
"i
.(,.

87-60-11

LirllUEASlT'fl

5ClErlCE

PROGRAMJ.JING STYLE AUTHORSHIP ANALYSIS

Paul 1f. Oman
Computer Science Department

University of Idaho
}loscow, Idaho 83843

Curtis R. Cook
Computer Science Department ·

Oregon State University
Corvallis, Oregon 97331

DEPARTMENT OF COMPUTER SCIENCE
ORltGOIN ST TE UNIVERSITY
CORVALLIS, OREGON 97331

' .

PROGRAMMING STYLE AUTHORSHIP ANALYSIS

Paul W. Oman
Computer Science Dept.

University of Idaho

Moscow, Idaho 83843
(208) 882-6589

Abstract

CUrtis R. Cook
Computer Science Dept.

Oregon State University

Corvallis, Oregon 97331
(503) 754-3273

Detecting instances of software theft and plagiarism is a

difficult problem. The statistical analysis of peculiar words or

phrases known to be used by an author is a common method of

settling authorship disputes in English literature. This paper

presents a similar method for identifying authorship of programs.

The method is based on typographic or layout style program

characteristics. our experiments show that these characteristics

can be used to determine authorship. The major benefits of the

method are that it is simple and easy to automate.

CR Categories and Subject Descriptors: D.2.3 [Coding], D.2.3
[Metrics], D.2.2 [Tools and Techniques]

• Keywords: Programming style, coding style, style analysis,
typographic style, authorship identification,
plagiarism detection.

"

1. INTRODUCTION

Identifying program authorship is important in detecting

instances of software theft and plagiarism. Methods for

"fingerprinting" programs to determine instances of software

theft and plagiarism have centered on: (1) the comparison of the

structural decomposition of the systems or programs under

investigation, and (2) the application of a battery of software

complexity metrics to identify suspect programs.

Dakin and Higgins [Daki82] describe a method of p omparing

the logical similarity of two programs based on a Warnier-Orr

decomposition of the program structures. They suggest that

analysis and comparison of three components -- the logical output

structure, - the logical data structure, and the logical process

structure -- across the two systems in question, will provide

strong proof of similarity or dissimilarity.

An analogous method has been proposed by Glass [Glas85], who

suggests that two levels of fingerprinting need to be conducted.

The first is a comparison of the "external" features of the

programs being compared -- the inputs, outputs, and a black-box

view of the logical processes. Then, if there remains any

questions as to the origin of one of the programs, an internal

investigation of the program . structure is required. He advocates

modular decomposition resulting in a calling structure chart

showing the possible control-flow through the system. His

methodology is similar to that proposed by Dakin and Higgins.

While these methodologies may be useful in determining the

functional equivalency of two programs, it is questionable if

they are satisfactory solutions to the authorship identification

1

..

problem. Both methods suffer from the same inaccuracies and

limitations; neither have been implemented in an automated

fashion.

Several articles [Grie81, Otte76, Dona81, Robi80] describe

programs that apply a battery of software complexity metrics to

detect plagiarism in student programs. Metrics commonly included

in the battery are Halstead software science parameters, McCabe's

cyclomatic complexity, and counts of the number of lines of code,

· statements, and/or subprograms. Groups of programs with a high

correlation for the battery of metrics are identified as suspects

requiring further scrutiny.

However, a study by Berghel and Sallach [Berg84] concluded

that software metrics were of limited use in detecting

plagiarism. Their study investigated 15 common complexity

metrics. After conducting a factor analysis of the metrics

representing student programs, they concluded that there was

nothing unique about the program features isolated by the

metrics. That is, the metrics identified similarities that

didn't exist and missed other obvious instances of style

· similarity. Hence, the best use of complexity metrics based

plagiarism detection programs seems to be as a deterrent rather

than in actually detecting cases of plagiarism.

The problem of authorship disputes also occurs in English

literature. The Federalist Papers [Most64] and Shakespearean

writings [Efro86, Kola76] are two well ·known examples. A widely

accepted method for resolving authorship disputes is the

statistical analysis of the occurrences of certain "marker"

2

characteristics (peculiar words or phrases) that occur in the

writing, where the marker characteristics are gleaned from other

known writings by the author.

In this paper we describe the application of marker

characteristics to determining authorship identification of

programs . These markers represent unique features of a

programmer's programming style. We found that software

complexity metrics did not yield markers, but the typographic or

layout style characteristics (e.g. indentation, line length,

comment format, blank lines, spacing) provide a simple and rich

set of markers. We easily discovered a set of typographic style

markers for each programmer that allowed us to successfully group

programs by programmer .

2 . COMPLEXITY METRICS AND PROGRAMMING STYLE

The motivation for our study was an attempt to use

traditional software complexity metrics to group a collection of

programs by algorithm and/or author. We thought the metrics

would uncover the markers that would allow us to group the

programs. Twelve complexity metrics (delivered source lines,

lines of code, lines of declaration, lines of comments, number of

tokens, number of arguments, cyclomatic complexity, Halstead's

operand and operator counts, and level of nesting) were

calculated for the same three algorithms taken from six different

data structure textbooks. Each vector of measurements

represented a specific algorithm implemented in Pascal by a known

author.

Even though the data contained multiple instances of the

3

same algorithm written by different authors, repeated statistical

analysis for appearance of clustering trends and principal

components failed to find any relationship between authorship or

algorithm domain and the code complexity measures. We concluded

that code complexity metrics are inadequate measures of stylistic

factors and domain attributes.

Our conclusion is supported by two previous studies. As

mentioned earlier, the Berghel and Sallach [Berg84] study showed

that software complexity metrics identified some program

similarities that did not exist and missed some obvious instances

of similarities. Evangelist's [Evan84] analysis of complexity

metrics with respect to style rules provides a plausible

explanation for the loose relationship between style and

complexity. He demonstrated how application of 26 rules from

Kernighan and Plauger's style guide had differing effects on five

software complexity metrics (Halstead's effort, McCabe's

cyclomatic complexity, Henry and Kafura's information flow, level

of nesting, and number of lines of code). Some rules increased

complexity (as measured by the metrics) while others decreased

complexity and others had inconsistent effects across the

different metrics. He concludes, "current complexity metrics are

improper indices of program quality, as measured by style."

After our failure to find markers using complexity metrics,

we investigated ways in which authors could be identified through

markers in their programming style. In a study on programming

style, Oman and Cook (Oman87] demonstrated the benefits of

distinguishing between classes of style factors and studying the

affects and utility of the factors in each style class.

4

r

Specifically, they found it helpful to distinguish between the

typographic and the structural style classes.

Typographic characteristics represent the physical layout of

the code and do not, in any way, affect the performance of the

code, although they may affect the maintainability of the code.

The typographic category includes factors such as indentation,

line length, comment formats, blank lines, spacing, and other

layout characteristics. They showed that the typographic factors

are more than cosmetic and can have a significant affect on

program comprehension.

Structural characteristics impact both efficiency and

maintainability. Included in the structural category are the

characteristics pertaining to modularity, looping and branching

constructs, methods of type and data declarations, level of

nesting, control flow, information flow, operator and operand

. usage, and other factors related to program complexity. The

structural decomposition methods of Dakin and Higgins [Daki82]

and Glass [Glas85] fall into this category.

Talks with programmers uncovered the belief that programmers

can identify authorship from simple typographic characteristics.

For example, indentation, commenting, and character usage.

Casual observation seemed to support this belief; mainly, that

simply by looking at the typographic characteristics, we where

able to group code by authorship. In the next section we

describe experiments that show typographic style factors do

provide unique programmer markers which can be used for

programmer identification.

5

L

3. AUTO.MATED AUTHORSHIP ANALYSIS

This section describes experiments that show typographic

characteristics provide a rich source of markers and that a

simple statistical analysis of the markers permits grouping by

author.

3.1 Identifying authorship -- a protocol study.

Simple protocol studies were conducted to see if authorship

could be determined from analysis of the typographic

characteristics of the source code.

To test this hypothesis we took Pascal source code for three

algorithms from each of six computer science textbooks. The code

segments were a bubble sort, quicksort and a set of tree

traversal algorithms (preorder, inorder, and postorder). Each

code segment was copied verbatim onto a microcomputer and printed

one per page to eliminate all publisher differences (i.e.

typesetting). The 18 pages were then shuffled and given to

eleven programmers with instructions to group the code by author.

Each author's collection would contain one bubble sort, one

quicksort, and one set of tree traversals. All but one of the

subjects grouped the code perfectly, the other subject made one

mistake by switching the tree traversals on the two most

inconsistent authors.

An informal protocol analysis was conducted while the

subjects were grouping the code listings. The subjects

recognized that some authors are very consistent across code

segments while others are much less so. It was interesting to

note that all subjects easily grouped the most consistent

6

authors' works, and did so first, leaving the harder task (i.e.

grouping the inconsistent authors) for last. The subjects

proceeded by identifying certain characteristics or peculiarities

about the authors' style (markers) and then used these markers to

distinguish between authors. An example marker would be placing

multiple assignment statements on one line; another would be

always differentiating keywords and identifiers by case.

The protocol analysis and subsequent post-test discussions

led to the following mechanisms by which authorship could be

identified:

1. Whether comments are inline, blocked, bordered, and/or
occur after keywords.

2. The consistency of indentation, number of spaces used,
and how certain constructs are aligned (e.g. the IF­
THEN-ELSE statement).

3. The use of upper and lower case, and the underscore
character, to differentiate between keywords and
identifiers.

4. The placement of statements, how statements are placed in
conjuction with others · (especially nested statements) and
whether or not there are more than one per line.

5. The presence or absence of blank 1 ines and how they are
used to separate chunks or blocks of code.

6. The choice and length of identifiers (e.g. meaningful
names versus single letter identifiers).

3.2 A typographic style checker.

To verify the results of our protocol studies we designed

and implemented a typographic style analyzer based on the

mechanisms identified by the protocol subjects. Specifically,

the analyzer processes Pascal source code and generates a boolean

value for each of the following conditions:

a . Inline comments on the same line as source code.

7

,.---

b.

c.
d.
e.
f.
g.
h.
i.
j.
k.
1.
m.
n.
o.
p.

Blocked comments (two or more comments occurring
together) .
Bordered comments (set off by repetitive characters).
Keywords followed by comments.
1 or 2 space indentation most frequently occurring .
3 or 4 space indentation most frequently occurring.
5 or greater indentation most frequently occurring.
Lower case characters only (all source code).
Upper case characters only (all source code).
Case used to distinguish between keywords and identifiers.
Underscore used in identifiers.
BEGIN followed by a statement on the same line.
THEN followed by a statement on the same line.
Multiple statements per line.
Blank lines in the declaration area.
Blank lines in the program body.

For each condition the boolean value is true if the

characteristic is present in the code under analysis, and false

if the characteristic is absent. The analysis proceeds on a

module-by-module basis with the output being a boolean matrix

with each row representing a module (program, procedure, or

function) and each column representing one of the above

conditions. To obtain a typographic style bit vector for

algorithms with embedded modules, the bit vector for ·each

embedded module was OR-ed together with the main module. This is

functionally equivalent to processing the entire algorithm as one

block (except that multiple indentation methods may appear) .

The above measures are highly consistent across modules

written by an author with a consistent style and not so with

inconsistent authors. The measures are easily quantifiable and

ref lect the consistency of the author. Furthermore, these

typographic factors are generally invariant with respect to

problem requirements.

Table 1 shows the boolean typographic style measures for the

data used in the protocol study. A simple index of typographic

8

Table 1. Typographic Style Vectors for Textbook Data

INL BLK BOR KEY 12 I4 15 LCO UCO <C> US BGN THN , , , BLD BLB

Text A (IR = 0)
Bubblesort 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1
Quicksort 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1
Tree Trav. 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 1

Text B (IR= 1)
Bubblesort 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0
Quicksort 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1
Tree Trav . 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0

Text C (IR = 2)
Bubblesbrt 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
Quicksort 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1
Tree Trav . 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

Text D (IR = 3)
Bubblesort 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 0
Quicksort 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1
Tree Trav . 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0

Text E (IR = 6)
Bubblesort 1 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1
Quicksort 1 1 0 1 1 0 0 1 0 0 0 0 1 1 1 1
Tree Trav. 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0

Text F (IR = 6)
Bubblesort 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0
Quicksort 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0
Tree Trav. 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0

--
INL - inline comments UCO - upper case only
BLK - block of comments <C> - case distinguishes keywords
BOR - bordered comments u s - underscore used
KEY - comments after keywords BGN - BEGIN & statement on 1 line

12 - 1 & 2 space indentation THN - THEN & statement on 1 line
14 - 3 & 4 space indentation ... - multiple statements per line , , ,
15 - 5 & greater indentation BLD - blank lines in declarations

LCO - lower case only BLB - blank lines in the body

IR - Inconsistency Rating

9

style consistency can be derived by counting the number of

typographic style factors showing any instance of inconsistency.

In our study of 16 factors, the best consistency rating would be

zero for perfect consistency; while a rating of 16 would

represent complete inconsistency (in all factors). Inconsistency

Ratings (IR) for each textbook are also shown in Table 1. Note

the differences in consistency between Textbook A and Textbook F.

Early versions of the typographic style analyzer also

computed identifier variety and length, keyword variety, and

frequency of certain control structures (e.g. repeat loops). All

of these measures proved to be too inconsistent within suites of

modules written by the same programmer to be of value here.

3.3 Clustering by authorship.

To test the utility of the boolean typographic style vectors

we conducted a clustering analysis to determine if distinct

typographic styles could be grouped by author. Using the

textbook data, the proximity of each algorithms's style

measurements to all other algorithms was computed by taking the

Hamming distance between the typographic style bit vectors for

each algorithm.

The result is a symmetrical N x N distance matrix with zeros

along the main diagonal. The lower (or upper) triangle of this

distance matrix was then analyzed using the SPSS-X Cluster

procedure with a minimum distance clustering criteria [Noru85].

The results, shown in Figure 1, follow those of our protocol

study. Specifically, algorithms written in a consistent style

are clustered perfectly, while those written by less consistent

10

text

Text C
Text C
Text C

-Text F
Text F

Text D
Text D
Text D

Text F

Text E
Text E

Text E

Text A
Text A
Text A

Text B
Text B
Text B

algorithm

bubblesort
tree trav.
guicksort

bubblesort
guicksort

bubblesort
tree trav.
guicksort

tree trav.

bubblesort
guicksort

tree trav.

bubblesort
guicksort
tree trav.

bubblesort
tree trav.
guicksort

connection level
0 1 2 3 4 5
+-------+-------+-------+-------+-------+
-I--------------I -I . I---------------I ----------------I I

I
----------------I-------I I ----------------I I-------I

I I

--------I-------I I I --------I I-------I I ----------------I I
I

--------------------------------I-------I
I I

----------------I---------------I I ----------------I I I
I I

--------------------------------I I
I I -I I I

-I------------------------------I I
-I I

I
-I------I I -I I-------------------------------I --------I
+-------+-------+-------+-------+-------+
0 1 2 3 4 5

Figure 1. Cluster Analysis of Textbook Authors

11

authors are somewhat scattered.

We then repeated this clustering analysis on industrial

data. Pascal source code was obtained from two international

computer manufacturers and one microelectronics research

laboratory. The source code from each firm exemplified a program

written and used by that organization. The length of the three

programs (including blank lines and comments) was 6024, 1445, and

2711 lines of source code.

The typographic style checker was useful in measuring the

internal consistency of the code style, identifying anomalies

amoung the modules contained within a firm 1 s program, and

comparing the styles across companies. Figure 2 demonstrates the

ability to cluster code styles by authorship. Six modules were

selected at random from each of the three programs, run through

the style checker, reduced to a distance matrix, and then

clustered using the minimum distance criteria. As shown in

Figure 2, this methodology identifies and clusters the modules

from Company A and Company B perfectly. The Company C code is

least consistent; joining at higher connection levels and

containing anomalies like Module #15.

We have applied this system to other industrial code,

individual student projects, and code from teams of students

working in software engineering practicums. It is far from

infallible, but usually provides a convenient means of measuring

style consistency and grouping code by authorship.

12

company module# connection level
0 1 2 3 4 5

+-------+-------+-------+-------+-------+
A module 3 --------I
A module 14 --------I
A module 16 --------I-------I
A module 26 --------I I-----------------------I
A module 44 --------I I I
A module 61 ----------------I I

I
C module 3 ----------------I I
C module 8 ----------------I-------I I
C module 17 --------I-------I I---------------I
C module 44 --------I I I
C module · 34 ------------------------I I

I
B module 2 -I I
B module 12 -I------I I
B module 28 --------I-------------------------------I
B module 15 -I------I I
B module 23 -I I I
B module 34 --------I I

I
C module 15 --I

.. +-------+-------+-------+-------+-------+
0 1 2 3 4 5

Figure 2. Cluster Analysis of Industrial Code l

,.

13

..

4. CONCLUSIONS

The statistical analysis of markers is a common and widely

used method for settling authorship disputes in English writing.

We have proposed a similar method for identifying authorship of

programs. Typographic style characteristics provide a rich and

easily automated source of markers for use in statistical

analysis. This method can assist in detecting software theft and

plagiarism.

A prototype author identification system has been developed

wherein the typographic bit vector from a sample program is

compared to a database of bit vectors to determine the closest

match. To date, this has only been tested with student data, but

preliminary results are surprisingly accurate. This type of

system may someday prove useful as a plagarism detection

mechanism when used in conjuction with other methodologies.

Measuring code consistency is another advantage of this

method. A program with a consistent typographical style is

easier to maintain than one with an inconsistent style. A tool

that automatically checks for typographic style consistency would

aid the maintainer and would also check adherence to style

standards.

We do not claim that the typographic and structural

classification of programming style and corresponding typographic

style analyzer completely captures programming style. We suggest

that automated authorship identification and plagiarism detection

systems should be sensitive to both typographic and structural

concerns, as well as other factors contributing to programming

style. A programming style analyzer that takes into account

14
.

r

several classes of stylistic characteristics would be a powerful

tool for consistency checking, standards enforcement, and

maintainability assessment as well as authorship identification

and plagiarism detection.

15

,a

References

[Berg84] H. L. Berghel and D. L. Sallach, "Measurements of
Program Similarity in Identical Task Environments", ACM
SIGPLAN Notices, vol. 19(8), Aug. 1984, pp. 65-76.

[Daki8 2 J K. J. Dakin and D. A. Higgins, "Fingerprinting a
Program", Datamation, Aug. 1982, pp. 133-144.

[Dona81 J J. L. Donaldson, A. Lancaster, and P. H. Sposato, "A
Plagiarism Detection System", ACM SIGCSE Bulletin, Feb.
1981, pp. 31-40.

[Efro76] B. Efron and R. Thisted, "Estimating the Number of
Unseen Species: How many words did Shakespeare know?",
Biometrika, Vol. 63, 1976, p. 435.

[Evan84] M. Evangelist, "Program Complexity and Programming
Style", Proceedings of the International Conference on
Data Engineering (Los Angeles CA, Apr. 24-27). IEEE,
Silver Springs MD, 1984, pp. 534-541.

[Glas85] R. L. Glass, "Software Theft", IEEE Software, vol. 2(4),
July 1985, pp. 82-85.

[Grie81] S. Grier, "A Tool that Detects Plagiarism in Pascal
Programs", ACM SIGCSE Bulletin, Feb. 1981, pp. 15-20.

[Kola86] G. Kolata, "Shakespeare's New Poem: An Ode to
Statistics", Science, Vol. 24, Jan. 1986, pp 335-336.

[Most64] F. Mosteller and D. L. Wallace, Inference and Disputed
Authorship: The Federalist Papers, Addison-Wesley
Publishing Co., Reading, MA, 1964.

[Noru85] M. Norusis, SPSS-X: Advanced Statistics Guide, McGraw­
Hill Book Co., New York NY, 1985.

[Oman87] P. Oman and C. Cook, "A Paradigm for Programming Style
Research", (Submitted for publication).

[Otte76] K. J. ottenstein, "An Algorithmic Approach to the
Detection and Prevention of Plagiarism", ACM SIGCSE
Bulletin, Dec. 1976, pp. 30-41. --

[Robi80] S. Robinson & M. Soffa, "An Instructional Aid for
Student Programs", ACM SIGCSE Bulletin, Feb. 1980, pp.
118-127.

16

	Oman_Cook_87_60_11_A
	Oman_Cook_87_60_11_B

