
I 
I 

~ -·t t-
. .t 

., \ 

~ 
. . ~ 

' ..... 
. " .. ' 

. \ 

. ' . 

I . l .' 

78-20-2 

Context-Free Grammars with 

Graph Control 

CURTIS R. COOK 

Department of Computer Science 
Oregon State University 



CONTEXT-FREE GRAMMARS WITH GRAPH CONTROL 

Curtis R. Cook 
Oregon State University 

Abstract 

Context-free grammars with graph control provide a general framework 

for the various types of context-free grammars with regulated rewriting. 

The vertices or edges of the directed graph are labeled with the produc

tions of the grammar. The only strings in the language generated by the 

grammar are those whose derivations correspond to labeled paths in the 

graph. Inclusion relations among the various classes of context-free 

grammars with regulated rewriting such as programmed grammars (without 

failure fields), matrix grammars, periodically time-variant grammars, 

state grammars, and grammars with regular control are easily obtained 

and the graph provides insight into the nature of the restriction. 

Adding negative context to context-free grammars with graph control, we 

obtain a class of grammars equivalent to the context-free programmed 

grammars. 



1. INTRODUCTION 

Various types of context-free grammars with regulated rewrit

ing have been developed with the goal of generating the family or 

a large subfamily of the context-sensitive languages. Some of 

these include programmed grammars [SJ, matrix grammar [l], peri

odically time-varying grammars [7], state grammars [2] and grammars 

with control sets [8]. Typically the regulated rewriting takes the 

form of limiting the set of production candidates at each step in 

a derivation. All of these context-free grammars with regulated 

rewriting given above have been shown to be equivalent. 

Rozenberg and Salomaa [6] introduced graph control over the 

productions as a general framework for the various types of 

context-free grammars with regulated rewriting. The nodes of the 

graph are labeled with sets of productions. The only strings in 

the language generated by the grammar are those whose derivations 

correspond to labeled paths in the graph. 

In Section 2 of this paper we show that labeling the arcs 

instead of the nodes, specifying a starting node, specifying a set 

of end nodes for each derivation path in the graph, labeling with 

a single production instead of a set of productions, or any com

bination of these modifications does not increase the generating 

capacity of a context-free grammar with graph control. 

In Section 3 we show that the graph control makes the inclu

sion relations between the various types of regulated rewriting 

obvious. Also the structure of the graph provides insight into 

the nature of the restrictions and relations between the various 

restrictions. 

We extend grammars with graph control to include negative 

context in Section 4. That is, the nodes are labeled with sets of 

symbols and the arcs with productions. A certain production is 

applicable to a string at a node if no symbol in the node label 

appears in the string and the production appears as a label on an 

arc emanating from the node. We show that the negative context 

L 



grammars with graph control are equivalent to programmed grammars 

with both success and failure fields. 

2. DEFINITIONS AND EQUIVALENCE OF MODIFICATIONS 

It is assumed that the reader is familiar with the standard 

notation and results of formal language theory [8] and basic graph 

theory [3]. 

A context-free grammar CCFG) is an ordered quadruple 

G = CN,T,P,S) where 

N is a finite nonempty set of nonterminal symbols or 

variables, 

Tis a finite nonempty set of terminal symbols, 

Sis in N and is called the starting symbol, and 

Pis a finite set of productions or rewriting rules of the 

form A + a, where A is N and a. is a string over NU T. 

We say that a directly generates B, denoted a.-> B, if a.= wAy, 
* B = wxy and the rewriting rule A+ xis in P. Let > be the 

reflexiv.e, transitive closure of=>. The language generated by 
* the CFG G = CN,T,P,S) is the set LCG) = {w: S ~*wand win T }. 

A context-free grammar with graph control is an ordered pair 

CG,H) where 

G = (N,T,P,S) is a context-free grammar, and 

H = is a directed graph whose nodes are labeled from Lab CP), 

the set of labels of productions in P. 

Note: that there may be several copies of the same production 

with several labels. 

We say that Ca, i) directly generates CB, j), denoted 

Ca., i) ->CB, j), if and only if both of the following conditions 

are satisfied: 

1. For some w,x,y and A, a.= wAy, B = wxy and the production 

A+ x has label i; 
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2. There is an arc from node i to node j in H. 

Let->* denote the reflexive, transitive closure of->. 

The language generated by (G,H), denoted L(G,H), is the set 
* {w (S,j) =>* (w,i) for some i and j and win T }. 

An example of a context-free grammar with graph control is 

given below. The language generated is not context-free. 

Example 1. 

G = ( {S,A,B,C}, {1,2,3}, p • S) 

where P (D S-+ ABC 

@ A -+ lA 

a> B -+ 2B 

@ C -+ 3C 

® A -+ 1 

(§) B -+ 2 

(j) C -+ 3 

H = 

L(G,H) = {ln 2n 3n : n 2:. 1} 

Path (y@ (i) Q G) G} @@ @{j) corresponds to derivation 

S > ABC > lABC -> 1A2BC -> 1A2B3C > 11A2B3C > 11A22B3C -> 

11A22B33C > 11122B33C > 11122233C > 111222333. 

Note that a context-free grammar (without graph control) is a 

context-free grammar with graph control where the graph is a 

complete digraph with a node for each production. 

Rozenberg and Salomaa [6] labeled the nodes of the graph with 

sets of productions which they called tables. The two definitions 
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of graph control are equivalent since a node n labeled with 

p 1, ... ,pm can be split into m nodes labeled p 1, ... ,pm respectively, 

and them nodes have the same incoming and outgoing arcs as n. 

Lemma 1. For any context-free grammar with graph control 

whose nodes are labeled with sets of production there is an equiv

alent context-free grammar with graph control whose nodes are 

labeled with a single production. 

In the remainder of this section we will show that several 

modifications of grammars with graph control do not increase the 

generating capacity. These modifications will greatly simplify 

the inclusion relations of the next section. 

A context-free grammar with graph control and final nodes is 

an ordered triple (G,H,F) where 

(G,H) is a context-free grammar with graph control and Fis 

a subset of the nodes of H. 

* L(G,H,F) ={win T : (S,j) ->* (w,k) for node j in Hand kin F} 

Lemma 2. For every context-free grammar with graph control 

and final nodes there is an equivalent context-free grammar with 

graph control. 

Proof: 

Let (G,H,F) be a context-free grammar with graph control and 

final nodes. We will construct an equivalent grammar with graph 

control. Modify G by replacing each terminal symbol in the right 

side of each production in P with a special symbol and add pro

ductions that rewrite these special symbols as the terminal it 

replaced. Now modify the graph H by adding a complete digraph 

with nodes labeled with the added productions and for each arc of 

H leading to final node in F, add arcs to each of the nodes in the 

complete digraph. 

Lemma 3. For every context-free grammar with graph control 

there is an equivalent context-free grammar with graph control and 

final nodes. 

- 4 -



Proof: 

Let (G,H) be a context-free grammar with graph control. The 

final nodes of Hare those nodes with an incoming arc corresponding 

to a terminal production, i.e. the right side is a terminal string . 

A context-free grammar with graph control and initial node is 

an ordered triple (G,H,i 0) where 

(G,H) is a context-free grammar with graph control and i 0 is 

the label of a node in H. 

* L(G,H,i 0) ={win T (S,i 0) ->* (w,k) for some node kin H}. 

By augmenting a context-free grammar with a new start symbol 

S' and the production S' + S and assigning a unique label to this 

production, we can convert a context-free grammar with graph 

control into an equivalent one with initial node. By the same 

process we can convert a context-free grammar with graph control 

and initial node into an equivalent context-free grammar with 

graph control. 

Lemma 4. Lis generated by a context-free grammar with 

graph control if an only if Lis generated by a context-free 

grammar with graph control and initial node. 

Next consider labeling the edges instead of the nodes of the 

control graph. Then a string is generated by the context-free 

grammar with graph control if it is generated by the context-free 

grammar and the labels of productions in the derivation correspond 

to a path in the graph. Thus (a, i) => (B, j) if and only if 

a= xAy, B = xwy and there is an edge from node i to node j labeled 

A+ w. Let=>* be the reflexive transitive closure of >. 

It is straightforward to convert a context-free grammar with 

graph control and node labeling to one with edge labeling. For 

each node place that node's label on all arcs directed away from 

the node. Converting an edge labeled context-free grammar with 

graph control is not the reverse of the preceding construction. 
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For example: 

H = S + aS S + a H' = 

S + bS S + b 

L(G,H) = {a,b,aa,bb} L(G,H') = {a,b,aa,ab,ba,bb} 

Given the edge labeled graph H, we want to form a node labeled 

graph H' from H such that there is a 1-1 correspondence between 

edge labeled paths in Hand node labeled paths in H'. To do this 

we will form H', the line digraph of H. Graph H' will have a node 

for each edge in H with the same label. There is an arc from 

e = (i,j) toe' = (m,n) in H' whenever j = m; that is, there is 

an arc from e toe' in H' if the terminal node of e = initial node 

of e'. Because a path contains one more node than edge, we also 

have to add a node n0 and an arc from each node to n0 . 

Our example then becomes 

Lemma 5. Lis generated by a context-free grammar with 

graph control if and only if Lis generated by a context-free 

grammar with graph control and edge labeling. 

It should also be clear that combining several of the variants 

such as initial node and edge labeling does not increase the 

generative capacity of context-free grammars with graph control. 

In the following sections we will use the most convenient variant 

of context-free grammars with graph control. 
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3. INCLUSION RELATIONS 

Graph control is a general framework for grammars with regu

lated rewriting. Programmed grammars [SJ, matrix grammar [l], 

periodically time-varying grammars [7], grammars with regular 

control [8] and state grammers [2] are examples of grammars with 

restrictions on the use of productions and are all equivalent with 

respect to generative power [8, 4]. Rozenberg and Salomaa [6] 

showed the equivalence of programmed grammars and grammars with 

graph control. 

The purpose of this section is to show that all of the grammars 

given above are special cases of grammars with graph control and 

hence the inclusion relations are obvious. We will also see that 

the structure of the control graph gives insight into the nature 

of the restriction and the relation between the various restrictions. 

A context-free programmed grammar is an ordered triple (G,g,f}, 

where G = (N,T,P,S) is a context-free grammar and g and fare 

mappings of Lab(P) into subsets of Lab(P). Mappings g and fare 

called the success and failure go-to fields respectively. 

We say that (a, h1) > (S, h2) if and only if production 

A+ w is labeled h1 and either (1) a= xAy, S = xwy and h2 in g(h 1) 

or (2) A does not occur in a, S = a and h2 in f(h 1). Let=>* 

denote the reflexive transitive closure of->. 

A context-free programmed grammar with empty failure fields 

is the special case of a programmed grammar (G,g,f) where f is the 

empty mapping. Context-free programmed grammars with empty failure 

fields turn out to be identical to context-free grammars with graph 

control where the nodes of the control graph are labeled with single 

productions. Rozenberg and Salomaa [6] showed the equivalence 

between context-free programmed grammars and context-free grammars 

with graph controlled tables. 

Theorem 1. A language Lis generated by a context-free pro

grammed grammar with empty failure fields if and only if Lis 

generated by a context-free grammar with graph control. 

- 7 -
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A context-free matrix grammar is an ordered pair (G,M) where G 

is a context-free grammar and Mis a finite set of finite nonempty 

sequences of context-free productions. We say that a=> B if for 
M 

some matrix m = (A1 + w1, . . . ,An + wn) in M, Bis obtained from a 

by applying the sequence of productions in m to a in order begin-
* ning with A1 + w1 and ending with. An+ wn. Let > be the 

M 
=> 

reflexive transitive closure of M. The language generated by 
* * (G,M), L(G,M) ={win T : S M> w}. 

The control graph for a matrix grammar consists of a collection 

of circuits, one for each matrix. There is an arc from the node 

corresponding to the last production in each matrix to the nodes 

corresponding to the first production in each matrix. Hence the 

application of the sequence of productions in a matrix corresponds 

to a path from the first to the last nodes in a circuit. 

Theorem 2. If Lis generated by a context-free matrix 

grammar, then we can construct a context-free grammar with graph 

control that generates L. 

A periodically time-varying context-free grammar is an ordered 

pair (G,f) where G = (N,T,P,S) is a context-free grammar and f is 

a periodic mapping of the set of natural numbers into the subsets 

of P, i.e. there exists a natural number k .2:. 1 such that f(j+k) = 

f(j) for all j. k is called the period. We say that 

(a, i) -> CB, j) and if and only if j = i+l, a= xAy, B = xwy and 
pv 

and A+ w is in f(i). Let->* be the reflexive transitive closure 
~ 

of -> Note that the mapping f specifies which productions f(i) 
pv h 

can be used at the it step in a derivation. The language generated 

by~ periodically time-varying context-free grammar is 
* L(G,f) ={win T : (S,l) >* (w,j) for some j}. pv 

The control graph for a periodically time-varying context-free 

grammar of period k is a circuit with k nodes labeled f(l), ... ,f(k) 

and initial node f(l). 

- 8 -
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Theorem 3. If Lis generated by a periodically time-varying 

context-free grammar, then we can construct a context-free grammar 

with graph control that generates L. 

A context-free grammar with regular control is an ordered 

pair (G,C) where G = (N,T,P,S) is a context-free grammar and C is 

a regular control language over Lab(P), i.e. words in Care strings 

over Lab(P), the set of labels for the productions in P. A control 

word over Lab(P) consists of the labels of productions applied in 

a derivation in the order of their application. The language 

generated~ a context-free grammar with regular control, denoted 

L(G,C) is the set of words in L(G) with a control word in C. 

The control graph for a context-free grammar with regular 

control consists of the finite automaton that accepts the control 

language. 

Theorem 4. If Lis generated by a context-free grammar with 

regular control, then we can construct a context-free grammar with 

graph control that generates L. 

A state grammar is an ordered six tuple G = (K,N,T,P,p 0 ,s) 

where N,T and Sare variables, terminals and start symbol, 

respectively, K is a finite set of states, p0 in K is the initial 

state and Pis a finite set of state productions of the form 
* (p,A) + (q,w), p,q in K, A in N and win (NUT) . 

We say that (p, Cl.) -> (q, 8) if Cl. = xAy, 8 = xwy and (p ,A) + (q, w) 

is a state production in P. Let >* be the reflexive transitive 

closure of=>. The language generated by~ state grammar 

G = (K,N,T,P,p 0 ,S) is the set 
* {win T (S,p 0) >* (w,q) for some q in K}. 

The nodes of the control graph correspond to the states of the 

state grammar and there is an arc from node i to node j labeled 

A+ w if there is a state production (i,A) + (j,w). Also node p0 
is the initial node. 

Theorem 5. If Lis generated by a state grammar, then we 

can construct a context-free grammar with graph control that 

generates L. 
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A state grammar with accepting states is an ordered seven 

tuple G = (K,N,T,P,p 0,s,F) where (K,N,T,P,p 0,S) is a state 

grammar and F, the accepting states, is a subset of K. The 

language generated Er_~ state grammar with accepting states 
* G = (K,N,T,P,p 0,S,F) is the set {win T (S,p 0) =>* (w,q), q in F} 

It should be clear that the control graph for the state grammar 

with accepting states is identical to the control graph for the 

state grammar with certain nodes designated as final nodes. 

Theorem 6. If Lis generated by a state grammar with 

accepting states, then we can construct a context-free grammar 

with graph control that generates L. 

Remark. The proofs and results in this section hold whether 

or not the context-free grammar is E-free and whether or not 

productions are applied in the appearance checking sense [8]. 

Also the results of this section hold for other types of grammars 

such as regular, context-sensitive, phrase structure and linear. 
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4. NEGATIVE CONTEXT GRAMMARS 

In this section we add negative context to context-free 

grammars with graph control and show that the resulting grammars 

are equivalent to context-free programmed grammars with both 

success and failure goto fields. 

Negative or forbidding context was introduced by Van der Walt 

[g] and is another restriction that increases the generative 

capacity of context-free grammars. By negative or forbidding 

context we mean that a production cannot be applied to a string 

a if any one of a set of symbols appears in a. Each production 

in a negative context grammar has a negative context associated 

with it . 

A negative context grammar with graph control is an ordered 

pair (G,H) where G= (N,T,P,S) is a context-free grammar and His 

a graph whose nodes are labeled with subsets of NUT and whose 

edges are labeled with productions in P. 

We say that (a, i) directly generates (S, j) denoted (a, i) 

;> (S, j) and if the following three conditions are satisfied: 

1. For some w,x,y and A, a= xAy, S = xwy-and A+ w is in P; 

2. Node i is labeled {A1, ... ,Am} and none of these symbols 

appear in a; 

3. There is an arc from node i to node j labeled A+ w. 

Let >* be the reflexive transitive closure of->. The language n n 

generated _Ql. (G,H) is the set L(G,H) = 
* {win T : (S,i) ->* (w,j) for some i and j}. n 
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Example 2. 

G = ({ S,A,B,C}, {a}, P ,S) 

where P: CD s + AA 

CD s +a 

G) A + B 

G) A + a 

G) B + CC 

@ C+A 

0 
H = 

L(G,H) n .2:. O} 

Example 2 demonstrates that negative context grammars with 

graph control can check a string for the occurrence or nonoccurrence 

of symbols in a string. It also shows that the simultaneous 

application of the same production rule to all occurrences of a 

variable can be simulated by negative context grammars with graph 

control. The circuit n2,n 6,n 7,n 5 causes each A to be rewritten as 

- 12 -



a B, then each Bas two C's and finally each C as an A. The same 

type of construction used in this example will be used in the proof 

of Theorem 7. 

Just as we did for context-free grammars with graph control 

we can show that negative context grammars with graph control do 

not become more powerful by specifying an initial node in the 

graph or by specifying a certain set of nodes as the final nodes. 

A negative context grammar with graph control and initial 

node is an ordered triple (G,H,N0) where (G,H) is a negative context 

grammar with graph control and N0 is a specific node in H called 

the starting node. The language generated E.l_ (G,H,N0) is the set 
* L(G,H,N0) ={win T : (S,N0) n>* (w,i) for some node i}. 

Lemma 6. For every negative context grammar with graph 

control we can construct an equivalent negative context grammar 

with graph control and initial node. 

A negative context grammar with graph control and final nodes 

is an ordered triple (G,H,F) where (G,H) is a negative context 

grammar with graph control and Fis a subset of the nodes of Hand 

is called the set of final nodes. The language generated by (G,H,F) 
* is the set L(G,H,F) ={win T : (S,i) n>* (w,j), j in F}. 

Lemma 7. For every negative context grammar with graph 

control we can construct an equivalent negative context grammar 

with graph control and final nodes. 

The proofs of both Lemmas are identical to the ones in 

Section 2. 

In the remainder of this section we will give constructive 

proofs of the equivalence between negative context grammars with 

graph control and context-free programmed grammars. 

Theorem 7. If Lis generated by a context-free programmed 

grammar, then Lis generated by a negative context grammar with 

graph control. 
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Proof: 

Let L be generated by (G,s,f) where G = (N,T,P,S). Let (G'H) 

be a negative context grammar with graph control where G' and Hare 

constructed as follows: 

1. 

2. 

G' = 
I 

(N1,T,P ,S) where 

N l = N U N' U N ' 1 , N 1 = {Ar A in N} and N'' ={A'' : A in N} 

P' = P1 ={A+ A' : A in N}, P2 ={A'+ A' 1 : 

A in N}, P3 ={A''+ w A+ win P}, P4 ={A''+ A: A EN} 

For each production A+ w with success field {s1, ... ,si} and 

failure field {f 1 , ... ,fj} in P, the graph H has the following 

five node subgraph. 

ns n3 
A''+ w 

< . (N'U N"-{A'Y 

s. 
1 

N' u {A' I} 

f. 
J 

Nodes n1 and n2 force every Bin Nin the string to be re

written first as an B' and then as an B''. If A'' is in the string, 

e.g. A appeared in the original string, then the branch from n2 to 

n3 will be taken; otherwise the branch from n2 to n4 will be taken. 

The branch from n3 to n5 is the application of the production 

(A'' + w). At node n5 all B'' symbols are rewritten as B's and on 

the last such rewrite there is a branch to the first node of each 

subgraph corresponding to a production label in the success field. 

Note that the first node of each of these subgraphs is labeled N''. 
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At node n4, again all B11 symbols are rewritten as B's and there 

is a branch to the first node of each subgraph corresponding to 

a production label in the failure field. 

Theorem 8: If Lis generated by a negative context grammar 

with graph control, then we can construct an equivalent context

free programmed grammar. 

Proof: 

Let (G,H) generate L where G = (N,T,P,S) and H = (V,E). Let 

(G',s,f) be a context-free programmed grammar constructed by 

modifying the productions of Gin the following way. For each 

node n in H labeled {A1, ... ,1\:} and productions B1 + w1, ... , Bm + wm 

as labels on the edges emanating from node n to nodes n1, ... ,nm, 

respectively, the programmed grammar will contain the following 

rules: 

Label 

n 

t 
m 

B + w 
m m 

Success 

n 
m 

Failure 

?) 

It should be clear from the construction that (G' ,s,f) 

simulates the application of a rule in (G,H) by first checking 

that none of the negative context symbols appear in the string 

and then applying the production if not. If one of the negative 

context symbols appears, then the success field is empty and the 

derivation halts. 
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It is important to note that for both of the previous two 

theorems the same constructive proof applies whether the grammar 

is E-free (e.g. does not contain any productions of the form A+ E) 

or not. 
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