
89-60-1

Lirl~UEAS~TY

5C~ErlCE

REVERSE ENGINEERING CODE LISTINGS INTO "BOOKS" TO
IMPROVE MAINTAINABILITY

Paul W. Oman
Computer Science Department

College of Engineering
University of Idaho
Moscow, Idaho 83843

Curtis R. Cook
Computer Science Department

Oregon State University ·
Corvallis , Oregon 97331-3902

REVERSE ENGINEERING CODE LISTINGS INTO "BOOKS" TO
IMPROVE MAINTAINABILITY

Paul W. Oman
Computer Science Department

College of Engineering
University of Idaho
Moscow, Idaho 83843

(208) 885-6589

Curtis R. Cook
Computer Science Department

Oregon State University
Corvallis, Oregon 97331-3902

(503) 754-3273

Abstract

We have identified a "book paradigm" for source code
formatting which improves program comprehension and assists in
maintenance work. The book paradigm can be implemented by
reverse engineering code listings into a "book" with preface,
tab1es of contents, chapters, sections, indices and pagination.
This reverse engineering effectively reorganizes ~ource code
listings into a more usable form of information.

our empirical tests with the book format show that a
significant improvement in program comprehension and
corresponding reduction in maintenance effort can be achieved b y
this process. These results have a direct impact on programming
standards, automated style analyzers, and code formatting tools
like pretty-printers and syntax directed editors.

CR Categories and Subject Descriptors: D.2.3 (Coding], D.2.2
[Tools and Techniques]

KEYWORDS: Programming style, coding style, code formatting,
programming tools, coding tools, reverse engineering.

REVERSE ENGINEERING CODE LISTINGS INTO "BOOKS" TO
IMPROVE MAINTAINABILITY

Toward better programming style.

In Edward Yourdon's book, Techniques of Program Structure
and Design, he lists seven major problems facing maintenance
programmers [Your75]. Number six is:

"A very basic problem is that most people have great
difficulty understanding other people's code. Perhaps this
is because most programmers seem to evolve their own
personal programming style; a larger part of the problem,
though, is that many programmers write their code in a
relatively disorganized style . "

Why do we have this disorganization in programming styles?
Mostly because our code formatting tools and techniques are
designed to produce "pretty" code, with little thought as to
whether it really aids programmer comprehension. What we need is
a method of formatting programs consistent with programmer
comprehension strategies and maintenance activity.

We have identified a "book paradigm" of program formatting,
which we believe is the most appropriate typographic organization
of source code documents. The book paradigm incorporates the use
of statement sentences, paragraphing, sectional division, chapter
div i sion, prefaces, indexing and pagination. By organizing
source code in this manner, consistent with other forms of
information, programmer comprehension is improved, thus
facilitating maintenance activity.

In this paper we review the known characteristics of
programmer comprehension and maintenance behavior and then
explain how reverse engineering program listings into "books"
aids those activities. Formatting source code like a book is an
implementation technique that incorporates principles of
typographic style compatible with most comprehension strategies
and approaches to maintenance. We present two experiments
showing the benefits of the book paradigm in maintenance
s i tuations.

Our book model is a familiar and easily understood paradigm .
It should not be confused with Knuth's style of "literate
programming," which calls for a change in the programming process
[Bent86]. The only similarity between our book paradigm and
Knuth's method is that the end-products both have a table of
contents and an index. We are building a book-like document from
source code, not changing the whole programming process.

When are hard-copy listings used?

With the advent of large screen, multiwindowed workstations,
we were concerned that hard-copy listings may no longer be used
in day-to-day maintenance programming situations. We asked
several professional programmers when (and if) they used hard
copy source code listings. All respondents indicated that hard
copy listings are still used in situations where on-line code
reading was awkward or inadequate. They said hard-copy listings
were used:

o When making a lot of changes and I need to see the big
picture.

o When the construct I'm looking at does not fit on the
screen.

o When I'm trying to understand a large, new program.

o To have the header files handy for cross referencing.

o When changes are so interconnected that I need to make notes
about them.

o For really long deeply nested conditionals and while loops.

o When explaining code to other people; for instance, code
walk-throughs.

o When starting on a program I've never seen before, paper
gives me a much bigger context.

o When I want to study code away from the office.

o When trying to understand a poorly-designed program.

All programmers indicated hard-copy source listings were
necessary for large · complicated systems and when scrolling,
multiwindow-viewing environments were not available. It's
interesting to note that all of our respondents had large-screen,
multiwindow workstations in their offices and yet they still
resorted to hard-copy listings.

Programmer comprehension and program maintenance.

Exactly how programmers read and understand code listings i s
not well understood. However, empirical studies with programmer s
show that "chunks," "plans," and "beacons" play in important rol e
in this process. ·studies on how expert programmers remember c ode
show they "chunk" code into meaningful program segments and th e n
mentally organize the chunks based on the functional purpose o f
the code [Adel81]. Mental "plans" or "schemata" guide the
organization and processing of this information [Adel84, Solo 84] .

2

"Beacons" are easily recognized code structures (or tokens)
that programmers use to locate and isolate meaningful chunks of
code while formulating and/or verifying their mental plans
[Broo83]. Virtually all research in programmer comprehension
supports the existence of chunks, plans, and beacons.

Comprehension plays a crucial role in program maintenance.
It's estimated that maintenance programmers spend between 47 and
62 percent of their time trying to comprehend code [Pari83].
Depending upon the task at hand, this effort may reguire overall
program comprehension, focused on-the-spot detailed knowledge, or
just browsing behavior. Maintenance is usually broken down into
three types: corrective, adaptive, and perfective. Corrective,
or repair maintenance, is the best understood of the three,
although is accounts for only 20 to 25 percent of the total
maintenance effort (Bend87]. Adaptive and perfective
maintenance, on the other hand, account for 75 to 80 percent of
the total maintenance effort, but little is known about the
characteristics of this work.

Empirical studies of programmers indicate that a many
strategies and techniques are used in maintenance activity. Some
programmers attempt to understand the entire program prior to
making changes, while others zero-in on the area needing change
and ignore the rest of the code. Transcripts of programmers
"thinking out loud" while doing perfective maintenance show they
frequently form and test conjectures about the code under study
and browse through the code in a variety of ways while
formulating and testing their assertions.

When working with non-trivial programs, programmers use
multiple strategies and multiple access paths, all guided by a
variety of plans and conjectures. Researchers recognizing this
variation have proposed documentation generation tools that use
reverse engineering. For example, the Parser/Documenter
described in (Land88) applies reverse engineering to generate
Nassi-Shneiderman charts from Fortran source code; and attempts
to generate specifications documents from Cobol source code are
described in (Snee88]. These, and other such attempts, are
efforts to improve system documentation by reversing the software
lifecycle (e.g., producing design specifications from code). We
have taken another, simpler approach; we suggest that system
documentation can be improved by reformatting source code into a
"book."

The book paradigm for program formatting.

A book is a collection of information organized to permit
easy comprehension and a variety of access methods. Its
structure permits top-down and bottom-up traversals, overall
comprehension strategies, as-needed strategies, and browsing.
The components of a book are all designed to facilitate rapid
information access and transfer. Notice the parallels between
the information contained in a book and a program:

3

o Preface -- an introduction to the book, from the author to
the reader; similar to introductory header comments in a
program.

o Table of Contents -- a high-level "map" of the book's
contents; similar to a structure chart showing the main
components of a program.

o Indices and Pagination low-level "maps" of the book's
contents; analogous to program cross-reference maps with
line numbers.

o Chapters -- the major high-level divisions of a book;
similar to program units, packages, incl~de files, or the
separation of the program main body from its support
routines.

o Sections · -- divisions within chapters that group related
information and provide mid-level organizational structure;
analogous to intramodule code sections (e.g., Pascal's
Const, Type, Var, and body sections).

o Paragraphs -- Chunks of information in the form of grouped
sentences; similar to nested or related programming
statements (e.g. , loops,· ifs, cases) .

o Sentences -- Statements and queries delimited and defined by
punctuation, type style, character case, etc.; analogous to
programming statements and declarations.

o Punctuation, type style, character case -- Mechanisms for
delimiting and highlighting the beginning and/or ending of
proper names, phrases, sentences, queries, quotes,
paragraphs, sections, chapters, etc.; functionally the
same as the punctuation, type style, and character case used
in programming.

The major difference is that the format of a book provides
simple and immediate clues to aid you in locating and recognizing
the parts of a book (e.g., it is trivial to distinguish between
names, sentences, paragraphs, etc.). Traditional methods of
program formatting do not always provide you with these clues.

Reverse engineering code into books.

Our book paradigm of source code formatting calls for both
macro-typographic (intermodule) reformatting and micro
typographic (intramodule) reformatting. It does not change the
control flow or information structure of the program; it is an
entirely typographic arrangement of program source code.

Macro-typographic factors used in the book paradigm include
creation of a preface, table of contents, chapter divisions,
pagination, and indices. The preface is essentially the program

4

I

header comments. The table of contents is a high-level map to
the structure of the program (or system); it is automatically
generated by a cross reference utility. Indices are also
generated automatically for module definition and usage. Other
indices for global variables and other identifiers could also be
created.

Chapters are created for global declarations, the main
program module, support routines accompanying the main program,
and "included" code. Note that chapter division also
accommodates many "styles of programming." That is, chapters can
be defined in object-oriented units, by functional breakdown
(support routines), by implementation packages, or any number of
considerations.

Micro-typographic factors used in the book paradigm include
identification and/or creation of code sections, code paragraphs,
sentence structures, and intramodule comments. To do this,
techniques such as blank lines, embedded spaces, type styles, and
in-line comments, are used to achieve our desired form of source
code formatting.

Code sections are separated into ea$ily recognizable units
by using blanks, beacons, alignment, and in-line comments to show
the beginning and ending of the code sections. For example, t~e
Pascal Const and Var sections are delimited by placing those
reserved words in boldface (or all capitalized letters) on
separate lines preceded and followed by blank lines. This is
analogous to section headings in a book. Code paragraphs are
separated into easily recognizable chunks by using the same
techniques. Blank lines separate chunks, alignment and embedded
spacing (note that this includes indentation) provide spatial
clues about the content of the chunks.

Other micro-typographic implementation techniques that can
be automated include: (1) adding in-line comments indicating the
end of control structures, (2) bold-facing or italicizing
procedure calls, (3) aligning conditional structures (e.g., IF's
and CASE's), (4) placing blank lines before and after programming
constructs that span more than a few lines, (5) highlighting
well-defined code segments like data declaration areas, and (6)
highlighting globally defined identifiers. There are many such
micro-typographic factors that could be used by intelligent
source code formatting programs to aid program comprehension.

Our prototype "Book-Maker" programs reverse engineer
existing source code listings (Pascal or C) into a printed book
format. It is not a completely automated process, however,
because certain aspects must be intelligently guided (e.g.,
chapter division). Much of the reformatting can be automated and
can be incorporated into a variety of tools. For example, the
principles behind the book paradigm can be implemented within
host compiling systems, syntax directed editors, intelligent
pretty-printers, and version control archiving and librarian
systems. In any case, the key to the viability of the index and

5

table of contents is that they are consistent with the code file
that corresponds to the executable object file. We have
circumvented this problem by inserting both the table of contents
and the index into the source code as comment blocks.

organizing program source code into a book format gives you:
(1) an easily recognized document paradigm, (2) high-level
organizational clues about the code, (3) low-level organizational
chunks and beacons, and (4) multiple access paths via the table
of contents and indices. It's just a typographic rearrangement
of the original source code that is a natural form for program
listings which places no additional burden on the programmer.

Empirical Tests of the Book Paradigm.

We have tested our principles of typographic formatting in
several empirical studies with both student and professional
programmers. Our studies show that a 10 to 20 percent
improvement in comprehension and can be attained by reformatting
code according to our typographic principles. Here we present
just two studies demonstrating that the book format improves
program maintainability. (For a complete description of our
studies see [Cook89, Oman88, Oman89]).

Experiment l: In a controlled study we measured programmers
ability to perform maintenance tasks using two different versions
of a 1000+ line Pascal program -- one a traditional listing, the
other our book paradigm listing. The program was a working text
editor taken from [Schn81] and modified by removing a small
procedure which handled the free-form command inputs to the
editor. The five calls to the procedure were also removed. The
resulting modified program still worked; it was just incapable of
handling free-form inputs.

The modified program was then ported into Lightspeed Pascal
(a syntax directed code formatter) and printed with pagination.
This listing was version l; it represents the traditional manner
in which Pascal source code is formatted. Version 2 was a macro
typographic rearrangement of version 1 as defined by our book
paradigm. That is, the code was separated into chapters and a
table of contents and module index were added. There were no
other changes made to the code.

Participants in the experiment were 53 Computer Science
students enrolled in a senior/graduate level operating systems
course at Oregon State University. They were randomly assigned
into two groups; roughly half the subjects (28) received the
traditional listing while the other half (25) received the book
listing. Each subject was given a listing and asked to recreate
the missing procedure that would enable free-form command inputs.
They were also asked to indicate where the procedure would be
called. Hence, the maintenance exercise called for them to
enhance the program by adding a module that skipped spaces on the
command input line. This is not unlike many real world

6

l

maintenance tasks. In order to do the exercise, they first had
to understand the command line record structure and then
understand the execution flow of the routines that manipulated
the command line. Then, and only then, could they begin to write
the missing procedure.

For each subject we measured the time required to perform
the task (up to 1 hour), their ability to recreate the missing
routine, and their ability to identify where it was called (five
locations). No special instructions or explanations were given
to subjects receiving the book listing. This was deliberately
done as a test to see if subjects would "naturally'' use the book
listing (i.e., without training).

The code writing portion of the maintenance task.was scored
by tallying subjects' responses into four categories: (1)
routines similar or identical to the one that was removed, (2)
functionally correct but dissimilar routines, (3) incorrect
routines, and (4) those who could not complete the task (i.e.,
they gave up or could not even get started). We originally
expected that at least 50 percent of each group would be able to
complete the task, but results from the code writing portion
(shown in Table 1) indicate that the book listing group
outperformed the traditional listing group by approximately two
correct answers to one! A Chi-square analysis of the results,
assuming an equal .25 probability across all four categories,
indicates that differences between the traditional listing and
book listing are significant (X=l0.45, p<.025, d.f.=3).

Group differences can also be seen by collapsing the two
correct categories together (exactly correct plus functionally
correct) and collapsing the two incorrect categories together
(wrong plus not finished). The total correct is 52 percent for
the book listing versus 25 percent for the traditional listing.
That is, 27 percent more got it right when working with the book
format! A Chi-square test of independence on the resulting 2 by
2 design (using Pearson's computed expectency values) shows a
significant difference between the two versions (X=3.73, p<=.06,
d.f.=1). Furthermore, subjects in the traditional listing group
were twice as likely to quit or not even be able to start writing
code.

The procedure call portion of the maintenance task was
scored only for those subjects that wrote a correct routine.
Results for the call identification task are shown in Table 2.
For the traditional listing group the 7 subjects that
successfully completed the routine, correctly identified a total
of 12 places where Skip Blanks needed to be called. This was an
average of 1.71 correct-identifications per person; an overall
accuracy rate of only 34 percent. on the other hand, the 13
subjects that correctly wrote the Skip_Blanks routine using the
book listing correctly identified a total of 31 Skip Blanks
calls; an average of 2.38 correct identifications per person, an
overall accuracy rate of 48 percent.

7

Table l. Code Writing Ability.

Traditional listing
(n = 28)

Book listing
(n = 25)

Total correct

exactly functionally
correct correct

14 % 11 %

36 % 16 %

\

Traditional -- 25 %
Book listing -- 52 %

Percent difference between groups 27 %

gave up or
wrong not finished

36 % 39 %

32 % 16 %

Table 2. Call Identification Ability.

Traditional Book
Dependent measure listing listing

Number correct 7 13
Total correct identifications 12 31
Average identifications per person 1.71 2.38
Percentage accuracy for the group 34.2 % 47.6 %

Percent difference between groups 13.4 %

Results from this experiment show the benefit of using the
book paradigm for macro-typographic style. We emphasize the the
only difference between version 1, the traditional listing, and
version 2, the book format listing, was that the code was divided
into chapters and indexed by a table of contents and a module
index. There were no micro-typographic differences between the
two versions.

Experiment 2: To demonstrate that our book paradigm is
useful to professional programmers working with large programs,
and to test the feasibility of the book paradigm for large
programs, we conducted an empirical study of real programmers
working with a large industrial program written inc.

A portion of the X_Windows package was obtained from a large
international computer corporation. X_Windows is a window and
mouse management system originally developed at M.I.T. and now
bundled with various Unix systems. The C code we obtained
consisted of a main program file and two of its include files.
There were 1057 lin~s of commented C code in the three files.

Two printed listings of the X_Windows program were created.
As in our previous experiment, version 1 was the original listing
as received from the corporation, except that it was laser
printed with pagination for readability. Version 2 was our book
formatted version of the code. All changes were simple
typographic alterations; no module rearrangement and identifier
renaming was used, and no comments were added other than the
table of contents and the module index. The resulting listing
consisted of 1098 lines of commented C code including the table
of contents and the index. Although these two components added
269 lines of comments to the source file, the micro-typographic
statement reformatting sufficiently compressed the original
source code such that the end result was only 41 lines longer
than the original code!

Twelve professional programmers, each with at least two
years of C programming experience, volunteered to serve as
subjects. Each subject was paid $40.00. The 12 programmers were
paired by experience and job function so each member of a pair
had approximately the same experience with Unix, c, and
X_Windows. For each of the six pairs, one member was assigned to
work with version 1 while the other worked with version 2. The
version assignment was determined by a coin flip for each pair.
Subjects were tested one at a time in a closed room. The test
sessions took about 2 hours.

Two of the subjects were deliberately chosen because they
were corporate maintenance programmers responsible for portions
of the X_Windows system. Both were familiar with the test
program and had previously studied the include -files. They were
experts already familiar with the code to be studied. (None of
the other subjects had prior experience with the code to be
studied.) Background characteristics for the subjects appears in
Table 3. The subject pairs are listed in decreasing order of

8

Tal:>le 3. Professional Programmers' Experience.

pair degree of X_ Windows &. Unix subject yrs. IX'()f. yrs.C
experience label cxperieocc apcrience

1 X_ Windows maintenan~ expert.s Xt 9 4

Xb 7 4

2 Unix development programmers At 7 s
Ab 8 7

3 Unix & C systems programmers Bt 8 6

Bb 7 s
4 Unix & C applications programming Ct 9 3

Cb 7 2

s C applications programming Dt 12 2

~ 10 2

6 C applications programming Et 13 2

Eb 6 2

Note: Subject label subscripts denote listing versioo.
t for iraditional listing, and b for book format listing.

Unix and c experience. The first pair, labeled Xt and Xb' are
the two X_Windows experts.

subjects were given one of the two code versions and asked
to complete a comprehension/ maintenance exercise consisting of:
(1) a 30 minute study period with "Think aloud'' protocols, (2) a
7 question (10 points) oral comprehension test, (3) a pen and
paper exercise to create a call graph for the program, and (4)
some open-ended questions about the way they work with large
programs. The test session took approximately 2 hours and was
recorded on audio-tape.

For each programmer we measured their scores and time for
the comprehension test and call graph exercise. The think aloud
protocols and open-ended questions were just used as a data
gathering device to check for behavior patterns between and
within groups. All subjects received exactly the same
instructions; that is, subjects working with the book listing
received no explanation or justification about the book listing.

Scores and times for the comprehension test are shown in .
Table 4 and Figure 1. As can be seen, programmers working with
the book listing scored better, and did so faster, than the
programmers working with the traditional listing. A comparison
between the two groups can best be seen in Figure 1, which plots
time and score for each subject. Note that there is little
difference between the two experts; hence, they represent the
top-line performance for the task. Also note that all other
subjects working with the book format listing performed as well
as the two experts, but none of the subjects working with the
traditional listing did! We emphasize that the two experts were
already familiar with the code. The clear separation between the
subjects working with the traditional listing and those working
with the book format listing (excluding experts) reflects the
improved comprehension afforded by the book listing.

The call graph exercise was a measure of their ability to
work with the program listing. In a call graph, each node
represents a function (module) and each edge represents the call
to that function. An incomplete call graph, consisting of the 12
top-level nodes (main and the 11 functions it calls) and their 11
edges, was given to the subjects with instructions to complete
the call graph. The completed call graph contains 23 nodes and
39 edges, so the task was to find and add the missing 11 nodes
and 28 edges. The score for the exercise was the total number of
correct nodes and edges on their completed call graph .

Scores and times for the call graph exercise are shown in
Table 5 and Figure 2 . As can be seen, programmers working with
the book listing scored better, and did so faster, than the
programmers working with the traditional listing. Group
differences can best be seen in Figure 2, which plots time and
score for each subject. Note the major differences between
groups; on the average, subjects working with the traditional
listing missed twice as many call graph connections and took one

9

Table 4. Comprehension Test Results.

test questions toca1 total

subject 1 2 3 4a 4b s 6a 6b 7a 7b scae time

Xl: C X X C C C C C C C 8 13

At: X C C C C X C X C X 6 18
Bt: C C X C C C C X C X 7 17

Ct: X X C C C X C X C X 5 16

Dt: C X X C C C C X C X 6 16

J:i: C X C C X X C X C C 6 26

lraditional list averages: 6.33 17.6

Xb: C C X C C C C X C C 8 7

Ab: C C C C C X C X C C 8 17

Bb: C C X C C C C C C X . 8 10

Cb: C C X C C C C X C C 8 l'.3
0,,: C C X C C C C X C C 8 12

Eb: C X C C C X C X C C 7 13

book list averages: 7.83 12.0

9.0

8.0

7.0
score

6.0

5.0

4.0
s 10 15 20 25

time in minutes

Figure l. Scores and Times from Comprehension Test.

Table s. Call Graph Exercise Results.

1D1d.iticaal listio2:s bs:lg, !u.cmat listio 2:s
score time traversal subject SCCIC time traversal

32 16 2 X 35 14 1 &. 3
28 16 1 &. 3 A 34 11 1
27 13 3 B 35 12 3
30 14 5 C 36 13 2
30 14 1 0 36 15 2
34 30 2 E 33 16 4

30.2 17.2 <- averages-> 34.8 13.5

----- -------------------------
traversals: 1. linear~ through code listing.

2. entirely top-down. depth first execution order.
3. heuristically guided depth first execution order.
4. entirely top-down. breadth first execution order.
5. heuristically guided breadth first execution order.

38

36

34

32

score
30

28

Bt
26

24
5 15 20 25 30

time in minutes

Figure 2. Scores and Times from Call Graph Exercise.

minute longer, than those working with the book format listing.
once again, subjects working with the book format listing
performed as well or better than the experts; those working with
the tradtional listing performed noticeably worse.

Results from this experiment show that the book paradigm is
a natural form for formatting source code that is better than
traditional methods. In every matched pair the subject working
with the book listing scored better, worked faster, and express~d
more feelings of comfort and capability than those working with
the standard listings. All programmers working with the book
listing agreed it was a better way of formatting code than they
had seen before. Further, the programmers working with the book
listing performed as well or better than the two expert
programmers already familiar with the code. This is a sharp
contrast to the programmers working with the traditional listing
who performed noticeably worse than the two experts.

We emphasize that in both experiments subjects used the book
format listing without any explanation, description, or
justification; and they did so better than their counterparts
working with traditional listings.

conclusions and discussion.

Programmers use many strategies and approaches when working
with source code. Usually, the only reliable documentation you
have for a program is the source code listing (or file). But,
unless it's a trivial program, that listing is just a linear
ordering of a non-linear collection of functions. You need
multiple avenues or access paths to get "into" the code.
Transforming code into books creates the organizational structure
and clues that permit a variety of access paths.

Good typographic formatting reflects the underlying
structure of the code by providing visual clues and a variety of
ways to view the code. The book model is just one mechanism for
implementing those objectives. It uses reverse engineering to
convert existing source code listings into book-like documents
that have macro- and micro-typographic clues to assist in program
comprehension.

Our controlled experiments and empirical tests of the book
paradigm show that it aids in maintenance tasks on large
programs. Further, we have shown that professional programmers
can benefit from the . book model because it's a "natural" format
for source code listings.

This work has several implications on code formatting
tools:

1. Useful code formatting tools must be more sophisticated
and compatible with the way programmers view and work
with code. Today's simplistic pretty-printers and syntax

10

directed editors are inadequate and, in fact, decrease
maintainability by obscuring comprehension clues.

2. Language directed editors could be designed to
incorporate "intelligent" code formatting principles.
This could be implemented in varying degrees, from simply
highlighting beacons while the code is being displayed,
to arranging code into a book format while it is being
edited.

3. Hypertext code maintenance tools could be designed to
allow programmers to have simultaneous views into the
code being studied. current hypertext code viewing
systems access and display information outside the source
code listing; this creates a version control problem.
The power of the book paradigm is that the cross
referencing information is incorporated into or extracted
from the source code.

11

References

[Adel81] B. Adelson, "Problem Solving and the Development of
Abstract Categories in Programming Languages," Memory
and Cognition, vol. 9(4), 1981, pp. 422-433.

[Adel84] B. Adelson, "When Novices Surpass Experts: The
Difficulty of a Task May Increase With Expertise,"
Journal of Experimental Psychology, vol. 10(3), 1984,
pp. 483-495.

[Bend87] s. Bendifallah & w. Scacchi, "Understanding Software
Maintenance Work," IEEE Transactions on Software
Engineering, SE-13(~Mar. 1987, pp.311-323.

[Bent86] J. Bentley & D. Knuth, "Literate Programming,"
Communications of the ACM, vol. 29(5), May 1986, pp.
364-369.

[Broo83] R. E. Brooks, "Towards a Theory of the Comprehension of
Computer Programs," International Journal of Man-Machine
Studies, vol. 18, 1983, pp. 543-554.

[Cook89] C. Cook & P. Oman, "Typographic Style is More Than
Cosmetic," o.s.u. Computer Science Technical Report,
submitted to Communications of the ACM, under review.

[Land88] L. Landis, P. Hyland, A. Gilbert, & A. Fine,
"Documentation in a Software Maintenance Environment,"
Conference on Software Maintenance 1988 Proceedings,
IEEE Computer Society Press, 1988, pp. 66-73.

[Oman89] P. Oman & c. Cook, "A Programming Style Taxonomy,"
O.S.U. Computer Science Technical Report, submitted to
Journal of Structured Programming, under review.

[Oman88) P. Oman & c. Cook, "A Paradigm for Programming style
Research," ACM SIGPLAN Notices, vol. 23 (12), Dec. 1988,
pp. 69-78.

[Pari83] G. Parikh & N. Zvegintzov, "The World of Software
Maintenance," Tutorial on Software Maintenance, (G.
Parikh & N. Zvegintzov, editors), IEEE Computer Society
Press, Los Angeles CA, 1983i pp. 1-3.

[Schn81] G. Schneider & S. Buell, Advanced Programming and
Problem Solving With Pascal, John Wiley & Sons, New York
NY, 1981.

[Snee88] H. Sneed & G. Jandrasics, "Inverse Transformation of
Software from Code to Specification," Conference on
Software Maintenance 1988 Proceedings, IEEE Computer
Society Press, 1988, pp. 102-109.

12

[Solo84] E. Soloway, & K. Ehrlich, "Empirical studies of
Programming Knowledge," IEEE Transactions on Software
Engineering, SE-10(5), Sept. 1984, pp. 595-609.

[Your75] E. Yourdon, Techniques of Program Structure and Design,
Prentice-Hall, Englewood Cliffs NJ, 1975.

13

	Oman_Cook_89_60_01_A
	Oman_Cook_89_60_01_B

