by only one programmer. This monologue is in the first person 
singular: 

I was attracted to Smalltalk because I can experiment, particularly with user interfaces. 
I can try out an idea much faster in Smalltalk than in other languages. There are several 
reasons for this. The automatic garbage collection of Smalltalk frees me from dealing 
with storage management issues. The browser and debugger are much better tools for 
understanding code than a program listing is. These tools make listings obsolete. I can 
test bits and pieces of my code in a workspace. I can save everything just as it is and 

1 Distributed as technical report number TR-88-06 of the Computer Research Laboratory of Tektronix , Inc . and 
as technical report number 88-60-8 of the Department of Computer Science at Oregon State University. 

1 



come back to it later. I can share more code by using inheritance and because I have 
access to a body of code to reuse. 

Programming by e>..'"Perimentation is exemplified by a Beck cycle which is a week long. A 
Beck cycle starts Monday morning with an idea. \\iithout any planning, a programmer 
starts coding to see if the idea can be implemented. By the end of Monday, he "'ill have 
convinced himself of the idea's feasibility. Tuesday, and Wednesday are spend finishing 
a prototype implementation. Thursday, and Friday are spent showing the prototype to 
his colleagues, and fixing any bugs that are found. If a colleague likes the idea, he will 
pick up the prototype, modify it, and use it in his ne>.."t project. 

'When the idea is no good, the Beck Cycle is aborted. This could happen when the 
programmer discovers that he doesn't knov.r how to implement the prototype, or when 
the prototype uncovers some basic flaw. In conventional environments, projects are 
seldom aborted because the effort invested is high. In Smalltalk, the effort invested is 
much less, and I can discard the code and try something else instead of trying to make 
the idea work by adding patch after patch. Since I throw away my failures, and show 
off the good ideas, I have acquired a reputation as an very good Smalltalk programmer. 

Programming in Smalltalk is different than it is in Fortan, Pascal, or Lisp. The exact 
difference is hard to determine. The Smalltalk Red[4] and Blue[3] book helped me with 
the mechanics of syntax and using the system, but did not telling me how to write a 
Smalltalk program. Although the Tektronix Smalltalk course is excellent, it did not tell 
me how to write a program either. Beginners tend to write code that looks like C, not 
Smalltalk. I think assembly language is better preparation for Smalltalk than Pascal or 
Lisp, because fewer restrictions are placed on the assembly language programmer. 

The Smalltalk user interface is different from that of conventional operating systems. 
The interface has features designed into it that I overlooked for a long time. However, 
even though the user interface is much different, learning it is not the major difficulty 
in learning of Smalltalk. 

Programming in C focuses on the dynamic aspects of a system, that is, the algorithms. 
In Smalltalk, I first focus on the state of the system when nothing is happening. I divide 
this state into classes and then assign the functionality of the system to the different 
classes. 

Smalltalk separates the data representation from the algorithm. Thus, either can be 
changed with little effort. In Fortran, changes to the data representation are difficult 
to make since most of the code directly depends upon it. · 

Much of the code in the Smalltalk-SO system is hard to understand, partly because the 
overall way pieces fit together is not documented, but must be inferred from the code. In 
spite of this, code is often reused anyway. For example, the paragraph editor is difficult 
to understand, but has been successfully modified by many Smalltalk programmers. 

Exploratory programming techniques encourage code that is hard to read. It is tempting 
to make fix after fix to a piece of code rmtil it is impossible to rmderstand. Hence, 
rewriting code is essential for producing reusable code. In rewritting a piece of code, 
the programmer brings a better understanding of the problems and writes a more easily 
understood piece of code. I consider rewriting to be a labor of love, not as a useless 
task. I plan to have each Smalltalk programmer in this project rev.'I'ite their code. 

Smalltalk-SO does not support multiple programmer projects well. This lack of support 

2 



is not as serious as it first seems, since other languages do not provide it either. This lack 
is more noticeable in Smalltalk since Smalltalk provides a good environment for a single 
user but provides a much poorer environment for multiple programmer groups. Most 
system provide poor environments for both the single user and multiple programmers. 

Speed has not been a serious problem. In one project we are using Smalltalk to design 
an oscilloscope and are planning to recode the final system in Objective-C to improve 
speed and allow us to put the code in ROM. 

Exploratory Programming 

A product environment is the environment in which a piece of software will be used. The standard 
software engineering practice is to study the product environment and produce a specification 
for the software. After the specification is complete, the software is written and tested. This 
technique works when the product environment is stable and well enough understood to produce 
a specification. However, in many cases the product environment is poorly understood. Applying 
standard software engineering practices in these environments is likely to produce unsatisfactory 
software. In such environments exploratory programming is a better approach[ll]. 

Exploratory programming involves producing a piece of software that attempts to meet the 
known, basic requirements of the system. This software is then tested in the product environment 
to find out how it fails. These failures lead to more requirements. The software is modified to 
meet these requirements, and tested again. This process is continued until the software performs 
adequately in the product environment. The requirements are not usually explicitly expressed by 
programmers, but are embodied in the code under development. 

Standard software engineering uses programming to implement a given specification. In con
trast, ex--ploratory programming is writing the specification. This specification need not be for a 
piece of software. In one case we studied, the specification was for a piece of test equipment. 

To have exploratory programming be successful, the cost of experimentation must be low. The 
time to write the code for an experiment must be short enough that the code can be discarded 
if the idea fails to produce the desired result. Discarding the bad ideas results in a much better 
product since only the best ideas are used. 

The cost of experimentation is influenced by two important factors: the cost of making changes 
and the amount of code that can be shared and borrowed . 

Making Changes. 

One factor that influences the cost of changes is the length of time it takes to complete the edit
compile-link-run-test cycle . Under conventional operating systems, this cycle is usually on the order 
of a few minutes. In Smalltalk, it is a few seconds. This is about as fast as a programmer can 
produce meaningful experiments. It is unlikely that speeding up this cycle further will increase 
programmer productivity, since the thinking time will become the dominate factor. The edit
compile-link-run-test cycle time has been similarly shorten in many other software development 
environments such as Magpie[2] and the Cornell Program Synthesizer[12]. 

Another factor that influences the cost of changes is how the code is organized and written. A 
good Smalltalk programmer will organize his code so that changes are easy to make. Code sharing 
is important because changes are easier to make to a single piece of shared code than to many 
pieces of code that are scattered throughout the system. 

3 



In conventional programming, the data representation and algorithms are closely intertwined. 
This makes it very difficult to change the data representation without changing nearly all of the 
code. In Smalltalk, it is possible to separate the data representation issues from the algorithms. 
Thus changes to the algorithm are more independent from changes to the data representation . 

The ability to mutate objects in Smalltalk makes the representation of data easier to change. 
Adding another instance variable to a class is a common change. All instances created before this 
change must be mutated by adding another storage slot for the new instance variable. In Smalltalk 
this mutation is transparent to the user. 

Sharing Code 

Another very important factor in lowering the cost of experimentation is the sharing of code which 
can take place within an application and among programmers. An existing library of software 
relevant to the e.x.1>eriment can reduce the cost of e..xperimentation. Three steps must occur if 
software is to be shared: 

• The shared abstraction must be expressed and placed in an accessible location. 

• The code must be found by the programmer. 

• The code must be understood in sufficient detail to be reused. 

The cost of finding and understanding the existing code must be less than that of revaiting it from 
scratch. 

Expressing the abstraction 

The ability to express an abstraction in code determines whether or not it can be shared. Some form 
of code sharing takes place in every system. The ability to express math functions as subroutines 
has allowed large libraries of math subroutines to be shared. In Unix, many programs are reused 
through the use of filters, pipes, and text files. The single universal data structure of Lisp has 
allowed many tools to be shared in the Interlisp-D environment. 

Sorting is an important concept, yet it cannot easily be e>..1>ressed with a subroutine unless the 
type of data being sorted is known. In environments where there is a dominant data structure, 
sorting routines are found in the libraries. For example, in Unix there is a program to sort records 
in a file. In Lisp there is a routine to sort lists. In Fortran and Pascal, there is no predominant 
data structure and the concept of sorting cannot be expressed without specifying a particular data 
structure. Because of this, sorting routines are not shared. 

In Smalltalk more kinds of sharing can be e>..1>ressed than with other languages. Smalltalk can 
express the concept of sorting without specifying the data type, which allows sorting routines to 
be shared. 

The main purpose of inheritance and the class hierarchy in Smalltalk is to permit the sharing 
of code. Sometimes the class hierarchy is used for organizing classes or methods, but these are not 
the primary functions of inheritance and the class hierarchy. 

Locating Code 

A user must be able to find the abstractions relevant to the current task . This has been a problem 
in Interlisp-D, Unix, and Smalltalk-80, but has not been seriously addressed in any of these envi
ronments. Unix does offer some tools for finding things. The manuals include a permuted index 

4 



and the man command can search by keyword. The man pages have a 'See also' section as well. 
Experienced users of these systems seem to remember the approximate location of what they need. 
This method could certainly be improved, but this issue does not seem to be the current limiting 
factor of Smalltalk. 

Understanding Code 

It appears that the most serious limitation in sharing software is the inability of the user to under
stand the software so that he can apply it to his application. Both the Interlisp-D and Smalltalk-SO 
environments provide tools that help in understanding code. These tools include windowing, code 
browsers, debuggers, and inspectors. \Vindowing allows relevant information to be placed side by 
side. The code browser aids in understanding the static state. The debugger and inspectors help 
to understanding the dynamic aspects of the code. The term 'debugger' is a misnomer, since this 
tool is used for more than just debugging code. The utility of these tools is indicated by the ability 

. of programmers of these systems to understand code that is poorly documented and often poorly 
written. Information can be obtained faster using these tools than by :flipping through a program 
listing. Hence Smalltalk programmers do not use program listings. 

Code in the Smalltalk-80 environment is easier to understand than in the Interlisp-D envi
ronment. This is supported by the fact that programmers share code at the source text level in 
Smalltalk-80, whereas this is rare in Interlisp-D. Code sharing at the source text level occurs when 
existing source text of another programmer is modified and reused. The precise reason for this 
difference between Smalltalk-80 and Interlisp-Dis unclear. It may be because of Smalltalk's better 
sharing mechanisms. 

Deficiencies of Smalltalk-SO 

This section discusses some of Smalltalk-80's deficiencies and the prospects for correcting them. 
Since Smalltalk has already had a long history, the remaining deficiences are the ones that require 
the most effort to correct or are inherent in the Smalltalk philosophy. 

Smalltalk-80 is difficult to teach effectively, primarily because the process of programming in 
Smalltalk-80 is poorly understood. Our teaching ability will improve as our understanding of 
programming improves. 

Smalltalk-80 currently excels at experimenting with user interfaces, but does not have adequate 
libraries to excel in other areas. It should be possible to extend Smalltalk-SO to include a library 
for experimenting in some other field. Care would be needed to include abstractions that are truly 
useful rather than ones that the library designer thought would be useful. 

The Smalltalk-80 support for teams of programmers is clearly deficient. Some support is 
given[8], but this support has not reached the same level of maturity as for a single program
mer. These mature tools do not exist for other programming environments either. Further research 
is needed before a good system for multiple programmers can be built. 

Many attempts have been made to increase the speed of Smalltalk-80 code. Much work[13,6] 
has been done on trying to increase the speed of the interpreter. Further work on the interpreter is 
unlikely to produce dramatic increases in speed. Another approach is to optimize the Smalltalk-80 
code. This approach is hampered by the lack of compile-time type information. Inferring types 
from Smalltalk-80 code is diflicult[5] and more research is needed before inferring types would be 
practical. 

Yet another approach to increasing the speed of Smalltalk-80 code is through user-coded prim
itives. A user-coded primitive is a time critical routine, which is written by the user in assembly 

5 



language or C, and can be called from Smalltalk. Although this approach is awkward from a user 
viewpoint and does not totally solve the speed problem of Smalltalk-SO, it seems to be the only 
technically feasible approach at this time. 

The code sharing mechanisms of the Smalltalk language are clearly limited. However, adding 
better mechanisms for sharing requires great skill. The attempts at multiple inheritance have 
not achieved the elegance and simplicity of single inheritance[l]. Multiple inheritance may make 
Smalltalk code harder to read, rather than easier, and diminish Smalltalk's usefulness as an ex
ploratory programming tool. 

It has long been recognized that Smalltalk has no way to separate a product from the develop
ment environment. Ko one has yet come up with a workable solution. 

Smalltalk and Lisp have been prevented from enjoying wider use because of problems with speed 
and separating the product from the development environment. These problems arise due to the 
run-time binding used in these languages. It is often argued that exploratory programming cannot 
be done without run-time binding. Smalltalk-like user interfaces have been built for languages that 
use compile-time binding. Potentially better user interfaces can be built with compile-time binding 
since more information is available through static analysis. On the other hand, no widely known 
language has been able to achieve the sharing possible in Smalltalk without using run-time binding. 
The author has built an exploratory programming environment called X2[9] which uses compile
time binding but achieves a degree of code sharing comparable to that of Smalltalk. To achieve the 
sharing , X2 uses an e~'tension of the ideas of parameterized types in CL U and Alphard. Standard 
compiler technology can be applied to X2 so that X2 can potentially compete in terms of speed 
with C or Fortran. Also, enough information is present in the X2 environment to make separating 
the product from the development environment easy. Thus a language based on parameterized 
types and compile-time binding has more potential of replacing e..xisting programming languages 
than do languages that use run-time binding. 

There appears to be overwhelming agreement among Smalltalk programmers that the present 
tools in Smalltalk-SO for understanding code are not adequate. The overall way the pieces fit 
together is difficult to ascertain in the current system. This problem may be the greatest weakness 
of Smalltalk-SO. It is also among the most difficult weaknesses to correct. All we can do is discuss 
some factors that influence the readability of code. 

Producing separate documentation for the code does not appear to be the answer. This kind of 
documentation is very difficult and time consuming to produce. It is often incorrect and, in many 
cases, may be just as difficult to understand as the original code. Past experience with program 
documentation has not met with great success and it is unlikely that Smalltalk-80 documentation 
could break this pattern. 

A more feasible solution may be to provide examples which demonstrate the usage of the 
abstraction. These examples should be easier to produce than complete documentation. I do not 
believe that this approach has been tried in any large emrironment. 

Including type information in the source code makes it easier to understand. Vvhether these 
types are inferred by the system or explicitly included by the programmer does not really mat
ter. Previous work with types in Smalltalk has not met with much success. Furthermore, type 
information would not address overall organization issues. 

How well the code is written plays a larger part in understanding the code than does any of 
the above factors. One way to make any piece of code easier to understand is to have the original 
author rewrite it. The author will almost always produce a better piece of code the second time 
he writes it, especially when the temptation to add more functionality is resisted. Encouraging 
programmers to rewrite their code may be a partial solution to making Smalltalk-SO code easier to 
read. 

6 



The easiest abstractions to use are those for which the user has to make the fewest decisions in 
order to use it correctly. Only the essential features of the abstraction should be presented to the 
user. Special cases should be addressed by the implementor, not the user. The more that can be 
hidden from the user, the better. Any decision that can be made by the implementor should be 
made by him and not by the user of the abstraction. 

There is a tension between making an abstraction specific to an application so that it is easy 
to use and making it general enough so that it can be used in many places. Different levels of 
abstraction might alleviate this tension. A simple view can be provided for most users with more 
general and complex levels of abstraction available when needed. 

The distance between the programmer's mental concept and the code that embodies the concept 
is a factor in how easy that code is to understand. For example, the concept of merging two lists 
needs many details added before it can be executed by the computer. Some examples of these details 
are: how the lists are represented, how storage management is done, which machine instructions 
are useed, and which registers are used. The more of these details that are present in the source 
code, the more difficult the code is to understand. 

Discussion 

The Smalltalk-SO environment is currently the best environment available for exploratory program
ming. The tools in the Smalltalk environment could be constructed for C or Pascal, but this would 
still not provide an environment for exploratory programming. The Smalltalk language provides 
more powerful mechanisms for sharing of code than do most other languages . \Vithout extensive 
sharing, experimentation is too costly for exploratory programming to be feasible. 

The Interlisp-D environment has long been used for exploratory programming. The sharing of 
code in Lisp is obtained through the use of a common data structure. Usually, whole tools are 
shared in the Interlisp-D environment, whereas in Smalltalk-SO bits and pieces of code as well as 
tools are shared. This difference indicates that Smalltalk-SO may provide a better environment 
for exploratory programming in a general sense. On the other hand much of AI research involves 
the writing of interpreters. Lisp may be superior for this task. The hardware for the Interlisp-D 
environment is painfully slow compared to modern hardware, yet Interlisp-D is still being used . 
This suggest that speed is not the primary concern. 

Exploratory programming environments are still in their infancy. Interlisp-D and Smalltalk are 
still very poorly understood. Until we understand the programming process better, progress in 
exploratory programming environments is likely to be very slow. 

Acknowledgement 

Don Birkley, Dale Henrichs, Verna Knapp, Ward Cunningham, Mike Miller, Eirik Fuller, and Norm 
Delisle willingly shared their Smalltalk experience with me. llitchey Ruff and Tom Dietterich shared 
their InterLisp-D experience. Without the generous support of Tektronix, this work would not have 
been started. 

References 

1. A. Borning, and D. Ingalls. Multiple Inheritance in Smalltalk-80. Proc. of the National 
Conference on Artificial Intelligence, 1982. 

7 

L 



2. K. Delisle. Viewing a Programming Environment as A Single Tool. SIGPLA.S Xoticu 19(5), 
May 1984. 

3. A. Goldberg, and D. Robson. Smalltalk-BO: The Language and Its Implementation. Addison
Wesley, 1983. 

4. A. Goldberg. Smal/tal/.:-80: The Interactive Programming Environment. Addison- \Yesley, 
19S3. 

5. R. Johnson. Type-Checking Smalltalk. In 7. 

6. G. Krasner, ed. Smalltall..·-80: Bits of History 1 TFords of Advice. Addison- \Yesley~ 1983. 

7. ~- :Meyrowitz., ed. Object-Oriented Programming Systems~ Languagts _. and Applications Con
ferenct Proceedings, 19S7. Published as SIGPLAK Kotices 21(11). 

8. S. Putz. Managing the Evolution of Smalltalk-SO Systems. In 6. 

9. D. Sandberg. An Alternative to Subclassing. In 7. 

10. E. Sandewall. Programming in the Interactive Environment: The Lisp Experience. A. CM 
Computing Sur-veys,lO(l), March 1978. 

11. B. Sheil. Environments for Exploratory Programming. Datamation~ February, 1983. 

12. T. Teitelbaum and T. Reps. The Cornell Program Synthesizer: A Synta.x-Directed Program
ming Environment. Comm. ACM 24(9), Sept. 1981. 

13. D. Ungar. The Design and Evaluation of a High Performance Smalltalk System. 1IIT Press, 
1987. 

8 


	Sandberg_David_W_88_60_08_A
	Sandberg_David_W_88_60_08_B

