
..

86-60-6

convOnl\JEAS~TY

5C~EflCE

Grif : A Graphical Programming Language for Robotics

David W. Sandberg
Department of Computer Science

Oregon State University
Corvallis , Oregon 97331

ORe:G:0\\ :-: ··.•·y,_ l 1·,·_: ''.TY
CORV. LUS, mL ;~ 97331.

SCh . .:f'.,ICE.

Grif: A Graphical Programming Language for
Robotics

1 Introduction

David W. Sandberg
Oregon State University

September 16, 1986

Robot manipulators are being used increasingly in manufacturing. A major part of the
cost of a robot system is the cost of developing the software needed to control the robot.
Grif is an interactive graphical programming system intended to reduce program develop­
ment costs for robotics. Grif is interactive to handle the iterative nature of programming
robots[3]. Grif is graphical to better express the control functions of the program. Grif
is flexible since new graphical primitives can be defined when existing primitives prove
inadequate. Since new primitives are defined textually, the programmer has a choice of
using graphical or textual programming.

In manufacturing assembly lines, the major part of programming involves specifying
how the components of the assembly line are to be controlled. The first assembly lines
were controlled with relays. Relay-ladder-network diagrams[l] (see Figure 1) were de­
veloped to program these assembly lines. Today, relays have largely been replaced by
programmable logic controllers that simulate the behavior of relays with a microprocessor.
Relay-ladder-network diagrams are still used to program programmable logic controllers.
Ladder networks are good at expressing the control functions of an assembly line and are a
natural form of expression for the engineers who design the assembly line. Unfortunately,
ladder networks are rather poor at handling data and are often hard to decipher because
of the lack of mnemonic labels for inputs and outputs.

When robots are added to the assembly line, data becomes important for expressing
the locations of parts, but data is still less important than the control functions. Ladder
networks are no longer adequate for this purpose. Robots are usually programmed using
the technology that has been developed for digital computers[3,4,10]. This technology
assumes that data manipulation is central. A technology where control is more central is
better for programming robots.

Graphics has been the preferred method for expressing control flow. For example, flow
charts are used to express control flow in programs, Petri nets[6] are used to express control
flow in parallel systems, Ladder networks are used to express the control in assembly lines,
and graphs are used to define finite state machines . A graphical form should also be a
good choice for expressing the control of a robot.

1

V-

Y4 YS
~

Y6
C28

C28 YS C29
~ 1--------1

v+
0Relay coil

1 ~ Normally open contacts

* Normally closed contacts

Figure 1: An example of a ladder network diagram. This "ladder" has two "rungs". The
boolean logic equivalent is Y4 • Y5 + Y6 = 028; 028 + Y5 = 029.

Figure 2: An example Grif program.

A graphical form has other benefits[7]. The human mind is strongly visually oriented
and can acquire information faster from a complex picture than by reading text. A graph­
ical form is better suited for expressing the possible parallelism than sequential text. A
picture can be more easily animated to express dynamically changing information. A good
graphical system should also be easier for a novice to use since a picture is often a more
concrete object than a textual representation.

2 A Simple Example.

Figure 2 contains an example of a Grif program. The basic components of a Grif program
are modules. Each nand gate in Figure 2 is a module. Each module has some output ports
that are connected to input ports of other modules. Modules communicate by sending
messages over these connections. The ports are typed according to the type of data sent
over the port. Figure 2 contains two different kinds of ports, one for boolean data and the
other for control information. (Control information is a signal that an event has occurred.)
The kind of port can be determined by the symbol that is used to represent it. Boolean
ports are represented by Hor L. Control ports are represented by C. The programmer can

2

interactively send data to a port by pointing at it and typing an appropriate key. Each
module contains one or more processes that monitor the input ports and send data out
the output ports. In addition a module may have a process that updates the display when
the module changes state.

The nand gates in Figure 2 have the obvious function. The fourth module from the
left duplicates its input on its two outputs. The fifth module from the left sends a control
signal when its input changes from low to high. The module on the far right is a flip-fl.op.
The state of the Grif program in Figure 2 is stable since the unconnected input to the
nand at the left is low. If the programmer pointed to this port and typed H, the state
would become unstable, and the programmer would see the boolean ports changing back
and forth from high to low.

Building the program in Figure 2 is straightforward using the Grif editor. The modules
are created by selecting them from a menu, pointing to a location to put them, and clicking
a mouse button . The ports are connected by pointing to the input port and clicking a
mouse button, pointing to the intermediate routing points, and finally pointing to the
output port and clicking a mouse button. If a module has extensive state, a module
specific menu is provided to edit the state.

3 A More Complicated Example

Figure 3 contains a more complicated Grif program. This program controls a robot that
takes parts from one tray and places them in another. Control flows primarily from left
to right through the figure. Figure 4 explains the functions of the ports of some of the
modules used in Figure 3. The modules labeled with Mare move commands to the robot.
Each of these modules specifies where to move by reading the point present on its port,
and adding an internal delta to the point. This delta makes makes it easy to specify the
approach to the slot relative to the slot in the tray. The move is performed when a control
signal is sent to its input port on the left. When the move is completed, a control signal
is sent out its output port on the right.

The tray modules supply the location data to the move modules. The tray is described
by the number of slots in the tray, the location of first slot, and the location of the last
slot. Each time a control signal is sent to the port on the upper right corner, the location
of the next slot is sent to the move module. When the tray is empty, a high is sent out the
boolean port on the tray module . This signal is converted into a control signal which sets
a flipflop which controls a switch which redirects a control signal so that the robot arm
will move to a parking position.

Figure 3 contains an abstract module to represent the control around the destination
tray . This module is expanded in the lower right of Figure 3. An abstract module is
created by opening a new edit window and creating the contents of the abstract module
like any other Grif program. Next, an abstract module is created by selecting the Amod
menu item. Ports can then be copied from the other modules onto the abstract module.
This abstract module is then copied into a buffer by selecting the copy menu item . The
abstract module can now be pasted into other edit windows by selecting the paste menu
item . The contents of an abstract module can be inspected by pointing at the module and

3

isconnec
onnect
pdateoff
pdateon

1---+t-t.:-r-----t_opyport

~-=--+14-:::-::-===-=-:-t:l elete in L.I c---'V~---'4 out

tray
5

destination

Figure 3: A Grif program for a robot.

4

Move Arm

start move 00 finish move

location

Part Tray

current slot
location ~ next slot

reset~ tray empty

Switch

Figure 4: The functions of some ports.

selecting open from the menu.
The lower left corner of Figure 3 contains an editor for changing the internal state of

the source tray. The window was created by pointing at the tray and selecting edit from
the menu. Similar editors are available for the move modules.

4 Defining new types of modules and ports.

Since Grif is implemented on top of the experimental language X2[8,9], X2 was the natural
choice for expressing the module definitions. Another language could also be used for
expressing the module definitions without much difficulty. X2 syntax is difficult to read
for those not familiar with it, so we are using a Pascal-like syntax here.

Defining a simple module is not difficult. Figure 5 gives the definition of the- flipflop
module used in Figure 2. A type is declared to represent the module, three processes are
defined to perform the actions, and a function is declared to create a new module. The
major difficulties involve synchronizing the processes correctly.

Defining new types of ports is also easy. More time may be spend designing the icons
to represent the type than writing the code. The boolean port type is defined in Figure 6.

5 Implementation

As mentioned earlier, Grif is implemented on top of X2. X2 is an object-oriented language
that can best be described as a cross between CLU[5] and Smalltalk[2]. Grif would be very
difficult to implement in many languages because the implementation makes heavy use of
procedure types, process types, and parameterized types. The powerful abstraction tools
that are in X2 allowed Grif to be built in a short time(approximately c,111· rnan-month.)

5

{Declare type to represent module}
type flipflop=~record

D:port(bool); {Port is a parameterized type.}
S:port(control); R:port(control); T:port(control);
update:notifier; {Used to notify display that state has changed.}

end;

procedure Taction(f:flipflop); {Action to toggle flip-flop}
var b:control;
begin

repeat
b:=readwait(f.T);
send(f.D, not readnowait(f.D)); {Send a message to f.D.}
signal(f.update); {Notify display that state has changed.}

until false
end; {Taction}

procedure Raction(f:flipflop); {Action to reset flip-flop.}
var b:control;
begin

repeat b:=readwait(f.R); send(f.D,false); signal(f.update); until false;
end; {Raction}

procedure Saction(f:flipflop); {Action to set flip-flop . }
var b:control;
begin

repeat b:=readwait(f.S); send(f.D,true); signal(f.update); until false;
end; {Saction}

function newff: gmodule(flipflop); {Create new module.}
var mg: gmodule(flipflop); b: flipflop;
begin

{initialize fields}
new(b); b.D:=newport; b . R:=newport; b.T:=newport;
b.S:=newport; b.update:=newnotifier;
{start up processes}
newprocess(Saction,b); newprocess(Raction,b); newprocess(Taction,b);
{Supply information on how to display module. flipflopform is a global variable that
contains a bitmap to represent the module. It was created using a form editor . }
mg:=newmodule(b,newmenu,flipflopform,b.update);
{The third parameter to addport indicates whether the port is an output port.

(Addport is overloaded, that is, it refers to two different procedures .)}
addport(mg,S,false,o=o); {o=o gives port location}
addport(mg,R,false,0=13);
addport(mg,T,false,0=13);
addport(mg,D,true,40=0);
return(mg);

end; {newff}

Figure 5: Defining a new kind of module.

6

procedure addport(mg:gmodule(f); p:proc(f,name(port(bool)));
out:bool; {Is the port an output port?}
location:point);

where f is free; {Indicates f stands for any type.}
begin

addport(mg,p, displayat ,"bool",out,location,true,boolportcontrol);
{True in the argument list indicates that the port is to be redisplayed when
the state changes.}

end; {addinport}

procedure boolportcontrol(p:port(bool); c:char);
{Defines user interaction with boolean ports.}
begin

if c ="h" then send(p,true) else send(p,false)
end; {boolportcontrol}

procedure displayat(b:port(bool); p:point; clip: rect);
{Defines how to display a port of type bool. Boolon and booloff are two forms

that define the symbols used to display boolean ports.}
var

f:form;
begin

if readnowait(b) then f:=boolon else f:=booloff
copy(f,display,p); {Copy form f to display at point p.}

end; {displayat}

Figure 6: Defining a new kind of port.

7

A Grif program is represented as a list of module descriptions and a list of connection
descriptions. Each module description has a bitmap and a location to display the bitmap
on the screen. Each module description also has a module-specific menu, a list of port
descriptions, and a list of update descriptions. Each port description contains a procedure
to display the port, a location to display the port, the type of the port, whether the port
is an input or output port, the address of the port, and a control function that defines
the user interaction with that particular port. Each update description describes how to
display part of the module when the state changes. Each update description contains a
module, the location of the update relative to the module, how to display the update, and
the notifier that indicates when the state has changed. When the module is created a
process is automatically created that monitors the notifiers and performs the update when
needed.

A connection description contains descriptions of the input port of the connection and
the output port of the connection, and a list of the intermediate points through which the
connection is to be routed. When a connection is made, the output port is thrown away
and the input port is shared between the two modules.

A notifier is a counter. Each time a change is made the counter is incremented. Pro­
cesses can wait until the counter exceeds a given value. A process normally waits until the
counter exceeds the value the counter had when the last update was begun.

A port is a semaphore and a data value. When data is sent to a port, the data value is
set and a signal is done on the semaphore. When data is read from a port, a wait is done
on the semaphore and then the data is read. A read without waiting just returns the data
value.

The operations of the editor are implemented with straightforward manipulations of
the above data structures. The choice of data structures was not as straightforward. Grif
was rewritten three times to arrive at the current version.

6 Conclusion

Grif has been connected to a Intelledex MicroSmooth 440 robot and a few simple programs
have been written. More extensive experience is needed to develop a good set of primitive
modules. Graphics does seem to be better than text for expressing the parallelism inherent
in control systems. On the other hand, some concepts are expressed more concisely with
text. For example, arithmetic expressions have a very concise text form. Grif's ability
to intermix textual and graphical programming allows the programmer to use the more
appropriate form. Grif allows the programmer to determine and modify the state of a
program more easily than is possible in a system that only uses text. Grif shows promise of
making robots easier to program, but more experience is needed before any firm conclusions
can be drawn.

7 Acknowledgements

I wish to thank Intelledex for providing access to their robots and Jim Campbell of In­
telledex for numerous valuable discussions.

8

8 References

[1] Ernest 0. Doebelin. Control System Principles and Design. John Wiley and Sons,
1985.

[2] Adele Goldberg and David Robson. Smalltalk-BO: The Language and Its Implemen­
tation. Addison- Wesley, 1983.

[3] Ron Goldman. Design of an Interactive Manipulator Programming Environment.
UMI Research Press, Ann Arbor, Michigan, 1985.

[4] C. S. G. Lee, R. C. Gonzalez, K. S. Fu, eds. Tutorial on Roboti"cs. IEEE, 1984.

[5] Barbara Liskov, et al. CL U Reference Manual. MIT Technical Report, MIT /LCS /TR-
225, 1979.

[6] James L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall,
1981.

['T] Georg Raeder. A Survey of Current Graphical Programming Techniques. IEEE
Computer Magazine, August 1985, 11-25.

[8] David W. Sandberg. The Design of the Programming Language X-2. OSU Department
of Computer Science Technical Report 85-60-1, 1985

[9] David W. Sandberg. An Alternative to Subclassing. To appear in Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and Applications,
Portland, Oregon. September 1986.

[10] Wesley E. Snyder. Industrial Robots: Computer Interfacing and Control. Prentice­
Hall, 1985.

9

	Sandberg_David_86_60_06_A
	Sandberg_David_86_60_06_B

