
88-30-04

un~UEAS~TY

Improving Problem Solving Performance
by Example Guided Refonnulation of Knowledge

Nicholas S. Flann
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

Improving Problem Solving Performance
by Example Guided Reformulation of Knowledge

Abstract

Nicholas S. Flann
Department of Computer Science

Oregon State University
Corvallis , Oregon 97331

flann@cs.orst .edu

This paper introduces a method that improves the performance of a problem
solver by reformulating its domain theory into one in which functionally rele
vant features are explicit in the syntax. This method, in contrast to previous
reformulation methods, employs sets of training examples to constrain and di
rect the reformulation process. The use of examples offers two advantages over
purely deductive approaches: First, the examples identify the exact part of the
domain theory to be reformulated. Second, a proof with examples is much
simpler to construct than a general proof because it is fully instantiated. The
method exploits the fact that what is relevant to a goal is syntactically explicit
in successful solutions to that goal. The method first takes as input a set of
training examples that "exercise" an important part of the domain theory and
then applies the problem solver to explain the examples in terms of a relevant
goal . Next , the set of explanations is "clustered" into cases and then generalized
using the induction over explanations method, forming a set of general expla
nations. Finally, these general explanations are reformulated into new domain
theory rules. We illustrate the method in the domain of chess. We reformulate
a simple declarative encoding of legal-move to produce a new domain theory
that can generate the legal moves in a tenth of the time required by the original
theory. We also show how the reformulated theory can more efficiently describe
the important knight-fork feature.

1

1 Introduction

One solution to the important problem of constructing a usable knowledge base for a knowledge
based system is to employ systems that automatically reformulate a given inefficient knowledge base
into an efficient one. These systems are initially given an epistemologically adequate knowledge
base and through experience or analysis, construct a more effective 'expert' knowledge base. The
main advantage these systems have over the traditional knowledge engineering approach is that the
initial knowledge that must be supplied to the system is much easier to formalize and encode in a
computer.

Two principle methods have been proposed and applied with limited success to this problem:
Explanation based learning and problem reformulation.

Explanation based learning (EBL) is a method by which a system improves its performance
though analyzing successful (and failed) solutions. Given an example problem that is solved by the
system, the solution trace is analysed and generalized to form a rule that will solve the same and
similar problems faster the next time. (see Mitchell, Keller & Kedar-Cabelli, (1986) for a complete
description of the method). EBL has been successful in some small domains but there are serious
limitations. First, it is often the case that learning can diminish performance rather than improve
it (Minton, 1985). Second, an EBL system does not benefit much from training examples because
it is very inflexible in what it learns from each example (Flann & Dietterich, 1988). Third, the rules
learned that extend the knowledge base are simply syllogisms of existing rules. This means that
the systems do not go beyond the initial vocabulary used in problem solving. They simply cache
sequences of implications that exist in the initial knowledge base. Because of these limitations, the
method does not supply a general solution to the problem above.

Problem reformulation methods overcome some of the problems of EBL because more powerful
changes are made in the initial knowledge base than simple syllogisms. These methods aim to
transform the representation of a problem into one in which the solution is more easily found,
often generating a new vocabulary. However, there are also problems associated with this method.
First, the techniques have been successful only with small toy problems such as Missionaries and
Cannibals, and Towers of Hanoi (Korf 1980, Amarel 1982). Second, logic based methods, such
as those presented in Subramanian & Genesereth (1987), required computationally expensive first
order proofs. Third, although many useful transformations have been identified, there is little
understanding of how to control the application of these transformations.

Neither of these methods supply a solution to the general problem of automatically trans
forming a knowledgeable novice to an expert. EBL methods lack powerful transformations while
reformulation techniques lack guidance on when to apply transformations.

In order to understand the difference between a knowledgeable novice and an expert, and
identify the kinds of change we are interested in achieving automatically, let us consider a simple
chess problem. Figure 1 shows a typical mid-game position with black to play.

A novice's knowledge of chess is comprised of the rules of the game and the ability to recognize
a win or loss. When such a novice is faced with this position, she will perform a limited search
analyzing a few alternatives and come up with a move such as moving the knight on e4 to c5. This
is not the best move in this position, in fact there is a way the black side can take the white queen.
However, this sequence of moves is 6 ply deep and therefore cannot be seen by a novice.

The queen is captured by the following sequence of moves: first the black bishop on f2 is moved
to c5, white moves the king out of check to f7, black now moves the knight to d6 checking the
king. The only alternative is for white to move the king out of danger allowing black to capture
the queen with the knight.

An expert will see this solution. First the expert may notice that the knight on e4 can both

2

3

C

Figure 1: Example of difficult chess problem, black to play

directly threaten the queen and potentially threaten the king if it moved to f7. The expert now
looks for ways to force the king into f7 where it can be forked with the queen. The expert knows
that one way to force a king to move is to put it in check and identifies the check threat by the
queen from c3 to a3 as a suitable candidate. However, this does not complete the solution because
a precondition of a fork is that the king cannot avoid moving, and in this case there is an option for
the opponent to take the knight on d6 with the bishop on f4. A subgoal is now created to find a
move that can prevent the bishop from taking the knight and simultaneously check the king. The
expert knows that there are three ways to prevent a move: take the piece, block the move or pin
the piece. The bishop's move from f2 to c5 that creates a pin is found and verified as a suitable
checking move. The solution has been found.

There are some important observations to make concerning the expert players problem solv
ing compared with that of the novice. The most important factor to note is that the expert is
employing a vocabulary of functional features such as incheck-by-knight, remove-check-by-capture ,
remove-threat-by-block, prevent-move, threaten-piece , knight-fork and pin-piece. These features play
a critical role in the problem solving in two ways:

• The vocabulary of functional features acts as a strong source of focus for the search. For
example, once the potential fork is identified , two sub-goals are created and pursued, one
getting the king to the "forkable" square (f7), the other freeing the forking square (d6) from
the threat of capture.

• The functional features define a smaller and more pertinent search space for the expert to
search. These features hide many of the irrelevant details such as the positions of other
pieces that do not play a role in the current goals. For example , when the knight move was
identified that would fork the queen and king, each individual state resulting from the possible
king moves were not considered. Rather, all such states were treated as a single functionally
defined state , one in which the king moves "out of check." The structural distinction of the
destination square of the king was ignored because it is irrelevant to achieving the current
goal.

3

This brief comparison between a novice and a chess expert identifies a way of improving problem
solving performance that we will refer to as problem-solver reformulation.

This paper introduces a method to achieve problem-solver reformulation. In particular, the
problem we are interested in solving is:
Given:

• An epistemologically adequate domain theory 1 .

• A simple problem solver that can apply the domain theory in a search intensive way to achieve
its goals.

Find:

• A reformulation of the domain theory cast in terms of new functional features.

• A problem solver that can apply these functional features to focus and reduce its search to
achieved its goals more effectively.

In this paper we address the first component of the solution: reformulating the domain theory.
The second component is an area of current research.

The remainder of this paper is organized as follows: Section 2 presents our approach to this
problem. Section 3 details our method with an example from chess. Section 4 presents some
empirical results that demonstrate improved performance through reformulation. We conclude in
Section 5 where we compare the method with other approaches and suggest a reason for its success.

2 Approach

We view the goal of reformulation as the process of making functionally relevant knowledge explicit
and directly usable by the problem solver.

Hasse (1986), and Lenat and Brown (1984) view such reformulation as collapsing the semantics
into the syntax. Distinctions that were only apparent through extensive search become.explicit in
the syntax of the vocabulary of the problem solver. Consider a simple example from chess. When
the king is in check by a knight, there are only two options available, either the king must be moved
or the knight taken. This constraint is buried in the initial semantics of the chess domain theory;
each time the situation arises, the initial problem solver, after extensive computation, will always
identify moves that fall into one of the two cases. By reformulating the domain theory, these two
options can be made explicit in the syntax.

Such a reformulated domain theory can considerably improve the problem solving performance.
First, when the king is recognized as being in check from a knight (i.e., recognize the functional
feature incheck-by-knight), there is no wasted work pursuing illegal moves. Second, and of more
importance, the explicit options (i.e., move-out-of-check and remove-check-by-capture) can be used
as functional features and direct the search. In the example problem above (Figure 1), the expert
recognized the potential incheck-by-knight threat and it then explored the two options move-out-of
check and remove-check-by-capture. Seeing that if white chooses move-out-of-check the queen will
be captured, the problem solver focuses the search on thwarting a remove-check-by-capture by the
opponent.

With such potential benefit coming from reformulation it is surprising that it has had so little
application in machine learning. One reason for the absence of success with reformulation tech
niques is that they are currently very unconstrained and computationally intensive. For example,

1 We will use domain theory and knowledge base as synonyms

4

in Subramanian and Genesereth (1987) a logic of irrelevance is presented that can identify irrele
vances in a domain theory that suggest reformulations. However, this process involves constructing
complex proofs in a first order language-a semi-decidable problem. Other techniques such as those
presented by Amarel (1982) and Korf (1980) are equally costly since they require extensive search.

In this proposal we present a new approach to this problem that overcomes the computational
complexity:

In our approach, we employ a carefully chosen set of training examples supplied by a
teacher to constrain and direct the reformulation process.

Examples offer two principle advantages. First, the examples identify the exact part of the
domain theory to be reformulated. Second, the proof with examples is much simpler to construct
than the general proof (i.e., one using variables) because it is fully instantiated.

The reformulation method employs a sequence of training instance sets (called lessons), each
more complex than the last. In this way the method learns incrementally-it applies previously
learned features to simplify the current learning task. For example, in chess the first lessons
concern enumerating the important cases of legal moves, such as moving when in check by a
knight, or moving when in check by a bishop, queen or rook. In this later case, the moving player
has the potential to block the check threat and thus can learn the functional feature remove-check
by-blocking. The follow up lessons will include more advanced features such as pins, forks and
skewers.

Through this technique it is intended that a knowledgeable chess novice that cannot solve the
initial problem given in Figure 1 under some resource bound (both time and space), can through
instruction, come to solve the problem under the same resource bound.

3 Reformulation Method

In this section we detail the reformulation method and demonstrate through an extended example
how some of the functional features introduced earlier are learned.

Let us assume the initial domain theory is written in Prolog and consists of rules and facts that
describe the rules and goals of the problem. More formally, the domain theory DT, consists of a
set of rules of the form Hi:-P 1 , ... ,Pn, where each P1 (1::; l::; n) either unifies with some Hj or
some fact F. We call the set of P1 that exclusively unify with facts, primitive predicates.

We are now in a position to define the inputs and outputs of the reformulation method:
Given:

• A domain theory DT 0 1d that includes a single rule, H1 :-Pi, ... ,Pn.

• A set of training examples described in terms of the primitive predicates that satisfy H 1 .

Find:

• A reformulated domain theory DTnew that includes a new rule of the form

where Pct and Ptj (1 ::; j ::; m) are new predicates, P, defined as follows: P: -Pn1, Pnz, ... , Pnr ,
where each Pni (1 ::; i::; r) is either a Ptj, a Hk, or a primitive predicate.

5

L

I

6

. b

(a) state!,
White to play

(b) state2,
Black to play

Figure 2: Lesson to reformulate legalmove

g

The new rule defining H 1 describes a special case of the original rule since it only applies when
Pel is true. The predicates in the body of the new rule, Ptj, explicitly enumerate disjunctive cases
that hold for the original body P1, ... ,Pn but are not explicit.

To clarify these definitions we give the inputs and outputs of the method when reformulating
the legal move rule in chess.

The original rule that defines the legal moves (i.e., H1) is given below:

legalmove(State,Newstate,Side):
possiblemove(State,Newstate,Side),
not(incheck(Newstate,Side)).

A legal move in State for Side is one that is possible and does not lead to Side being in check.
The possiblemove rule generates Newstates that result from possibly legal moves for Side. The
incheck rule succeeds when there exists a possible move for the opponent that could take the king
of Side. We include the definition of these and other goals in the appendix.

The lesson set in this case is two board positions (illustrated in Figure 2) both of which cover
an important special case of generating legal moves-when the king is in check from a knight . In
the white-to-play position, the king on d8 is in check from the knight on c6. There are two legal
classes of moves white can make in this position, either move the king or take the knight with the
rook on h6.

The reformulated rule generated by the method from this lesson set is given below:

legalmove(State,Newstate,Side):
incheck-1(State,Side1,Side2,KnSq,KnPl,KSq,KPl), !,
(legalmove-1(State,Newstate,Side1,Side2,KnSq,KnPl,KSq,KPl)
j legalmove-2(State,Newstate,Side1,Side2,KnSq,KnPl,KSq,KPl)).

Pct in this case is incheck-1(State,Side1,Side2,KnSq,KnPl,KSq,KPl), which is true when
Side1 is in check from a knight on square KnSq2 • There are two cases; Pt 1 is legalmove-1 (...)

2We will define the complete predicate later.

6

that generates moves by the king, while Pt2 is legalmove-2 (...) that generates moves that cap
ture the knight on KnSq. We define legalmove-1 (...) and legalmove-2 (...) by additional
rules given below.

This rule says that if in check by the knight then there are two options; either move the king out
of check or capture the knight checking the king. Note the new predicates generated, incheck-1,
legalmove-1 and legalmove-2 explicitly define the functional features incheck-by-knight, move
out-of-check and remove-check-by-capture introduced earlier.

Now we have given the inputs and outputs of the method, we describe the method in detail
continuing with the legalmove example. The method has three stages: generate explanations,
identify new definitions and finally, extract new domain theory rules.

3.1 Generating Explanations

The first stage of reformulation is to apply the domain theory to analyze the training examples.
The goal of this stage is to determine how these examples satisfy the current domain theory. Here,
the rule for legalmove is used to find the set of legal moves for each example. During analysis a
cache of the computation involved in generating the moves is made. This cache forms a set of proofs
or explanations that demonstrate each legal move is indeed legal. Note that in each example, some
possible moves (such as moving the white bishop in Figure 2) turn out not to be legal moves because
the king is still in check following the move. Even though this analysis does not result in any legal
moves, it is included in the set of explanations. We include fragments of four such explanations in
Figure 3: two legal move fragments (la) and (lb), and two illegal move fragments (2a) and (2b)
(see appendix for description of the primitive predicates). In (la) we show the possiblemove proof
of the rook move from h6 that captures the knight on c6 in state 1. In (2b) we show a failed
not-incheck proof that proves the black move from d7 to b6 in state2 is illegal because the king is
still in check from the knight on e3.

3.2 Identify New Definitions

In the second stage, the set of explanations are syntactically compared and generalized. The
goal of this stage is to identify fragments of the explanations that define the intended functional
features or components of the reformulated rule (such as Pct). Here, we identify three generalized
explanations that define the functional features incheck-by-knight, move-out-of-check and remove
check-by-capture.

First, we identify the condition Pct by empirically determining a reason for the failed expla
nations. To do this we compare and generalize the successful explanations, producing a general
explanation that describes moves that do not result in check. We similarly compare and generalize
the failed explanations, this time producing a general explanation that describes illegal moves that
result in check by the knight. To identify the condition, we compare the two general explanations
and search for a syntactic difference that would account for the failure. The explanation fragment
that defines the check by the knight is identified and proposed as the condition.

We use the induction-over-explanations (IOE) method (described in Flann & Dietterich, 1988,
1986; Dietterich & Flann, 1988) to generalize among the explanations. IOE syntactically generalizes
a set of explanations and forms a single generalized explanation that represents the maximally
specific common generalization of the input explanations. The generalized proof is formed by a
combination of a simple constants to variable bias that is employed over the syntactic structure of
the explanations and the pruning of dissimilar explanation sub-trees among the instances. IOE is
used in preference to the more familiar EBG generalization method because EBG is too aggressive

7

L

[

possiblemove(s1 ,do(op(h6,c6,wr1 ,bn1),s1),w)

pside(w,b)

egaldirection(w ,rook, w,8)

onnected(h6,g6,w)

ovedirection(s1 ,8,w,g6,c6,bn1 ,knight,b)

quare(s1 ,g6,em)

ected(g6,f6,w)

o ed ection(s1 ,7,w,f6,c6,bn1 ,knight,b)
I
I

quare(s 1,c6,bn 1)

bn1,b)

ype(,knight)

(la) Successful move
white-to-play

not(incheck(do(opth6,h7,wr1 ,em),s1),w)

pside(w,b)

quare(do(op(h6,h7,wr1 ,em),s1),d8,wk1)

ide(bn1 ,b) "
ype(bn 1 ,knight) quare(s1 ,d8,wk1)

quare(do(op(h6,h7 ,wr1 ,em),s1),c6,bn1)

egaldirection(b,knight,enn, 1) f
onnected(c6,d8,enn)) quare(s 1 ,c5,bn1 l

ovedirection(do(op(...),s1), 1,enn,d8,d8,wk1 ,king,w)

~

quare(do(op(...).s1),d8 ,wk1)

de(wk1,w)

ype(wk1 ,king)

(2a) Failed move
white-to-play

possiblemove(s2,do(op(g3,e3,bn2 , wn 1) ,s2),b)

pside(b,w)

egaldirection(b,knight,nww, 1)

onnected(g2,e3 ,nww)

ovedirection(s2 , 1,nww,e3,e3,wn1 ,knight,w) tquare(s2,e3,wn1)

de(wn1,w)

ype(wn1 ,knight)

(lb) Successful move
black-to-play

not(incheck(do(op(d7,b6,bn1 ,em),s2),b)

pside(b,w)

quare(do(op(d7 ,b6,bn1 ,em),s1),c4 ,bk1)

ype(wn1 ,knight)
Luare(s1 ,c4,bk1)

quare(do(op(d? ,b6,bn 1,em),s 1),e3, wn 1)

egaldirection(w,knight,J.,w, 1)

onnected(e3,c4,nww) l~uare(s 1 ,eJ,wn 1)

ovedirection(do(op(...),s 1), 1 ,nww ,c4,c4,bk1 ,king,b)

~

quare(do(op(...),s1),c4,bk1)

de(bk1 ,b)

ype(bk1 ,king)

(2b) Failed move
black-to-play

Figure 3: Explanations for possiblemove and incheck

8

L

in its generalization policy and ignores important commonalities among the examples. IOE, because
it uses a more conservative generalization policy, is able to retain such commonalities and thereby
extract more information from the training examples (Flann & Dietterich, 1988).

We illustrate this in Figure 4(2c), where we give the result of generalizing the incheck fragment
of the failed explanations. Note that most of the constants existing in the input explanations (in
Figure 3(2a) and (2b)) have been replaced by variables. However, the explanation is not completely
variablized and retains the constraint that the checking piece is a knight (in type(KnPl ,knight)).
In other words, this generalized explanation defines the feature incheck-by-knight. We retained the
important knight constraint because it was common among all the instances. An EEG general
ization policy would have simply variablized everything and thus lost this constraint.

The explanation in Figure 4(2c) is formed by recursively descending the explanation trees
starting at the root, merging the explanations to form a single general explanation. This merging
step takes a list of ground predicates [p(xl1, x21, ... ,xn1), ... ,p(xlm, x2m, ... , xnm)J and returns
a generalized predicate p(xl,x2, ... ,xn), where xj equals xji if xj1 = xh = ... = xjm and
equals a variable if any two xji =p xjk. For example, when generalizing Figure 3(2a) and (2b),
the list of predicates [type(bn1 ,knight), type(wn1 ,knight) ...] will be merged resulting in
type(KnPl,knight) being included in the general explanation (upper case letters are variables).

Note that the explanation includes many repeated variables. For example, the variable KPl
that represents the king, occurs both in the square(S,KSq,KPl) predicate and type(KPl,king)
predicate. These repeated variables are important because they encode the shared variable con
straints present in the domain theory rules. Without them, the generalized explanation would no
longer define a check, because for example, the piece potentially captured would no longer have
to be a king (i.e., the KPl in type(KPl,king) and square(S,KSq,KPl) would be different). We
preserve the shared variable constraints from the domain theory by what we call the "no coinci
dences" bias: if ever the same set of constants is merged we assign them the same variable. When
generalizing [type (bk1, king) , type (wk1, king) ... J we merge {bk1, wk1} and when generaliz
ing [square(state1,c4,bk1), square(state2,d8,wk1) ... J wealsomerge{bk1,wk1}. Because
these sets are the same, we assign the same variable KPl.

We have described how the condition part of the new reformulation is identified. We now
turn our attention to the identification of the other functional features and components of the
reformulation.

The goal of this stage is to identify distinct cases that make up the possible solutions to the
rule being reformulated. For the legal move rule we wish to identify the two cases: either move
the king out of check or take the checking piece. This is accomplished by first applying clustering
techniques (such as those described by Fisher, 1987) over the successful explanations. The two sets
identified in our example are the set of all moves by the king and the set of all moves that take the
knight. We then apply IOE to form two generalized explanations.

We illustrate the generalized explanation for the knight capture moves in Figure 4(1c). For this
explanation to correctly describe the remove-check-by-capture feature, the piece captured must be
the same piece that is checking the king. This is an important semantic constraint, for if it were
not the case, the move would be illegal. We correctly find this constraint because it is explicit as a
repreated pattern in the syntax of the successful explanations. We identify this pattern though the
use of the "no coincidences" bias introduced earlier. The merging of the destination squares of the
capturing moves (found in the movedirection predicate in Figures 3(1a) and (lb)) produces the
same set of constants { c6, e3}, as the merging of the originating square of the check threat (found
in the square predicate in Figures 3(2a) and (2b)). Since both sets are equal, we assign them the
same variable KnSq.

9

possiblemove(S,do(op(...),S),Side1)

pside(Side1 ,Side2)

egaldirection(Side1 ,MTy,MDr,Mc)

onnected(FSq,ISq,MDr)

ovedi rection(S,Mc,MDr,ISq,KnSq,KnPl,knight,Side2)

(le) remove-check-by-capture
generalized explanation

not(incheck(do(op(...),s2),Side1)

pside(Side1 ,Side2)

ype(KPl,king)

quare(do(op(...),S),KSq,KPI)

ide(KnPl,Side2) '
ype(KnPl,knight) quare(S,KSq,KPI)

square(do(op(...),S),KnSq,KnPI)

egaldirection(Side2,kniJht,KnDr, 1)

onnected(KnSq,KSq,Kna~uare(S,KnSq,KnPI)

ovedirection(do(op(...),S), 1,KnDr,KSq,KSq,KPl,king,Side1) tquare(do(op(...),S),KSq,KPI)

de(KPl,Side1)

ype(KPl,king)

(2c) in-check-by-knight
generalized explanation

Figure 4: Generalized Explanations for in-check-by-knight and remove-check-by-capture

This stage has identified three generalized explanations that describe the three functional fea
tures incheck-by-knight, remove-check-by-capture and move-out-of-check. The final stage describes
how the reformulated domain theory rules are extracted out of these explanations.

3.3 Extracting New Domain Theory Rules

Extracting the new domain theory rules involves three parts: First, we find variables that are
shared among different parts of the explanations and "promote" these variables to the renamed
heads of the rules used in the explanations. Second, we walk down the explanations extracting new
domain theory rules for each head in the explanations. Finally, we simplify the code by removing
redundant predicates and reorder tests for increased efficiency (using techniques introduced by
Smith, Genesereth & Ginsberg, 1986).

We generate the condition rule (incheck-by-knight) from the explanation fragment in Fig
ure 4(2c) by re-naming the head incheck-1 and promoting the shared variables Side2, KnSq,
KnPl, KSq, KPl as new arguments. The final rule is generated by collecting the leaves (i.e., the
primitive predicates) and simplifying. The rule defines incheck-1 as true in state S when there
exists a king of side Side1 on square KSq, a knight of side Side2 on square KnSq and KnSq and KSq
are connected in a legal direction for the knight:

incheck-1(S,Side1,Side2,KnSq,KnPl,KSq,KPl):-
opside(Side1,Side2),
type(KPl,king), side(KP1,Side1), square(S,KSq,KPl),
type(KnPl,knight), side(KnPl,Side2), square(S,KnSq,KnPl),
legaldirection(Side2,knight,KnDr,1), connected(KnSq,KSq,KnDr).

10

L

r

'

The rule defining remove-check-by-capture, (legalmove-2) is similarly generated from the ex
planation in Figure 4(1c). The move-2 rule (below) generates possible moves of player MPl of side
Side1 that can move to square KnSq. In this case, because the destination square KnSq will always
be bound to a constant at run time, we simplify the recursive movedirection rule by removing the
generator of bindings for KnSq (square, side, type). The rules are given below:

legalmove-2(S,do(op(...),S),Side1,Side2,KnSq,KnPl,KSq,KPl):-
move-2(S,do(op(...),S),Side1,Side2,KnSq,KPl),
not(incheck-3(do(op(...),S),Side1,Side2,KnPl,KSq,KPl)).

move-2(S,do(op(FSq,KnSq,Pl,KnPl),State),Side1,Side2,KnSq,KPl):
side(MPl,Side1), MPl\==KPl,
type(MPl,MTy), square(S,FSq,MPl),
legaldirection(Side1,MTy,MDr,Mc),
connected(FSq,ISq,MDr),
movedirection2(S,Mc,MDr,ISq,KnSq).

This concludes our description of the reformulation method. Next we briefly describe how the
reformulated chess theory can benefit future learning.

3.4 Learning Knight-fork

We demonstrate how the functional features just learned, incheck-by-knight, move-out-out-check
and remove-check-by-capture aid in the learning of an efficient definition of the feature knight-fork.
Recall that the solution to the initial problem in Figure 1 involved a knight-fork: following the
check threat and king move, the knight (moved to d6) simultaneously checked the king on f7 and
threatened the queen on b7. The king was forced to move out of check allowing the king to capture
the queen.

To learn the functional feature knight-fork, two board positions are presented, one where the
white side is in a knight-fork, the other where the black side is in a knight-fork.

The reformulation process will proceed as before by generating explanations in terms of the
current domain theory. In this case, because of the previous reformulation, the explanations will
include the satisfied incheck-by-knight feature, the satisfied move-out-of-check feature (describing
the king moves) and the unsatisfied remove-check-by-capture feature. The final rule generated is
given below:

goodgoal-1(S,exchange(empty,queen),Side1):-
incheck-1(S,Side1,Side2,KnSq,KnPl,KSq,KPl), ! ,
(legalmove-3(S,Newstate1,Side1,Side2,KnSq,KnPl,KSq,KPl),
not(legalmove-2(S,Newstate2,Side2,Side1,KnSq,KnPl,KSq,KPl))).

The final rule recognizes the knight-fork feature as a combination of existing and new features:
A knight-fork exists in S with Side1 to play if incheck-1 is true in the state (i.e., incheck-by
knight) and there exists a move that can take the queen, legalmove-3, and there must not exist a
legalmove-2 (i.e., remove-check-by-capture) for the opponent.

This brief sketch of the reformulating method has demonstrated how the initial domain theory
can be incrementally reformulated to one written in terms of relevant functional features.

11

•

r

•

inferences inferences inferences
x1000 x1000 x1000

13 Inferences needed to generate 13 Inferences needed to □ 13 Inferences needed to recognize
all legal moves when in recognize POSITIVE 1-EGATIVE instances 12 check from a knight 12 instances of 12 of KNIGHT-FORK □ KNIGHT -FORK

11
□

11
□

11
DT original DT original □ DT original

10 • DT reformulated 10 • DT reformulated 10 • DT reformulated

90
□

90 90

80 80 80

70 70 □ 70 □
60 60 60

50 50
□

50

40
□

40 40 □
30 30 □ 30 □
20

□
20 20

10 □ • 10 10

• • • • • • • •
Base +knight +bishop +rook +queen Base +knight +bishop +rook +queen +knight +bishop +rook +queen

Complexity of board position

(a) Generate all
legal moves

Complexity of board position

(b) Recognize Positive
Knight Forks

Complexity of board position

(c) Recognize Negative
Knight Forks

Figure 5: Results for evaluating performance efficiency

4 Empirical Study of Reformulation

The principle goal of reformulating the domain of a problem solver is to improve its performance.
In this section we present a brief empirical study that compares the performance of a simple chess
problem solver using either the original or reformulated domain theory.

Currently, because the reformulator is not integrated within a practical problem solver, we
measure performance as efficiency-the number of Prolog inference s_teps (Lis) required for the
domain theory rules to generate the answer. In particular, we compare the number of logical
inferences need by the original legal-move rules and the reformulated rules to generate all the legal
moves in a given position. We also compare the classification costs of using a definition of knight
fork expressed in the original domain theory (given in Flann & Dietterich, 1988) with a definition
expressed in the reformulated theory.

The results are shown in Figure 5. The vertical axis of the graphs is a count of the logical
inferences needed for the performance task. In graph (a) this task is to generate all the legal
moves for a given position. In graphs (b) and (c) the task is to classify board positions using the
concept knight-fork, with graph (b) identifying positive instances and graph (c) identifying negative
instances.

The horizontal axis represents a board position of increasing complexity. In graph (a) the Base
position includes only a king and knight of sidet, and a knight of side2 (with sidet side to play).
The knight of side2 is checking the king and can be captured by the knight of sidet. There are
eight legal moves in this position: seven by the king moving out of check and one by the knight
taking the threatening knight. The +knight position is the Base position with two added knights
(one of each side) placed on the board in such a way as not to affect the legal moves available. The
+bishop is the +knight position with two bishops added similarly. The +rook and +queen represent
further increases in complexity without affecting the legal moves available.

The graphs (b) and (c) are similarly set up for the knight-fork concept. In graph (b), the Base

12

L

[

•

position includes only a king and queen of side1, and a knight of side2 (with side1 side to play).
The knight forks the king and the queen. In graph (b), the additional pieces are added such that
they do not affect the concept definition. In graph (c), each position is like that for (b) but one
of the pieces has been moved such that it can take the threatening knight. Hence, this graph
demonstrates the performance of the definitions with negative instances. The results demonstrate
that the reformulated theory (DTnew) performs much better than the original theory (DT otd),
DTnew requires significantly less resources to generate moves and classify knight fork positions.
It is also interesting to note the insensitivity of DTnew to irrelevant complexities in board. The
search for a knight fork concept is much more constrained with DTnew than with DTotd· If fact ,
recognizing knight-fork in the +queen position is approximately 60 times faster with DTnew (2177
Lis) compared with DTozd (130430 Lis).

We also anticipate a great benefit arising from this reformulation when the system is embedded
within a chess problem solver. We expect the functional features will considerably constrain the
game search (as described in the introduction) and lead to a significant improvement in overall
performance.

5 Analysis

In this section we relate the approach to previous reformulation work that has stressed the impor
tance of relevance and irrelevance in the domain theory and offer an explanation as to why the
method works.

Amarel (1982) and more recently Subramanian and Genesereth (1987) view reformulation as
identifying and exploiting irrelevances within a domain theory. If it can be shown that fact f is
irrelevant to proving fact g in domain theory M then f can be removed. Subramanian gives an
example of reformulating a family tree domain theory under the condition where the only queries
will concern whether two people are in the same family. The original domain theory predicates
describing father and ancestor are determined to be irrelevant and the domain theory is reformuated
to include only foundingfather relations.

In the chess example we see the same use of irrelevance: when generating legal moves under
the condition of a check by a knight, computation that generates moves other than moving the
king or capturing the knight is irrelevant. The reformulated domain theory tests for the condition,
and if true sanctions only moves that take the checking knight or move the king. In other words,
the reformulated theory explicitly represents only what is relevant to generating moves when in
check by a knight (i.e., it ignores what is irrelevant). The empirical results clearly demonstrate
this. The reformulated theory is almost completely insensitive to the additional pieces since they
are irrelevant to the goal.

In general then, we can view reformulation as a two stage process: First, given a domain theory
DT, we identify parts of a domain theory DT1 that are irrelevant when solving a goal G under
some condition C. Second, we reformulate DT such that when it is used by a problem solver to
solve Gunder the condition Cit will use only what is relevant (referred to as DTR), that is, ignore
DT1.

Under this view, the important problem of reformulation becomes identifying DT1 and DTR
in the domain theory. In Subramanian's formalism presented in (1987), DT1 corresponds to fact
f, G to fact g and M to DT. Here, once f is found, the reformulated theory simply becomes
M - f. This formalism captures only a simple case of irrelevance since what is irrelevant, fact J,
can be explicitly represented in the DT. In this case, the DT requires little reformulation since the
distinction between what is irrelevant(!) and relevant(,!) is already explicit in the syntax.

13

A more interesting case is when DTR and DTr are not explicit in the DT. For instance, in our
chess example DTR is "the set of all king moves or the set of all moves that capture the checking
knight." Although this can be described in the domain theory vocabulary, it is not an explicit
predicate in DT.

The key idea in the method introduced in this paper is to represent DTR as sets of generalized
explanations. This reduces the reformulation problem to: 1) identifying generalized explanations
that express DTR and 2) compiling generalized explanations into efficient domain theory rules.

We identify DTR by employing the following assumption:

What is relevant to solving G will be present in successful proofs of G.

Hence, by clustering and generalizing successful proofs of G we identify commonalities among the
solutions to G that express what is relevant to G. In the chess example, syntactic commonalities
among the solutions traces identified the two general cases of legal moves given above.

This approach offers two advantages: The first advantage is that we avoid computationally
intensive and unfocussed proofs. Examples both avoid the computational cost, because the proofs
are fully instantiated; and provide focus, because they are supplied by a teacher. The second
advantage is that we can identify DTR when it is not explicit in the original domain theory. In
fact, the language used to describe DTR-generalized explantions-is very rich: we can represent
any legal partially instantiated proof tree of some goal G.

In summary, the method works because it exploits the fact that what is relevant in the domain
theory is expressed as syntactic commonalities and differences among problem solving traces. We
have shown how this method can improve the efficiency of parts of a chess domain theory and
presented a framework in which the performance of a problem solver could be significantly improved.

Acknowledgments

Discussions with my advisor, Tom Dietterich, helped both in the development of the IOE method
and in understanding the reason for its success. Discussions with Devika Subramanian helped
understand the relationship between irrelevance and the method presented. Jim Holloway and
Caroline Koff provided useful comments on earlier drafts of this paper.

This research was partially funded by the National Science Foundation under grant numbers
IST-8519926 and DMC-8514949.

6 Bibliography

Amarel S., (1982) "Expert Behavior and Problem Representations," in Artificial and Human Intelligence, A. Eli thorn
and R. Banerji (editors).

Dietterich T . G., & Flann N., S., (1988) "An Inductive Approach to Solving the Imperfect Theory Problem," in
Proceedings of the AAA! Symposium on Explanation-Based Learning, 1988.

Fisher D. H., (1987) "Knowledge Acquisition Via Incremental Conceptual Clustering," in Machine Learning, Vol. 2,
No. 2, 1097.

Flann, N. S. & Dietterich T. G. (1986) "Selecting Appropriate Representations for Learning from Examples ;" in
Proceedings of the Fifth National Conference on Artificial Intelligence, 1986.

Flann N., S., & Dietterich T., G., (1988) "Induction Over Explanations: A Method that Exploits Knowledge to Learn
From Examples," submitted to Machine Learning. (also OSU tech. report No. 88-30-3)

Genesereth M. R., & Nilsson H. J. (1987) The Logical Foundations of Artificial Intelligence, Morgan Kaufmann Pub .
Los Altos. 1987.

14

Hasse K., W., (1986) "Discovery Systems," AI Memo 898, M.I.T. 1986.

Korf R., E ., (1980) "Toward a Model of Representation Changes" in Artificial Intelligence, No. 14, pp. 41-78 . 1980 .

Lenat D. B. & Brown J. S. (1984). "Why AM and Eurisko Appear to Work," in Artificial Intelligence, Vol. 23, No .
3, pp 269-94, August 1984.

Minton S., (1985) "Selectively Generalizing Plans for Problem Solving." In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, pp. 596-599, 1985.

Mitchell T ., Keller R., & Kedar-Cabelli, S. (1986) "Explanation-Based Generalization : A Unifying View," in Machine
Learning, Vol. 1, No. 1, pp. 47-80, 1986.

Smith D . E., Genesereth M. R., & Ginsberg M. L., (1986) "Controling Recursive Inference," in Artificial Intelligence ,
Vol. 30, No. 3 pp. 343-390, 1987.

Subramanian D. , & Genesereth M., R. , (1987) "The Relevance of Irrelevance," in Proceedings of the Tenth Interna
tional Joint Conference on Artificial Intelligence, pp. 416-422, 1987.

Appendix

This section gives relevant parts of the chess domain theory that define the legal move predicate. First we cover the
way boards are described.

Each board state can be denoted by a constant such as state1. The squares on the board are also denoted by
constants , for example, a8, b2, and so on. Finally, the pieces are each given names such as llr1 for the white rook and
bn1 for the black knight. Empty squares are represented by an imaginary piece called em (essentially a null value) .
For example, the description of the board position illustrated in Figure 2(a) includes

square(state1,h6,llr1). square(state1,c6,bn1). square(state1,g6,em).

With this representation, a board configuration can be represented by 64 assertions.
In addition, the structure of the chess board must be represented. A basic representation that captures the

topology of the squares is the following :

connected(a7,a8,n). connected(a7,b7,e). connected(a7,b8,ne).

The constants n, e, ne, and so on represent the eight directions of the compass points . In all, 372 connected assertions
are needed .

We identify certain pieces (e.g., lln1, wr1, and so on) as all being white pieces. Similarly , we define groups of
pieces (e.g., =1, bn2, and so on) as being of the same type, knight:

side(llni,ll). type(lln1,knight). side(bq1,b). type(bq1,queen).

Using these definitions, it is possible to define legal moves for each piece. We begin by stating, for each piece, the
direction and maximum number of moves it can make. (Knight is treated specially see Flann & Dietterich, (1988)).
As an example, the rules for rooks are:

legaldirection(Side,rook,n,8). legaldirection(Side,rook,e,8).

Several rules are required in order to define legal moves. In the body of the paper we gave the definition for legalmove
here we define possiblemove and incheck

possiblemove(State,do(op(From,To,Playerm,Playert),State),Side1):
opside(Side1,Side2),
side(Playerm,Side1), type(Playerm,Type), square(State,From,Playerm),
legaldirection(Side1,Type,Direct,Count), connected(From,Next,Direct),
movedirection(State,Count,Direct,Next,To,Playert,Type2,Side2).

A move is described as an operator function op in the situation calculus (using techniques recommended in
Genesereth & Nilsson, 1987) . The function op takes four arguments: the source square , the destination square, the
name of the piece moved, and the name of the piece taken (em if no piece is taken). This rule checks to see that
the indicated player, Playerm, is located on the source square; that Playert is located on the destination square ;
and that the indicated direction and number of squares is legal for the kind of piece being moved. In particular ,
the movedirection predicate recursively decrements the Count as it traverses connected squares in the indicated
direction. It checks that all intervening squares are empty.

In check is defined similarly, as a move that takes the king by constraing the destination square to be the king .

15

l
I

	Flann_Nicholas_S_88_30_04_A
	Flann_Nicholas_S_88_30_04_B

