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Abstract 
Within a decade, the amowit of raw data acquired 

each day by satellite -based instrumentation will exceed 
1 terabyte (1012 bytes). Virtually all quantitative data 
acquired about the Earth is useful (10). Processing the 
raw data into useful information will be an enormous 
task . Much of the current data analysis software is 
FORTRAN dusty-deck code. To handle the data volume 
expected, not only will much of the currently used code 
need to be transformed or redesigned into parallel code, 
but many new parallel programs will need to be written 
from scratch. Although parallel computers are already 
in existence, the task of writing parallel software has 
proved to be exceedingly difficult [1]. The Parallel 
Programming Support Environment (PPSE) is intended 
to assist the parallel programer in the process of 
designing a parallel program. The primary focus of this 
work is to test the tools of PPSE on an actual mid-sized 
(4000 lines of code) FORTRAN program and report on 
the experience. The program (A VHTST) is part of a 
series of FORTRAN data analysis programs which 
automate the process of determining cloud properties 
from satellite imagery data. Although A VHTST has 
been in use for several years, it has been identified as 
being in need of parallelization in the literature [5]. 
The objective of this research is to concurrently 
examine viable methods of producing a useful parallel 
program while testing the utility of the PPSE tools. 
The product of this research is a prototype parallel 
version of A VHTST, a description of the usage of the 
PPSE tools, a list of possible improvements and 
extensions to the tools, and a plan for integrating the 
tools. 

1. Introduction 
Parallelism is a natural notion. The optimal 

solution to nearly all problems can be achieved 
through concurrent work. The strategy of attacking 
problems in parallel has been effectively employed 
throughout human history. But computer programs are 
different [1]. Although a large proportion of all 
existing computer programs solve problems in a 
strictly sequential manner, the optimal computable 
solution (with regard to time and accuracy) to these 
problems can be achieved through concurrent solution 
steps. 

Whether parallel programming requires a greater 
skill level than sequential programming is unclear. 
However, different skills are needed. Sequential 
programmers frequently are not required to understand 
the entire problem being solved. Rather, they 
concentrate on solving many sub-problems and append 
the solutions together into a working program. 
Parallel programs must be carefully designed. In the 
current state of the art, a parallel programmer must 
thoroughly understand the problem and the 
relationships of its parts, the solution strategy, and 
the resources (language and machine) on which the 
solution will be implemented. For most people, the 
compl_exity and frustration of parallel programming 
outweigh the benefits; very few researchers outside of 
computer science are writing parallel programs and 
very little parallel production work is actually done 
[14]. 

A large number of sequentially coded solutions to 
difficult problems could be redesigned to run on 
existing parallel hardware if the frustration and 
complexity of the parallelization task could be 
alleviated. For many researchers, parallel solution 



strategics would allow timely results to extremely large 
problems opening up whole new avenues of research. 
Atmospheric Scientists, for example, find satellite 
gathered data to be extremely useful for studying and 
modeling certain phenomena. But while a large amount 
of incoming high resolution data will swamp 
sequential processing routines, and lower resolution 
data won't provide the desired experimental accuracy, 
the scientists are limited in the spatial scope of their 
research. In order to process global amounts of high 
resolution data, parallel or distributed processing 
techniques are necessary. 

As an example, the Spatial Coherence Method 
[5,6] consists of passing data through several 
sequential FORTRAN programs in order to objectively 
derive cloud properties from satellite imagery data. The 
first pass program, responsible for data analysis and 
reduction, is called AVIITST. With large input sets, the 
runtime of A VIITST drastically increases and dominates 
the total processing time . A typical scene of data (a 
single data set) consists of 5 256•256 arrays of pixel 
values (the values correspond to measured radiances at 
5 distinct wavelengths). Each scene typically covers 

an actual (1000 .km)2 region (see figures 1 and 2). The 
current sequential version of A VIITST takes 10 minutes 
to process all 5 channels for 1 scene of data on a 
typical minicomputer. A global data set would consist 
of approximately 600 scenes of data and would take at 
least 6000 minutes (100+ hows) to process on a mini­
computer. Although global cloud studies could be 
extremely useful to people studying the Earth's 
radiation budget (or to climate modelers) the usefulness 
of acquiring the processed data is outweighed by the 
necessary computation time. The computer time (and 
expense) can be better spent on small amo1n1ts of data; 
as a result the Spatial Coherence Method is typically 
used to study small spatial regions. 

Figure 1. Three scenes of satellite data over 
Greenland 

Although the current version of A VIITST is 
sequential code, numerous opportunities for 
parallelism exist in the actual problem of objectively 
deriving cloud properties on a global basis from high 
resolution satellite imagery data. Each channel of data 
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for each scene could be processed concurrently. The 
scenes themselves could also be processed 
concurrently. The final output of the program would 
require communicating, collecting and correlating the 
results from distinct scenes and channels, but the 
majority of computation could take place in parallel. 
With suitable parallel hardware, it may be entirely 
possible to process 600 scenes of data in only 7 
minutes (as opposed to over 100 hours sequentially). 
The results which were not worth 100 hours of 
computer time may suddenly become extremely useful 
if they could be computed in 7 minutes. A system with 
at least 1200 processors may be able to achieve these 
results. 

Before getting into the parallel design, it will be 
useful to illustrate the geometry and terminology 
involved with this problem (from [5]). 
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Figure 2. illustration of a typical satellite scene, frame 
and subframe. This scene covers a geographic area of 
approximately (1000 km)2, a frame (250 km)2, and a 

subframe (60 km) 2 . The problem parallelizes 
differently based on the geometry of the input. Scene , 
frame and subframe sizes are all variable . 

Although the notion of achieving parallelism in 
this problem is clearly possible, creating actual 
parallel code - especially code which will be portable 
across a variety of parallel machines - is still an 
extremely difficult problem. The intuitive idea of a 
parallel solution needs to be clearly defined into a 
design for a parallel program. The primary goal of this 
research is to create a parallel design of the first pass 
routine of the Spatial Coherence Method with the help 
of PPSE. We are more interested in finding a parallel 
solution to the problem than in simply parallelizing 
A VIITST. That is, parallelism should be sought from 
the problem, not the existing sequential program. 
From the design, it should be possible to create an 
actual parallel version of the first pass routine which 
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can be coded, compiled and run on an actual parallel 
system. 

2. Overview of PPSE and the 

Application 
The following sections give brief overviews of 

the Parallel Programming Support Environment 
research goals and tools, the general goals of the 
Spatial Coherence analysis routines (of which AVHI'ST 
is a part) and the specific tasks carried out by the 
sequential version of A VHI'ST. 

2.1 Parallel Programming Support: PPSE Overview 

Parallel Programming Support Environment 
(PPSE) research at Oregon State University addresses a 
series of issues related to designing and writing 
software for parallel computers. A number of practical 
tools have been developed which allow a programmer 
to visually design an architecture independent 
program, specify a high-level description of 
architectures on which the parallel program might run, 
determine a schedule or map for assigning program 
segments to processors, and automatically generate 
source code for a specific parallel computer from code 
fragments, the graphical description of the machine 
and the graphical description of the software. The 
major areas of research address the following general 
problems: 

• Developing a Graphical Notation for the 
Design and Description of Parallel 
Programs. 

• Developing a Graphical Notation for the 
Description of Parallel Machines. 

• Mapping the Parallel Software to the 
ParallelMachine. 

• Automatic Generation of Machine 
Dependent Parallel Source Code. 

• Developing Visual Methods of 
Inputting the Hardware and Software 
Design Details. 

Extended Large Grain Data Aow (ELGDF)[8,16] is 
a graphical language for designing parallel programs. 
Ideally, parallel software should be designed 
independent of any specific hardware on which the 
developed code might eventually run. ELGDF allows 
the development of a high level, machine independent 
description of a parallel program. El.GDF also allows 
the design of parallel software without being bound to 
any particular programming language. To enter 
descriptions of parallel programs, an ELGDF design 
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editor which runs on a Macintosh has been developed. 
The design editor provides a visual method of inputting 
software design details in ELGDF notation. The 
following features have been implemented into the 
design editor: 

• ability to produce a hierarchical design 
for parallel software in ELGDF 
notation, 

• ability to add detailed textual 
specification to graphic notation 
through dialog windows, 

• easy manipulation of design by 
resizing, encapsulating, and expanding 
the graphical description, 

• ability to assign source code fragments 
to specific graphical objects, 

• graphics to text (and text to graphics) 
transformations for interface with other 
PPSE tools. 

Once the program design has been entered, other 
PPSE tools permit the analysis of the design and 
transformation of the design into forms such as 
dependency graphs, flow graphs and source code. 
Before these steps can be taken, however, specific 
implementation details must be entered. 

To enter descriptions of parallel machines, a 
target machine editor has been developed. The Target 
Machine Editor provides a graphical analog to the 
classical Processor-Memory-Switch hardware 
description notation developed by Siewiorek, Newell, 
and Bell [20]. The present implementation of the target 
machine editor runs on top of the Extend 1M simulation 
package on a Macintosh. The following features are 
implemented: 

• ability to graphically describe small 
irregular architectures or easily describe 
large regular architectures, 

• graphically create shared memory, 
tightly coupled distributed memory or 
loosely coupled distributed memory 
architecture descriptions, 

• describe system specific information by 
entering the information in dialog boxes 
which are logically attached to the 
graphical icons, 



• graphics to text transformation for 
interface with other PPSE tools, 

• ability to save and edit graphical 
descriptions of systems. 

In general. a number of system level blocks 
(processor, memory, bus, and switch) are kept in a 
library. The user selects blocks from the library and 
enters specific information by double clicking on the 
block and keying in the block specific information 
(like processor speed or memory size) in the fields of 
the dialog window. A global information block, called 
the Topology File Generator must be present in all 
system descriptions. This block contains information 
which is global to the system. In the case of large 
regular architectures, the Topology File Generator 
block may be the only block necessary. All necessary 
information can be entered in its dialog. 

Once the software and hardware descriptions have 
been gathered, the software designer should determine 
the optimal assignment of software processes to 
processors. A scheduling package, called Mac­
scheduler performs an automated mapping of the 
software onto the hardware. Mac-scheduler maps 
program modules represented as nodes in a precedence 
task graph with communication (a proposed 
transformation of the ELGDF design file) onto 
arbitrary machine topologies and gives an allocation 
and ordering of tasks onto processors. It produces as 
output a Gantt chart, providing easy visualization of 
the allocation of the program modules onto the target 
machine processing elements, and the execution order 
of tasks allocated to each processing elemenL The 
Gantt chart consists of a list of all processing elements 
in the target machine. For each processing element, 
the Gantt chart shows a list of all tasks allocated to 
that processing element, ordered by execution time, 
including task start and finish times. Several mapping 
heuristics are included in the package. Frequently the 
best heuristic for a particular problem must be 
determined experimentally. Mac-scheduler allows the 
program designer to experiment with several mapping 
heuristics in order to determine the the best choice for 
process to processor assignments. 

A desirable output from the PPSE design is 
compilable somce code. A glue code module has been 
developed which takes the PPSE software design, code 
fragments written in a specific programming language, 
and a hardware description as input and produces 
machine specific somce code as outpuL The source code 
can then be compiled on parallel machines. One of the 
primary problems with manual generation of parallel 
programs is the lack of portability of the finished code 
due to the architectme and vendor specific parallel 
programming primitives. Parallel programs, like 
sequential programs, frequently need to be transported 
across architectmes. The glue code module allows the 
parallel program designer to design parallel programs 
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without specifying architecture specific 
synchronization and communication primitives (such 
as locks on a shared memory system or message 
passing primitives on a distributed system) . The glue 
code module automatically adds these primitives to the 
code fragments according to the specified design in the 
ELGDF editor. 

2.2 Overview of the General Application: Automated 
Analysis of Cloud Properties 

Satellite data has a wide range of good uses . 
Microwave radiometer measurements have been used to 
study yearly and seasonal changes in polar sea ice 
cover [18]. Visible and infrared radiometer 
measurements have been used to study the oceans, 
vegetation, geology, and the atmosphere. Climate 
models based on satellite data have been appearing 
frequently in the news as researchers attempt to 
determine the sensitivity of the climate to changes in 
external conditions, such as solar radiation or the 
atmospheric carbon dioxide amount [12]. Images 
produced from satellite data are shown in figures 3 and 
4 (at the end of the report). Figure 3 is a scene of data 
over the Atlantic Ocean. In figme 4, a scene over Africa 
and Spain, the data has been sampled so that every 
third pixel is shown. 

The Spatial Coherence Method is the basis of an 
automated procedure to determine cloud cover and 
cloud-free radiances of specific regions using high­
resolution infrared scanner data from satellite passes 
over approximately (1000 krn)2 regions. The 
determination of cloud cover is useful to Atmospheric 
Scientists for, among other things, deriving the 
Earth's radiation budgeL The determination of cloud­
free radiances over the ocean is useful to 
Oceanographers because it leads to the derivation of 
sea-surface temperatures while allowing a very small 
amoW1t of CIIor due to the aanosphere. 

The following excerpt from Coakley and Baldwin 
[5] explains some of the more basic reasons for 
creating an objective analysis scheme for deriving 
cloud properties: 

For the better part of a century we have 
suspected that through their influence on the 
Earth's energy budget, clouds play a major 
role in climate dynamics. Yet what role they 
play remains a topic of lively debate. The 
debate will undoubtedly continue for years to 
come as there is yet no climatological data 
set which boasts objectively derived, 
quantitative estimates of clouds and their 
properties. Without such estimates, progress 
towards understanding the role clouds play in 
the climate system is stymied .... There is 
hope, however, that objectively derived 
estimates of clouds and their properties 
might come from satellite data. Recent work 
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would suggest that this hope will shortly 
become reality. 

Based on the Spatial Coherence Method, their 
analysis scheme is able to derive an estimate for 
fractional cloud cover and cloud radiative properties for 
a fixed scene of data. A VHTST is the first pass of a 
series of routines which implement this method. 
Currently, one of the major drawbacks to A VHTST is 
the excessive runtime necessary for analyzing large 
amounts of data. The Spatial Coherence Method is now 
being used in a number of cloud studies and is being 
proposed for use in many more in the next few years. It 
is currently in the process of being streamlined to 
achieve higher data throughput rates. 

According to Coakley and Baldwin [5], through 
the use of properly designed parallel processors and 
associated software, an operational analysis scheme 
based on the Spatial Coherence Method seems entirely 
feasible. Thus, the Spatial Coherence Method is now a 
useful method for researchers wishing to automate the 
analysis of cloud properties for small scale studies, but 
to be a truly operational method - a general purpose 
climatology tool - substantial reductions in processing 
times are necessary. Such reductions could be achieved 
through good parallel design of the most time 
consuming components. The next section describes 
A VHTST in more detail. 

2.3AVHfST 

A VHTST first takes a scene of data as input, 
divides it into frames (approximately covering a (250 
km)2 region and consisting of a 64 • 64 array of 
pixels), and calculates local means and standard 
deviations of 1024 2*2 pixel arrays. Figure 5 shows a 
plot of the local means vs local standard deviations for 
a frame (note: figs 5,6 and 7 are at the end of the 
report). For frames with clear and cloudy sky pixels, 
the plotted points will ideally resemble an arch. The 
points at the foot of the arch at higher valued means 
(right foot) represent cloud free pixels while the points 
at the left foot of the arch represent cloud covered 
pixels. 

The first real task is to automate the process of 
identifying the feet of the arches. Points with small 
standard deviations at the feet of the arches are 
associated with cloud free and completely cloud covered 
regions. The algorithm to select the feet of the arches 
simulates a number of decision processes in order to 
determine which points belong to the feet of the arch 
and which belong elsewhere. Figure 6 graphically 
shows two of the steps involved. After a threshold test 
is performed to remove points with high standard 
deviations, a frequency distribution of the remaining 
points is generated. The next major step is to calculate 
a probability distribution as a function of the mean 
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radiance. Finally, as shown in figure 7, only the points 
at the feet of the arch remain. 

The second part of A VHTST examines the pixels 
within each (60 km>2 subframe to determine which 
pixels belong to a certain fooL The following steps are 
performed: 

• preserve statistical properties for pixels 
in feet, 

• preserve statistical description of 
radiance field. 

• note if no feet exist in the subframe, 
• if no feet exist, interpolate the cloud 

properties from the nearest neighbor 
subframes, 

• calculate and preserve several statistical 
properties, 

• separately identify points within feet for 
each channel 

To obtain cloud free radiances: 
• compare the channel specific means and 

standard deviations for certain spots and 
determine there is agreement in 
identifying a particular foot as 
representing a cloud free region, the 
radiance distnbutions comply with one 
another if the difference between their 
means is less than the root-mean-square 
of their standard deviations. 

• as a second check, perform a threshold 
test with the visible channel data. 

Finally, all the data which is to be preserved for 
further processing is saved to file. A VHTST reduces the 
data volume by a factor of 15 while preserving most of 
the important properties for further processing. 

3. Parallel Design of A VHTST 
The following sections describe the use of PPSE in 

parallelizing A VHTST. First, the ELGDF design editor 
is used to enter a parallel program design. Next, several 
potential target machines are described using the target 
machine editor. The scheduling tool is then used to 
experiment with program schedules and examine 
possible speedup due to parallelization. Glue code is 
briefly discussed, followed by a section on theoretical 
results. 

3.1 ELGDF Design 

A simplified top level description of a parallel 
version of A VHTST might look as in figure 8. 



AUHTST 

Figure 8. Top level ELGDF description of the 
parallel solution. 

Node Sl would be responsible for all data input 
from file. Distinct problem instances would be passed 
to replicated node Pl. Each replicated node of Pl can 
execute independently. Node Fl would collect the 
results and write answers to file. For some problem 
instances this will be all the parallelism necessary. 
However, the task is to design a parallel program 
which is able to handle all problem instances. 
Different parallel solutions are required to properly 
handle different geometries in the input. The input may 
consist of many scenes of data or it may consist of one 
extremely large scene. To hardwire a parallel solution 
to this problem without considering the input is a 
mistake. Each replicated node of Pl should be expanded 
into a smaller grained parallel solution. Figure 9 shows 
this expansion. 
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Pl 

Figure 9. Expansion of node Pl. 

In node Pll, all the means and standard deviations 
for each frame and each channel could be calculated 
simultaneously. If the data consists of 16 frames and 5 
channels, the potential parallelism will be 80 
concurrent processes. P12 will use these calculations 
to attempt to determine the subframe properties . The 
number of possible concurrent processes will equal the 
product of the number of frames and the number of 
subframes. However, if this level of granularity is 
smaller than necessary, the number of concurrent 
processes could be changed to equal the number of 
frames. Node P13 will need to determine for each 
subframe whether a default estimate of the subframe 
property is necessary. If so, then the subframe 
properties will be interpolated from the nearest 
neighbor subframe properties. An expansion of node 
Pl3 is shown in figure 10. 

1• 1 P13 

Q 

::::11 

Figure 10. Expansion of node Pl3 

As mentioned above, node P12 could be designed 
to concurrently perform calculations by the number of 
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frames or by the number of subframes yielding a 
different level of granularity in each case. Figure 11 
shows the expansions of P12 for each case. If the 
expansion uses a for loop, then we are sequentially 
making subframe calculations, but concurrently 
malcing frame calculations. If we use a replicator loop 
instead, then we are concurrently malcing calculations 
for all subframes. The data calculated in P12 is 
necessary for P131. In P131, subframes which couldn't 
be determined must be filled in with default estimates 
interpolated from nearest neighbor subframes. First a 
check is made to see if good data exists . If not, data 
must be fed in from previous calculations. This is 
shown in the expansion of P13 (figure 10) at node 
P131 by the bridge arc being fed in from P121. 

P12 

131 

(a) 

P12 

······:•.•·································:·.········;·:.:.:.:.;.;,;.:.:. 

(b) 

Figure 11. In a, the expansion of Node P12 is done 
using a for loop for sequential execution. In b, another 
replicator is used in order to perform smaller grained 
concurrent analysis. 
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3.2 Target Machine 

Two sample target machine descriptions were 
entered. The first for the OSU Sequent Balance 21000. 
The graphical input is shown in figure 12. 

I 

Figure 12. Target machine description of a 20 
processor Sequent Balance. 

The Topology File Generator block for the 
Sequent Balance target machine was given input as 
shown in figure 13. 

~ J Cenc■I) {E!il 1'111 IIMdr: • 111e 111ece t• ent«RIIIL 
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Figure 13. Dialog box of Topology File Generator 
block . 

The generated Topology File is partially shown in 
figure 14. The topology file contains three main 
sections: 

general information 



block identification 

• adjacency list 

The topology file contains a textual description of 
the target machine . Potentially, other PPSE modules 
will be able to use this information to advantageously 
create a running parallel program which is optimally 
fit to the target machine . For effective use of parallel 
systems, it is essential to obtain a good match between 
algorithm requirements and architecture capabilities 
(13]. 

<SSST ART T ARGETSS> 
•procs 20 
•caches 20 
•buses 5 
•swttch o 
•1tnks o 
•ethn 0 
•mems I 
network shared 
latency_e 1 
latency_b 0 
busnite 26.S 
sheredmem I 6000 
privmem 8 
sysname 
language 

Sequent Be lance 21000 
FORTRAN 

Block 1dentlf1cation 
processor 1 a 
pspeed 18 1 
processor 1 
pspeed I 1 

• • 
Adjacency L1st (self ,lnputs to self from._) 
18 19 
1 2 
16 17 
14 15 
12 13 

• 
Adjecency Ltst lself, outputs from self to .. .) 

18 19 
1 2 
16 17 
14 15 

• 
21° 44 
23 46 
45 24 
<SSEND T ARGETSS> 

Figure 14. Topology File 

A description of the second target machine 
description is delayed until the next section. The idea 
there is to first examine the dependency graph of a 
particular instance of the problem and then design a 
fictitious target machine that might match the 
algorithm nicely. 
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3.2 Scheduling 

From the ELGDF design, we need to form a 
dependency (or task) graph. The dependency graph is 
the required input for the scheduling algorithms in the 
scheduler tooL The program design is trmsfonned into 
a dependency graph. The schedule is an assignment of 
processes to processors. In order to form a dependency 
graph for this problem, actual parameter values will 
need to be known. As an example, 2 channels of data 
for a 2 by 2 scene are specified as input parameters. The 
dependency graph with relative runtime estimates is 
~hown in ~gure. 15. In each bubble, the number on top 
is a node identifier and the nwnber below is relative 
runtime for the specific code fragment which the 
bubble represents. The arcs represent communication 
time. In this example, these values have all been set to 
unity, signifying that communication time is 
constant. 

Figure 15. Dependency graph. 

It is important to note that this dependency graph 
is for only one simple instance of the problem - when 
we have one scene of data with 2 frames in each 
direction. The typical scene of data with 4 scenes in 
each direction would have a different dependency 
graph. Its graph would contain at least 66 nodes (as 
opposed to only 18 for this example) and the edges 
between the third and fourth level would correspond to 
a nearest neighbor dependency (in the actual geometry 
of the problem). 

With the PPSE scheduler software, a gann chart 
~d speedup graph can be estimated for this problem 
mstance. The speedup curve is shown in figure 16 and 
the gann chart in figure 17. 
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Figure 16. Speedup curve 

The speedup curve shows that with two 
processors, we get a speedup of two. For 4 processors, 
the speedup is slightly more than 3. The speedup graph 
also shows that the choice of scheduling algorithm 
makes very little difference . Although the current 
scheduler does not take full advantage of the 
architecture information supplied in the topology file, 
the scheduler tool provides useful information to the 
parallel program designer. We are able to roughly 
determine the useful number of processors for a given 
application from the speedup curve, and we are able to 
compare different parallel solutions to a problem by 
comparing the gantt charts produced by each program 
description. 

p,. ......... 

T-
0 

2 

lS 

◄ 
15 

6 

7 

• , 
10 

11 

12 

1ll 

1 ◄ 

,:1 

16 

17 

1 ■ 

" 20 

21 

22 

2:S 

24 

2~ 

26 

27 

Figure 17. Gantt chart 
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Across the top of the gantt chart is a column for 
each processor. Down the column is a schedule of 
processes which will be assigned to the particular 
processor. Blank space in a column signifies that the 
processor is idle (although communication from 
another processor may be taking place) . 

To a naive parallel programmer, an ideal computer 
for this problem (2 by 2 scene) might exactly match 
the dependency graph. A fictitious system meeting this 
description could be described with the target machine 
editor. Such a system is shown in figure 18. 

Figure 18. A hardware topology that might perform 
well for 2 by 2 scenes. 

When this system's Topology file is input to the 
scheduler, we find that the system will not perform 
much better than a 4 processor fully connected system . 
The best schedule produced using this topology reveals 
that the program will complete in 23 time units. With 
4 processors, the program completes in 26 time units. 
The useful processor point for this problem is 8. We 
can achieve the same or better results with 8 processors 
than we can achieve with more than 8 processors. A 
look at the speedup curve for this problem reveals that 
the curve reaches maximum at about 4 processors (see 
Figure 18a). Devoting more processors to the problem 
will not provide any benefit. The scheduler is 
extremely useful for determining these types of issues. 
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Figure 18a. Speedup Curve for alternate topology 
reveals that using more than 4 processors yields little 
benefit, and more than 8 processors yields no benefit 
for this instance of the problem. 

For different input, another architecture 
possibility would be to use a distnouted system with n 
processors, where n is equal to at least twice the 
number of scenes being analyzed. Each pair of 
processors would independently analyze a scene of data 
and write results to a common file system. The choice 
of best architecture depends entirely on the input. 
Analyzing 600 scenes would be faster on a distributed 
system with lots of processors. Analyzing 1 large 
scene would be faster on a more tightly coupled system 
whose topology closely matches the needs of the 
dependency graph. 

3.4 Glue Code 

Currently, PPSE does not have a module which can 
transform FORTRAN code fragments and an ELGDF 
design into a working parallel program. The glue code 
step was accomplished manually and is discussed in 

• section 4.2. Recommendations for FORTRAN glue 
code are given in section 5.7. 

3.5 Theory 

At the top level of design detail, independent 
processors can perform calculations on independent 
scenes. Sequential A VHTST nms in time O(n), where n 
is the number of scenes being analyzed. This can be 
shown when actually running the program (see Table 
1). Analysis of one scene takes 10 minutes on one 
Sequent processor. Two scenes take 20 minutes, and 50 
scenes take 500 minutes. Parallelizing the program so 
that all scenes can be analyzed simultaneously creates a 
program with constant runtime (0(1)) if the number of 
scenes being analyzed is less than the number of 
processors. We will use the notation T(p,n.A) to 
express the execution time of algorithm A with input 
size n on p processors [11). If we use twice as many 
processors as scenes, we should be able to achieve: 

T(2n,n,A VHTST) < T(l,1.A VHTST) 

That is, multiple scenes can be processed in less 
time in parallel than 1 scene sequentially. In the next 
section, an implementation of the program which 
achieves this goal is discussed. 
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4. Parallel Implementation of 
AVHTST 

A parallel version of A VHTST was constructed 
which generally adheres to the PPSE design. The target 
machine was a Sequent Balance 21000. Parallelism was 
achieved using compiler directives which are 
preprocessed to generate a parallel version of the code 
acceptable to the compiler [17). Data type and data 
dependency analysis were performed manually. 

4.1 Preliminary Steps - Porting 

In order to get parallel FORTRAN code to work on 
a parallel machine, it may be necessary to first port the 
sequential version (if one exists) and learn the tricks of 
the machine and the compiler. FORTRAN, unlilce C, is 
typically difficult to port. The three most common 
problems are as follows: 

• Fonnat of binary input/output data - different 
machines maintain different internal formats 
for storage of FORTRAN unformatted 
(binary) data. When processing data in a 
distributed manner, each machine must be 
able to receive data from a remote machine 
and correctly handle differences in binary data 
format. Differences involve word size (ie. 64 
bits for Cray X-MP, 32 for Sequent), floating 
point format (ie. VAX doesn't adhere to the 
IEEE standard for floating point), and record 
length byte counts (ie. VAX maintains a 4 
byte header to all records, Sun maintains 8 
byte headers and trailers, Sequent doesn't use 
byte counts). Many machines also maintain 
different byte orderings. This becomes 
apparent after binary file transfer occurs. Code 
that compiles may not work because of these 
input format problems. 

0 Input/output statements - most machines 
allow I/0 extensions to the FORTRAN 77 
standard and much of the actual code in 
existence uses these extensions. However, 
they typically aren't uniform over a range of 
machines. OPEN, READ, WRITE and 
INQUIRE statements typically need to be 
translated in some way from machine to 
machine. 

• Adherence to FORTRAN 77 standard - most 
compilers don't strictly adhere to the 
FORTRAN 77 standard [19). The FORTRAN 
77 standard provides that variables internal to 
a subroutine are not guaranteed to be saved 
between successive calls to that subroutine 
unless the variable is declared global in a 
SA VE statement If this part of the standard 
were enforced, a large fraction of all programs 
written would immediately cease to function 
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[19). The Sequent Balance FORTRAN 
compiler does enforce this part of the 
standard. This creates a problem for code 
written on less strict compilers like the VAX 
compiler which is to be ported to the 
Sequent. 

To get A VHTST poned to the Sequent Balance, the 
binary 1/0 problem and the 1/0 statement problems 
needed to be addressed. A VIITST takes binary input and 
produces binary output. The binary output is typically 
processed on a Sun Workstation. Figure 19 shows the 
steps necessary for running A VIITST on a parallel 
machine in a production mode . 

Figure 19. Production mode of A VHTST on a Parallel 
Machine. Input to A VIITST would typically come from 
another machine (Machine X) . The data would be 
transferred to the parallel machine via binary FTP. The 
data then needs to be transformed into the parallel 
machine's desired input format. A VHTST processes the 
data and produces a binary output file. This file would 
be sent to another machine for further processing (ie 
imaging). Once arriving on Machine Y, the binary data 
must again be transformed into a form acceptable by 
Machine Y. 

4.2 The Working Version 

Once the porting problems are handled, the 
problem of creating compilable source code can be 
dealt with. PPSE will eventually attempt to automate 
this process for FORTRAN code, but for now it must be 
done manually . The simplest way to create replicated 
code from FORTRAN DO loops is to recode the loops 
as C$DOACROSS loops. An example of this is shown 
in figure 20. 
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CSdoac:n,11 1hare(1p,kcor,x,11, 1cor,nxf nn,kchan,tchan,xx 1 ,q11wt, 
CS& 11111r,xl1v,nplt,tplot,nywt,fll1nam , 
CS& i,wt,n1>1r,nptcx,n11tn,nntn,111un). 
C$& local(n1ptc,nfptc,k,tch,t,xmtn,xmex,xmean, 
CS& ndl1p,tuwt ,numf11t,1tp,111,112,11op1,m1cel1 ,l,x3, 
CS& n 1,n2,n3,np,11md,ll, 
C$& hplt,11pll,zpll ,t1c1l1,dl1p, 
CS& ndlY,mdlY,n1x,n1tg,lpk,nptc11,ht1tm, 
C$& lblx,tlblx,klblg,lblglen,lbll,lbltlen, 
C$& hl1t,11ht1l) 

do 300 lxun = 1, nxfrm 
pnnt• ,'ENTERED PARAUEL LOOP - PROCESS: ',1xun . . 

300 CONTINUE 

Figure 20. Example code 

Sequent requires variable analysis for all variables 
within parallel portions of the code. This was 
accomplished manually but perhaps could have been 
done using the static analysis code analyzer being 
developed at Portland State University as part of the 
PPSE projecL All sections specified as replicated in the 
PPSE design were coded with CSDOACROSS loops. 
Thus the PPSE design was implemented . All variables 
that were passed on data arcs in the design were 
implemented as shared variables. When necessary, 
access to shared variables was controlled with 
LOCK/UNLOCK statements. 

4.3 Timing Comparisons 

From section 3.5, we had hoped to achieve the 
following result: 

T(2n,n,A VHTST) < T(l,l,A VIITST). 

Using 2n processors to process n scenes of data 
will take less time than processing 1 scene 
sequentially. For real machines, this holds as long as 
2n is less than or equal to the number of processors for 
the particular target machine. A sequent Balance with 
16 processors should be able to process 8 scenes in 
parallel faster than 1 scene with a sequential program. 
Table 1 illustrates the timing results achieved with the 
parallel version of A VHTST. 

Date S1qu1nt11l Parel11l Proc111ors Sp11dup Efflct1ncy 
S1ZI Time Ttm1 U11d 

1 10:32 7:02 2 1.49 0.745 
2 21:06 7:03 4 2.99 0.748 
3 31:39 7:08 6 4.44 0.739 
4 42:10 7:06 8 S.93 0.742 
s S2:45 7:10 10 7.36 0.736 
6 63:20 7:18 12 B.67 0.723 
7 73:S6 7:1S 14 10.18 0.728 
8 84:32 7:2S 16 11.40 0.712 

Table 1. A VIITST timing data. Data size is number of 
scenes. Processors used is the number of processors 
used to achieve the parallel time shown. Speedup is 
defined as sequential time divided by parallel time for 
the same sized problem. Efficiency is equal to the 
speedup divided by the number of processors used. 



The significant result is that for a problem of size 
n, as long as at least 2n processors are available, the 
complexity of the algorithm is 0(1) . The parallel 
solution has reduced the order of complexity from O(n) 
--> 0(1). 

5. Subjective Analysis of PPSE 

tools 
Overall, the PPSE tools (even in their conceptual 

state) were useful for parallelizing the satellite data 
analysis problem. The tools provide a framework for 
good structured design of parallel programs . An 
essential feature is the splitting of the program design 
from the architecture description. This idea should help 
program designers to produce portable parallel code. 
The scheduler tool provides useful information to the 
programmer and the glue code module should prove to 
be a great time saver in the future. The rest of this 
section deals with proposed additions, enhancements 
and clarifications which may help to strengthen the 
PPSE tools. 

The parallel solution to A VHTST is simple. 
Creating a parallel version of A VHI'ST is extremely 
difficult and time consuming to do manually, and the 
resulting program will likely be bound to a specific 
architecture. PPSE should offer support to problems 
which have a conceptually simple parallel solution, 
but unload a time consuming and difficult task of 
redesign and restructure on the parallel programmer. In 
this problem, the amount of independence in the 
resulting data structure is so large that the real concern 
of the parallel programmer is not whether to parallelize 
but where to parallelize. The following sections 
discuss possible ways to improve PPSE in order to 
better deal with problems like A VHI'ST . 

5.1 Visualization of the conceptual class of the parallel 
program. 

While ELGDF allows design specification for 
A VHI'ST, it doesn't help the parallel program designer 
write a parallel program. It's like being given a 
dictionary of a foreign language and attempting to 
make coherent sentences without first learning the 
rules of grammar. ELGDF should provide a top level 
structure which adheres to a parallel programming 
conceptual class. Parallel programs fall into several 
conceptual classes [4]. Three main conceptual classes 
are result parallelism, agenda parallelism and specialist 
parallelism. These three conceptual classes can be 
programmed with the following three parallel 
programming methods: message passing, distributed 
data structures, and live data structures. The following 
discussion addresses the conceptual class in which 
A VHI'ST most naturally falls - the result parallelism 
class . 
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In result parallelism, the programmer must 
visualize the resulting data structure which the program 
produces as a finished product The result can be broken 
into components which can be computed concurrently. 
Some components may rely on others (and thus we 
have dependencies), but other components may be 
completely independent. The highest level concurrent 
processes in this model are all responsible for 
producing part of the final result . In A VHTST the 
resulting data structure is an array. The following 
diagram is a high level visualization of one way to 
design the program: 
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Figure 21. Result Data Structure partitioned into 
sections which can be computed concurrently. 

The resulting data structure has been partitioned 
into sections whose computations can all proceed in 
parallel. Each circle represents a process which 
computes the corresponding section of the result. The 
dependencies between the different section will need to 
be shown at a lower level of detail. This type of higher 
level diagram could easily be animated to show the 
progress of the parallel program as it computes the 
result (idea from [4]). 
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Figure 22. Possible animated scene of the parallel 
computation of the resulting data structure. 
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Each of the circles (processes) in the resulting data 
structure could be expanded into an ELGDF description 
of the necessary calculation steps. 

5.2 Specify an input parameter file. 

An input parameter file would help generate 
accurate Task Graphs, schedules and glue code while 
allowing the programmer to generalize the ELGDF 
design. The ELGDF editor should allow the programmer 
to enter variable parameters in the design for things 
like nwnber of replicated processes and upper ranges of 
loops. A variable template should be created by the 
editor which is filled in by the user before generating 
task graphs, schedules or glue code. The input 
parameters would specify possible problem sizes. 

For example, with A VHTST we would like to be 
able to specify a variable nwnber of scenes of variable 
size, variable pixel array sizes, variable nwnber of 
frames and subframes, and variable size of frames or 
subframes . With different input parameters, the 
schedulers should parallelize around different 
parameters. In some cases, parallelization by scene 
might be effective . In other cases, parallelization by 
channel, or by frame or some other parameter might be 
effective. 

5.3 Data structure design should be more prevalent in 
the program design. 

While the program flow is an important concept, 
the parallel data structures involved in the parallel 
program are equally, if not more, important. The 
ELGDF storage construct is woefully inadequate for the 
design of real parallel programs . Most programmers 
would like assistance in visualizing the data structures 
involved in parallel computation. For example, the 
concept of a distributed data structure is one that can be 
effectively implemented on both shared memory or 
distributed memory machines. A distributed data 
structure is logically shared but may exist in different 
physical memories. The programmer should be able to 
design a distributed ( or any kind) of data structure and 
then design processes which work with the data 
structure. 

5.4 Need a formal syntax specification of ELGDF. 

The following list of examples illustrate the 
problem: 

• In a FOR loop structure the control variable 
and ranges are input in a dialog box. If the 
next level down is a code fragment. is the loop 
control from the dialog automatically appended 
to the code fragment or should the programmer 
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specifically include the control line and 
associated (syntactic characters ?). What if the 
control and ranges specified in the dialog box 
don't match the control and ranges specified in 
the code fragment? 

• Replicated code may need different input for 
each node, and the input may not correspond 
exactly with the control variable . For example, 
replicated code may need to read and write 
according to a file name which was input to 
the specific code segmenL Where should the 
input be specified in an ELGDF diagram. 
Another example is the representation of a 
queue or stack structure which provide input to 
a number of replicated processes. It is not clear 
how to represent these structures in ELGDF . 

• The proper usage of storage construct is 
completely unclear. Do they need to be 
included at all in the design specification? 
Only for synchronization? 

A clear specification for the usage of the ELGDF 
constructs needs to be formulated. 

5.5 User/PPSE Responsibilities 

The user should not have to specify bytes on arcs 
or run times of code fragments. Bytes on arcs should be 
estimated from the input parameter file and the 
topology file. Overloading the user with details will 
not make the task of parallel programming easier. 
Estimating the run time of code fragments is a more 
difficult problem, but one that should be dealt with by 
PPSE and not the user. With an input parameter file and 
a topology file, an estimate of the run time of the code 
fragment should be possible. The original estimates 
should OCCW' when the user first attempts to generate a 
schedule and the values of unaltered sections of code 
should be saved thus reducing the run time for 
additional schedule generations. 

5.6 Theoretical Obstacles with Common Structures 

Preswnably, ELGDF common structures like while 
loops and repeat-until loops will need to be 
transformed into task graph elements. They can't be 
expanded because the expansion of a conditional loop 
may be infinite . They need to be dealt with as singular 
computation units, but doing this will prevent any 
further hierarchical breakdown of the conditional loop 
program segmenL Thus, a while loop as the top level 
bubble in an ELGDF description may mean that the 
entire program must be specified in a programm ing 
language unless a method of merging textual 
descriptions with iconic descriptions is worked out. 
Such methods are not presently available . 

The use of conditional while loops will also 
present a difficult theoretical problem to schedulers . 



First of all, it is impossible to predict the nm time of a 
code fragment which contains a conditional while 
loop. In fact, it is impossible to even know if the code 
fragment will terminate. We can't require that 
conditional loops not be allowed; that would be absurd. 
A programming language with no conditional loops 
can't represent all possible programs and would be less 
powerful than the Basic language even. The use of 
common structures needs to be clearly explained and a 
method of transforming them to task graph and glue 
code elements should be thoroughly worked out. 

5.7 FORTRAN Glue Code 

Creating FORTRAN glue code may tum out to be 
slightly more difficult than for other languages (such 
as C) because many real FORTRAN code fragments will 
lack structure and strict adherence to the FORTRAN 
standard. There are two basic options when creating 
glue code: 

1 . translate to a portable parallel language. 

2. translate to a machine specific language. 

With the first option, there is FORTRAN-Linda, 
FORTRAN-BX, or packages such as Schedule 
(developed at Argonne National Labs). FORTRAN­
Linda is not yet released and FORTRAN-BX is not 
implemented on many machines and does not support 
multitasking. Schedule is currently available for a 
number of parallel machines, but by the developer's 
admission, has a limited lifetime [7]. 

A tradeoff exists between the two options. The 
second option will probably yield higher performance 
code at the expense of code comprehension. This may 
be a severe drawback in the debugging phase. Also, 
developing separate glue code for each parallel 
machine may prove to be an unwieldy process. 

The purpose of PPSE is to demonstrate the 
feasibility of the idea rather than demonstration of 
high performance. For this reason, we should pursue 
the first option of translating to a portable parallel 
language. Specific vendors should be responsible for 
implementing the portable parallel language into their 
system. 

If we choose to implement the first option 
immediately for FORTRAN, then we must go with 
Schedule. Since Schedule programs develop naturally 
from data dependency graphs, this may be the best 
choice anyway. If the development of FORTRAN glue 
code is to be delayed for several months, then waiting 
for the release of FORTRAN-Linda may be the best 
move. 
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5.8 ELGDF Representation of Iterative Relaxation 
Class of Problems 

According to Finkel [11), most distributed 
algorithms fall into one of several classes. Iterative 
relaxation is somewhat analogous to result 
parallelism. The data space is divided into adjacent 
regions which are then parcelled out to different 
processes. Each process carries out activities local to 
its region, communicating with neighbors when 
necessary. This category includes the solution to PDEs 
and graph problems like finding a minimum spanning 
tree . Figure 23 illustrates an iterative relaxation 
solution to A VHTST. 
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Figure 23. The data space is split by frame and by 
channel (top). All possible frame calculations are made 
- black squares indicate missing data (middle). Missing 
values are interpolated from nearest neighbor results 
(bottom). 

In fact, this is exactly the intended design of the 
problem as specified in the data dependency graph 
(Figure 15). The original ELGDF design (section 3.1 
and Figures 8-11) is intended to represent this same 
idea. However, in order to transform the ELGDF 
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description of the algorithm to the proper task graph, 
more information needs to be present in the design. 
The representation of nearest neighbor communication 
does not seem possible with either the replicator or fan 
structures. The replicated structure would need to be 
bypassed in this case - the design needs to more 
closely resemble the task graph. But if program 
designers must frequently bypass the ELGDF 
convenient structures in order to properly represent the 
program design, the utility of these structures will be 
lost; they will become an unnecessary and 
inconvenient intermediary step towards the final 
intended design. Although a replicated loop seems to 
be an intuitive choice for representing this program 
design with ELGDF, it doesn't capture the necessary 
amount of information to properly represent the 
design. This is a common problem with ELGDF 
structures: convenience has been placed ahead of 
information content. 

6. A Plan for integration of the 

PPSE tools 
Conceivably, the ELGDF editor, task grapher, 

scheduler, and glue code module could all exist within 
the same shell program . The current Target Machine 
editor is based on a commercial product and wouldn't 
integrate as easily. The two programs could be run 
simultaneously using multifinder or a new target 
machine editor should be developed which more easily 
integrates into the system. A possible sequence for 
designing a parallel program could adhere to the 
following steps: 

1. From within the Target Machine Editor program. 
enter the descriptions of several target machines. 
Generate topology files for these machines and exit 
the program. 

2. Enter top level design of program based on the 
most natural parallel program design method. This 
might correspond to the resulting data structure, the 
agenda of activities, or specialist parallelism. From 
the top level design. enter the ELGDF description 

• of the program. 

3. Enter constant input parameters which correspond 
to the generalized ranges for ELGDF convenient 
structures (ie. loops, replicators, etc.). These input 
parameters will be needed for construction of the 
task graph and schedules. 

4. Generate a schedule. User will need to specify the 
location of the Topology file and Input Parameter 
file. The task graph should be automatically 
generated and used as input to the scheduling 
routines. The user will be interested in viewing 
schedules as a means of comparing different 
program designs, different input parameters, and 
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different target architectures. The user may also 
want to view speedup charts, and possibly a graph 
showing the correspondence of nmtirne to problem 
size (problem size will be a function of the input 

5 . Generate Glue Code. The user may want to specify 
variables around which to parallelize. Using 
A VHTST as an example, I might want to calculate 
all scenes in parallel, or I might want to calculate 
all channels concurrently, or I might want to 
calculate all x-direction frames concurrently. The 
program design should be general enough to handle 
all these situations and the gantt chart should have 
given me a hint about which parts of the program 
should compute concurrently. The glue code module 
must be told how to parallelize the program. The 
decision must be made by the user or by PPSE. 

6. Transfer the Glue Code to the Target Machine, 
compile, and run. 

These steps are not currently possible. 
While this paper is not a requirements 
analysis study, the tool designers should 
pay close attention to the needs of parallel 
programmers. The needs for creating a 
parallel FOR1RAN program may not be the 
general needs, but they are important to an 
extremely large class of potential parallel 
programs. 

7. Conclusion 
In an article about a programming environment 

similar to PPSE [3], the authors state, " .. we believe no 
one should be allowed to publish an article about their 
programming environment until it has been used by 
some threshold number of users." PPSE has not yet 
been used by an acceptable threshold, but shows 
extreme promise as a viable environment. The 
designers of PPSE realize that the system must be 
iteratively refined and are willing to implement their 
ideas into usable software tools in order to facilitate 
the necessary interaction between themselves and 
parallel programmers. The availability of these tools 
allows useful testing of concepts. 

Clearly, PPSE is on the right track. More research 
needs to be done in the area of graphical program 
description. ELGDF has some problems. Specifically, 
the transformation of ELGDF gr11,phs into dependency 
graphs is a difficult problem because an information 
void must be dealt with. Current ELGDF structures can 
not handle the necessary level of detail for proper 
transformation into accurate task graph 
representations of the program. On the one hand, 
ELGDF needs to capture more of the programmer's 



intent, but not at the expense of overburdening the 
design process with details which could properly be 
left until further refinement is necessary. Also, many 
of the structures and paradigms which are important to 
parallel programming are difficult or impossible to 
represent in El.GDF . The design description language 
should not inhibit program designers from designing 
programs, but rather facilitate the process. PPSE has 
this goal in mind. 

The prototype parallel version of A VHTST was 
successful. More test cases should be worked through 
PPSE in a manner similar to that described in this 
paper. There are two benefits to this . The first is a 
benefit to PPSE. Whether successful or unsuccessful, 
the more test cases which are run through PPSE, the 
better the final product will be. Unsuccessful test cases 
will give insight into ways to improve PPSE into a 
more robust set of tools. Successful test cases will be 
forward steps toward proving a set of important 
concepts . The second benefit is experience with 
parallel programming. Designers of parallel 
programming environments need to have a large 
amount of this experience in order to understand the 
problems , frustrations, and complexities involved 
with the task of designing parallel programs. 
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Additional Figures 

Figure 3. Infrared Image from NOAA-7 Satellite. The image is 384*256 pixels. The 
scene is over the Atlantic Ocean. 
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Figure 4. Infrared Image over 
Africa and Spain. The Image 
is 512*128 sampled pixels. 
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Figure 5. Local means vs standard deviations for a frame of data form an arch. 
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Figure 6. Frequency Distribution and Probability Distribution . 

n 

n 
n 

J 

l 
1 
j 

l 
j 

I I 
j 

J 

u 



7 
n 
n 
n 
n 
fl 

I 
f j 

j 

J 

[j 

(J 

u 

4 KM GAC 2 X 2 
10 

11. 11 

8 
z 
0 
;::: 
< > 
"' 6 0 

0 
a: 
< 
0 
z 
~ 4 
Vl 
...J 
< u 
0 
...J 

2 

~~~ ·~ 
0 1..- ........ -~f .... · ..;...__._...._...._...._....._...,'---'-__.__' l!!!!!!!,,.--.J 

70 80 90 100 

LOCAL ME.AN 11µ. RADIANCE 

Figure 7. Feet of the arches. 
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