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This paper introduces a method that improves the performance of a problem 
solver by reformulating its domain theory into one in which functionally rele­
vant features are explicit in the syntax. This method, in contrast to previous 
reformulation methods, employs sets of training examples to constrain and di­
rect the reformulation process. The use of examples offers two advantages over 
purely deductive approaches: First, the examples identify the exact part of the 
domain theory to be reformulated. Second, a proof with examples is much 
simpler to construct than a general proof because it is fully instantiated. The 
method exploits the fact that what is relevant to a goal is syntactically explicit 
in successful solutions to that goal. The method first takes as input a set of 
training examples that "exercise" an important part of the domain theory and 
then applies the problem solver to explain the examples in terms of a relevant 
goal . Next , the set of explanations is "clustered" into cases and then generalized 
using the induction over explanations method, forming a set of general expla­
nations. Finally, these general explanations are reformulated into new domain 
theory rules. We illustrate the method in the domain of chess. We reformulate 
a simple declarative encoding of legal-move to produce a new domain theory 
that can generate the legal moves in a tenth of the time required by the original 
theory. We also show how the reformulated theory can more efficiently describe 
the important knight-fork feature. 
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1 Introduction 

One solution to the important problem of constructing a usable knowledge base for a knowledge 
based system is to employ systems that automatically reformulate a given inefficient knowledge base 
into an efficient one. These systems are initially given an epistemologically adequate knowledge 
base and through experience or analysis, construct a more effective 'expert' knowledge base. The 
main advantage these systems have over the traditional knowledge engineering approach is that the 
initial knowledge that must be supplied to the system is much easier to formalize and encode in a 
computer. 

Two principle methods have been proposed and applied with limited success to this problem: 
Explanation based learning and problem reformulation. 

Explanation based learning (EBL) is a method by which a system improves its performance 
though analyzing successful (and failed) solutions. Given an example problem that is solved by the 
system, the solution trace is analysed and generalized to form a rule that will solve the same and 
similar problems faster the next time. (see Mitchell, Keller & Kedar-Cabelli, (1986) for a complete 
description of the method). EBL has been successful in some small domains but there are serious 
limitations. First, it is often the case that learning can diminish performance rather than improve 
it (Minton, 1985). Second, an EBL system does not benefit much from training examples because 
it is very inflexible in what it learns from each example (Flann & Dietterich, 1988). Third, the rules 
learned that extend the knowledge base are simply syllogisms of existing rules. This means that 
the systems do not go beyond the initial vocabulary used in problem solving. They simply cache 
sequences of implications that exist in the initial knowledge base. Because of these limitations, the 
method does not supply a general solution to the problem above. 

Problem reformulation methods overcome some of the problems of EBL because more powerful 
changes are made in the initial knowledge base than simple syllogisms. These methods aim to 
transform the representation of a problem into one in which the solution is more easily found, 
often generating a new vocabulary. However, there are also problems associated with this method. 
First, the techniques have been successful only with small toy problems such as Missionaries and 
Cannibals, and Towers of Hanoi (Korf 1980, Amarel 1982). Second, logic based methods, such 
as those presented in Subramanian & Genesereth (1987), required computationally expensive first 
order proofs. Third, although many useful transformations have been identified, there is little 
understanding of how to control the application of these transformations. 

Neither of these methods supply a solution to the general problem of automatically trans­
forming a knowledgeable novice to an expert. EBL methods lack powerful transformations while 
reformulation techniques lack guidance on when to apply transformations. 

In order to understand the difference between a knowledgeable novice and an expert, and 
identify the kinds of change we are interested in achieving automatically, let us consider a simple 
chess problem. Figure 1 shows a typical mid-game position with black to play. 

A novice's knowledge of chess is comprised of the rules of the game and the ability to recognize 
a win or loss. When such a novice is faced with this position, she will perform a limited search 
analyzing a few alternatives and come up with a move such as moving the knight on e4 to c5. This 
is not the best move in this position, in fact there is a way the black side can take the white queen. 
However, this sequence of moves is 6 ply deep and therefore cannot be seen by a novice. 

The queen is captured by the following sequence of moves: first the black bishop on f2 is moved 
to c5, white moves the king out of check to f7, black now moves the knight to d6 checking the 
king. The only alternative is for white to move the king out of danger allowing black to capture 
the queen with the knight. 

An expert will see this solution. First the expert may notice that the knight on e4 can both 
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Figure 1: Example of difficult chess problem, black to play 

directly threaten the queen and potentially threaten the king if it moved to f7. The expert now 
looks for ways to force the king into f7 where it can be forked with the queen. The expert knows 
that one way to force a king to move is to put it in check and identifies the check threat by the 
queen from c3 to a3 as a suitable candidate. However, this does not complete the solution because 
a precondition of a fork is that the king cannot avoid moving, and in this case there is an option for 
the opponent to take the knight on d6 with the bishop on f4. A subgoal is now created to find a 
move that can prevent the bishop from taking the knight and simultaneously check the king. The 
expert knows that there are three ways to prevent a move: take the piece, block the move or pin 
the piece. The bishop's move from f2 to c5 that creates a pin is found and verified as a suitable 
checking move. The solution has been found. 

There are some important observations to make concerning the expert players problem solv­
ing compared with that of the novice. The most important factor to note is that the expert is 
employing a vocabulary of functional features such as incheck-by-knight, remove-check-by-capture , 
remove-threat-by-block, prevent-move, threaten-piece , knight-fork and pin-piece. These features play 
a critical role in the problem solving in two ways: 

• The vocabulary of functional features acts as a strong source of focus for the search. For 
example, once the potential fork is identified , two sub-goals are created and pursued, one 
getting the king to the "forkable" square (f7), the other freeing the forking square ( d6) from 
the threat of capture. 

• The functional features define a smaller and more pertinent search space for the expert to 
search. These features hide many of the irrelevant details such as the positions of other 
pieces that do not play a role in the current goals. For example , when the knight move was 
identified that would fork the queen and king, each individual state resulting from the possible 
king moves were not considered. Rather, all such states were treated as a single functionally 
defined state , one in which the king moves "out of check." The structural distinction of the 
destination square of the king was ignored because it is irrelevant to achieving the current 
goal. 
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This brief comparison between a novice and a chess expert identifies a way of improving problem 
solving performance that we will refer to as problem-solver reformulation. 

This paper introduces a method to achieve problem-solver reformulation. In particular, the 
problem we are interested in solving is: 
Given: 

• An epistemologically adequate domain theory 1 . 

• A simple problem solver that can apply the domain theory in a search intensive way to achieve 
its goals. 

Find: 

• A reformulation of the domain theory cast in terms of new functional features. 

• A problem solver that can apply these functional features to focus and reduce its search to 
achieved its goals more effectively. 

In this paper we address the first component of the solution: reformulating the domain theory. 
The second component is an area of current research. 

The remainder of this paper is organized as follows: Section 2 presents our approach to this 
problem. Section 3 details our method with an example from chess. Section 4 presents some 
empirical results that demonstrate improved performance through reformulation. We conclude in 
Section 5 where we compare the method with other approaches and suggest a reason for its success. 

2 Approach 

We view the goal of reformulation as the process of making functionally relevant knowledge explicit 
and directly usable by the problem solver. 

Hasse (1986), and Lenat and Brown (1984) view such reformulation as collapsing the semantics 
into the syntax. Distinctions that were only apparent through extensive search become.explicit in 
the syntax of the vocabulary of the problem solver. Consider a simple example from chess. When 
the king is in check by a knight, there are only two options available, either the king must be moved 
or the knight taken. This constraint is buried in the initial semantics of the chess domain theory; 
each time the situation arises, the initial problem solver, after extensive computation, will always 
identify moves that fall into one of the two cases. By reformulating the domain theory, these two 
options can be made explicit in the syntax. 

Such a reformulated domain theory can considerably improve the problem solving performance. 
First, when the king is recognized as being in check from a knight (i.e., recognize the functional 
feature incheck-by-knight), there is no wasted work pursuing illegal moves. Second, and of more 
importance, the explicit options (i.e., move-out-of-check and remove-check-by-capture) can be used 
as functional features and direct the search. In the example problem above (Figure 1), the expert 
recognized the potential incheck-by-knight threat and it then explored the two options move-out-of­
check and remove-check-by-capture. Seeing that if white chooses move-out-of-check the queen will 
be captured, the problem solver focuses the search on thwarting a remove-check-by-capture by the 
opponent. 

With such potential benefit coming from reformulation it is surprising that it has had so little 
application in machine learning. One reason for the absence of success with reformulation tech­
niques is that they are currently very unconstrained and computationally intensive. For example, 

1 We will use domain theory and knowledge base as synonyms 
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in Subramanian and Genesereth (1987) a logic of irrelevance is presented that can identify irrele­
vances in a domain theory that suggest reformulations. However, this process involves constructing 
complex proofs in a first order language-a semi-decidable problem. Other techniques such as those 
presented by Amarel (1982) and Korf (1980) are equally costly since they require extensive search. 

In this proposal we present a new approach to this problem that overcomes the computational 
complexity: 

In our approach, we employ a carefully chosen set of training examples supplied by a 
teacher to constrain and direct the reformulation process. 

Examples offer two principle advantages. First, the examples identify the exact part of the 
domain theory to be reformulated. Second, the proof with examples is much simpler to construct 
than the general proof (i.e., one using variables) because it is fully instantiated. 

The reformulation method employs a sequence of training instance sets ( called lessons), each 
more complex than the last. In this way the method learns incrementally-it applies previously 
learned features to simplify the current learning task. For example, in chess the first lessons 
concern enumerating the important cases of legal moves, such as moving when in check by a 
knight, or moving when in check by a bishop, queen or rook. In this later case, the moving player 
has the potential to block the check threat and thus can learn the functional feature remove-check­
by-blocking. The follow up lessons will include more advanced features such as pins, forks and 
skewers. 

Through this technique it is intended that a knowledgeable chess novice that cannot solve the 
initial problem given in Figure 1 under some resource bound (both time and space), can through 
instruction, come to solve the problem under the same resource bound. 

3 Reformulation Method 

In this section we detail the reformulation method and demonstrate through an extended example 
how some of the functional features introduced earlier are learned. 

Let us assume the initial domain theory is written in Prolog and consists of rules and facts that 
describe the rules and goals of the problem. More formally, the domain theory DT, consists of a 
set of rules of the form Hi:-P 1 , ... ,Pn, where each P1 (1::; l::; n) either unifies with some Hj or 
some fact F. We call the set of P1 that exclusively unify with facts, primitive predicates. 

We are now in a position to define the inputs and outputs of the reformulation method: 
Given: 

• A domain theory DT 0 1d that includes a single rule, H1 :-Pi, ... ,Pn. 

• A set of training examples described in terms of the primitive predicates that satisfy H 1 . 

Find: 

• A reformulated domain theory DTnew that includes a new rule of the form 

where Pct and Ptj (1 ::; j ::; m) are new predicates, P, defined as follows: P: -Pn1, Pnz, ... , Pnr , 
where each Pni (1 ::; i::; r) is either a Ptj, a Hk, or a primitive predicate. 
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(a) state!, 
White to play 

(b) state2, 
Black to play 

Figure 2: Lesson to reformulate legalmove 

g 

The new rule defining H 1 describes a special case of the original rule since it only applies when 
Pel is true. The predicates in the body of the new rule, Ptj, explicitly enumerate disjunctive cases 
that hold for the original body P1, ... ,Pn but are not explicit. 

To clarify these definitions we give the inputs and outputs of the method when reformulating 
the legal move rule in chess. 

The original rule that defines the legal moves (i.e., H1 ) is given below: 

legalmove(State,Newstate,Side):­
possiblemove(State,Newstate,Side), 
not(incheck(Newstate,Side)). 

A legal move in State for Side is one that is possible and does not lead to Side being in check. 
The possiblemove rule generates Newstates that result from possibly legal moves for Side. The 
incheck rule succeeds when there exists a possible move for the opponent that could take the king 
of Side. We include the definition of these and other goals in the appendix. 

The lesson set in this case is two board positions (illustrated in Figure 2) both of which cover 
an important special case of generating legal moves-when the king is in check from a knight . In 
the white-to-play position, the king on d8 is in check from the knight on c6. There are two legal 
classes of moves white can make in this position, either move the king or take the knight with the 
rook on h6. 

The reformulated rule generated by the method from this lesson set is given below: 

legalmove(State,Newstate,Side):­
incheck-1(State,Side1,Side2,KnSq,KnPl,KSq,KPl), !, 
(legalmove-1(State,Newstate,Side1,Side2,KnSq,KnPl,KSq,KPl) 
j legalmove-2(State,Newstate,Side1,Side2,KnSq,KnPl,KSq,KPl)). 

Pct in this case is incheck-1(State,Side1,Side2,KnSq,KnPl,KSq,KPl), which is true when 
Side1 is in check from a knight on square KnSq2 • There are two cases; Pt 1 is legalmove-1 ( ... ) 

2We will define the complete predicate later. 
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that generates moves by the king, while Pt2 is legalmove-2 ( ... ) that generates moves that cap­
ture the knight on KnSq. We define legalmove-1 ( ... ) and legalmove-2 ( ... ) by additional 
rules given below. 

This rule says that if in check by the knight then there are two options; either move the king out 
of check or capture the knight checking the king. Note the new predicates generated, incheck-1, 
legalmove-1 and legalmove-2 explicitly define the functional features incheck-by-knight, move­
out-of-check and remove-check-by-capture introduced earlier. 

Now we have given the inputs and outputs of the method, we describe the method in detail 
continuing with the legalmove example. The method has three stages: generate explanations, 
identify new definitions and finally, extract new domain theory rules. 

3.1 Generating Explanations 

The first stage of reformulation is to apply the domain theory to analyze the training examples. 
The goal of this stage is to determine how these examples satisfy the current domain theory. Here, 
the rule for legalmove is used to find the set of legal moves for each example. During analysis a 
cache of the computation involved in generating the moves is made. This cache forms a set of proofs 
or explanations that demonstrate each legal move is indeed legal. Note that in each example, some 
possible moves (such as moving the white bishop in Figure 2) turn out not to be legal moves because 
the king is still in check following the move. Even though this analysis does not result in any legal 
moves, it is included in the set of explanations. We include fragments of four such explanations in 
Figure 3: two legal move fragments (la) and (lb), and two illegal move fragments (2a) and (2b) 
(see appendix for description of the primitive predicates). In (la) we show the possiblemove proof 
of the rook move from h6 that captures the knight on c6 in state 1. In (2b) we show a failed 
not-incheck proof that proves the black move from d7 to b6 in state2 is illegal because the king is 
still in check from the knight on e3. 

3.2 Identify New Definitions 

In the second stage, the set of explanations are syntactically compared and generalized. The 
goal of this stage is to identify fragments of the explanations that define the intended functional 
features or components of the reformulated rule (such as Pct). Here, we identify three generalized 
explanations that define the functional features incheck-by-knight, move-out-of-check and remove­
check-by-capture. 

First, we identify the condition Pct by empirically determining a reason for the failed expla­
nations. To do this we compare and generalize the successful explanations, producing a general 
explanation that describes moves that do not result in check. We similarly compare and generalize 
the failed explanations, this time producing a general explanation that describes illegal moves that 
result in check by the knight. To identify the condition, we compare the two general explanations 
and search for a syntactic difference that would account for the failure. The explanation fragment 
that defines the check by the knight is identified and proposed as the condition. 

We use the induction-over-explanations (IOE) method ( described in Flann & Dietterich, 1988, 
1986; Dietterich & Flann, 1988) to generalize among the explanations. IOE syntactically generalizes 
a set of explanations and forms a single generalized explanation that represents the maximally 
specific common generalization of the input explanations. The generalized proof is formed by a 
combination of a simple constants to variable bias that is employed over the syntactic structure of 
the explanations and the pruning of dissimilar explanation sub-trees among the instances. IOE is 
used in preference to the more familiar EBG generalization method because EBG is too aggressive 
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possiblemove(s1 ,do(op(h6,c6,wr1 ,bn1 ),s1 ),w) 

pside(w,b) 

egaldirection(w ,rook, w,8) 

onnected(h6,g6,w) 

ovedirection(s1 ,8,w,g6,c6,bn1 ,knight,b) 

quare(s1 ,g6,em) 

ected(g6,f6,w) 

o ed ection(s1 ,7,w,f6,c6,bn1 ,knight,b) 
I 
I 

quare( s 1,c6,bn 1 ) 

bn1,b) 

ype( ,knight) 

(la) Successful move 
white-to-play 

not(incheck(do(opth6,h7,wr1 ,em),s1 ),w) 

pside(w,b) 

quare(do(op(h6,h7,wr1 ,em),s1 ),d8,wk1) 

ide(bn1 ,b) " 
ype(bn 1 ,knight) quare(s1 ,d8,wk1) 

quare(do(op(h6,h7 ,wr1 ,em),s1 ),c6,bn1) 

egaldirection(b,knight,enn, 1) f 
onnected(c6,d8,enn)) quare(s 1 ,c5,bn1 l 

ovedirection(do(op( ... ),s1 ), 1,enn,d8,d8,wk1 ,king,w) 

~

quare(do(op( ... ).s1 ),d8 ,wk1) 

de(wk1,w) 

ype(wk1 ,king) 

(2a) Failed move 
white-to-play 

possiblemove(s2,do( op(g3,e3,bn2 , wn 1 ) ,s2 ),b) 

pside(b,w) 

egaldirection(b,knight,nww, 1) 

onnected(g2,e3 ,nww) 

ovedirection(s2 , 1,nww,e3,e3,wn1 ,knight,w) tquare(s2,e3,wn1) 

de(wn1,w) 

ype(wn1 ,knight) 

(lb) Successful move 
black-to-play 

not(incheck(do(op(d7,b6,bn1 ,em),s2),b) 

pside(b,w) 

quare(do(op(d7 ,b6,bn1 ,em),s1 ),c4 ,bk1) 

ype(wn1 ,knight) 
Luare(s1 ,c4,bk1) 

quare( do( op( d? ,b6,bn 1,em),s 1 ),e3, wn 1 ) 

egaldirection(w,knight,J.,w, 1) 

onnected(e3,c4,nww) l~uare(s 1 ,eJ,wn 1) 

ovedirection( do( op( ... ),s 1 ), 1 ,nww ,c4,c4,bk1 ,king,b) 

~

quare(do(op( ... ),s1 ),c4,bk1) 

de(bk1 ,b) 

ype(bk1 ,king) 

(2b) Failed move 
black-to-play 

Figure 3: Explanations for possiblemove and incheck 
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in its generalization policy and ignores important commonalities among the examples. IOE, because 
it uses a more conservative generalization policy, is able to retain such commonalities and thereby 
extract more information from the training examples (Flann & Dietterich, 1988). 

We illustrate this in Figure 4(2c), where we give the result of generalizing the incheck fragment 
of the failed explanations. Note that most of the constants existing in the input explanations (in 
Figure 3(2a) and (2b)) have been replaced by variables. However, the explanation is not completely 
variablized and retains the constraint that the checking piece is a knight (in type(KnPl ,knight)). 
In other words, this generalized explanation defines the feature incheck-by-knight. We retained the 
important knight constraint because it was common among all the instances. An EEG general­
ization policy would have simply variablized everything and thus lost this constraint. 

The explanation in Figure 4(2c) is formed by recursively descending the explanation trees 
starting at the root, merging the explanations to form a single general explanation. This merging 
step takes a list of ground predicates [p(xl1, x21, ... ,xn1), ... ,p(xlm, x2m, ... , xnm)J and returns 
a generalized predicate p(xl,x2, ... ,xn), where xj equals xji if xj1 = xh = ... = xjm and 
equals a variable if any two xji =p xjk. For example, when generalizing Figure 3(2a) and (2b ), 
the list of predicates [type(bn1 ,knight), type(wn1 ,knight) ... ] will be merged resulting in 
type(KnPl,knight) being included in the general explanation (upper case letters are variables). 

Note that the explanation includes many repeated variables. For example, the variable KPl 
that represents the king, occurs both in the square(S,KSq,KPl) predicate and type(KPl,king) 
predicate. These repeated variables are important because they encode the shared variable con­
straints present in the domain theory rules. Without them, the generalized explanation would no 
longer define a check, because for example, the piece potentially captured would no longer have 
to be a king (i.e., the KPl in type(KPl,king) and square(S,KSq,KPl) would be different). We 
preserve the shared variable constraints from the domain theory by what we call the "no coinci­
dences" bias: if ever the same set of constants is merged we assign them the same variable. When 
generalizing [ type (bk1, king) , type ( wk1, king) ... J we merge {bk1, wk1} and when generaliz­
ing [square(state1,c4,bk1), square(state2,d8,wk1) ... J wealsomerge{bk1,wk1}. Because 
these sets are the same, we assign the same variable KPl. 

We have described how the condition part of the new reformulation is identified. We now 
turn our attention to the identification of the other functional features and components of the 
reformulation. 

The goal of this stage is to identify distinct cases that make up the possible solutions to the 
rule being reformulated. For the legal move rule we wish to identify the two cases: either move 
the king out of check or take the checking piece. This is accomplished by first applying clustering 
techniques (such as those described by Fisher, 1987) over the successful explanations. The two sets 
identified in our example are the set of all moves by the king and the set of all moves that take the 
knight. We then apply IOE to form two generalized explanations. 

We illustrate the generalized explanation for the knight capture moves in Figure 4(1c). For this 
explanation to correctly describe the remove-check-by-capture feature, the piece captured must be 
the same piece that is checking the king. This is an important semantic constraint, for if it were 
not the case, the move would be illegal. We correctly find this constraint because it is explicit as a 
repreated pattern in the syntax of the successful explanations. We identify this pattern though the 
use of the "no coincidences" bias introduced earlier. The merging of the destination squares of the 
capturing moves (found in the movedirection predicate in Figures 3(1a) and (lb)) produces the 
same set of constants { c6, e3}, as the merging of the originating square of the check threat (found 
in the square predicate in Figures 3(2a) and (2b )). Since both sets are equal, we assign them the 
same variable KnSq. 
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possiblemove(S,do(op( ... ),S),Side1) 

pside(Side1 ,Side2) 

egaldirection(Side1 ,MTy,MDr,Mc) 

onnected(FSq,ISq,MDr) 

ovedi rection(S,Mc,MDr,ISq,KnSq,KnPl,knight,Side2) 

(le) remove-check-by-capture 
generalized explanation 

not(incheck(do(op( ... ),s2),Side1) 

pside(Side1 ,Side2) 

ype(KPl,king) 

quare(do(op( ... ),S),KSq,KPI) 

ide(KnPl,Side2) ' 
ype(KnPl,knight) quare(S,KSq,KPI) 

square(do(op( ... ),S),KnSq,KnPI) 

egaldirection(Side2,kniJht,KnDr, 1) 

onnected(KnSq,KSq,Kna~uare( S,KnSq,KnPI) 

ovedirection(do(op( ... ),S), 1,KnDr,KSq,KSq,KPl,king,Side1) tquare(do(op( ... ),S),KSq,KPI) 

de(KPl,Side1) 

ype(KPl,king) 

(2c) in-check-by-knight 
generalized explanation 

Figure 4: Generalized Explanations for in-check-by-knight and remove-check-by-capture 

This stage has identified three generalized explanations that describe the three functional fea­
tures incheck-by-knight, remove-check-by-capture and move-out-of-check. The final stage describes 
how the reformulated domain theory rules are extracted out of these explanations. 

3.3 Extracting New Domain Theory Rules 

Extracting the new domain theory rules involves three parts: First, we find variables that are 
shared among different parts of the explanations and "promote" these variables to the renamed 
heads of the rules used in the explanations. Second, we walk down the explanations extracting new 
domain theory rules for each head in the explanations. Finally, we simplify the code by removing 
redundant predicates and reorder tests for increased efficiency (using techniques introduced by 
Smith, Genesereth & Ginsberg, 1986). 

We generate the condition rule ( incheck-by-knight) from the explanation fragment in Fig­
ure 4(2c) by re-naming the head incheck-1 and promoting the shared variables Side2, KnSq, 
KnPl, KSq, KPl as new arguments. The final rule is generated by collecting the leaves (i.e., the 
primitive predicates) and simplifying. The rule defines incheck-1 as true in state S when there 
exists a king of side Side1 on square KSq, a knight of side Side2 on square KnSq and KnSq and KSq 
are connected in a legal direction for the knight: 

incheck-1(S,Side1,Side2,KnSq,KnPl,KSq,KPl):-
opside(Side1,Side2), 
type(KPl,king), side(KP1,Side1), square(S,KSq,KPl), 
type(KnPl,knight), side(KnPl,Side2), square(S,KnSq,KnPl), 
legaldirection(Side2,knight,KnDr,1), connected(KnSq,KSq,KnDr). 
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The rule defining remove-check-by-capture, (legalmove-2) is similarly generated from the ex­
planation in Figure 4(1c). The move-2 rule (below) generates possible moves of player MPl of side 
Side1 that can move to square KnSq. In this case, because the destination square KnSq will always 
be bound to a constant at run time, we simplify the recursive movedirection rule by removing the 
generator of bindings for KnSq (square, side, type). The rules are given below: 

legalmove-2(S,do(op( ... ),S),Side1,Side2,KnSq,KnPl,KSq,KPl):-
move-2(S,do(op( ... ),S),Side1,Side2,KnSq,KPl), 
not(incheck-3(do(op( ... ),S),Side1,Side2,KnPl,KSq,KPl)). 

move-2(S,do(op(FSq,KnSq,Pl,KnPl),State),Side1,Side2,KnSq,KPl):­
side(MPl,Side1), MPl\==KPl, 
type(MPl,MTy), square(S,FSq,MPl), 
legaldirection(Side1,MTy,MDr,Mc), 
connected(FSq,ISq,MDr), 
movedirection2(S,Mc,MDr,ISq,KnSq). 

This concludes our description of the reformulation method. Next we briefly describe how the 
reformulated chess theory can benefit future learning. 

3.4 Learning Knight-fork 

We demonstrate how the functional features just learned, incheck-by-knight, move-out-out-check 
and remove-check-by-capture aid in the learning of an efficient definition of the feature knight-fork. 
Recall that the solution to the initial problem in Figure 1 involved a knight-fork: following the 
check threat and king move, the knight (moved to d6) simultaneously checked the king on f7 and 
threatened the queen on b7. The king was forced to move out of check allowing the king to capture 
the queen. 

To learn the functional feature knight-fork, two board positions are presented, one where the 
white side is in a knight-fork, the other where the black side is in a knight-fork. 

The reformulation process will proceed as before by generating explanations in terms of the 
current domain theory. In this case, because of the previous reformulation, the explanations will 
include the satisfied incheck-by-knight feature, the satisfied move-out-of-check feature ( describing 
the king moves) and the unsatisfied remove-check-by-capture feature. The final rule generated is 
given below: 

goodgoal-1(S,exchange(empty,queen),Side1):-
incheck-1(S,Side1,Side2,KnSq,KnPl,KSq,KPl), ! , 
(legalmove-3(S,Newstate1,Side1,Side2,KnSq,KnPl,KSq,KPl), 
not(legalmove-2(S,Newstate2,Side2,Side1,KnSq,KnPl,KSq,KPl))). 

The final rule recognizes the knight-fork feature as a combination of existing and new features: 
A knight-fork exists in S with Side1 to play if incheck-1 is true in the state (i.e., incheck-by­
knight) and there exists a move that can take the queen, legalmove-3, and there must not exist a 
legalmove-2 (i.e., remove-check-by-capture) for the opponent. 

This brief sketch of the reformulating method has demonstrated how the initial domain theory 
can be incrementally reformulated to one written in terms of relevant functional features. 
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Figure 5: Results for evaluating performance efficiency 

4 Empirical Study of Reformulation 

The principle goal of reformulating the domain of a problem solver is to improve its performance. 
In this section we present a brief empirical study that compares the performance of a simple chess 
problem solver using either the original or reformulated domain theory. 

Currently, because the reformulator is not integrated within a practical problem solver, we 
measure performance as efficiency-the number of Prolog inference s_teps (Lis) required for the 
domain theory rules to generate the answer. In particular, we compare the number of logical 
inferences need by the original legal-move rules and the reformulated rules to generate all the legal 
moves in a given position. We also compare the classification costs of using a definition of knight­
fork expressed in the original domain theory (given in Flann & Dietterich, 1988) with a definition 
expressed in the reformulated theory. 

The results are shown in Figure 5. The vertical axis of the graphs is a count of the logical 
inferences needed for the performance task. In graph (a) this task is to generate all the legal 
moves for a given position. In graphs (b) and ( c) the task is to classify board positions using the 
concept knight-fork, with graph (b) identifying positive instances and graph ( c) identifying negative 
instances. 

The horizontal axis represents a board position of increasing complexity. In graph (a) the Base 
position includes only a king and knight of sidet, and a knight of side2 (with sidet side to play). 
The knight of side2 is checking the king and can be captured by the knight of sidet. There are 
eight legal moves in this position: seven by the king moving out of check and one by the knight 
taking the threatening knight. The +knight position is the Base position with two added knights 
( one of each side) placed on the board in such a way as not to affect the legal moves available. The 
+bishop is the +knight position with two bishops added similarly. The +rook and +queen represent 
further increases in complexity without affecting the legal moves available. 

The graphs (b) and (c) are similarly set up for the knight-fork concept. In graph (b), the Base 
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position includes only a king and queen of side1, and a knight of side2 (with side1 side to play). 
The knight forks the king and the queen. In graph (b ), the additional pieces are added such that 
they do not affect the concept definition. In graph (c), each position is like that for (b) but one 
of the pieces has been moved such that it can take the threatening knight. Hence, this graph 
demonstrates the performance of the definitions with negative instances. The results demonstrate 
that the reformulated theory (DTnew) performs much better than the original theory (DT otd), 
DTnew requires significantly less resources to generate moves and classify knight fork positions. 
It is also interesting to note the insensitivity of DTnew to irrelevant complexities in board. The 
search for a knight fork concept is much more constrained with DTnew than with DTotd· If fact , 
recognizing knight-fork in the +queen position is approximately 60 times faster with DTnew (2177 
Lis) compared with DTozd (130430 Lis). 

We also anticipate a great benefit arising from this reformulation when the system is embedded 
within a chess problem solver. We expect the functional features will considerably constrain the 
game search ( as described in the introduction) and lead to a significant improvement in overall 
performance. 

5 Analysis 

In this section we relate the approach to previous reformulation work that has stressed the impor­
tance of relevance and irrelevance in the domain theory and offer an explanation as to why the 
method works. 

Amarel (1982) and more recently Subramanian and Genesereth (1987) view reformulation as 
identifying and exploiting irrelevances within a domain theory. If it can be shown that fact f is 
irrelevant to proving fact g in domain theory M then f can be removed. Subramanian gives an 
example of reformulating a family tree domain theory under the condition where the only queries 
will concern whether two people are in the same family. The original domain theory predicates 
describing father and ancestor are determined to be irrelevant and the domain theory is reformuated 
to include only foundingfather relations. 

In the chess example we see the same use of irrelevance: when generating legal moves under 
the condition of a check by a knight, computation that generates moves other than moving the 
king or capturing the knight is irrelevant. The reformulated domain theory tests for the condition, 
and if true sanctions only moves that take the checking knight or move the king. In other words, 
the reformulated theory explicitly represents only what is relevant to generating moves when in 
check by a knight (i.e., it ignores what is irrelevant). The empirical results clearly demonstrate 
this. The reformulated theory is almost completely insensitive to the additional pieces since they 
are irrelevant to the goal. 

In general then, we can view reformulation as a two stage process: First, given a domain theory 
DT, we identify parts of a domain theory DT1 that are irrelevant when solving a goal G under 
some condition C. Second, we reformulate DT such that when it is used by a problem solver to 
solve Gunder the condition Cit will use only what is relevant (referred to as DTR), that is, ignore 
DT1. 

Under this view, the important problem of reformulation becomes identifying DT1 and DTR 
in the domain theory. In Subramanian's formalism presented in (1987), DT1 corresponds to fact 
f, G to fact g and M to DT. Here, once f is found, the reformulated theory simply becomes 
M - f. This formalism captures only a simple case of irrelevance since what is irrelevant, fact J, 
can be explicitly represented in the DT. In this case, the DT requires little reformulation since the 
distinction between what is irrelevant(!) and relevant(,!) is already explicit in the syntax. 
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A more interesting case is when DTR and DTr are not explicit in the DT. For instance, in our 
chess example DTR is "the set of all king moves or the set of all moves that capture the checking 
knight." Although this can be described in the domain theory vocabulary, it is not an explicit 
predicate in DT. 

The key idea in the method introduced in this paper is to represent DTR as sets of generalized 
explanations. This reduces the reformulation problem to: 1) identifying generalized explanations 
that express DTR and 2) compiling generalized explanations into efficient domain theory rules. 

We identify DTR by employing the following assumption: 

What is relevant to solving G will be present in successful proofs of G. 

Hence, by clustering and generalizing successful proofs of G we identify commonalities among the 
solutions to G that express what is relevant to G. In the chess example, syntactic commonalities 
among the solutions traces identified the two general cases of legal moves given above. 

This approach offers two advantages: The first advantage is that we avoid computationally 
intensive and unfocussed proofs. Examples both avoid the computational cost, because the proofs 
are fully instantiated; and provide focus, because they are supplied by a teacher. The second 
advantage is that we can identify DTR when it is not explicit in the original domain theory. In 
fact, the language used to describe DTR-generalized explantions-is very rich: we can represent 
any legal partially instantiated proof tree of some goal G. 

In summary, the method works because it exploits the fact that what is relevant in the domain 
theory is expressed as syntactic commonalities and differences among problem solving traces. We 
have shown how this method can improve the efficiency of parts of a chess domain theory and 
presented a framework in which the performance of a problem solver could be significantly improved. 
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Appendix 

This section gives relevant parts of the chess domain theory that define the legal move predicate. First we cover the 
way boards are described. 

Each board state can be denoted by a constant such as state1. The squares on the board are also denoted by 
constants , for example, a8, b2, and so on. Finally, the pieces are each given names such as llr1 for the white rook and 
bn1 for the black knight. Empty squares are represented by an imaginary piece called em (essentially a null value) . 
For example, the description of the board position illustrated in Figure 2( a) includes 

square(state1,h6,llr1). square(state1,c6,bn1). square(state1,g6,em). 

With this representation, a board configuration can be represented by 64 assertions. 
In addition, the structure of the chess board must be represented. A basic representation that captures the 

topology of the squares is the following : 

connected(a7,a8,n). connected(a7,b7,e). connected(a7,b8,ne). 

The constants n, e, ne, and so on represent the eight directions of the compass points . In all, 372 connected assertions 
are needed . 

We identify certain pieces ( e.g., lln1, wr1, and so on) as all being white pieces. Similarly , we define groups of 
pieces ( e.g., =1, bn2, and so on) as being of the same type, knight: 

side(llni,ll). type(lln1,knight). side(bq1,b). type(bq1,queen). 

Using these definitions, it is possible to define legal moves for each piece. We begin by stating, for each piece, the 
direction and maximum number of moves it can make. (Knight is treated specially see Flann & Dietterich, (1988)). 
As an example, the rules for rooks are: 

legaldirection(Side,rook,n,8). legaldirection(Side,rook,e,8). 

Several rules are required in order to define legal moves. In the body of the paper we gave the definition for legalmove 
here we define possiblemove and incheck 

possiblemove(State,do(op(From,To,Playerm,Playert),State),Side1):­
opside(Side1,Side2), 
side(Playerm,Side1), type(Playerm,Type), square(State,From,Playerm), 
legaldirection(Side1,Type,Direct,Count), connected(From,Next,Direct), 
movedirection(State,Count,Direct,Next,To,Playert,Type2,Side2). 

A move is described as an operator function op in the situation calculus (using techniques recommended in 
Genesereth & Nilsson, 1987) . The function op takes four arguments: the source square , the destination square, the 
name of the piece moved, and the name of the piece taken ( em if no piece is taken). This rule checks to see that 
the indicated player, Playerm, is located on the source square; that Playert is located on the destination square ; 
and that the indicated direction and number of squares is legal for the kind of piece being moved. In particular , 
the movedirection predicate recursively decrements the Count as it traverses connected squares in the indicated 
direction. It checks that all intervening squares are empty. 

In check is defined similarly, as a move that takes the king by constraing the destination square to be the king . 
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