
I
I

~ -·t t-
. .t

., \

~
. . ~

'
. " .. '

. \

. ' .

I . l .'

78-20-2

Context-Free Grammars with

Graph Control

CURTIS R. COOK

Department of Computer Science
Oregon State University

CONTEXT-FREE GRAMMARS WITH GRAPH CONTROL

Curtis R. Cook
Oregon State University

Abstract

Context-free grammars with graph control provide a general framework

for the various types of context-free grammars with regulated rewriting.

The vertices or edges of the directed graph are labeled with the produc

tions of the grammar. The only strings in the language generated by the

grammar are those whose derivations correspond to labeled paths in the

graph. Inclusion relations among the various classes of context-free

grammars with regulated rewriting such as programmed grammars (without

failure fields), matrix grammars, periodically time-variant grammars,

state grammars, and grammars with regular control are easily obtained

and the graph provides insight into the nature of the restriction.

Adding negative context to context-free grammars with graph control, we

obtain a class of grammars equivalent to the context-free programmed

grammars.

1. INTRODUCTION

Various types of context-free grammars with regulated rewrit

ing have been developed with the goal of generating the family or

a large subfamily of the context-sensitive languages. Some of

these include programmed grammars [SJ, matrix grammar [l], peri

odically time-varying grammars [7], state grammars [2] and grammars

with control sets [8]. Typically the regulated rewriting takes the

form of limiting the set of production candidates at each step in

a derivation. All of these context-free grammars with regulated

rewriting given above have been shown to be equivalent.

Rozenberg and Salomaa [6] introduced graph control over the

productions as a general framework for the various types of

context-free grammars with regulated rewriting. The nodes of the

graph are labeled with sets of productions. The only strings in

the language generated by the grammar are those whose derivations

correspond to labeled paths in the graph.

In Section 2 of this paper we show that labeling the arcs

instead of the nodes, specifying a starting node, specifying a set

of end nodes for each derivation path in the graph, labeling with

a single production instead of a set of productions, or any com

bination of these modifications does not increase the generating

capacity of a context-free grammar with graph control.

In Section 3 we show that the graph control makes the inclu

sion relations between the various types of regulated rewriting

obvious. Also the structure of the graph provides insight into

the nature of the restrictions and relations between the various

restrictions.

We extend grammars with graph control to include negative

context in Section 4. That is, the nodes are labeled with sets of

symbols and the arcs with productions. A certain production is

applicable to a string at a node if no symbol in the node label

appears in the string and the production appears as a label on an

arc emanating from the node. We show that the negative context

L

grammars with graph control are equivalent to programmed grammars

with both success and failure fields.

2. DEFINITIONS AND EQUIVALENCE OF MODIFICATIONS

It is assumed that the reader is familiar with the standard

notation and results of formal language theory [8] and basic graph

theory [3].

A context-free grammar CCFG) is an ordered quadruple

G = CN,T,P,S) where

N is a finite nonempty set of nonterminal symbols or

variables,

Tis a finite nonempty set of terminal symbols,

Sis in N and is called the starting symbol, and

Pis a finite set of productions or rewriting rules of the

form A + a, where A is N and a. is a string over NU T.

We say that a directly generates B, denoted a.-> B, if a.= wAy,
* B = wxy and the rewriting rule A+ xis in P. Let > be the

reflexiv.e, transitive closure of=>. The language generated by
* the CFG G = CN,T,P,S) is the set LCG) = {w: S ~*wand win T }.

A context-free grammar with graph control is an ordered pair

CG,H) where

G = (N,T,P,S) is a context-free grammar, and

H = is a directed graph whose nodes are labeled from Lab CP),

the set of labels of productions in P.

Note: that there may be several copies of the same production

with several labels.

We say that Ca, i) directly generates CB, j), denoted

Ca., i) ->CB, j), if and only if both of the following conditions

are satisfied:

1. For some w,x,y and A, a.= wAy, B = wxy and the production

A+ x has label i;

- 2 - r

2. There is an arc from node i to node j in H.

Let->* denote the reflexive, transitive closure of->.

The language generated by (G,H), denoted L(G,H), is the set
* {w (S,j) =>* (w,i) for some i and j and win T }.

An example of a context-free grammar with graph control is

given below. The language generated is not context-free.

Example 1.

G = ({S,A,B,C}, {1,2,3}, p • S)

where P (D S-+ ABC

@ A -+ lA

a> B -+ 2B

@ C -+ 3C

® A -+ 1

(§) B -+ 2

(j) C -+ 3

H =

L(G,H) = {ln 2n 3n : n 2:. 1}

Path (y@ (i) Q G) G} @@ @{j) corresponds to derivation

S > ABC > lABC -> 1A2BC -> 1A2B3C > 11A2B3C > 11A22B3C ->

11A22B33C > 11122B33C > 11122233C > 111222333.

Note that a context-free grammar (without graph control) is a

context-free grammar with graph control where the graph is a

complete digraph with a node for each production.

Rozenberg and Salomaa [6] labeled the nodes of the graph with

sets of productions which they called tables. The two definitions

- 3 - ·-

of graph control are equivalent since a node n labeled with

p 1, ... ,pm can be split into m nodes labeled p 1, ... ,pm respectively,

and them nodes have the same incoming and outgoing arcs as n.

Lemma 1. For any context-free grammar with graph control

whose nodes are labeled with sets of production there is an equiv

alent context-free grammar with graph control whose nodes are

labeled with a single production.

In the remainder of this section we will show that several

modifications of grammars with graph control do not increase the

generating capacity. These modifications will greatly simplify

the inclusion relations of the next section.

A context-free grammar with graph control and final nodes is

an ordered triple (G,H,F) where

(G,H) is a context-free grammar with graph control and Fis

a subset of the nodes of H.

* L(G,H,F) ={win T : (S,j) ->* (w,k) for node j in Hand kin F}

Lemma 2. For every context-free grammar with graph control

and final nodes there is an equivalent context-free grammar with

graph control.

Proof:

Let (G,H,F) be a context-free grammar with graph control and

final nodes. We will construct an equivalent grammar with graph

control. Modify G by replacing each terminal symbol in the right

side of each production in P with a special symbol and add pro

ductions that rewrite these special symbols as the terminal it

replaced. Now modify the graph H by adding a complete digraph

with nodes labeled with the added productions and for each arc of

H leading to final node in F, add arcs to each of the nodes in the

complete digraph.

Lemma 3. For every context-free grammar with graph control

there is an equivalent context-free grammar with graph control and

final nodes.

- 4 -

Proof:

Let (G,H) be a context-free grammar with graph control. The

final nodes of Hare those nodes with an incoming arc corresponding

to a terminal production, i.e. the right side is a terminal string .

A context-free grammar with graph control and initial node is

an ordered triple (G,H,i 0) where

(G,H) is a context-free grammar with graph control and i 0 is

the label of a node in H.

* L(G,H,i 0) ={win T (S,i 0) ->* (w,k) for some node kin H}.

By augmenting a context-free grammar with a new start symbol

S' and the production S' + S and assigning a unique label to this

production, we can convert a context-free grammar with graph

control into an equivalent one with initial node. By the same

process we can convert a context-free grammar with graph control

and initial node into an equivalent context-free grammar with

graph control.

Lemma 4. Lis generated by a context-free grammar with

graph control if an only if Lis generated by a context-free

grammar with graph control and initial node.

Next consider labeling the edges instead of the nodes of the

control graph. Then a string is generated by the context-free

grammar with graph control if it is generated by the context-free

grammar and the labels of productions in the derivation correspond

to a path in the graph. Thus (a, i) => (B, j) if and only if

a= xAy, B = xwy and there is an edge from node i to node j labeled

A+ w. Let=>* be the reflexive transitive closure of >.

It is straightforward to convert a context-free grammar with

graph control and node labeling to one with edge labeling. For

each node place that node's label on all arcs directed away from

the node. Converting an edge labeled context-free grammar with

graph control is not the reverse of the preceding construction.

- 5 -

l

For example:

H = S + aS S + a H' =

S + bS S + b

L(G,H) = {a,b,aa,bb} L(G,H') = {a,b,aa,ab,ba,bb}

Given the edge labeled graph H, we want to form a node labeled

graph H' from H such that there is a 1-1 correspondence between

edge labeled paths in Hand node labeled paths in H'. To do this

we will form H', the line digraph of H. Graph H' will have a node

for each edge in H with the same label. There is an arc from

e = (i,j) toe' = (m,n) in H' whenever j = m; that is, there is

an arc from e toe' in H' if the terminal node of e = initial node

of e'. Because a path contains one more node than edge, we also

have to add a node n0 and an arc from each node to n0 .

Our example then becomes

Lemma 5. Lis generated by a context-free grammar with

graph control if and only if Lis generated by a context-free

grammar with graph control and edge labeling.

It should also be clear that combining several of the variants

such as initial node and edge labeling does not increase the

generative capacity of context-free grammars with graph control.

In the following sections we will use the most convenient variant

of context-free grammars with graph control.

- 6 -

l

3. INCLUSION RELATIONS

Graph control is a general framework for grammars with regu

lated rewriting. Programmed grammars [SJ, matrix grammar [l],

periodically time-varying grammars [7], grammars with regular

control [8] and state grammers [2] are examples of grammars with

restrictions on the use of productions and are all equivalent with

respect to generative power [8, 4]. Rozenberg and Salomaa [6]

showed the equivalence of programmed grammars and grammars with

graph control.

The purpose of this section is to show that all of the grammars

given above are special cases of grammars with graph control and

hence the inclusion relations are obvious. We will also see that

the structure of the control graph gives insight into the nature

of the restriction and the relation between the various restrictions.

A context-free programmed grammar is an ordered triple (G,g,f},

where G = (N,T,P,S) is a context-free grammar and g and fare

mappings of Lab(P) into subsets of Lab(P). Mappings g and fare

called the success and failure go-to fields respectively.

We say that (a, h1) > (S, h2) if and only if production

A+ w is labeled h1 and either (1) a= xAy, S = xwy and h2 in g(h 1)

or (2) A does not occur in a, S = a and h2 in f(h 1). Let=>*

denote the reflexive transitive closure of->.

A context-free programmed grammar with empty failure fields

is the special case of a programmed grammar (G,g,f) where f is the

empty mapping. Context-free programmed grammars with empty failure

fields turn out to be identical to context-free grammars with graph

control where the nodes of the control graph are labeled with single

productions. Rozenberg and Salomaa [6] showed the equivalence

between context-free programmed grammars and context-free grammars

with graph controlled tables.

Theorem 1. A language Lis generated by a context-free pro

grammed grammar with empty failure fields if and only if Lis

generated by a context-free grammar with graph control.

- 7 -

I

A context-free matrix grammar is an ordered pair (G,M) where G

is a context-free grammar and Mis a finite set of finite nonempty

sequences of context-free productions. We say that a=> B if for
M

some matrix m = (A1 + w1, . . . ,An + wn) in M, Bis obtained from a

by applying the sequence of productions in m to a in order begin-
* ning with A1 + w1 and ending with. An+ wn. Let > be the

M
=>

reflexive transitive closure of M. The language generated by
* * (G,M), L(G,M) ={win T : S M> w}.

The control graph for a matrix grammar consists of a collection

of circuits, one for each matrix. There is an arc from the node

corresponding to the last production in each matrix to the nodes

corresponding to the first production in each matrix. Hence the

application of the sequence of productions in a matrix corresponds

to a path from the first to the last nodes in a circuit.

Theorem 2. If Lis generated by a context-free matrix

grammar, then we can construct a context-free grammar with graph

control that generates L.

A periodically time-varying context-free grammar is an ordered

pair (G,f) where G = (N,T,P,S) is a context-free grammar and f is

a periodic mapping of the set of natural numbers into the subsets

of P, i.e. there exists a natural number k .2:. 1 such that f(j+k) =

f(j) for all j. k is called the period. We say that

(a, i) -> CB, j) and if and only if j = i+l, a= xAy, B = xwy and
pv

and A+ w is in f(i). Let->* be the reflexive transitive closure
~

of -> Note that the mapping f specifies which productions f(i)
pv h

can be used at the it step in a derivation. The language generated

by~ periodically time-varying context-free grammar is
* L(G,f) ={win T : (S,l) >* (w,j) for some j}. pv

The control graph for a periodically time-varying context-free

grammar of period k is a circuit with k nodes labeled f(l), ... ,f(k)

and initial node f(l).

- 8 -

L

Theorem 3. If Lis generated by a periodically time-varying

context-free grammar, then we can construct a context-free grammar

with graph control that generates L.

A context-free grammar with regular control is an ordered

pair (G,C) where G = (N,T,P,S) is a context-free grammar and C is

a regular control language over Lab(P), i.e. words in Care strings

over Lab(P), the set of labels for the productions in P. A control

word over Lab(P) consists of the labels of productions applied in

a derivation in the order of their application. The language

generated~ a context-free grammar with regular control, denoted

L(G,C) is the set of words in L(G) with a control word in C.

The control graph for a context-free grammar with regular

control consists of the finite automaton that accepts the control

language.

Theorem 4. If Lis generated by a context-free grammar with

regular control, then we can construct a context-free grammar with

graph control that generates L.

A state grammar is an ordered six tuple G = (K,N,T,P,p 0 ,s)

where N,T and Sare variables, terminals and start symbol,

respectively, K is a finite set of states, p0 in K is the initial

state and Pis a finite set of state productions of the form
* (p,A) + (q,w), p,q in K, A in N and win (NUT) .

We say that (p, Cl.) -> (q, 8) if Cl. = xAy, 8 = xwy and (p ,A) + (q, w)

is a state production in P. Let >* be the reflexive transitive

closure of=>. The language generated by~ state grammar

G = (K,N,T,P,p 0 ,S) is the set
* {win T (S,p 0) >* (w,q) for some q in K}.

The nodes of the control graph correspond to the states of the

state grammar and there is an arc from node i to node j labeled

A+ w if there is a state production (i,A) + (j,w). Also node p0
is the initial node.

Theorem 5. If Lis generated by a state grammar, then we

can construct a context-free grammar with graph control that

generates L.

- 9

A state grammar with accepting states is an ordered seven

tuple G = (K,N,T,P,p 0,s,F) where (K,N,T,P,p 0,S) is a state

grammar and F, the accepting states, is a subset of K. The

language generated Er_~ state grammar with accepting states
* G = (K,N,T,P,p 0,S,F) is the set {win T (S,p 0) =>* (w,q), q in F}

It should be clear that the control graph for the state grammar

with accepting states is identical to the control graph for the

state grammar with certain nodes designated as final nodes.

Theorem 6. If Lis generated by a state grammar with

accepting states, then we can construct a context-free grammar

with graph control that generates L.

Remark. The proofs and results in this section hold whether

or not the context-free grammar is E-free and whether or not

productions are applied in the appearance checking sense [8].

Also the results of this section hold for other types of grammars

such as regular, context-sensitive, phrase structure and linear.

_ 10 -

4. NEGATIVE CONTEXT GRAMMARS

In this section we add negative context to context-free

grammars with graph control and show that the resulting grammars

are equivalent to context-free programmed grammars with both

success and failure goto fields.

Negative or forbidding context was introduced by Van der Walt

[g] and is another restriction that increases the generative

capacity of context-free grammars. By negative or forbidding

context we mean that a production cannot be applied to a string

a if any one of a set of symbols appears in a. Each production

in a negative context grammar has a negative context associated

with it .

A negative context grammar with graph control is an ordered

pair (G,H) where G= (N,T,P,S) is a context-free grammar and His

a graph whose nodes are labeled with subsets of NUT and whose

edges are labeled with productions in P.

We say that (a, i) directly generates (S, j) denoted (a, i)

;> (S, j) and if the following three conditions are satisfied:

1. For some w,x,y and A, a= xAy, S = xwy-and A+ w is in P;

2. Node i is labeled {A1, ... ,Am} and none of these symbols

appear in a;

3. There is an arc from node i to node j labeled A+ w.

Let >* be the reflexive transitive closure of->. The language n n

generated _Ql. (G,H) is the set L(G,H) =
* {win T : (S,i) ->* (w,j) for some i and j}. n

_ 11 _

Example 2.

G = ({ S,A,B,C}, {a}, P ,S)

where P: CD s + AA

CD s +a

G) A + B

G) A + a

G) B + CC

@ C+A

0
H =

L(G,H) n .2:. O}

Example 2 demonstrates that negative context grammars with

graph control can check a string for the occurrence or nonoccurrence

of symbols in a string. It also shows that the simultaneous

application of the same production rule to all occurrences of a

variable can be simulated by negative context grammars with graph

control. The circuit n2,n 6,n 7,n 5 causes each A to be rewritten as

- 12 -

a B, then each Bas two C's and finally each C as an A. The same

type of construction used in this example will be used in the proof

of Theorem 7.

Just as we did for context-free grammars with graph control

we can show that negative context grammars with graph control do

not become more powerful by specifying an initial node in the

graph or by specifying a certain set of nodes as the final nodes.

A negative context grammar with graph control and initial

node is an ordered triple (G,H,N0) where (G,H) is a negative context

grammar with graph control and N0 is a specific node in H called

the starting node. The language generated E.l_ (G,H,N0) is the set
* L(G,H,N0) ={win T : (S,N0) n>* (w,i) for some node i}.

Lemma 6. For every negative context grammar with graph

control we can construct an equivalent negative context grammar

with graph control and initial node.

A negative context grammar with graph control and final nodes

is an ordered triple (G,H,F) where (G,H) is a negative context

grammar with graph control and Fis a subset of the nodes of Hand

is called the set of final nodes. The language generated by (G,H,F)
* is the set L(G,H,F) ={win T : (S,i) n>* (w,j), j in F}.

Lemma 7. For every negative context grammar with graph

control we can construct an equivalent negative context grammar

with graph control and final nodes.

The proofs of both Lemmas are identical to the ones in

Section 2.

In the remainder of this section we will give constructive

proofs of the equivalence between negative context grammars with

graph control and context-free programmed grammars.

Theorem 7. If Lis generated by a context-free programmed

grammar, then Lis generated by a negative context grammar with

graph control.

- 13 -

Proof:

Let L be generated by (G,s,f) where G = (N,T,P,S). Let (G'H)

be a negative context grammar with graph control where G' and Hare

constructed as follows:

1.

2.

G' =
I

(N1,T,P ,S) where

N l = N U N' U N ' 1 , N 1 = {Ar A in N} and N'' ={A'' : A in N}

P' = P1 ={A+ A' : A in N}, P2 ={A'+ A' 1 :

A in N}, P3 ={A''+ w A+ win P}, P4 ={A''+ A: A EN}

For each production A+ w with success field {s1, ... ,si} and

failure field {f 1 , ... ,fj} in P, the graph H has the following

five node subgraph.

ns n3
A''+ w

< . (N'U N"-{A'Y

s.
1

N' u {A' I}

f.
J

Nodes n1 and n2 force every Bin Nin the string to be re

written first as an B' and then as an B''. If A'' is in the string,

e.g. A appeared in the original string, then the branch from n2 to

n3 will be taken; otherwise the branch from n2 to n4 will be taken.

The branch from n3 to n5 is the application of the production

(A'' + w). At node n5 all B'' symbols are rewritten as B's and on

the last such rewrite there is a branch to the first node of each

subgraph corresponding to a production label in the success field.

Note that the first node of each of these subgraphs is labeled N''.

- 14 -

At node n4, again all B11 symbols are rewritten as B's and there

is a branch to the first node of each subgraph corresponding to

a production label in the failure field.

Theorem 8: If Lis generated by a negative context grammar

with graph control, then we can construct an equivalent context

free programmed grammar.

Proof:

Let (G,H) generate L where G = (N,T,P,S) and H = (V,E). Let

(G',s,f) be a context-free programmed grammar constructed by

modifying the productions of Gin the following way. For each

node n in H labeled {A1, ... ,1\:} and productions B1 + w1, ... , Bm + wm

as labels on the edges emanating from node n to nodes n1, ... ,nm,

respectively, the programmed grammar will contain the following

rules:

Label

n

t
m

B + w
m m

Success

n
m

Failure

?)

It should be clear from the construction that (G' ,s,f)

simulates the application of a rule in (G,H) by first checking

that none of the negative context symbols appear in the string

and then applying the production if not. If one of the negative

context symbols appears, then the success field is empty and the

derivation halts.

- 15 -

l

It is important to note that for both of the previous two

theorems the same constructive proof applies whether the grammar

is E-free (e.g. does not contain any productions of the form A+ E)

or not.

- 16 -

1.

2.

REFERENCES

Abraham, S. Some questions of phrase structure grammars,

Computational Linguistics 4 (1965), 61-7.0.

Kasai, T. An hierarchy between context-free and context

sensitive languages, J. Comput. System Sci. 4 (1970), 492-508.

3. Harary, F. Graph Theory, Addison Wesley, Reading, Mass., 1969.

4. Mariya, E. Some remarks on state grammars and matrix

grammars, Inform. Contr. 23 (1973), 48-57.

5. Rosenkrantz, D. J. Programmed grammars and classes of

formal languages, J. Assoc. Comput. Mach. 16 (1969), 107-134.

6. Rozenberg, G. and A. Salomaa . Context-free grammars with

graph controlled tables, J. Comput. System Sci. 13 (1976),

90-99.

7. Salomaa, A. Periodically time - variant context-free grammars,

Inform. Contr. 17 (1970), 294 -

8.

9.

Salomaa, A. Formal Languages, Academic Press, New York, 1973 .

Van der Walt, A. P. J. Random context languages, in Information

Processing 71 (C. V. Freiman, ed.), North-Holland, Amsterdam,

1972, pp. 66-68.

- 17 -

l

	Cook_Curtis_R_78_20_02_A
	Cook_Curtis_R_78_20_02_B

