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Abstract 

This paper formalizes a new learning from examples problem: identifying 
a correct concept definition from positive examples such that the concept 
is some specialization of a target concept defined by a domain theory. 
This paper describes an empirical study that evaluates three methods for 
solving this problem: explanation based generalization (EBG), multiple 
example explanation based generalization (mEBG), and a new method, 
induction over explanations (IOE) . The study demonstrates that the two 
existing methods (EBG and mEBG) exhibit two shortcomings: (a) the 
methods rarely identify the correct definition, and (b) the methods are 
brittle-their success depends greatly on the choice of encoding of the do­
main theory rules. The study demonstrates that the new method, IOE, 
does not exhibit these shortcomings. The IOE method applies the domain 
theory to construct explanations from multiple training examples as in 
mEBG, but forms the concept definition by employing a similarity-based 
generalization policy over the explanations. The method has the advan­
tage that an explicit domain theory can be exploited to aid the learning 
process, the dependence on the initial encoding of the domain theory is 
significantly reduced, and the correct concepts can be learned from few 
examples. The study evaluates the methods in an implemented system, 
called Wyl2, learning a variety of concepts in chess including "skewer" and 
"knight-fork." 

Key words: Learning from examples, induction over explanations, explanation 
based learning, inductive learning, knowledge compilation, evaluation of learning 
methods . 
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1 Introduction 

Gxplanation-based generalization (EBG) is usually presented as a method for improving 
the performance of a problem solving system without introducing new knowledge into the 
system (i.e., without performing knowledge-level learning; Dietterich, 1986). The problem 
solver begins with an inefficient, but correct, domain theory (DT) that defines a target 
concept (TC). The learning process consists of repeatedly accepting a training example 
(E), applying the domain theory to prove that E is an instance of the target concept, and 
then extracting the weakest preconditions of that proof to form an efficient "chunk" that 
provides an easy-to-evaluate sufficient condition for TC. This chunk can be used during 
future problem solving to quickly determine that E and many examples similar to E are 
instances of TC (see Mitchell, Keller, and Kedar-Cabelli 1986; DeJong and Mooney 1986). 

According to this perspective, EBG is related to other methods of knowledge compilation 
such as partial evaluation (Preditis, 1988; Van Harmelen & Bundy, 1988) and test incorpo­
ration (Bennett and Dietterich, 1986) because it is simply converting the target concept into 
"operational" (i.e., efficient) form. 

However, there is way in which the same mechanism-computing weakest preconditions­
can be applied to acquire new knowledge. The method works as follows. Suppose that the 
training example E, in addition to being an instance of TC, is also an instance of another, 
more specific concept C. As before, the domain theory is applied to demonstrate that E is 
an instance of TC, and the · weakest preconditions ( call them WP) are extracted from the 
proof. But instead of just viewing WP as a sufficient condition for TC, we can also view 
WP as necessary and sufficient conditions for C. In short, 

W P(E) = C(E). 

By making this assertion, the learning program is making an inductive leap and thus per­
forming knowledge-level learning. 

When viewed in this way, the purpose of explanation-based learning is not to translate 
TC into more efficient form, but instead to identify the correct definition of C. The target 
concept and the domain theory are acting in the role of a semantic bias by providing a good 
vocabulary in which to define C (i.e., the language in which the domain theory is expressed) 
and by dictating how the training example should be generalized (i.e., by computing the 
weakest preconditions of the proof). 

A review of the literature reveals that many applications of EBG are best viewed from 
this second perspective. Consider, for example, the OCCAM system (Pazzani, 1988) . In OC­
CAM, the domain theory defines several target concepts including the concept of "coercion" 
(i.e., achieving a goal by making a threat). In one example from (Pazzani, 1988), OCCAM is 
given a scenario where one country threatens to stop selling an essential product to another 
country. This scenario is simultaneously an example of "coercion" and also an example of 
the more specific concept "economic sanction." OCCAM applies its domain theory for "co­
ercion" to obtain the weakest preconditions for the scenario to succeed and then assumes 
that these weakest preconditions define the "economic sanction" plan. This assumption is 
clearly an inductive leap, since OCCAM does not know that the weakest preconditions are 
a correct definition of "economic sanction." 
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Many other examples of this inductive application of weakest preconditions can be found 
in systems that learn control knowledge, such as LEX2 (Mitchell, Pt,goff and Banerji, 1983) 
and Prodigy (Minton, 1988). The problem solver in these systems cc,:-.,.sults a set of preference 
rules to decide which operator to apply to solve each problem or subproblem. The domain 
theory in these systems defines the target concept "operator succeeds" by stating that a 
successful operator is an operator that solves the problem or is the first step in a sequence 
of operators that solves the problem 1• Training examples are constructed by applying a 
heuristic search to find a successful sequence of operators. Then, the first operator in this 
sequence, Op1 is an instance of the concept "operator succeeds". However, the first operator 
in the sequence is also assumed to be an instance of the concept "best operator to apply." 
Using the domain theory for "operator succeeds", EBG constructs the weakest preconditions 
WP under which Op1 will solve the given problem. Then, a new preference rule is created 
that states 

If the current problem satisfies WP 
Then the best operator to apply is Op1 . 

The creation and application of this preference rule constitutes an inductive leap. To see 
this, consider how LEX2 handles the following operator: 

OP3: j cf(x)dx ==> c j f(x)dx 

When LEX2 solves the problem f 5x 2dx, it derives the weakest preconditions WP : J cxr dx 
(r =/= -1) for OP3 to be a successful operator. It then constructs the preference rule 

If the current problem matches f cxr dx ( r =/= -1) 
Then prefer O P3. 

This preference rule recommends the wrong action when LEX2 attempts to solve the problem 
f Ox4dx, because the zero should instead be multiplied out to obtain f Odx. This error reveals 
that LEX2 has taken an inductive leap when it constructed the preference rule. 2 

Figure 1 formalizes this learning problem, which we call the theory-based concept special­
ization (TBCS) problem, because it involves the inductive specialization of a concept defined 
by a domain theory. We believe this learning problem is important, because it provides a 
strategy for incorporating domain knowledge into the inductive learning process. Hence, it 
addresses the important open problem in machine learning of how to exploit domain knowl­
edge to guide inductive learning. 

The reader may have noticed that Figure 1 does not mention the "operationality cri­
terion," which plays a major role in the "non-inductive" applications of explanation-based 
generalization. This omission reflects the fact that in the TBCS problem, the focus is not 

1 Prodigy contains several other target concepts. This same argument applies, with minor modifications, 
to each of them. 

2 Of course, since this control error will not affect the answer that LEX2 eventually computes, the entire 
LEX2 system has not made an inductive leap or performed knowledge level learning. However, the subsystem 
of LEX2 that selects the best operator to apply has made such a leap, it is just not visible to an external 
observer. In other words, LEX2 has made a control error, but this does not cause it to produce the wrong 
solution to the integration problem . 
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Given 

• A domain theory that defines a target concept, 
TC. 

• A set of positive training examples of a concept 
C, where C is a specialization of TC. 

Find 

• A correct definition of C. 

Figure 1: The theory-based concept specialization (TBCS) problem. 

on improving problem-solving efficiency, but rather on identifying the correct definition for 
concept C. In most cases, once the correct definition is identified, a knowledge compilation 
step will be needed to convert it into a form that can be efficiently evaluated. 

The purpose of this paper is to analyze and compare three related methods for solving this 
learning problem: explanation-based generalization (EBG), multiple-example explanation­
based generalization (mEBG) (Kedar-Cabelli, 1985; Hirsh, 1988; Cohen, 1988; Pazzani, 
1988), and induction over explanations (IOE), which is introduced in this paper. The paper 
demonstrates that IOE eliminates two shortcomings of EBG and mEBG. The first short­
coming is that the semantic bias implemented by EBG and mEBG is too strong, and this 
causes them to produce incorrect concept definitions very frequently. The second shortcom­
ing is that EBG and mEBG are quite brittle-their success depends greatly on the choice of 
encoding of the domain theory rules. This makes it difficult to design a domain theory that 
produces correct specializations. 

In this paper, we present empirical evidence to document these shortcomings, but they 
have been noted by several other researchers. For example, the SOAR group has found 
(Laird, 1986) that the encoding of the eight-puzzle problem space in SOAR critically influ­
ences the quality and generality of the chunks that are learned. In OCCAM, Pazzani found 
it necessary to augment the event schemas with additional features so that the learned defi­
nition of "economic sanction" included the constraint that the threatened country would pay 
more for the sanctioned product if purchased elsewhere (Pazzani, personal communication). 
Gupta (1988) also discusses these shortcomings. 

To overcome these problems, IOE employs a weaker semantic bias. The weaker bias 
requires IOE to use more training examples than either EBG (which only uses a single 
example) or mEBG (which generally uses very few). However, we present experimental 
evidence and theoretical analysis to demonstrate that the number of training examples is 
still acceptably small. 

We also present experimental evidence supporting the claim that IOE requires less "do­
main theory engineering" than either EBG or mEBG. This results from the fact that IOE's 
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weaker semantic bias makes it less sensitive to the form of the domain theory and more 
sensitive to the training examples that are presented. 

This paper is organized as follows. Section 2 describes the El'U, mEBG, and IOE 
methods and illustrates them learning definitions of cups. Section 3 introduces four criteria 
by which to judge the effectiveness a method and describes an empirical study in the domain 
of chess that evaluates these methods according to our criteria. In Section 4 we analyze our 
results. Section 5 concludes with a summary of the major results and open problems for 
future research. 

2 Explanation Based Methods 

In this section we describe three methods for solving the theory-based concept specializa­
tion problem: explanation-based generalization (EBG), multiple-example explanation-based 
generalization (mEBG), and induction over explanations (IOE). Each of these methods, re­
quires a domain theory, a target concept, and one or more training examples. To illustrate 
the methods, we will use the simple domain theory shown in Figure 2 and the three training 
examples shown in Figure 3.3 

The domain theory defines the target concept cup(Object) as follows. A cup is any 
object that holds liquid, is stable, is liftable, and can be drunk from. To hold liquid, the 
sides and bottom of the object must be made of non-porous materials. To be stable, the 
bottom must be flat. To be liftable, the object must be made of light-weight materials and 
be graspable. There are two different ways to be graspable. One way is for the object to 
have a small, cylindrical shape and to be made from an insulating material. The other way 
is for the object to have a handle. 

The three examples shown in Figure 3 are each positive examples of the cup concept. 
Cupl is a plastic cup without any handles. It is graspable because plastic is an insulating 
material. Cup2 and cup3 both have handles. Their main difference is that cup2 has plastic 
sides and a metal bottom, whereas cup3 is made entirely of china. 

Below each cup is shown the symbolic description that is actually processed by the three 
methods. At the bottom of the figure, we present the explanation tree that is constructed 
for each cup . To make these trees understandable, we have given each rule in the domain 
theory a two-letter name, and these are shown in the explanation trees and in the domain 
theory. 

2.1 Explanation-Based Generalization 

Explanation-based generalization forms its concept definition from only one example . It 
proceeds as follows. 

Step 1. Construct the explanation tree (proof tree) that explains why the example is an 
instance of the target concept. 

Step 2. Compute the weakest preconditions WP such that the same explanation could 
be applied. For simple explanation trees of the type shown in Figure 3, WP is a 

3 This example is inspired by (Kedar-Cabelli, 1985). 
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Rule C 
cup(Object):­

hold--1iquid(Object), 
stable (Object), 
liftable(Object), 
drinkfrom(Dbject). 

Rule HI 
hold--1iquid(Object):­

sides(Object,S), 
made..:from(S ,Ms), 
non_porous (Ms), 
bottom(Object,B), 
made..:from(B ,Mb), 
non_porous (Mb). 

non_porous(plastic). 
non_porous ( china) . 
non_porous(metal). 
non_porous(styrofoam). 
Rule Df 
drinkfrom(Dbject):-

has(Object,Ob1), 
concavity(Ob1), 
upward_pointing(Db1). 

Rule St 
stable(Object):­

bottom(Dbject,B), 
flat (B). 

Rule Li 
liftable(Object):­

light_weight(Object), 
graspable(Object). 

Rule Lw 
light_weight(Object):­

small(Object), 
sides(Object,S), 
made..:from(S ,Ms), 
lightJ11aterial(Ms), 
bottom(Object,B), 
made..:from(B ,Mb), 
lightJllaterial(Mb). 

lightJ11aterial(plastic). 
lightJllaterial(china). 
lightJ11aterial(metalsheet). 
lightJ11aterial(styrofoam). 
Rule Grl 
graspable(Object):-

small(Object), 
sides(Object,S), 
cylindrical(S), 
made..:from(S ,M), 
insulatingJ11aterial(M). 

insulatingJ11aterial(styrofoam). 
insulatingJ11aterial(plastic). 
Rule Gr2 
graspable(Object):-

small(Object), 
has(Object,01), 
handle( □ !) . 

Figure 2: Cup Domain Theory 

6 



cup1 

sides(cup1,s1). 
made...:from(s1,plastic). 
bottom(cup1, b1). 
made...:from(b1 ,plastic). 
flat(b1). 
has(cup1,c1). 
concavity(c1). 
upvard_pointing(c1). 
small(cup1). 
cylindrical(s1). 

C 

~ 
HI St Li Df 

/'.... 
Lw Gr 

/ 
Grl 

EBG(cup1) 

cup2 

sides(cup2,s2). 
made...:from(s2,plastic). 
bottom(cup2,b2). 
made...:from(b2,metal). 
flat(b2). 
has(cup2,c2). 
concavity(c2). 
upvard_pointing(c2). 
small(cup2). 
has(cup2,h2). 
handle(h2). 

C 

H~f 
/'.... 

Lw Gr 

' Gr2 

EBG(cup2) 

Figure 3: Cup Examples 
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cup3 

sides(cup3,s3). 
made...:from(s3,china). 
bottom(cup3,b3). 
made...:from(b3,china). 
flat(b3). 
has(cup3,c3). 
concavity(c3). 
upvard_pointing(c3). 
small(cup3). 
has(cup3,h3). 
handle(h3). 

C 

~f 
/'.... 

Lw Gr 

' Gr2 

EBG(cup3) 



conjunction of the literals that appear as the leaves of the explanation tree. However , 
the terms that appear as the arguments in those literals must be carefully selected so 
that they are as general as possible and yet still guarantee that the consequent of each 
rule appearing in the tree will unify with the antecedent of the appropriate rules above 
it in the tree . This can be accomplished by constructing the explanation tree from the 
domain theory rules, this time performing only those unifications needed to reconstruct 
the tree itself and omitting any unifications with the training example. There are 
many refinements of this procedure. For example, in systems where unifications can 
be "undone," it suffices to undo all unifications between the domain theory and the 
training example. See Mooney & Bennett, 1986 and Kedar-Cabelli & McCarty, 1987 
for more details. 

To see how this method works, consider applying EBG to Cupl from Figure 3. Like all 
cups, this one holds liquids, is stable, light-weight, and can be drunk from. The interesting 
aspect of this particular cup is that it lacks a handle. However, it is still graspable because 
it is small, cylindrical, and the sides are made of an insulating material. It is these general 
properties that are identified by EBG, as a result of analyzing the explanation tree. Here 
are the weakest preconditions that it discovers: 4 

sides(Object,S),cylindrical(S),madefrom(S,Ms), 
non_porous(Ms),light...material(Ms),insulating...material(Ms), 
bottom(Object,B),flat(B),madefrom(B,Mb),non..porous(Mb), 
light..material(Mb),small(Object),has(Object,Ob), 
concavity(Ob),upwardpointing(Ob). 

In the TBCS problem, these weakest preconditions form the definition for a new concept, 
C. This concept C is clearly a specialization of the target concept ("Cup"), because it 
describes only cups with cylindrical sides made of light, insulating material. 

If different training examples are given to EBG, different weakest preconditions will be 
computed . To see this, consider applying EBG to cup2. This cup has plastic sides, a metal 
bottom, and a handle . Consequently, a different rule for graspable is applied from the 
domain theory, and EBG forms a concept definition that covers only cups that have handles 
and removes the restriction that the material must be insulating. 

In these two cases, EBG forms different concept descriptions because each example re­
quires different domain theory rules in its explanation. When learning from cupl, rule Grl 
must be applied to prove that the object is graspable. When learning from cup2, rule Gr2 
must be applied to prove that the object is graspable. Because the domain theory rules 
appearing in the explanation determine the weakest preconditions computed by EBG, these 
two different explanations yield two different concept definitions. 

This observation makes it possible to characterize the space of all concept definitions 
that EBG can discover. Let us say that an explanation tree is "complete" if it provides 
a proof connecting the target concept to the predicates that are provided in the training 
examples. For every distinct complete explanation tree that can be constructed from the 

4 For illustrative purposes we are assuming that ground atomic formulas in the domain theory (i.e., 
non_porous, light...material and insulating...material) are "compiled" knowledge (in the sense given in 
Braverman & Russell, 1988) and not included in the EBG definition. 

8 



C 

~ 
HI St Li Df 
~ 

Lw Gr 
/ 

Grl 
EBG(cup1) 

C C 

~ 
HI St Li Df 
~ 

HI St Li Df 

L~r 
~ 

Lw Gr 

' Gr2 
EBG(cup2) mEBG(cup1,cup2) 

Figure 4: mEBG learning from cup1 and cup2 

domain theory, EBG will construct a different concept definition. In our illustrative cup 
domain theory, there are only two distinct complete explanation trees, so EBG can only 
construct two distinct concept definitions. 

Utgoff (1986) and Haussler (1988) define the strength of an inductive bias in terms of the 
size of the space of hypotheses permitted by the bias. In the TBCS problem, the space of 
hypotheses permitted by the semantic bias is precisely the space of definitions that EBG can 
construct. Therefore, when we apply EBG to solve the TBCS problem, we are employing a 
very strong bias indeed! 

2.2 Multiple Explanation-Based Generalization 

The second method that we wish to consider is the multiple-example explanation-based 
generalization (mEBG) method described in Kedar-Cabelli (1985), Hirsh (1988), Pazzani 
(1988), and Cohen (1988). The method differs from EBG in that the final concept definition 
is identified from multiple examples, rather than from only a single example. The method, 
given two or more examples of the target concept, proceeds as follows. 

Step 1. For each example, mEBG constructs an explanation tree that proves that the ex­
ample is an instance of the target concept. 

Step 2. It then compares these trees to find the largest subtree that is shared by all of the 
examples. 5 

Step 3. Finally, it applies the EBG generalization technique to this maximal common sub­
tree to generalize the terms appearing in the tree and extract the weakest preconditions 
such that the tree remains a valid proof. 

To illustrate the method, consider giving mEBG the first two training examples of cup: 
cup1 and cup2. Figure 4 shows the (schematic) explanation trees for each example and the 
maximal common explanation tree computed in Step 2. Notice that because cupi lacks a 

5 An alternative view of this step (Cohen, 1988) is that mEBG forms a combined AND/OR proof tree, 
where OR nodes are introduced at each point in the tree where different domain theory rules were applied . 
This technique will be equivalent to the pruning technique described here only when enough training examples 
are presented to cause every applicable domain theory rule to be included in the OR-node . 
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handle, its explanation must involve rule Grl (insulated, small cylinder), whereas cup2 has 
a handle, so its expl .nation must involve rule Gr2 (small with handle). Because the rules 
differ, neither is incH'Lded in the common explanation tree. As a consequence, Step 3 of the 
mEBG procedure produces the following weakest precondition: 

graspable(Object),sides(Object,S),madefrom(S,Ms), 
non_porous(Ms),light...material(Ms), 
bottom(Object,B),flat(B),madefrom(B,Mb),non_porous(Mb), 
light...material(Mb),small(Object),has(Object,Ob), 
concavity(Ob),upwardpointing(Ob). 

The only difference between this definition and the one produced by EBG from cup1 is 
that the conditions cylindrical(S) and insulating...material(Ms) have been deleted and 
replaced by the condition graspable(Object). This change reflects the fact that the new 
definition is uncommitted about the way the graspable goal is satisfied. Whenever this 
definition is applied to new examples, it will be necessary to consult rules Grl and Gr2 to 
determine whether the graspable(Object) condition is satisfied. 

The space of concept definitions that mEBG can produce strictly includes the space of 
definitions computed by EBG. Recall that EBG will produce a different concept definition 
for each distinct complete explanation tree that can be constructed in the domain theory. 
The mEBG method expands this set by also permitting incomplete explanation trees. It will 
construct a different concept definition for each distinct incomplete explanation tree. 

Incomplete explanation trees need not relate the target concept to the predicates given 
in the training examples. Instead, the leaves of an incomplete tree can terminate at any 
point where there is a disjunction in the domain theory. The reason is that by presenting 
one training example for each branch of the disjunction, we can force the mEBG method to 
prune all rules at or below the disjunction when it constructs the maximal common subtree. 

In the cup domain theory, there is only one disjunction (gra~pable), so the space of 
definitions that can be constructed by mEBG from this domain theory includes only 3 
definitions: the two constructed by EBG and the third definition shown above. 

2.3 Induction Over Explanations 

Like mEBG, the induction over explanations (IOE) method is also a method for learning 
from multiple examples. The key difference is that IOE employs a different strategy for 
generalizing the maximal common explanation tree to obtain the concept definition. To 
simplify the notation, we describe IOE applied to only two training examples, T 11 and T 12 : 

Step 1. Apply the mEBG method to the two training examples T 11 and T 12 • This produces 
a concept definition CmEBG· Retain the original explanation trees for use in step 2. 

Step 2. Match CmEBG to the saved proof tree for each training example T Ii to produce a 
substitution, 0i (where 0i consists of a set of pairs Vj = Cjj each Vj is a variable in 
CmEBG, and each Cj is a constant from T Ii or the domain theory). 

Step 3. Form 0, a new substitution for CmEBG as follows: 
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1. Set 0 to 0. 
2. For each variable, Vj in CmEBG put Vj = Cj in 0, where Cj is computed as folkf,rs: 

(a) Lookup Vj = clj E 01, and Vj = c2j E 02. 

(b) Cj +- gen(clj,C2j), where gen(cl,c2) is defined as follows: If cl = c2 then 
gen( cl, c2) = cl. 
Otherwise, if cl = f(t1,1, t1,2, ... , t1,k) and c2 = f(t2,1, t2,2, ... , t2,k) (i.e., terms 
with the same initial function symbol f), then gen(cl, c2) = f(gen(t 1,1, t 2,1), 

gen(t 1,2, t2 ,2 ), ••• ,gen(t1,k, t2,k)). (In other words, gen is applied recursively 
to each pair of corresponding arguments of f.) 
Otherwise, gen(cl, c2) = v, where vis selected as follows. If there has never 
been a previous call to gen with these same arguments cl and c2, then vis a 
new variable that does not appear anywhere in 01 , 02, or 0. The information 
that gen( cl, c2) = v is stored in a table for future use. If there has been a 
previous call to gen with the same arguments, then this table is consulted, 
and the previously generated variable is returned as v. 

Step 4. Compute and return the CmEBG(), the substitution applied to the mEBG definition. 

In this procedure, IOE begins by computing the mEBG concept definition. However, it 
then specializes this mEBG concept definition by introducing additional constraints on the 
variables appearing in the definition. These new constraints are imposed by the substitution 
0. 

Two kinds of constraints are introduced. The first kind is a constant constraint. It is 
introduced whenever a given variable v appearing in the mEBG definition is always bound 
to the same constant c in every training example. When this occurs, IOE binds v to c in the 
concept description. 

To illustrate this, suppose we apply IOE to the two training examples cupl and cup2 
(see Figure 3). In the mEBG definition computed by Step 1, the literal rnadefrorn(S ,Ms) 
appears, where Ms is the material making up the sides of the cup. Because both cupl and 
cup2 have plastic sides, IOE will introduce the constraint Ms = plastic, so the final concept 
description will require that the cup sides be plastic. 

The second kind of constraint introduced by IOE is an equality constraint that forces 
two or more variables appearing in the mEBG definition to be equal to identical terms. An 
equality constraint is introduced whenever IOE finds two ( or more) different variables v1 

and v 2 in the mEBG definition that are always bound to the same term Ci in each training 
example Th Notice that the term Ci can differ from one training example to the next. 
However, within each example T Ii, v1 and v 2 are both bound to the same value Ci. 

To illustrate this, suppose we apply IOE to training examples cupl and cup3. Recall 
that both the bottom and the sides of cupl are made of plastic. Similarly, the bottom and 
the sides of cup3 are made of china. In the mEBG definition computed in Step 1, the two 
literals rnadefrorn(S,Ms) and rnadefrorn(B,Mb) appear, where Ms is the side material and Mb 
is the bottom material. In the first training example, Ms and Mb are both bound to plastic, 
while in the second training example, Ms and Mb are both bound to china. Therefore, IOE 
introduces a new variable Mand changes the final definition so that it includes the two literals 
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Variable Training Examples Learning output 
V ci ip( cup2 cup3 JOE( cup1,cup2) JOE( cup 1, cup3) 

Object cup1 cup2 cup3 Obj Obj 
s side1 side2 side3 Side Side 

Ms plastic plastic china plastic M 
B bottom1 bottom2 bottom3 Bottom Bottom 

Mb plastic metal china M M 
Obi cont con2 con3 Con Con 

Table 1: Table showing the results of applying IOE to cup1, cup2 and cup3 

madefrom(S ,M) and madefrom(B ,M). This definition describes "homogeneous" cups, that is, 
cups made entirely of a single material. 

Both kinds of constraints are computed by the gen procedure. Table 1 shows how this 
works in more detail. The first column of the table lists the six variables that appear in 
CmEBG• The set of columns labelled "Training Examples" shows the substitutions 0i for 
each of the three training examples, cupt, cup2, and cup3. The final two columns show the 
results of applying IOE either to cupt and cup2 or to cup1 and cup3. 

Consider the last column of the table, where we are computing IOE(cupl, cup3). Dur­
ing Step 3, the gen procedure will be applied one row at a time. First, IOE computes 
gen( cup1,cup3). Because the two constants differ, IOE creates a new variable, Obj, and 
adds the pair Object = Obj to the final substitution 0. 

The second call to gen is with arguments side1 and side3. A new variable Side is 
created, and the pair S = Side is added to 0. 

The third call to gen is the one that introduces an equality constraint. The arguments 
are plastic and china. As before, a new variable, Mis created, and the pair Ms = Mis added 
to 0. As always, however, the information that gen(plastic,china) =M, is stored away for 
future reference. When IOE reaches the fifth line of Table 1 (the line for Mb), it will consult 
the stored information and add the pair Mb = M to 0, thus imposing the equality constraint. 

The layout of Table 1 reveals an important way of thinking about the IOE procedure. We 
can think of each variable appearing in CmEBG (the left-most column) as a simple "feature." 
Each substitution 0i can be viewed as a feature vector. According to this perspective, the 
generalization procedure of Step 3 is the well-known algorithm for computing the maximally­
specific conjunctive generalization of a collection of feature vectors by turning constants to 
variables. The only subtlety is the technique for introducing equality constraints. We call 
this technique the "no-coincidences" bias, because it assumes that if the pair (plastic, 
china) appears in more than one row in the table, this must indicate an equality constraint 
rather than just a coincidence. 6 

Given that IOE is applying such a simple inductive generalization procedure, what is 
the source of power of the method? The answer is that unlike traditional inductive learning 
techniques, IOE is not attempting to find patterns in the training examples as they are 
originally presented to the learning system . Instead, it applies the domain theory and the 

6 Subsequent to implementing IOE, we discovered that Plotkin (1970) had already developed and formal­
ized this no-coincidences bias. 
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IOE 

mEBG 

Composition of Domain Theory Rules 
Specializations of the Target Concept 

Figure 5: Concept spaces of EBG, mEBG and IOE 

target concept to identify a useful set of features for inductive generalization ( this point has 
been made by Pazzani, 1988). In IOE, the substitutions 0i re-express the training examples 
in terms of these useful features. In later sections of the paper we show that it is this ability 
to reformulate the training examples in terms of relevant features, rather than the particular 
generalization strategies employed, that is the source of power underlying all explanation­
based learning methods. 

What is the space of concept definitions that can be constructed by IOE? For every 
possible definition constructed by mEBG, IOE can generate any legal substitution, where 
the substitution constrains the definition through a combination of constant constraints and 
equality constraints. In the cup domain, this use of constraints allows IOE to generate 68 
different definitions of cups including the two above: cups that have plastic sides and cups 
that are homogeneous. Among these 68 definitions are the three definitions that mEBG 
discovers. These are produced when the training examples have different combinations of 
values in every row of Table 1 so that gen produces a distinct variable for each row. 

To summarize, we illustrate the three spaces in Figure 5. Note that all three methods im­
plement a semantic bias, that is, form a definition C that is some specialization of the initial 
target concept TC. EBG builds the smallest space of specializations, each corresponding to 
a distinct complete explanation tree. The mEBG method offers a larger space of specializa­
tions that includes the space of EBG, because it considers incomplete explanation trees as 
well. IOE offers a much larger space, because it is able to specialize each mEBG definition in 
many different ways, depending on the configuration of constants appearing in the training 
examples. 
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3 Comparative Study 

In this section we describ ,·-an empirical evaluation of the three methods EBG, mEBG, and 
IOE applied to the theory-based concept specialization (TBCS) problem. The section begins 
by defining four evaluation criteria. This is followed by an outline of the experiments and a 
description of the test domain and the test domain theories. The section concludes with the 
results of the experiments. 

3.1 Evaluation Criteria 

Because the TBCS problem is a problem of learning from examples, it is appropriate to 
consider the two traditional criteria for such learning methods: correctness ( the method 
should find the correct concept C) and learning efficiency ( the method should require a 
small number of training examples and few computational resources). 

In addition to these two criteria, we want to consider other criteria that assess the ease 
with which each learning method can be applied to new problems and to new domains. 
To do this, we borrow from software engineering the idea of the "life cycle" of a program. 
In particular, let us make a distinction between the design phase of a learning system and 
the learning phase of the system. During the design phase of a TBCS system, a learning 
method is chosen and implemented, a vocabulary and target concept TC are selected, and 
a domain theory is written for TC in terms of this vocabulary. During the learning phase, 
a collection of training examples for some specialized concept C is presented to the system, 
and a definition for C is constructed. 

This simple life cycle model suggests two additional criteria for evaluating learning meth­
ods: ease of engineering (during the design phase) and flexibility (during the learning phase). 
A method is easy to engineer if it is not very sensitive to the vocabulary and the exact form 
of the domain theory. This makes it easier to design the vocabulary and write the domain 
theory. A method is flexible to the extent that the user can change the unknown concept 
C, provide a new set of training examples, and still find a correct definition for C without 
having to change the domain theory, the vocabulary, or the target concept. 

The four criteria employed in this study can be summarized as follows: 

Ease of Engineering ( design phase): The learning system should be easy to construct. 
It should not require the careful design of the domain theory or the careful choice of 
the target concept in order to be effective during the learning phase. 

Learning Efficiency (learning phase): The learning system should require a small num­
ber examples and few computational resources during learning. 

Correctness (learning phase): The learning system should construct a correct definition 
for the unknown concept C. 

Flexibility (learning phase): The learning system should be adaptable-that is, once 
designed, it should be able to learn a wide range of possible concepts during the 
learning phase without the need for redesign. 
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3.2 Experiment Outline 

To evaluate each of these criteria, we designed a series of experiments as follows. To trst ,. 
correctness and flexibility, we chose a domain in which there were several closely related 
concepts. Using a fixed domain theory, we attempted to get each learning method to learn 
every one of these concepts. Methods that learned each concept correctly scored well on the 
criteria of correctness and flexibility. 

To test learning efficiency, we measured the number of training examples required by 
each method to attain a given level of correctness. This comparison was only possible with 
concepts that were correctly learned by all three methods. 

Finally, to test ease of engineering, we performed all of the above experiments using 
two different domain theories: one developed by Flann and one developed independently by 
Russell (1985). If the results obtained from a method vary significantly depending on which 
domain theory is used, then the method is judged to be difficult to engineer. 

The following subsections describe the test domain, the two domain theories, and our 
implementation of the three methods. 

3.2.1 The test domain: chess 

The domain of chess was selected because it provides an excellent testbed for comparing 
different solutions to the TBCS problem. Chess provides many interesting concept definitions 
that are significant to problem solving, and it has a small, complete domain theory. Figure 6 
illustrates four concepts of interest in chess: knight-fork, sliding-fork, skewer, and check-with­
bad-exchange. 

Figure 6( a) is an example of knight-fork. The white knight on square e6 7 is simultaneously 
threatening the black bishop on g5 and the black king on d8. No black piece can take the 
white knight, so the king will be forced to move out of check (to c8 or d7). This will permit 
the knight to take the bishop. Figure 6(b) is a different kind of fork. The white bishop on 
c6 is simultaneously threatening the black rook on a8 and checking the king on e8. We call 
this fork a "sliding-fork", since the threatening piece can move through multiple squares. 
Figure 6 ( c) is an example of a "skewer." The black rook is checking the king on e4 who is 
forced to move out of check and expose the queen on b4 to capture. Notice that the captured 
piece is behind the king. Figure 6( d) shows a further variation, where different pieces are 
used in the check and capture. The black rook on c6 checks the white king on c2, while the 
black bishop on c8 threatens the knight on g4. 

Notice that in each case, the king is in check and the side to move suffers a bad exchange 
of material in two ply. Hence, all of these concepts are specializations of the concept check­
with-bad-exchange, where a piece Pl checks the king and forces it to move out of check, which 
allows a piece P2 to capture an opponent's piece Po. Figure 7 illustrates the relationships 
among the various different concepts. In a fork, the same piece (Pl = P2) is used both 
to threaten the king and make the capture. A skewer is a further specialization of a fork, 
because the captured piece Po is hidden behind the king. 

7 Each square on the board is denoted by a unique name. The first letter denotes the column, with the 
left-most column being a and the right-most column being h. The second number denotes the row, with the 
bottom row being 1 and the top row being 8. 
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a) Knight-Fork: black to play b) Sliding-Fork: black to play 

c) Skewer: white to play d) Check-With-Bad-Exchange: white to play 

Figure 6: Examples of related chess concepts 

check-with-bad-exchange 

general-~ 

~ 
knight-fork sliding-fork 

~ ~ 
knight-fork-takes-queen ~ 

skewer-takes-queen 

Figure 7: Related chess concepts 
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These specializations of check-with-bad-exchange are interesting because they exhibit im­
portant _',actical properties. For example, because Po in a skewer hides behind the king, the 
threate."ng piece Pl is not itself threatened by Po. This allows a weak, unprotected piece 
Pl, such as a bishop or rook, to capture a powerful piece Po such as the queen. The concept 
knight-fork is interesting because the check threat cannot be blocked by the opponent-to 
avoid the loss of Po, it is necessary to capture the knight. In contrast, in a sliding-fork the 
check threat may be blocked, allowing the opponent the potential to mitigate the loss of Po 
through an exchange. 

For the purpose of our experiments, we chose the five concepts skewer, sliding-fork, knight­
fork, general-king-fork, and check-with-bad-exchange to challenge the learning methods. The 
target concept for each of these is the concept of check-with-bad-exchange. 

3.2.2 The domain theories 

The two domain theories employed in the experiment were both designed to be very general, 
easily understood encodings of the legal moves of chess. In particular, the domain theory 
written by Flann (referred to as DT11ann) employs a very general representation of the chess 
board as a collection of 64 independent squares. Rather than introducing the notions of 
rows, columns, and diagonals, DT11ann simply states how the squares are connected to one 
another along the eight directions of the compass. The complete domain theory is given in 
Appendix 8.2. 

The domain theory written by Russell ( denoted DTrussell) was originally developed as 
an exercise in logic programming. It appeared as an appendix to "The Compleat Guide to 
MRS" (Russell, 1985). 8 In DTrussell, squares are represented by column (x) and row (y) 
coordinates, and moves are computed using vectors. The domain theory includes definitions 
of discovered check, of pinned piece, and of moving the king out of danger. In many ways, 
DTrussell is more "engineered" than DT11ann, because it employs more special case analysis 
in its rules (such as how to move a half-pinned-piece). The complete domain theory is given 
in Appendix 8.3. 

3.2.3 The Wyl2 implementation 

The three methods EBG, mEBG, and IOE have been implemented in a learning system 
called Wyl2. Like PrologEBG (Kedar-Cabelli & McCarty, 1987), Wyl2 is an extended meta­
interpreter for Prolog. In addition to the usual Prolog meta-logical operations (such as 
cut), Wyl2 also includes special forms of universal and existential quantification, which are 
required to express the adversarial search tree in chess. In (Flann, 1988b), we describe the 
logical language employed in Wyl2 and the modifications to the generalization step required 
to deal with universal quantification. 9 

Wyl2 actually contains two different implementations of EBG. The first, which we call 
EBG-, is the simple 13-line Prolog-EBG algorithm given in (Kedar-Cabelli & McCarty, 1987). 

8 Russell's domain theory was changed slightly for this test. First, the code was translated from MRS to 
Prolog. Second, the legal move generator was changed to use the Op notation (see Appendix 8.1), and frame 
axioms were written for the primitive board predicates. Finally, a definition of in-check was written, since it 
was missing from the original theory. 

9 Wy/2 is written in Quintus Prolog. Contact the authors for distribution information. 

17 



It creates the complete explanation tree and then computes its weakest preconditions as de­
scribed above. The other imple· tentation, which we call EBG*, incorporates two techniques 
designed to improve its perfon . ·.ance in the chess domain. First, it applies generalization­
to-n techniques (Shavlik & DeJong, 1987) to generalize over the distance that pieces may 
move. This allows EBG* to generalize over the distance between the king and a piece that 
is checking it, or more generally, between any two pieces where one piece is threatening the 
other. 

The second addition is that EBG* automatically prunes branches from the explanation 
tree to allow it to generalize over the type of piece being moved. 10 

3.3 Experimental Results 

3.3.1 Correctness and Flexibility 

Table 2 shows the concepts that were learned by each learning method when presented with 
examples of each of the five test concepts from the chess domain. 

To test EBG- and EBG*, we performed 20 learning trials for each of the five test concepts. 
In each trial, we selected one training example at random from the space of positive examples 
of the desired test concept and gave it to the algorithm. EBG* learns the same concept in 
every trial, regardless of the desired concept or the domain theory. EBG-, in contrast, learns 
different concepts depending on the specific configuration of pieces in the training example. 
In particular, the distances between the starting and ending squares of each move are fixed 
constants in the concepts learned by EBG-, because it is unable to generalize to n. This 
means that all threats and checks are also constrained to fixed distances, since these are 
potential moves. In Table 2, we have summarized the different concepts learned by EBG­
by indicating that they are "fixed-distance" versions of check-with-bad-exchange, check-with- · 
bad-exchange-by-knight, and check-with-bad-exchange-by-sliding-piece. Even allowing for the 
"fixed-distance" problem, only one of these definitions was learned correctly. 

For mEBG and IOE, we provided the methods with 50 positive examples randomly chosen 
from the space of positive examples of the desired concept. 

Notice that of the four methods, only IOE correctly learns each of the five test concepts. 
All of the other methods essentially overgeneralize to the check-with-bad-exchange concept. 
None of the definitions learned by EBG-, EBG*, or mEBG includes the equality constraint 
that the same piece that checks the king must also be the piece that makes the capture, 
which is needed to express everything except cwbe. 

Because none of the methods except IOE learn the desired test concepts, none of them 
perform well according to the correctness and flexibility criteria. 

Notice also that the results obtained from EBG- and mEBG vary depending on the 
domain theory employed. This is evidence that these methods are sensitive to the form of 
the domain theory. 

3.3.2 Learning Efficiency 

10See the two domain theories in the Appendix (Page 34 and Page 39) for details of exactly which predicates 
where chosen for prunning . 
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-
Learned Concept 

Correct EBG- EBG"' mEBG IOE 
Concept DTJ/ann DTruuel/ DTJ/ann DTruuel/ DTJ/ann DTruuell DTJlann DTruuel/ 
knight-fork cwbe-kn* cwbe-kn* cwbe cwbe cwbe-1 cwbe-kn knight-fork knight-fork 
skewer cwbe* cwbe-s* cwbe cwbe cwbe cwbe-s skewer skewer 
sliding-fork cwbe* cwbe-s* cwbe cwbe cwbe cwbe-s sliding-fork sliding-fork 
general-king-fork cwbe* cwbe* cwbe cwbe cwbe cwbe gkf gkf 
cwbe cwbe* cwbe* cwbe cwbe cwbe cwbe cwbe cwbe 

Table 2: Concepts learned by different methods (Key: cwbe: check-with-bad-exchange; cwbe­
s: cwbe with sliding pieces only; cwbe-kn: cwbe with knight only; cwbc-1: cwbc with single 
length check and capture; gkf: general-king-fork). Concepts marked * restrict the direction 
of the moves or the exact length of the moves in the definitions 

1.0 1.0 

... rrEBG -0- rrEBG 
"' "' a: "' ... a: "' ... 
Q) Q) 

C: C: 

Q ij 

! ! 
0 0 
0 0 

0 0.5 0 0.5 

~ ~ 
ii ii 
"' "' ..0 ..0 
0 e a: a. 

Training Instances Training Instances 

0.0 0 .0 

0 1 0 20 30 . 40 50 0 10 20 30 40 50 

Learning using DTruuell Learning using DT11ann 

Figure 8: A comparison of the learning efficiency of IOE, mEBG and EBG* learning check­
with-bad-exchange from randomly chosen examples. 

Number of Learning Method 
Training Instances EBG"' mEBG IOE 

DTJlann DTruaael/ DT11ann DTruuell DTJlann DTruuel/ 
Average 1 1 4.1 10.2 11.8 11.7 
To 90% correct 1 1 8 21 22 22 
To 99% correct 1 1 25 37 38 38 

Table 3: A summary of the learning efficiency for check-with-bad-exchange exhibited by 
different learning methods and domain theories 
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Figure 9: An evaluation of JOE learning efficiency. The curves on the left are histograms 
showing the number of trials ( out of 1000) in which exactly m randomly-selected training 
examples were needed to correctly learn the concept. The curves on the right show the 
resulting learning curves giving the probabili~ of correctness as a function of the number of 
training examples. 
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Number of Training Instances 
Concept Learned Average To 90% Correct To 99% Correct 

DTJlann DTruuel/ DTJlann DTruuell DTJlann DTruuell 
knight-fork 3.2 3.8 5 5 8 8 
skewer 3.7 4.1 6 6 9 9 
sliding-fork 4.8 4.9 7 7 14 14 
general-king-fork 11.0 11.3 21 22 35 35 
check-with-bad-exchange 11.8 11.7 22 22 38 38 

Table 4: Summary of learning efficiency exhibited by IOE in Wyl2 

Learning efficiency has two aspects: (a) the number of training examples required and (b) 
the computational cost. All of the methods have low computational costs, so our evaluation 
focuses on the number of training examples needed. 

To compare the learning efficiency of the three methods, we selected the one concept that 
they were all able to learn, check-with-bad-exchange, and performed 1000 learning trials with 
each method. In a learning trial, the learning method (EBG*, mEBG, or IOE) is repeatedly 
given a randomly-selected positive example of the desired concept and then tested to see 
whether it has learned the concept correctly. When the concept is correctly learned, the 
trial terminates, and the number of training examples use,d is recorded. 

Table 3 shows that in general, IOE requires more examples than mEBG. mEBG and IOE 
both require many more examples than EBG* (which of course requires only one example). 
Interestingly, the efficiency of mEBG varies depending on the domain theory being used. For 
DT11ann, mEBG is much more efficient than it is for DTrussell• This is evidence that mEBG 
is more sensitive to the form of the domain theory than IOE. To visualize this sensitivity, 
examine Figure 8, which shows learning curves for mEBG and IOE on both domain theories. 
Notice that for DTrusse/1, the methods are virtually identical, whereas for DT11ann, the two 
methods differ significantly. 

To produce these curves, we first construct a histogram showing the number of learning 
trials ( out of the 1000 trials) in which exactly m training examples were required to correctly 
learn the concept. Then, we integrate the histogram to compute the number of trials n 
that required less-than-or-equal-to m training examples to obtain correct performance. The 
quantity n/1000 gives the probability that after processing m training examples the concept 
has been correctly learned. Note that these learning curves do not indicate the percentage 
of training examples that the partially-learned concept definitions would classify correctly. 
From statistical tests the learning curves are accurate to ±3% with 95% confidence.11 

All of the efficiency results presented so far were measured only for the most general con­
cept, check-with-bad-exchange. For IOE, we can also evaluate learning efficiency on the other 
test concepts. We summarize the learning efficiency of IOE in Table 4 and show histograms 
and learning curves for knight-fork, skewer, and sliding-fork in Figure 9. A difference in effi­
ciency between DTrussell and DT11ann is observed in all cases, although its magnitude varies. 
IOE consistently learns faster when using DT11ann than when using DTrussell, although the 
difference amounts to less than one training example. This difference is much smaller than 

11 Confidence limits are calculated from formulae given in (Spiegel, 1975, page 196). 
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the difference in performance observed when mEBG was applied to the two domain theories. 

3.3.3 Ease of Engine ,..:ring 

The results on correctness show that all of the methods except IOE would require engineering 
of the domain theory in order to obtain the correct results. This is because for the two domain 
theories that we tested, EBG-, EBG*, and mEBG did not learn the desired concepts. Because 
additional training examples will not change the outcomes produced by these methods, this 
means that the only way to obtain correct performance would be to modify the domain 
theories. 

To a lesser · extent, the correctness and efficiency data also demonstrate the sensitivity of 
EBG-, EBG*, and mEBG to the exact form of the domain theory, because different results 
are obtained depending on which domain theory is employed. 

IOE on the other hand, is able to learn the correct concepts in all cases, and its efficiency 
does not vary significantly from one domain theory to the other. Therefore, IOE appears to 
require much less engineering of the domain theory to obtain correct results. 

3.4 Summary 

Correctness and Flexibility From the results in Table 3 IOE exhibits higher correctness 
than the other methods. IOE learned the correct concept each time, while EBG-, 
EBG*, and mEBG learned the correct concept in only one case. 

Learning Efficiency The results summarized in Table 3 and Table 4 demonstrate that IOE 
has a slightly lower learning efficiency than mEBG. The difference is small however, 
with IOE usually requiring a few additional training examples. The results in Table 4 
show that IOE requires few training examples to converge to correctness. Whether the 
number required would be unreasonable depends upon the application. However, we 
can claim that the number required is only a small fraction of the total possible. For 
example, there are approximately 13 x 103 knight-forks, and only 8 randomly selected 
examples are needed to achieve 99% correctness; there are approximately 13 x 104 

possible sliding-forks, and only 14 randomly selected examples are needed to achieve 
99% correctness. 

Ease of Engineering The results suggest that IOE is easier to engineer than either mEBG 
or EBG. IOE performed well with domain theories that were not specially designed for 
this learning problem or the method. 

4 Analysis 

This section attempts to explain the experimental results by reconsidering how each of the 
three learning methods works. First, we address the three issues of correctness, flexibility 
and ease of engineering. Then, we look at the question of learning efficiency in IOE. 
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4.1 Correctness, Flexibility, and Ease of Engineering 

4.1.1 EBG and mEBG 

Let us begin by considering why EBG and mEBG perform so poorly on the correctness 
criterion. The answer is simple: only one of the five test concept definitions is included 
in the hypothesis spaces generated by EBG and mEBG (namely, check-with-bad-exchange). 
Hence, it is not surprising that the remaining four concepts are not learned correctly. 

Recall that a concept definition can be produced by EBG or mEBG only if it can be 
defined as the weakest preconditions of a (possibly incomplete) proof tree for the target 
concept. The space of possible proof trees can be generated by constructing all AND-trees 
involving the rules from the domain theory. If we look at DT11ann, there is only one rule 
for computing the legal moves of a piece. Consequently, the weakest preconditions of any 
proof tree containing this rule will generalize over any type of piece. This prevents EBG 
and mEBG from discovering that the checking piece must be a knight in a knight fork or a 
sliding piece in a sliding fork. 

Furthermore, EBG and mEBG will not introduce an equality constraint unless there is 
a single rule somewhere in the proof tree that forces two variables to be equal. Neither 
domain theory includes such a rule, since there is nothing in the rules of chess that would 
require such a constraint. This prevents EBG and mEBG from discovering that in any fork 
or skewer, the piece that checks the king must be the same piece that takes the queen ( or 
other valuable piece). · 

This analysis also explains why mEBG learns different concepts with ·DTrussell than it 
does with DT11ann• In DTrussell, there are two different rules for determining the legal moves 
of a piece: one rule for knights and one rule for sliding pieces. Hence, when presented with 
examples of knight-fork, mEBG does include the constraint that the checking piece must be 
a knight. And when presented examples of sliding-fork, mEBG does include the constraint 
that the checking piece must be a sliding piece. However, the learned concepts cwbe-kn and 
cwbe-s are still incorrect because the equality constraint is missing. 

This analysis also shows how correctness can be obtained from EBG and mEBG. All 
that is needed is to re-design the domain theory so that the rules in the theory introduce 
the necessary constraints. For example, we could introduce a separate rule to generate legal 
moves for pieces that have been checking the king during the preceding move. This would 
introduce the equality constraint that we need for learning forks and skewers. 

Such an approach is unacceptable however, because it virtually requires us to know what 
concepts we are trying to learn before we design the domain theory. Furthermore, it makes 
the learning system completely inflexible, since the domain theory must be redesigned for 
each concept. 

Hence, we see that for EBG and mEBG, we can obtain correctness only by sacrificing 
ease of engineering and flexibility. On the other hand, if we do not carefully design the 
domain theory, it is unlikely to contain the constraints needed to learn the correct concept 
definitions. For EBG and mEBG there is a direct tradeoff between correctness and ease of 
engmeermg. 
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Feature describes : DT11ann Features DTru .. ell Features 
Checking Piece ;l_ Pcheck Playing piece Tcheck Type 

Sq check Square Xcheck X coordinate 
TYcheck Type Ycheck Y coordinate 

Check Threat Dircheck Direction D.Xcheck X vector 
Lcheck Max Length D.Ycheck Y vector 

Capturing Piece Pcapture Playing piece Tcapture Type 
Sq capture Square Xcapture X coordinate 
TYcapture Type Ycapture Y coordinate 

Taking Move Dir capture Direction D.Xcapture X vector 
Lcapture Max Length D.Ycapture Y vector 

Table 5: Selected features of the skewer definition for both domain theories 

4.1.2 IOE 

Why does the IOE method score so well on the correctness criterion? The answer is simple: 
the space of concept definitions produced by IOE is much larger than the space produced 
by EBG and mEBG, and it includes all five test concepts. 

The more important question to explore is why IOE learns the correct concept when using 
two quite different domain theories. To answer this question, recall that IOE operates by 
taking the concept definition produced by mEBG (CmEBG) and using it to define a vector of 
features. Each feature corresponds to a distinct variable in CmEBG• Every training example 
T Ii can be translated into this feature-vector representation by computing the substitution 
0i that is required to match CmEBG to Th IOE then computes a generalized substitution 0 
by computing the maximally-specific common generalization of the 0i 's. 

The insensitivity of IOE to the exact form of the domain theory results from two factors. 
First, regardless of the domain theory, CmEBG provides a useful vector of features for rep­
resenting the desired constant and equality constraints. Second, the specific constant and 
equality constraints introduced by IOE are determined by the training examples rather than 
by the domain theory. In other words, IOE is more sensitive to the training examples and 
less sensitive to the domain theory. 

To illustrate these factors, consider how the skewer concept is learned using DT 11ann and 
DTrussell • Let us focus on two of the key constraints in skewer: the threatening piece must 
be a sliding piece and the direction of the check threat must be the same as the direction 
of the capture move. Both of these properties are correctly represented in IOE even though 
each domain theory represents piece types and direction differently ( see Table 5). 

First, let us consider the how the piece type constraint is represented. In DTrussell, sliding 
pieces and knight pieces have separate move rules, making it easy to enforce the sliding piece 
constraint. In DT11ann, it is not so clear how this constraint can be represented since a single 
rule is used for all pieces. However, one property of a piece type is the maximum number 
of squares that the piece can move through (Max Length in Table 5). Sliding pieces can 
move through a maximum of 7 squares, while a knight can only move through a maximum 
of 1 square. Since this property is a variable in the skewer explanations, it easy to restrict 
the moves to only sliding pieces. JOE employs two constant constraints that constrain the 
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variables Lcheck and Lcapture to be 7. 
Let us now consider how the direction constraint is represented. In DT11ann, the direction 

of a move or check is defined as a single variable, Dir, that can take eight different values 12 

corresponding to the points of a compass. In DTrussell, the direction of a move or a check is 
represented as a vector employing two variables: one defining the x component ~x, and the 
other defining the y component, ~y. It is easy to represent the desired equality constraint 
under either encoding. In DT11ann IOE simply includes a single identity constraint that binds 
Dircheck (the direction in the check) to the same variable as Dircapture (the direction of the 
capture). In DTrussell, IOE includes two identity constraints, one constraining ~Xcheck to 
equal ~Xcapture, the other constraining ~Ycheck to equal ~Ycapture• 

Another key constraint for skewers and forks ( that the capturing and checking piece be 
the same) is similarly represented in either encoding. In DT11ann, a location is encoded as a 
single atom Sq, so a single identity constraint is needed; in DTrussell, a location of a piece is 
encoded as an X, Y coordinate pair, so two identity constraints are needed. 

These examples demonstrate that for DT11ann and DTrussell, the features definable from 
CmEBG provide a good set of features in either case. In general, any domain theory that is 
capable of representing squares, piece types, and directions will provide a good set of features 
for use by IOE. 

The second factor that allows IOE to be insensitive to the domain theory is that the 
specific constant and equality constraints introduced by IOE are derived from the training 
examples rather than from the domain theory. If 'all of the training examples exhibit the 
same constant value for a particular feature, then IOE will retain that feature in its final 
substitution 0. If two features are always equal to each other in the training examples, then 
IOE will force the two features to be equal to each other in 0. Because these regularities 
are independent of the domain theory, they allow IOE to succeed regardless of the way the 
domain theory was encoded. 

In summary, unlike EBG and mEBG, IOE does not exhibit a tradeoff between correctness 
and ease of engineering. A further consequence of this is that IOE is more flexible than EBG 
and mEBG. By changing the training examples given to IOE at learning time, we can 
determine which constant and equality constraints are created and imposed on CmEBG· 

4.2 Learning Efficiency 

The experiments of Section 3 demonstrated that of the three methods, IOE requires the 
most training examples, and therefore scores the worst on the learning efficiency criterion. 
This raises the critical question of how many training examples in general are required by 
IOE. 

To answer this question, let us develop a simple mathematical model of the IOE general­
ization process and derive an expression that gives the learning efficiency of the algorithm. 

To model IOE we make some simplifying assumptions. First, we ignore the computation 
of CmEBG and focus only on the process of computing 0 from the training instance substi­
tutions 0i, Second, we ignore the derivation of equality constraints and consider only the 
decision to replace a constant by a variable in 0. Third, we assume that all of the features 

12 Knight moves actually add another eight directions for a total of sixteen. 
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in CmEBG are independent and take the same number of possible values. 
Under these assumptions, - training instance is a simple vector of feature values. Let 

k be the number of features m .. d d be the size of the domain (i.e., the number of possible 
values) of each feature. This gives us an instance space of size dk. A concept is a conjunction 
of k features, each set to either * ( don't care) or a constant. This gives us a concept space 
of size (d + l)k. 

IOE will retain a constant value for a feature if all of the training examples share the 
same constant value for that feature. Let us call this a "coincidence". Consider learning 
a concept definition that contains r *-valued features from a set S of examples uniformly 
drawn from the example space (the set of all possible positive examples). One way to look 
at this learning problem is to think of the set S of examples as exhibiting k - r intended 
coincidences and many unintended coincidences among the remaining r features. The goal 
of learning is to detect the intended coincidences and eliminate any unintended coincidences 
by setting each of the r features to *· How many examples will this require? 

Consider the case when r = 1, then the probability that this feature is set to * after m 
(m ~ 2) training examples is, 

1- (l/ar-1 
since (1/ d)m-l is the probability that the feature value observed in the first training example 
will remain unchanged in the subsequent m - 1 training examples. In the worst case we have 
r = k features . The probability that all k features have changed after m training examples 
1s, 

(1- pm-1/ 

where p = l/d . Let b be the probability that after m examples we do not have a correct 
concept definition, then 

Solving this expression for m gives 

(1) 

This expression quantifies the learning efficiency of IOE. 

To visualize this result, we graph values form with b = 0.1 and b = 0.01 against different 
values for k and p in Figure 10. The theory shows that IOE scales well to larger concept 
definition sizes and that the main limiting factor is the parameter p. If we consider only the 
case where p = l/d, then the worst case is with binary valued features. 

This theory explains two characteristics of the empirical results for learning efficiency: 
(a) why IOE consistently performs worse on DTrussell than on DT11ann and (b) why general­
king-fork and check-with-bad-exchange require so many training examples to learn. 

IOE performs worse using Russell's domain theory than it does using Fiann's because 
the variables in a DTrussell definition have domains that are smaller than those in a DT11ann 

definition . For example, as we have seen above, the locations of playing pieces in DTrusse/1 

are encoded as X, Y vectors using two features each with d = 8 values. In DT11ann, on the 
other hand, location is encoded as a single feature having d = 64 values. This gives DTrusse/1 
a larger value for p and therefore a slower learning rate. 
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Figure 10: Learning Efficiency of IOE. The graph on the left shows the number of training 
examples needed to achieve 99% correctness as a function of the size of the concept descrip­
tion k and the probability of a feature taking different values, p. The graph on the right is 
similarity set up for a correctness of 90%. 

The concepts general-king-fork and check-with-bad-exchange are much harder to learn than 
the other concepts. For example, check-with-bad-exchange requires 38 training examples to 
attain correctness (with probability 99%) compared to only 8 for knight-fork. To successfully 
learn these two concepts, IOE must generalize the "type of checking and capturing piece" to 
be any type. To do this, IOE must see training examples where the checking and capturing 
piece is a knight and training examples where it is a non-knight. A single example is not 
sufficient because both domain theories draw a distinction between knights and sliding pieces. 

It takes IOE a long time to see the required examples because in the space of all general­
king-forks, only 1 in 10 have a knight as the checking and capturing piece. This gives a p 

value of 0.82, which indicates that many training examples will need to be considered before 
this unintended coincidence is eliminated. 13 

Note that this would not be a problem if our model described probably approximately 
correct (PAC) learning (Valiant, 1984) rather than probably correct learning. The distribu­
tion of examples is not a problem for PAC learning, because the correctness of a concept 
is evaluated on the same distribution that is used for learning. In our model , a definition 
is considered correct only when it has completely converged . That is why general-king-fork 
is hard to learn, because the concept is 0% correct until both a sliding piece and a knight 
have been observed. In the PAC framework general-king-fork is not hard to learn, since the 
definition initially identified, sliding-fork, is already 90% correct. Hence, our model is more 

13 The value p = 0.82 is the probability that two successive training examples will give the same value for 
the type of the piece . The approximate probabilities of observing a knight and a sliding piece are .1 and .9 
respectively . The probability of seeing two successive identical piece types is 0 .1 x 0 .1 + 0.9 x 0 .9 = 0 .82 
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demanding than the PAC model. 
In summary, the number of training examples required for IOE is not excessive and 

scales well with problem size. The form of the domain theory (in particular, the number 
of values of each feature) can influence learning speed. IOE works best when each feature 
has many different values and the distribution of the different values is uniform. Highly 
skewed distributions for features with very few values can lead to much longer learning 
times. However, if a probably-approximately correct concept definition is acceptable, then 
many fewer training examples are required. 

5 Concluding Remarks 

In this section we consider the implications of our results for on-going research on the problem 
of learning from examples. We conclude with a discussion of the problems and opportunities 
suggested by the IOE method. 

5.1 Implications for Learning from Examples 

The IOE, EBG, and mEBG methods illustrate a new approach to the problem of learning 
from examples. To appreciate the advantages of this new approach, let us briefly review the 
more traditional methods for learning from examples. 

Traditional approaches (e.g., Quinlan, 1982, 1983; Michalski, 1983; Mitchell, 1982) suffer 
from two major problems. First, they require a large number of training examples to identify 
the correct concept definition. Second, they do not provide an easy way to incorporate 
domain knowledge into the learning process. 

In the remainder of this subsection, we will argue that the three methods discussed in this 
paper, particularly IOE, overcome these two problems in many situations. Let us consider 
each problem in turn. · 

The number of examples required by traditional methods seems quite large when com­
pared to the number of examples required by people to learn the same concepts. Consider 
the task of learning the knight-fork concept. Most people can be taught this concept with 
a handful of well-chosen examples. In contrast, 1D3 requires 3327 examples to learn this 
concept with 90% accuracy. 14 What is the cause of this disparity? 

Recent theoretical work (e.g., Ehrenfeucht, Haussler, Kearns & Valiant, 1988) shows that 
there is a fundamental tradeoff between the number of examples required for learning and 
the size of the space of possible concepts ( the hypothesis space). More precisely, Ehrenfeucht 
et al. (1988) prove that any learning algorithm that considers an hypothesis space whose 
Vapnik-Chervonenkis dimension is d, must examine at least n(~ ln ¼+!)training examples 
in order to guarantee that the hypothesis selected by the algorithm has error less than t: with 

14 The training examples were represented as 18 boolean features encoding the location of the knight, the 
king, and the queen. Each location specified a "square number" between 0 and 63 encoded in binary (6 bits). 
There are only 1672 positive examples of the concept. An additional 1659 negative examples were randomly 
generated and provided to the program. This representation is so bad, that training on 1670 positive and 
1657 negative examples, 1D3 is only able to predict the remaining 2 positive and 2 negative examples with 
probability 0.91. 
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probability greater than 1 - b. Hence, the fact that people require many fewer examples 
than ID3 suggests that they are considering a much smaller hyp r,thesis space than ID3. 15 

What determines the size of the hypothesis spaces conside1 d by traditional inductive 
learning algorithms? Virtually all traditional algorithms represent their hypotheses as com­
binations of the features in which the training examples are represented. This is called 
the single-representation trick in Dietterich, London, Clarkson & Dromey (1982). Differ­
ent algorithms can be characterized by the different ways they provide for combining the 
given features. ID3 combines the features in a decision tree. The AQ and version space 
approaches use the logical connectives of AND and OR. Perceptrons employ linear com­
binations of weights. Bayesian algorithms (e.g., STAGGER (Schlimmer, 1987); AutoClass 
(Cheeseman et. al., 1988)) employ products of probability distributions over the values of 
each feature. 

These various combination methods each permit the learning algorithms to construct a 
combinatorial number of different hypotheses, and therefore they result in very large hy­
pothesis spaces. 

This suggests that the solution to the problem is to be found by considering hypothesis 
spaces that are not defined by combinatorial generators over the given features. This is 
exactly what EBG, mEBG, and IOE provide. Rather than considering all possible combi­
nations of the given features, these methods apply the domain theory to derive a set of new 
features and to constrain the ways those features can be generalized. In particular, mEBG 
identifies a conjunction of important features, and IOE is only permitted to introduce con­
stant and equality constraints. No new logical connectives or other combining operators are 
permitted. The result is that IOE can learn the knight-fork concept from two well-chosen 
examples ( when the examples exhibit only the correct coincidences) or from 8 randomly 
chosen examples. 

Let us now consider the second shortcoming of traditional inductive learning methods: 
their inability to incorporate domain knowledge easily into the learning process. For these 
methods, domain knowledge enters in only two ways: through the features used to represent 
the training examples and through the choice of feature combination methods. Neither of 
these ways is easy to use. 

For example, when Quinlan (1983) attempted to teach ID3 the concept lost-in-2-ply for the 
chess endgame king-and-knight vs king-and-rook, he found that simple features describing 
only the type and location of each piece were inadequate. He therefore spent several months 
developing a set of "high-level" features that included terms such as "rook-and-king-in-same­
row" and "knight-can-move-out-of-danger". With these features, ID3 succeeded in learning 
the concept. However, the lesson from this experience is that there is a tradeoff between the 
correctness of traditional methods such as ID3 and the amount of "vocabulary engineering" 
required to develop a set of good features. This tradeoff significantly reduces the usefulness 
of ID3 as a general-purpose learning method. 

The other alternative for encoding domain knowledge-changing the set of combination 
"operators" employed by the learning algorithm-is relatively unexplored (although Seshu, 
Rendell and Tcheng, 1988, present some preliminary work in this area). We suspect, however, 

15 The Vapnik-Chervonenkis dimension generally increases as the size of the hypothesis space increases, 
although there are exceptions for hypothesis spaces with ordered (e.g . , numerical) features. See Haussler 
(1988) for more details . 
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that it will be equally difficult to anticipate the relationship between combination methods 
~.nd domain characteristics, and consequently, we doubt that this will provide a convenient 
" lethod for incorporating domain knowledge. 

The explanation-based algorithms discussed in this paper provide a more convenient and 
explicit method for incorporating domain knowledge. The user can construct a domain 
theory for a concept more general than the concepts that will be learned and then the 
explanation-based methods can consult this domain theory to obtain their "semantic bias". 
Our experiment with IOE shows that the exact form of this domain theory is not critical. 
However, it is true that the domain theory must be complete and correct. An important 
direction for future research is to find ways to exploit incomplete domain theories to provide 
semantic biases. 

In conclusion, the explanation-based methods described in this paper directly address 
two major shortcomings of traditional methods for learning from examples: the need for a 
large number of training examples and the need for extensive "vocabulary engineering ." 

5.2 Open Problems and Future Research 

The formulation of the theory-based concept specialization problem given in Section 1 ex­
plicitly separates the problem of learning the correct definition of a concept from the problem 
of applying that definition in some performance task. In particular, the definitions produced 
by EBG, mEBG, and IOE are not guaranteed to be efficiently evaluable. Some kind of 
knowledge-compilation process is needed to convert these definitions into efficient form. 

Many systems (e.g., SOAR, Prodigy) apply some form of knowledge compilation to the 
results of EBG . Among the techniques employed are simplification, partial evaluation, enu­
meration of cases, and compaction. It turns out that in the chess domain, these techniques 
are not sufficient, because the learned concept still includes an embedded universal quantifier 
(and therefore, still requires a search to evaluate). In Flann (1~88), we propose a reformula­
tion technique that removes universal quantification by inventing new terms. We show how 
through reformulation, the cost of evaluating the knight-fork definition can be reduced by 
two orders of magnitude to approximately 2 x 103 logical inferences. In general, the success­
ful application of explanation-based techniques to the TBCS problem will required further 
development of knowledge compilation methods. 

It is interesting to note that the problem of applying learned concepts efficiently con­
tributed to Quinlan's difficulty in engineering a good set of terms for lost-in-2-ply. Because 
ID3 uses the single representation trick, not only must it find the correct definition by 
combining the given features, but this definition must also be efficiently evaluable. This con­
junction of correctness and efficiency constraints is difficult to satisfy, and it explains why 
Quinlan required so much time to design a successful vocabulary. By separating the problem 
of learning a correct concept from the problem of applying that concept, explanation-based 
methods address this aspect of the "vocabulary engineering" problem as well. 

One other important direction for future research is to investigate alternative general­
ization strategies for IOE. The main insight of IOE is that the features identified by EBG 
and mEBG provide a good vocabulary in which to perform inductive generalization. There 
are many generalization methods besides those investigated in this paper . In particular, 
other constraints-besides equality and constant constraints-could be introduced (e.g., in-
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Figure 11: Trade-off among the three explanation based methods 

equality constraints, climbing-generalization tree, numerical intervals, etc.). These other 
generalization strategies might violate the property that the learned concept is always a 
strict specialization of the target concept, but this is probably not important. 

In conclusion, Figure 11 summarizes the results of this paper. There is a tradeoff between 
learning efficiency on the one hand and flexibility, ease of engineering, and correctness on 
the other. The method of induction over explanations represents an interesting point along 
this tradeoff, because it offers significantly improved correctness, flexibility, and ease of engi­
neering while not requiring substantially more training examples than mEBG. The analysis 
presented in this paper suggests that there are many other points along this tradeoff curve 
waiting to be identified and studied. 
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8 Appendix 

In the appendix we include an annotated version of both the chess domain theories used in 
the empirical study. We first give the definition of target concept, check-with-bad-exchange, 
since both theories use the same definition. Next we give the domain theory written by 
Flann, then the domain theory written by Russell. 

8.1 Target Concept Definition 

A state State is an example of check-with-bad-exchange if the side to move Side is in check 
( in_check) and for all legal moves available, there exists a legal move for the opponent 
(Otherside) that results in a bad exchange, where a bad exchange is defined as a sequence 
of two moves where a valuable piece is exchanged for a piece of lower value (possibly nothing). 

check_with_bad_exchange(State,Side,Otherside):-
in_check(State,Side), 
forall(NewState, 

legal...move(State,Newstate1,Side), 
exists(legal...move(Newstate1,Newstate2,0therside), 

bad_exchange(Newstate2))). 

Note the target concept definition uses two special literals of the form forall (V, Pi, A) and 
exists(P 3 ,P 4 ) (where A is a literal, A,P 3 and P4 are conjunctions of literals, and Vis a 
list of universally quantified variables in Pi). The expression forall (V, Pi, A) is true when, 
for all possible solutions of Pi (and legal bindings for V), Pi is also true. The expression 
exists (P 3, P4) is true when there exists a solution to P3 such that P4 is true. 

We use a situation calculus approach to representing states and operators where the 
initial state is named and subsequent states are represented as operators applied to the 
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initial state. This is achieved by using the operator function op described in (Genesereth 
& Nilsson, 1987). If the input state to legal...move is S, then the ne 1 state is bound to 
do (Move, S), where Move is the op function that takes four arguments: ~he source square, 
the destination square, the the piece moved, and the piece taken (may be empty if no piece 
is taken). This can be seen in the definition of bad_exchange. A state State is an example 
of bad exchange if the two previous moves were Move1 followed by Move2, Move1 captured 
a piece Piecetaken1, Move2 captured a piece Piecetaken2, and Piecetaken1 is a more 
valuable piece than Piecetaken2. 

bad_exchange(State):-
State=do(Move2,do(Move1,S)), 
Move1=op(From1,To1,Piecemoved1,Piecetaken1), 
Move2=op(From2,To2,Piecemoved2,Piecetaken2), 
type(Piecetaken1,Type1), 
type(Piecetaken2,Type2), 
morevaluable(Type1,Type2). 

8.2 Fiann's Chess Domain Theory 

Each initial board state is denoted by a cons.tant such as state1. The squares on the 
board are also denoted by constants, for example, a8, b2, and so on. Finally, the pieces 
are each given names such as wr1 for the white rook and bk1 for the black king. Empty 
squares are represented by an imaginary piece called empty (essentially a null value). With 
this representation, a board configuration is represented by 64 assertions. For example, the 
board configuration in Figure 6(a) includes the following facts: 

square(state1,h1,wr1). 
square(state1,a4,empty). 
square(state1,d8,bk1). 

In addition, the structure of the chess board is represented as the topology of the squares as 
follows: 

connected(a7,a8,n). 
connected(a7,b7,e). 
connected(a7,b8,ne). 

The constants n, e, ne, and so on represent the eight directions of the compass points. In 
all, 372 connected assertions are needed. 

Additional information about each of the pieces is needed in order to define the legal 
moves. In particular, we identify certain pieces (e.g., wn1, wr1, and so on) as all being white 
pieces. Similarly, we define groups of pieces (e.g., wn1, bn2, and so on) as being of the same 
type, knight: 

side(wn1,white). 
type(wn1,knight). 
side(bq1,black). 
type(bq1,queen). 
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We also include the fact that black and white are opposite sides: 

OFside(black,white). 
opside(white,black). 

Using these definitions, it is possible to define legal moves for each piece. We begin by 
stating, for each piece, the direction and maximum number of moves it can make. For most 
pieces this is easy. For example, the rules for rooks are: 

legaldirection(Side,rook,n,7). 
legaldirection(Side,rook,e,7). 
legaldirection(Side,rook,s,7). 
legaldirection(Side,rook,w,7). 

For knights, this simple technique does not work. To define knight moves, we first define a 
special kind of connectivity between squares. For example, squares a1 and b3 are connected 
by the "direction" nne defined by the rule 

connected(S1,S2,nne):­
connected(S1,Sa,n), 
connected(Sa,Sb,n), 
connected(Sb,S2,e) . 

The legal move directions for knights are then defined trivially by rules such as 

legaldirection(Side,knight,nne,1). 
legaldirection(Side,knight,nnw,1). 

Several rules are required in order to define legal moves. First, we state that a legal move is 
a move such that after taking it, you are not in check: 

legal....I11ove(State,Newstate,Side): -
move(State,Newstate,Side), 
not(in_check(Newstate,Side)). 

Where move is defined as follows: 

move(State,do(op(From,To,Piecem,Piecet),State),Side1):­
opside(Side1,Side2), 
side(Piecem,Side1), 
type(Piecem,Type), 
square(State,From,Piecem), 
legaldirection(Side1,Type,Direct,Count), 
connected(From,Next,Direct), 
movedirection(State,Count,Direct,Next,To,Piecet,Type2,Side2). 

This rule checks to see that the piece to move, Piecem, is located on the source square 
From; that Piecet is located on the destination square To; and that the indicated direc­
tion and number of squares is legal for the kind of piece being moved. In particular , the 
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movedirection predicate (given below) recursively decrements the Count as it traverses con­
nected squares in the indicated direction. It checks that all intervening sqP ,.,res are empty. 
Notice that because knight moves are defined to have length 1, there an. " ,10 intervening 
squares. This is how we encode the fact that knights can jump over intervening pieces. 

The movedirection predicate terminates when the count is 0, with an empty square or 
with a take move: 

movedirection(State,Count,Direct,Next,To,Piecet,Type2,Side2):-
Count=O, 
I . , 
fail. 

movedirection(State,Count,Direct,Next,To,Piecet,Type2,Side2):­
To=Next, 
Piecet=empty, 
Type2•empty, 
square(State,To,empty). 

movedirection(State,Count,Direct,Next,To,Piecet,Type2,Side2):­
To=Next, 
square(State,To,Piecet), 
type(Piecet,Type2), 
side(Piecet,Side2), 
! . 

The recursive case decrements the count and checks the next square in the same direction. 

movedirection(State,Count,Direct,Next,To,Piecet,Type2,Side2):­
square(State,Next,empty), 
Ncount is Count - 1, 
connected(Next,NextNext,Direct), 
movedirection(State,Ncount,Direct,NextNext,To,Piecet,Type2,Side2). 

The in_check rule is very like the move rule above. A check is defined as a possible take 
move of the king by the opponent. 

in_check(State,Side1):-
opside(Side1,Side2), 
type(Piecek,king), 
side(Piecek,Side1), 
square(State,Kingsq,Piecek), 
side(Piecetaking,Side2), 
type(Piecetaking,Typet), 
square(State,From,Piecetaking), 
legaldirection(Side2,Typet,Direct,Count), 
connected(From,Next,Direct), 
movedirectiori(State,Count,Direct,Next,Kingsq,Piecek,king,Side1). 

In addition to these basic rules, frame axioms are included to indicate that pieces not ex­
plicitly moved are not affected. These are easy to write using the op notation: 
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square(do(op(F,T,Pm,Pt),S),T,Pm):-!, 
square(S,T,Pt). 

square(do(op(F, T ,Pm,Pt) ,S) ,F ,empty):- . ·, 
square(S,F,Pm). 

square(do(op(F,T,Pm,Pt),S),Sq,P):­
Sq\==F,Sq\==T,square(S,Sq,P). 

Now we have completed the description of Flann's domain theory we include the pruning 
information that is used by the EBG* method. The following predicates are pruned from 
the EBG- definition to form the EBG* definition: connected and movedirection. Pruning 
the connected predicate avoids the problem that the exact knight direction is incorporated 
within the definitions. Pruning the movedirection predicate avoids the problem with re­
taining the exact length of check and move threats. 

8.3 Russell's Chess Domain Theory 

Each board state is denoted by a constant such as state1. The squares on the board are 
represented as two coordinates, the first giving the column of the square, the second giving 
the row of the square. The playing piece on a square is represented as the type and side of 
the piece. Empty squares are represented by a piece with type and side empty ( essentially a 
null value). With this representation, a board configuration is represented by 64 assertions. 
For example, the board configuration in Figure 6a) includes the following facts: 

on(state1,white,rook,8,1). 
on(state1,empty,empty,1,4). 
on(state1,black,king,4,8). 

Included in the domain theory is the fact that white and black are opposites: 

opponent(white,black). 
opponent(black,white). 

In order to define the legal moves for each piece we include the directions (represented as a 
column vector and a row vector) in which the piece types can move: 

movevector(rook,S, 1, 0). 
movevector(rook,S, 0, 1). 
movevector(rook,S,-1, 0). 
movevector(rook,S, 0,-1). 
movevector(knight,S, 1, 2). 
movevector(knight,S, 2, 1). 

Also included are definitions of those piece types that can move through multiple squares: 

multipiece(bishop). 
multipiece(rook). 
multipiece(queen). 
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Several rules are ·needed to define legal moves. First we include a rule that defines the op 
notation for legal moves. 

legal....move(State,Newstate,BW):-
Newstate = do(op(s(Cf,Rf),s(Ct,Rt),p(Pm,BW),p(Pt,St)),State), 
legalmove(State,BW,Cf,Rf,Ct,Rt,Pm,Pt,St). 

A legal move is defined in terms of the side to move BW, the from square (Cf ,Rf), the to 
square (Ct, Rt), the type of piece moved Pm, and the type Pt of piece taken and side St of 
the piece taken. Three rules define three different cases of legal moves: the first rule covers 
the case when we are not in check and the king is not moved; the second rule covers the 
case where the king is moved; the third rule covers the case where the king is in check and 
generates moves that remove the check threat. 

legalmove(State,BW,Cf,Rf,Ct,Rt,Pm,Pt,St):-
not(in_check(State,BW)), 
move(State,BW,Cf,Rf,Ct,Rt,Pm,Pt,St), 
Pm\==king, 
not(discoveredcheck(State,BW,Cf,Rf,Ct,Rt)). 

legalmove(State,BW,Cf,Rf,Ct,Rt,Pm,Pt,St):­
on(State,BW,king,Cf,Rf), 
move(State,BW,Cf,Rf,Ct,Rt,Pm,Pt,St), 
opponent(BW,WB), 
not(attacking(State,WB,Ct,Rt)), 
Cv is Ct - Cf, 
Rv is Rt - Rf, 
not(multiattacksalong(State,WB,Cf,Rf,Cv,Rv)). 

legalmove(State,BW,Cf,Rf,Ct,Rt,Pm,Pt,St):­
in_check(State,BW), 
opponent(BW,WB), 
on(State,BW,king,Kcol,Krow), 
attacks(State,WB,P,Pcol,Prow,Kcol,Krow), 
escapescheck(State,Pcol,Prow,BW,Cf,Rf,Ct,Rt,Pm,Pt,St). 

In check is defined as an attack on the king by the opponent : 

in_check(State,BW):-
opponent(BW,WB), 
on(State,WB,Piece,C1,R1), 
attacks(State,WB,Piece,C1,R1,C2,R2), 
on(State,BW,king,C2,R2). 

A move escapes check if it is not a king move, does not result in a discovered check and stops 
the check threat to the king: 

escapescheck(State,Pcol,Prow,BW,Col,Row,NewCol,NewRow,Pm,Pt,St) :-
move(State,BW,Col,Row,NewCol,NewRow,Pm,Pt,St), 
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not(on(State,BW,king,Col,Row)), 
not(discoveredcheck(State,BW,Col,Ror .NewCol,NewRow)), 
on(State,BW,king,Kcol,Krow), 
stopcheck(Pcol,Prow,NewCol,NewRow,Kcol,Krow) . 

A move stops a check if its destination square is between the check threat and the king (i.e., 
it blocks the check) or if its destination square is the same as the checking piece's square 
(i.e., it takes the checking piece): 

stopcheck(Pcol,Prow,NewCol,NewRow,Kcol,Krow):-
between(NewCol,NewRow,Kcol,Krow,Pcol,Prow). 

stopcheck(Pcol,Prow,NewCol,NewRow,Kcol,Krow):­
NewCol=Pcol, 
NewRow=Prow. 

A move originates from a square occupied by a piece of the side to move and terminates in 
a square that can be attacked by that piece: 

move(State,BW,C1,R1,C2,R2,Pm,Pt,St):-
on(State,BW,Pm,C1,R1), 
attacks(State,BW,Pm,C1,R1,C2,R2), 
opponent(BW,WB), 
destinationsquare(State,WB,C2,R2,Pt,St). 

A destination square of a move must either be occupied by a piece of the opposite side or 
empty: 

destinationsquare(State,WB,C2,R2,Pt,St):-
on(State,WB,Pt,C2,R2), 
St=WB, 
! . 

destinationsquare(State,WB,C2,R2,Pt,St):­
Pt=empty, 
St=empty, 
on(State,empty,empty,C2,R2). 

A move results in a discovered check if the moving piece is pinned and the move is m a 
direction that is not parallel to the direction of the pin threat: 

discoveredcheck(State,BW,Col,Row,NewCol,NewRow):-
pinned(State,BW,Col,Row,Pcol,Prow), 
Cv1 is NewCol - Col, 
Rv1 is NewRow - Row, 
Cv2 is Pcol - Col, 
Rv2 is Prow - Row, 
not(parallel(Cv1,Rv1,Cv2,Rv2)). 

A piece is pinned if it lies along a line of attack of the king by a multipiece of the opposite 
side: 
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pinned(State,BW,Col,Row,Pcol,Prow):­
on(State,BW,king,Kcol,Krow), 
unitvector(Col,Row,Kcol,Krow,Cv,Rv), 
Ncol is Col+ Cv, 
Nrow is Row+ Rv, 
route(State,Ncol,Nrow,Kcol,Krow,Cv,Rv), 
opponent(BW,WB), 
attacksalong(State,WB,Piece,Pcol,Prow,Col,Row,Cv,Rv), 
multipiece(Piece). 

The different ways that one piece can attack another are defined below: 

multiattacksalong(State,WB,Col,Row,Cv,Rv) :­
attacksalong(State,WB,Piece,Pcol,Prow,Col,Row,Cv,Rv), 
multipiece(Piece). 

attacks(State,BW,P,C1,R1,C2,R2):-
attacksalong(State,BW,P,C1,R1,C2,R2,Cv,Rv). 

attacking(State,BW,C2,R2):­
attacks(State,BW,P,C1,R1,C2,R2). 

attacksdirectly(State,BW,Piece,Col,Row,NewCol,NewRow,Cv,Rv):­
on(St.ate,BW,Piece,Col,Row), 
movevector(Piece,BW,Cv,Rv), 
nextto(Col,Row,Cv,Rv,NewCol,NewRow). 

attacksalong(State,BW,Piece,Col,Row,NewCol,NewRow,Cv,Rv):­
attacksdirectly(State,BW,Piece,Col,Row,NewCol,NewRow,Cv,Rv), 
not(multipiece(Piece)). 

attacksalong(State,BW,Piece,Col,Row,NewCol,NewRow,Cv,Rv):­
on(State,BW,Piece,Col,Row), 
multipiece(Piece), 
attacksdirectly(State,BW,Piece,Col,Row,Col2,Row2,Cv,Rv), 
route(State,Col2,Row2,NewCol,NewRow,Cv,Rv). 

Route recursively traverses the board in a direction defined by the vector Cv ,Rv checking 
that all intermediate squares are empty: 

route(State,Col,Row,NewCol,NewRow,Cv,Rv):-
Col=NewCol, 
Row=NewRow. 

route(State,Col,Row,NewCol,NewRow,Cv,Rv):­
on(State,empty,empty,Col,Row), 
nextto(Col,Row,Cv,Rv,Col2,Row2), 
route(State,Col2,Row2,NewCol,NewRow,Cv,Rv). 

The following rules compute vector arithmetic needed by the previous rules: 

nextto(Col,Row,Cv,Rv,NewCol,NewRow):-
NewCol is Col+ Cv, 
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NewCol > 0, 
NewCol < 9, 
NewRow is Row+ Rv, 
NewRow > 0, 
NewRow < 9. 

parallel(Cv1,Rv1,Cv2,Rv2) :-
0 is Cv1 * Rv2 - Cv2 * Rv1. 

unitvector(Col1,Row1,Col2,Row2,Cv,Rv):­
Mcv is Col2 - Coli, 
Mrv is Row2 - Row1, 
sign(Mcv,Cv), 
sign(Mrv,Rv). 

sign(Mv,V):­
Mv > 0, 
V = 1. 

sign(Mv,V):­
Mv < 0, 
V = -1. 

sign(Mv,V):-
Mv = 0, 
V = 0. 

between(Xc,Xr,Yc,Yr,Zc,Zr):-
Cv1 is Zc - Xe, 
Rv1 is Zr - Xr, 
Cv2 is Ye Xe, 
Rv2 is Yr Xr, 
parallel(Cv1,Rv1,Cv2,Rv2), 
Dot is Cv1 * Cv2 + Rv1 * Rv2, 
Dot< 0. 

In addition to these basic rules , frame axioms are included to indicate that squares not 
involved in moves remain unchanged: 

on(State,Sm,Tm,Ct,Rt):-
State=do(op(s(Cf,Rf),s(Ct,Rt),p(Trn,Srn),p(Tt,St)),NS), 
on(NS,St,Tt,Ct,Rt). 

on(State,S,T,Cf,Rf):­
State=do(op(s(Cf,Rf),s(Ct,Rt),p(Trn,Srn),Pt),NS), 
S=ernpty, 
T=ernpty, 
on(NS,Srn,Trn,Cf,Rf). 

on(State,S,T,C,R):­
State=do(op(s(Cf,Rf),s(Ct,Rt),Prn,Pt),NS), 
s(C,R)=s(Cf,Rf), 
s(C,R)=s(Ct,Rt), 
on(NS,S,T,C,R). 
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Now we have completed the description of Russell's domain theory we include the pruning 
information that is used by the EBG* method. The following predicate is pruned from the 
EBG- definition to form the EBG* definition: attacks. Pruning the attacks predicate 
avoids the two problems with the EBG- definition: retaining the piece type ( either sliding 
or not sliding) and retaining the exact length of check and move threats. 
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