
84-30-1

LifUUEAS~TY

5C~EflCE

SIMPLIFYING DETERMINISTIC PARSING

Alan W. Carter
Department of Computer Science
University of British Columbia

Vancouver, B.C. V6T lWS

Michael J. Freiling
Department of Computer Science

Oregon State University
Corvallis, OR 97331

CS-TR-84-30-1

SIMPLIFYING DETERMINISTIC PARSING

by

Alan W. Carter
Department of Computer Science
University of British Columbia

Vancouver, B.C. V6T lWS

Michael J. Freiling
Department of Computer Science

Oregon State University
Corvallis, OR 97331

To appear in the 10th International Conference on Computational Linguistics

July 2-6, 1984, Stanford University, Stanford, CA.

0 i '. ,. ·~ 1 -~- • 0r- c-:: f'.~?UTi,:;n SC i:NCE
ORU mi ".' •-:·;-: l':" 1··•'"!''.":. I. Y
C0("'' -' · U. ''.1. er. --r.-,_ ; I 97331

Simplifying Deterministic Parsing

Alan W. Carter 1

Department or Computer Science
University or British Columbia

Vancouver, B.C. V6T 1W5

ABSTRACT

Michael J. Frelllng 2

Department or Computer Science
Oregon State University

Corvallis, OR 07331

This paper presents a model for deterministic parsing which was designed to simplify the task or writ­
ing and understanding a deterministic grammar. While retaining structures and operations similar to those
or Marcus's PARSIFAL parser [Marcus 80J the grammar language incorporates the following changes. (1)
The use or productions operating in parallel has essentially been eliminated and instead the productions are
organized into sequences. Not only does this improve the understandability or the grammar, it is felt that
this organization corresponds more closely to the task or performing the sequence of buffer transformations
and attachments required to parse the most common constituent types. (2) A general method for interfac­
ing between the parser and a semantic representation system is introduced. This interface is independent or
the particular semantic representation used and hides all details or the semantic processing from the gram­
mar writer . (3) The interface also provides a general method for dealing with syntactic ambiguities which
arise from the attachment or optional modifiers such as prepositional phrases . This frees the grammar
writer from determining each point at which such ambiguities can occur .

1. INTRODUCTION
Marcus has effectively described the advantages or a deterministic parsing model as is embodied in his

PARSIFAL system . Unfortunately a hindrance to the usability or PARSIFAL is the complexity of its gram­
mar . The popularity or Woods' ATN parsing model [Woods 70J demonstrates that the ease with which a
grammar can be written and understood is one or the greatest factors contributing to its usability . This
paper describes DP ARSER (Deterministic PARSER) which is an implementation of an alternate determinis­
tic parsing model intended to reduce the complexity or deterministic grammars .

DP ARSER bas been implemented and a small grammar written. In developing the grammar the focus
has been on dealing with the syntactic ambiguities between the attachment of phrases and thus it can
currently handle only simple noun and verb phrases .

2. CONSTITUENT BUFFER

DP ARSER maintains a constituent buffer which is manipulated by the grammar to derive the consti­
tuent structure or the input sentence. Each node or the buffer contains a constituent consisting or a set or
feature-type, feature-value pairs, and a set of subconstituents. When parsing begins the constituent buffer
contains a single node with an associated subgrammar for parsing sentence constituents. As the subgram­
mar or the sentence node examines the buffer positions to its right, words are brought in Crom the input
sentence to fill the empty positions. When the grammar discovers a subconstituent phrase to be parsed, it
performs a PUSH operation specifying a subgrammar for parsing the constituent and the position of the
rightmost word in the constituent phrase. The PUSH operation inserts a new node into the buffer immedi­
ately preceding the constituent phrase and begins executing the specified subgrammar. This subgrammar
may or course perform its own PUSH operations and the same process will be repeated. Once the subcon­
stituent is complete control returns to the sentence node and the buffer will contain the parsed constituent
in place or those which made up the constituent phrase . The sentence node can now attach the parsed con­
stituent removing it Crom the buffer. When all the subconstituents of the sentence node have been attached

1supported in part by an 1.W. Killam Predoctoral Fellowehip
2eupported in part by the Blum-Kovler Foundation, Chicago, Ill.

I

the parsing is complete.

To familiarize the reader with the form of the constituent buffer we consider the processing of the sen­
tence Jones teaches the course. as the final NP is about to be parsed. Figure 1 shows the current state or
each buffer node giving its position, state or execution, essential syntactic features, and the phrase which it
dominates so far. Following the terminology or Marcus we refer to the nodes which have associated
subgrammars as active nodes and the one currently executing is called the current active node. All buffer
positions are given relative to the current active node whose position is labeled "*" .

The buffer in its current state contains two active nodes: the original sentence node and a new node
which was created to parse the sentence predicate (i.e. verb phrase and its complements). The next
modification or the buffer takes place when the subgrammar ror the predicate node examines its first posi­
tion causing the word the to be inserted in that position. At this point a bottom-up parsing mechanism
recognizes that this is the beginning or a noun phrase and a PUSH is performed to parse it; this leaves the
buffer in the state shown in Figure 2 .

The subgrammar for the noun phrase now ex-ecutes and attaches the words the and course. It then
examines the buffer for modifiers or the simple NP which causes the final punctuation, ".", to be inserted
into the buffer. Since the period can not be part or a noun phrase, the subgtammar ends its execution, the
PUSH is completed, and the predicate node again becomes the current active node. The resulting state of
the buffer · is shown in Figure 3; the words the and course have been replaced by the noun phrase consti­
tuent which dominates them .

Aside from PUSH and ATTACH, the following three operations are commonly used by the grammar
to manipulate the constituent buffer.

LABEL label a constituent with a syntactic feature
MOVE move a constituent from one position to another
INSERT insert a word into a specified position

Examples or these actions are presented in the following section.

The differences between the data structures maintained by PARSIFAL and DP ARSER are for the
most part conceptual. PARSIFAL 's active node's are stored in an active node stack which is separate from
the constituent buffer. To allow active nodes to parse constituent phrases which are not at the front or the

POSITION -1 active
SYNCLASS S SENT-TYPE DECL
(Jones)

POSITION • current active
SYNCLASS PRED VTYPE ONE-OBJ
(teache,)

UNSEEN WORDS: the course .

Figure 1. before pushing to parse the NP

POSITION -2 active
SYNCLASS S SENT-TYPE DECL
(Jone,}

POSITION -1 active
SYNCLASS PRED VTYPE ONE-OBJ
(teachu}

POSITION • current active
SYNCLASS NP
()

POSITION 1 not active
SYNCLASS DET WORD THE EXT DEF
(the}

UNSEEN WORDS: course .

Figure 2. parsing the noun phrase

POSITION -1 active
SYNCLASS S SENT-TYPE DECL
(Jone,}

POSITION • current active
SYNCLASS PRED VTYPE ONE-OBJ
(teoche,}

POSITION 1 not active
SYNCLASS NP NVFORM N3PS
(the cour,e}

POSITION 2 not active
SYNCLASS FINAL-PUNCT WORD .
(.)

Figure 3. arter the push is completed

buffer an offset into the buffer can be associated with an active node . The control or which acth·e node is
currently executing is affected through operations which explicitly manipulate the active node stack.

Church's deterministic parser, YAP !Church 801, uses a constituent buffer consisting or two hairs: an
upper buffer and a lower buffer. The grammar rules try to attach nodes Crom the lower buffer to those in
the upper buffer. While this structure is similar to P ARSIF AL's, it does not draw such a rigid distinction
between active and inactive nodes. There are no separate subgrammars associated with the nodes which
constituents are being attached to, and nodes may be moved rreely from one buffer to the other allowing
them to be attached before they are complete . While our constituent structure does maintain active nodes
with separate subgrammars, the control or the parsing process is similar to that used by Church in that it is
possible for incomplete nodes to be attached. AB will be seen in a latter section this is an essential Ceature
of DP ARSER's constituent buffer.

3. SEQUENCES

In DP ARSER each constituent is assigned a sequence. Each sequence consists or a list of steps which
are applied to the buffer in the order specified by the sequence. A step operator indicates how many times
each step can apply: steps marked with"+" need never apply, those marked by "=" must apply once, and
those marked by "*" can apply any number or times. A step may call another sequence which has the
effect or inserting immediately following that step, the steps or the named sequence .

Each step consists or a list or rules where the priority or the rules are made explicit by their ordering
in the list. Each rule is or the form

IP1l IP2I ·•• IPnl ➔ (al) (a2) ··· (an) ·
Each precondition, pi, tests a buffer node Cor the presence or absence or specified feature-type, feature-value
pairs. When a rule is applied each action, ai, is evaluated in the specified order. In attempting to apply a
step each or the step's rules is tested in order, the first one whose preconditions match the current buffer
state is performed.

In order to recognize certain constituent types bottom -up, sequences may be associated with a
bottom-up precondition. When the parser encounters a node which matches such a precondition, a PUSH
to the sequence is performed. This mechanism is equivalent to P ARSIF AL's attention shitting rules and is
used primarily for parsing noun phrases .

In order to clarity the form or a sequence, the example sequence TRANS-MAJOR-S shown in Figure 4
is discussed in detail. This sequence is associated with the initial sent~nce node or every input sentence. It
performs the operations necessary to reduce the task or parsing an input sentence to that or parsing a nor­
mal sentence constituent as would occur in a relative clause or a sentence complement . While this sequence
will misanalyze certain sentences it does handle a large number through a small set or rules.

STEP 1 handles the words which and who which behave differently when they appear at the beginning
or a sentence . The first rule determines ir which is the first word; iC it is then it labels it as n determiner.
The second rule handles who which is labels as a NP.

STEP: 1 +

1
1 WORD WIIlCHJ ➔ (LABEL 1 {SYNCLASS DET} {EXT WH})
1 WORD WHOJ ➔ (LABEL 1 {SYNCLASS NP} {EXT WH})

STEP: 2 -
ll EXTWH] ➔

(LABEL• {SENT-TYPE QUEST} {QUEST-TYPE NP})
ll SYNCLASS NPJ ➔ (LABEL• {SENT-TYPE DECL})
ll ROOT HAVEll2 SYNCLASS NPll3 TENSE TENSELESSJ ➔

(LABEL • { SENT-TYPE IMPER})
ll VTYPEAUXVERBJ ➔

(LABEL• {SENT-TYPE QUEST} {QUEST-TYPE YN})
II TENSE TENSELESSJ ➔ (LABEL• {SENT-TYPE IMPER})

STEP: 3 +
[l EXT WH]l2 VTYPE AUXVERBll3 SYNCLASS NPJ

14 NOT PTYPE FINALJ ➔ (MOVE 1 WH-CO:MP)
STEP: 4 + .

I• QUEST-TYPE (YN NP-QUEST)J ➔ (MOVE 2 1)
• STYPE IMPERJ ➔ (INSERT 1 you)

Figure -4. SEQUENCE TRANS-MAJOR-S

STEP 2 examines the initial constituents of the sentence to determine whether the sentence is impera­
tive, interrogative , declarative, etc . . Since each sentence must be analyzed as one or these types the step is
modified by the "= " operator indicating that one or the step's rules must apply . The first rule tests
whether the initial constituent or the sentence is a WH type NP; NP's like who, which professor, what time,
etc . fall into this category . Ir this precondition succeeds then the sentence is labeled as a question whose
focus is a noun phrase. The second rule tests for a leading NP and , ir it is found, the sentence is labeled as
declarative. Note that this rule will not be tested ir the first rule is successful and the step depends on
this feature of step evaluation. The following rule tries to determine if have, appearing as the first word in
a sentence , is a displaced auxiliary or is the main verb in an imperative sentence . Ir the rule succeeds then
the sentence is labeled as imperative, otherwise the following rule will label any sentence beginning with an
auxiliary as a yes/no type question. The final rule of the step labels sentences which begin with a tenseless
verb as imperatives .

STEP 3 picks up a constituent which has been displaced to the front or the sentence and places it in
the special WH-COMP register . Generally a constituent must have been displaced ir it is a \VH type NP
followed by an auxiliary followed by another NP; however, an exception to this is sentences like Who is the
professor'/ in which the entire sentence consists of these three constituents.

STEP 4 undoes any interrogative or imperative transformations. The first rule · moves a displaced
auxiliary around the NP in sentences like Has Jones taught Lisp 'I and When did Jones teach Lisp 'I. Note
that for the latter sentence the previous step would have picked up when and hence did would be at the
front of the buffer. The second rule of this step inserts you into the buffer in front of imperative sentences .

Like DPARSER, PARSIFAL 's grammar language is composed of a large set or production rules . The
major difference between the two languages is how the rules are organized . P ARSIF AL's rules are divided
into packets several of which may be active at once. At any point in the parsing each of the rules in each
active packet may execute if its precondition is matched. In contrast to this organization, DP ARSER 's
sequences impose a much stronger control on the order or execution of the productions.

Aside from the bottom up parsing mechanism the only competition between rules is between those in
the individual steps . The purpose of constraining the order of execution of the productions is to reflect the
ract that the parsing of a particular constituent type is essentially a sequential process. Most of the rules
involved in the parsing of a constituent can only apply at a particular point in the parsing process . This is
particularly true of transformational rules and rules which attach constituents. Those rules which can
apply at various points in the parsing may be repeated within the sequence so that they will only be tested
when it is possible for them to apply and they will not be allowed to apply at points where they should not .
Clearly the necessity to repeat rules at different points in a sequence can increase the size of the grammar ;
however , it is felt that a grammar which clearly specifies the possible set of actions at each point can be

more easily understood and modified .

4. SEMANTIC PROCESSING
While semantic processing was outside Marcus's central concern a semantic system was developed

which operates in parallel with PARSIFAL , constructing the semantic representation as its subconstituents
were attached. In order to deal with syntactic ambiguities the action part or rules can contain semantic
tests which compare the semantic well-formedness of interpretations resulting from a set of possible attach­
ments. Such comparative tests can choose between one or more constituents to attach in a particular syn­
tactic role; for example a rule for attaching a direct object can use such a test to choose whether to attach
a displaced constituent or the next constituent in the buffer. Comparative tests can also be used to decide
whether to attach an optional modifier (such as a prepositional phrase) or leave it because it better
modifies a higher level node. Unfortunately this latter class or tests requires each rule which attaches an
optional modifier to determine each node which it is syntactically possible to attach the node to . Once
this set of syntactically possible nodes is found, semantics must be called to determine which is the best
semantic choice. Such tests complicate the grammar by destroying the modularity between the subgram­
mars which parse different constituent types.

For the LUNAR system !Woods 73J Woods added an experimental facility to the basic ATN frame­
work which allowed an ATN to perform such comparative t.ests without requiring them to be explicitly
coded in the grammar. The Selective Modifier Placement mechanism was invoked upon completion of an
optional modifier such as a PP. It then collected all the constituents which could attach the modifier and
performed the attachment it determined to be the best semantic fit. A mechanism similar to this is incor­
porated as a central part of DP ARSER and is intended to be used whenever an attachment is locally
optional. Before giving the details of this mechanism we discuss the semantic interface in general.

In DP ARSER a narrow interface is maintained between syntax and semantics which alleviates the
grammar writer o(any responsibility for semantic processing. The interface consists of the ATTACH action
which immediately performs the specified attachment and the IF-ATTACH test which only succeeds if the
attachment can be performed in light or the other constituents which may want to attach it.

Both ATTACH and IF-ATTACH have the same parameters : the buffer position o(the constituent to
be attached and a label identifying the syntactic relationship between the constituent and its parent . Such
a label is equivalent to a "functional label" of the RUS system [Bobrow & Webber 80]. When an attach­
ment is performed the semantic system is passed the parameters of the attachment which it then uses to
recompute the interpretation or the current active node.

IF-ATTACH tests are included as the final precondition of those grammar rules which wish to attach
a trailing modifier; the test returns true if it is syntactically possible (or the modifier to be attached and the
modifier best semantically modifies that node. If the test is true then the attachment is performed as a side
effect or the test .

To the grammar writer the IF-ATTACH test has the prescient capability to foresee which active node
should be allowed to attach the modifier and immediately returns true or false. However, the implementa­
tion requires that when an IF-ATTACH test is performed, the current active node must be suspended and
the node which pushed to it restarted. This node can then execute normally with the suspended active
node appearing like any other node in the buffer. The node continues executing until it either completes, in
which case the process continues with the next higher active node, or it encounters the IF-ATTACHed
node . Ir, at this point, the active node issues another IF-ATTACH then this new request is recorded with
the previous ones and the process continues with the next higher active node . This sequence of suspensions
will end i(an active node becomes blocked because it expects a different constituent type than the one in
the position or the IF-A TT ACHed node . When this occurs the interpretations which would result from
each or the pending IF-ATTACH tests are computed and the attachment whose interpretation the semantic
system considers to be the most plausible is performed . Alternately, a sequence or suspensions may be ter­
minated when an active node ATTACHes the node that the suspended active nodes had tried to IF­
ATTACH. Such a situation, an example of which occurs in the parsing or the sentence Is the block in the
boz'I, indicates that the pending IF-ATTACH requests are syntactically impossible and so must fail.

The following example shows how the IF-ATTACH mechanism is used to handle sentences where the
attachment or a prepositional phrase is in question . We consider the parsing of the sentence Jones teaches

the course in Lisp. We start the example immediately following the parsing o(the PP (Figure 5). At this
point the sequence for the noun phrase is about t.o apply the rule shown in Figure 6 which tries to attach
PP modifiers. Since the precondition preceding the IF'-ATTACH test is true the IF'-ATTACH test is made.
This causes the current active node t.o be suspended until it can be decided whether the attachment can be
performed (Figure 7). ·

Control now returns to the predicate node which attaches the suspended NP as the object of the verb .
As normally occurs after an attachment, the NP node is removed from the buffer; however, because the
node will eventually be restarted it retains a virtual buffer position. The sequence for parsing the predicate
now applies the same IF'-ATTACH rule (Figure 6) to attach any prepositional phrase modifiers. Again since
the PP is the first constituent in the buffer the IF'-ATTACH test is performed and the predicate node is
suspended returning control to the sentence active node (Figure 8).

When the sentence node restarts it execution , it attaches the predicate of the sentence leaving the
buffer as shown in Figure 9. Having found a complete sentence the sentence node executes a final step
which expects to find the final punctuation; since there is none the step fails. This failure triggers the arbi­
tration o(the set or pending IF'-ATTACH requests for the attachment of the PP . In this case the semantic
system determines that the PP should modify the NP. The parser then restarts the NP node at the point
where it issued the IF'-ATTACH and allows it to make the attachment (Figure 10). The NP node then tries
again to attach a PP but seeing oniy the period it realizes that its constituent is complete and terminates.

POSITION -2 active
SYNCLASS S SENT-TYPE DECL
(Jone,}

POSITION -1 active
SYNCLASS PRED VTYPE ONE-OBJ
(teache,}

POSITION • current active
SYNCLASS NP NVFORM N3PS
(the c our,e}

POSITION 1 not active
SYNCLASS PP
(in Li,p)

UNSEEN WORDS: .

Figure 5. after the completion ot 'in Lisp '

II SYNCLASS PP][IF-ATTACH 1 PP-MOD] ➔

Figure 6. rule to r attaching prepositional phrn.ses

POSITION - 1 active
SYNCLASS S SENT-TYPE DECL
(Jone,)

POSITION • current active
SYNCLASS PRED VTYPE ONE-OBJ
(teache,)

POS ITION 1 suspended active
SYNCLASS NP NVFORM N3PS
(the c our,e}

POSITION 2 not active
SYNCLASS PP
(in Li,p)

POSITION 3 not active
SYNCLASS FINAL-PUNCT WORD .
(.)

F igu re 7. after the NP has tried to attach the PP

POSITION• active
SYNCLASS S SENT-TYPE DECL
(Jone,}

POSITION 1 suspended active
SYN CLASS PRED VTYPE ONE-OBJ
(teaehe,}

DELETED suspended active
SYNCLASS NP NVFORM N3PS
(the eour,e)

POSITION 2 not active
SYNCLASSPP
(in Li,p)

POSITION 3 not active
SYNCLASS FINAL-PUNCT WORD .
(.)

Figure 8. arter the PRED node haa tried to attach the PP

POSITION • current active
SYNCLASS S SENT-TYPE DECL
(Jone, teaehe, the eour,e}

DELETED suspended active
SYNCLASS PRED VTYPE ONE-OBJ
(teaehe, the eour,e}

DELETED suspended active
SYNCLASS NP NVFORM N3PS ·
(the e our,e}

POSITION 1 not active
SYNCLASSPP
(in Li,p)

POSITION 2 not active
SYNCLASS FINAL-PUNCT WORD .
(.)

Figure 0. arter the 11ubject and predicate have been attached

POSITION -1 active
SYNCLASS S SENT-TYPE DECL
(Jone, teaehe, the eour,e in li,p)

DELETED suspended active
SYNCLASS PRED VTYPE ONE-OBJ
(tea.che, the eour,e in Li,p}

DELETED• current active
SYNCLASS NP NVFORM N3PS
(the eour,e in Li,p)

POSITION 1 not active
SYNCLASS FINAL-PUNCT WORD .
(.)

Figure 10 . arter the PP is attached

Next the monitor restarts the predicate active node but does not allow it to make the attachment .
This results in the node eventually terminating without performing any more actions . At this point each
or the IF-ATTACH requests have been processed and the step whose failure caused the processing or the
requests is retried . This time it is successful in finding the final punctuation and attaches it . The parse is
now complete (Figure 11).

Aside from prepositional phrase attachment there are many other situations where optional modifiers
can arise . For example in the sentence I saw the ho11 using the telescope the phrase using the telescope may
modify ho11 as a relative clause where the relative pronoun has been deleted, or it may modify saw where

Figure 11.

POSITION • current active
SYNCLASS S SENT-TYPE DECL
(Jone, teacAe, the cour,e in Li,p .)

the preposition b11 has been deleted. Another example is the sentence Is the block in the box'/ . In this sen­
tence the PP in the boz must, for syntactic reasons, complement the verb; however, in the local context or
parsing the NP the block, it is possible for the PP to modify it. IF'-ATTACH can easily be extended to
attach optional pre-modifiers; it could then be used to derive the internal structure of such complex noun
phrases as the Lisp course programming assignment.

The IF-ATTACH test is proposed as a mechanism to solve this general class of problems without
requiring the grammar writer to explicitly list all constituents to which an unattached constituent can be
attached. Instead, it is sufficient t,o indicate that a trailing modifier is optional and the monitor does the
work in determining whether the attachment should be made.

5. CONCLUSION

A grammar language for deterministic parsing has been outlined which is designed to improve the
understandability of the grammar . Instead of allowing a large set of rules to be active at once, the gram­
mar language requires that rules be organized into sequences or steps where ea.ch step contains only a small
number of rules. Such an organization corresponds to the essentially sequential nature or language process­
ing and greatly improves the perspicuity of the grammar. The grammar is further simplified by means or a
general method of interfacing between syntactic and semantic processing. This interface provides a general
mechanism for dealing with syntactic ambiguities which arise from optional post-modifiers.

REFERENCES

Bobrow, R.J . and B.L. Webber j1880J "PSI-KLONE: Parsing and Semantic Interpretation in the BBN Natural
Language Understanding System", in Proceedings or the CSCSI/SCEIO Conference 1880.

Carter, AW . [1883J "DPARSER -- A Deterministic Parser", Masters Thesis, Oregon State University .

Church, K.W. j1880J On Memor11 Limitation, in Natural Language Proceuing, MIT/LCS Technical Report #245.,
Cambridge, Mass.

Marcus, M.P . [1876J • A Design for a Parser for English", in Proceedings or the ACM Conference Hl76.
Marcus, MP. [1880J A Theor11 of S11ntactic Recognition for Natural Language, The MIT Press, Cambridge, Mass .

Rustin R . [1873J Natural Language Proce11ing, Algorithmics Press, New York.

Woods, W .A. j1870J "Transition Network Grammars for N::.tural Language Analysis", in Communications or the ACM
13:581.

Woods, W .A j1873J • An Experimental Parsing System for Transition Network Grammars", in jRustin 73J.

	Carter_Freiling_84_30_01_A
	Carter_Freiling_84_30_01_B

