
] ·'

j

LifUUEAS~TY

5C~ErlCE

A Test Case for the Parallel Programming Support Environment:

89-80-2

Parallelizing the Analysis of Satellite Imagery Data

David V. Judge
W.G. Rudd

OACIS
&

Department of Computer Science
Oregon State University
Corvallis, Oregon 97331

7
n
n
n
n
n
l

[)

I

u
l I

I

[J

J

J

J
J
J

A Test Case for the Parallel Programming Support Environment:

Parallelizing the Analysis of Satellite Imagery Data

David V. Judge & W.G. Rudd

Oregon Advanced Computing Institute (OACIS) &

Department of Computer Science

Oregon State University

Corvallis, OR 97331-3902

Abstract
Within a decade, the amowit of raw data acquired

each day by satellite -based instrumentation will exceed
1 terabyte (1012 bytes). Virtually all quantitative data
acquired about the Earth is useful (10). Processing the
raw data into useful information will be an enormous
task . Much of the current data analysis software is
FORTRAN dusty-deck code. To handle the data volume
expected, not only will much of the currently used code
need to be transformed or redesigned into parallel code,
but many new parallel programs will need to be written
from scratch. Although parallel computers are already
in existence, the task of writing parallel software has
proved to be exceedingly difficult [1]. The Parallel
Programming Support Environment (PPSE) is intended
to assist the parallel programer in the process of
designing a parallel program. The primary focus of this
work is to test the tools of PPSE on an actual mid-sized
(4000 lines of code) FORTRAN program and report on
the experience. The program (A VHTST) is part of a
series of FORTRAN data analysis programs which
automate the process of determining cloud properties
from satellite imagery data. Although A VHTST has
been in use for several years, it has been identified as
being in need of parallelization in the literature [5].
The objective of this research is to concurrently
examine viable methods of producing a useful parallel
program while testing the utility of the PPSE tools.
The product of this research is a prototype parallel
version of A VHTST, a description of the usage of the
PPSE tools, a list of possible improvements and
extensions to the tools, and a plan for integrating the
tools.

1. Introduction
Parallelism is a natural notion. The optimal

solution to nearly all problems can be achieved
through concurrent work. The strategy of attacking
problems in parallel has been effectively employed
throughout human history. But computer programs are
different [1]. Although a large proportion of all
existing computer programs solve problems in a
strictly sequential manner, the optimal computable
solution (with regard to time and accuracy) to these
problems can be achieved through concurrent solution
steps.

Whether parallel programming requires a greater
skill level than sequential programming is unclear.
However, different skills are needed. Sequential
programmers frequently are not required to understand
the entire problem being solved. Rather, they
concentrate on solving many sub-problems and append
the solutions together into a working program.
Parallel programs must be carefully designed. In the
current state of the art, a parallel programmer must
thoroughly understand the problem and the
relationships of its parts, the solution strategy, and
the resources (language and machine) on which the
solution will be implemented. For most people, the
compl_exity and frustration of parallel programming
outweigh the benefits; very few researchers outside of
computer science are writing parallel programs and
very little parallel production work is actually done
[14].

A large number of sequentially coded solutions to
difficult problems could be redesigned to run on
existing parallel hardware if the frustration and
complexity of the parallelization task could be
alleviated. For many researchers, parallel solution

strategics would allow timely results to extremely large
problems opening up whole new avenues of research.
Atmospheric Scientists, for example, find satellite
gathered data to be extremely useful for studying and
modeling certain phenomena. But while a large amount
of incoming high resolution data will swamp
sequential processing routines, and lower resolution
data won't provide the desired experimental accuracy,
the scientists are limited in the spatial scope of their
research. In order to process global amounts of high
resolution data, parallel or distributed processing
techniques are necessary.

As an example, the Spatial Coherence Method
[5,6] consists of passing data through several
sequential FORTRAN programs in order to objectively
derive cloud properties from satellite imagery data. The
first pass program, responsible for data analysis and
reduction, is called AVIITST. With large input sets, the
runtime of A VIITST drastically increases and dominates
the total processing time . A typical scene of data (a
single data set) consists of 5 256•256 arrays of pixel
values (the values correspond to measured radiances at
5 distinct wavelengths). Each scene typically covers

an actual (1000 .km)2 region (see figures 1 and 2). The
current sequential version of A VIITST takes 10 minutes
to process all 5 channels for 1 scene of data on a
typical minicomputer. A global data set would consist
of approximately 600 scenes of data and would take at
least 6000 minutes (100+ hows) to process on a mini­
computer. Although global cloud studies could be
extremely useful to people studying the Earth's
radiation budget (or to climate modelers) the usefulness
of acquiring the processed data is outweighed by the
necessary computation time. The computer time (and
expense) can be better spent on small amo1n1ts of data;
as a result the Spatial Coherence Method is typically
used to study small spatial regions.

Figure 1. Three scenes of satellite data over
Greenland

Although the current version of A VIITST is
sequential code, numerous opportunities for
parallelism exist in the actual problem of objectively
deriving cloud properties on a global basis from high
resolution satellite imagery data. Each channel of data

2

for each scene could be processed concurrently. The
scenes themselves could also be processed
concurrently. The final output of the program would
require communicating, collecting and correlating the
results from distinct scenes and channels, but the
majority of computation could take place in parallel.
With suitable parallel hardware, it may be entirely
possible to process 600 scenes of data in only 7
minutes (as opposed to over 100 hours sequentially).
The results which were not worth 100 hours of
computer time may suddenly become extremely useful
if they could be computed in 7 minutes. A system with
at least 1200 processors may be able to achieve these
results.

Before getting into the parallel design, it will be
useful to illustrate the geometry and terminology
involved with this problem (from [5]).

'I .. _
la,,

"
256Sca
i-.

- 25'Scalpau .. .__..., •
~

~
Slaaaol1llo
TIIICI<

-

Semo

---Fnme

Submme

f , .. _ la,,

1 - ~1.11-.1,-

Figure 2. illustration of a typical satellite scene, frame
and subframe. This scene covers a geographic area of
approximately (1000 km)2, a frame (250 km)2, and a

subframe (60 km) 2 . The problem parallelizes
differently based on the geometry of the input. Scene ,
frame and subframe sizes are all variable .

Although the notion of achieving parallelism in
this problem is clearly possible, creating actual
parallel code - especially code which will be portable
across a variety of parallel machines - is still an
extremely difficult problem. The intuitive idea of a
parallel solution needs to be clearly defined into a
design for a parallel program. The primary goal of this
research is to create a parallel design of the first pass
routine of the Spatial Coherence Method with the help
of PPSE. We are more interested in finding a parallel
solution to the problem than in simply parallelizing
A VIITST. That is, parallelism should be sought from
the problem, not the existing sequential program.
From the design, it should be possible to create an
actual parallel version of the first pass routine which

7

n
n
n
7
J

l

J

J

I J

I
j

J

J
J

l
n
n

n
n

l

u
J

[J

u
j

u
u
u

can be coded, compiled and run on an actual parallel
system.

2. Overview of PPSE and the

Application
The following sections give brief overviews of

the Parallel Programming Support Environment
research goals and tools, the general goals of the
Spatial Coherence analysis routines (of which AVHI'ST
is a part) and the specific tasks carried out by the
sequential version of A VHI'ST.

2.1 Parallel Programming Support: PPSE Overview

Parallel Programming Support Environment
(PPSE) research at Oregon State University addresses a
series of issues related to designing and writing
software for parallel computers. A number of practical
tools have been developed which allow a programmer
to visually design an architecture independent
program, specify a high-level description of
architectures on which the parallel program might run,
determine a schedule or map for assigning program
segments to processors, and automatically generate
source code for a specific parallel computer from code
fragments, the graphical description of the machine
and the graphical description of the software. The
major areas of research address the following general
problems:

• Developing a Graphical Notation for the
Design and Description of Parallel
Programs.

• Developing a Graphical Notation for the
Description of Parallel Machines.

• Mapping the Parallel Software to the
ParallelMachine.

• Automatic Generation of Machine
Dependent Parallel Source Code.

• Developing Visual Methods of
Inputting the Hardware and Software
Design Details.

Extended Large Grain Data Aow (ELGDF)[8,16] is
a graphical language for designing parallel programs.
Ideally, parallel software should be designed
independent of any specific hardware on which the
developed code might eventually run. ELGDF allows
the development of a high level, machine independent
description of a parallel program. El.GDF also allows
the design of parallel software without being bound to
any particular programming language. To enter
descriptions of parallel programs, an ELGDF design

3

editor which runs on a Macintosh has been developed.
The design editor provides a visual method of inputting
software design details in ELGDF notation. The
following features have been implemented into the
design editor:

• ability to produce a hierarchical design
for parallel software in ELGDF
notation,

• ability to add detailed textual
specification to graphic notation
through dialog windows,

• easy manipulation of design by
resizing, encapsulating, and expanding
the graphical description,

• ability to assign source code fragments
to specific graphical objects,

• graphics to text (and text to graphics)
transformations for interface with other
PPSE tools.

Once the program design has been entered, other
PPSE tools permit the analysis of the design and
transformation of the design into forms such as
dependency graphs, flow graphs and source code.
Before these steps can be taken, however, specific
implementation details must be entered.

To enter descriptions of parallel machines, a
target machine editor has been developed. The Target
Machine Editor provides a graphical analog to the
classical Processor-Memory-Switch hardware
description notation developed by Siewiorek, Newell,
and Bell [20]. The present implementation of the target
machine editor runs on top of the Extend 1M simulation
package on a Macintosh. The following features are
implemented:

• ability to graphically describe small
irregular architectures or easily describe
large regular architectures,

• graphically create shared memory,
tightly coupled distributed memory or
loosely coupled distributed memory
architecture descriptions,

• describe system specific information by
entering the information in dialog boxes
which are logically attached to the
graphical icons,

• graphics to text transformation for
interface with other PPSE tools,

• ability to save and edit graphical
descriptions of systems.

In general. a number of system level blocks
(processor, memory, bus, and switch) are kept in a
library. The user selects blocks from the library and
enters specific information by double clicking on the
block and keying in the block specific information
(like processor speed or memory size) in the fields of
the dialog window. A global information block, called
the Topology File Generator must be present in all
system descriptions. This block contains information
which is global to the system. In the case of large
regular architectures, the Topology File Generator
block may be the only block necessary. All necessary
information can be entered in its dialog.

Once the software and hardware descriptions have
been gathered, the software designer should determine
the optimal assignment of software processes to
processors. A scheduling package, called Mac­
scheduler performs an automated mapping of the
software onto the hardware. Mac-scheduler maps
program modules represented as nodes in a precedence
task graph with communication (a proposed
transformation of the ELGDF design file) onto
arbitrary machine topologies and gives an allocation
and ordering of tasks onto processors. It produces as
output a Gantt chart, providing easy visualization of
the allocation of the program modules onto the target
machine processing elements, and the execution order
of tasks allocated to each processing elemenL The
Gantt chart consists of a list of all processing elements
in the target machine. For each processing element,
the Gantt chart shows a list of all tasks allocated to
that processing element, ordered by execution time,
including task start and finish times. Several mapping
heuristics are included in the package. Frequently the
best heuristic for a particular problem must be
determined experimentally. Mac-scheduler allows the
program designer to experiment with several mapping
heuristics in order to determine the the best choice for
process to processor assignments.

A desirable output from the PPSE design is
compilable somce code. A glue code module has been
developed which takes the PPSE software design, code
fragments written in a specific programming language,
and a hardware description as input and produces
machine specific somce code as outpuL The source code
can then be compiled on parallel machines. One of the
primary problems with manual generation of parallel
programs is the lack of portability of the finished code
due to the architectme and vendor specific parallel
programming primitives. Parallel programs, like
sequential programs, frequently need to be transported
across architectmes. The glue code module allows the
parallel program designer to design parallel programs

4

without specifying architecture specific
synchronization and communication primitives (such
as locks on a shared memory system or message
passing primitives on a distributed system) . The glue
code module automatically adds these primitives to the
code fragments according to the specified design in the
ELGDF editor.

2.2 Overview of the General Application: Automated
Analysis of Cloud Properties

Satellite data has a wide range of good uses .
Microwave radiometer measurements have been used to
study yearly and seasonal changes in polar sea ice
cover [18]. Visible and infrared radiometer
measurements have been used to study the oceans,
vegetation, geology, and the atmosphere. Climate
models based on satellite data have been appearing
frequently in the news as researchers attempt to
determine the sensitivity of the climate to changes in
external conditions, such as solar radiation or the
atmospheric carbon dioxide amount [12]. Images
produced from satellite data are shown in figures 3 and
4 (at the end of the report). Figure 3 is a scene of data
over the Atlantic Ocean. In figme 4, a scene over Africa
and Spain, the data has been sampled so that every
third pixel is shown.

The Spatial Coherence Method is the basis of an
automated procedure to determine cloud cover and
cloud-free radiances of specific regions using high­
resolution infrared scanner data from satellite passes
over approximately (1000 krn)2 regions. The
determination of cloud cover is useful to Atmospheric
Scientists for, among other things, deriving the
Earth's radiation budgeL The determination of cloud­
free radiances over the ocean is useful to
Oceanographers because it leads to the derivation of
sea-surface temperatures while allowing a very small
amoW1t of CIIor due to the aanosphere.

The following excerpt from Coakley and Baldwin
[5] explains some of the more basic reasons for
creating an objective analysis scheme for deriving
cloud properties:

For the better part of a century we have
suspected that through their influence on the
Earth's energy budget, clouds play a major
role in climate dynamics. Yet what role they
play remains a topic of lively debate. The
debate will undoubtedly continue for years to
come as there is yet no climatological data
set which boasts objectively derived,
quantitative estimates of clouds and their
properties. Without such estimates, progress
towards understanding the role clouds play in
the climate system is stymied There is
hope, however, that objectively derived
estimates of clouds and their properties
might come from satellite data. Recent work

l
n
n

n
n
.l

1

u

j

j

J

u

l
n
n
n
n
n

j

J

j

lJ
u
J

u
LI

would suggest that this hope will shortly
become reality.

Based on the Spatial Coherence Method, their
analysis scheme is able to derive an estimate for
fractional cloud cover and cloud radiative properties for
a fixed scene of data. A VHTST is the first pass of a
series of routines which implement this method.
Currently, one of the major drawbacks to A VHTST is
the excessive runtime necessary for analyzing large
amounts of data. The Spatial Coherence Method is now
being used in a number of cloud studies and is being
proposed for use in many more in the next few years. It
is currently in the process of being streamlined to
achieve higher data throughput rates.

According to Coakley and Baldwin [5], through
the use of properly designed parallel processors and
associated software, an operational analysis scheme
based on the Spatial Coherence Method seems entirely
feasible. Thus, the Spatial Coherence Method is now a
useful method for researchers wishing to automate the
analysis of cloud properties for small scale studies, but
to be a truly operational method - a general purpose
climatology tool - substantial reductions in processing
times are necessary. Such reductions could be achieved
through good parallel design of the most time
consuming components. The next section describes
A VHTST in more detail.

2.3AVHfST

A VHTST first takes a scene of data as input,
divides it into frames (approximately covering a (250
km)2 region and consisting of a 64 • 64 array of
pixels), and calculates local means and standard
deviations of 1024 2*2 pixel arrays. Figure 5 shows a
plot of the local means vs local standard deviations for
a frame (note: figs 5,6 and 7 are at the end of the
report). For frames with clear and cloudy sky pixels,
the plotted points will ideally resemble an arch. The
points at the foot of the arch at higher valued means
(right foot) represent cloud free pixels while the points
at the left foot of the arch represent cloud covered
pixels.

The first real task is to automate the process of
identifying the feet of the arches. Points with small
standard deviations at the feet of the arches are
associated with cloud free and completely cloud covered
regions. The algorithm to select the feet of the arches
simulates a number of decision processes in order to
determine which points belong to the feet of the arch
and which belong elsewhere. Figure 6 graphically
shows two of the steps involved. After a threshold test
is performed to remove points with high standard
deviations, a frequency distribution of the remaining
points is generated. The next major step is to calculate
a probability distribution as a function of the mean

5

radiance. Finally, as shown in figure 7, only the points
at the feet of the arch remain.

The second part of A VHTST examines the pixels
within each (60 km>2 subframe to determine which
pixels belong to a certain fooL The following steps are
performed:

• preserve statistical properties for pixels
in feet,

• preserve statistical description of
radiance field.

• note if no feet exist in the subframe,
• if no feet exist, interpolate the cloud

properties from the nearest neighbor
subframes,

• calculate and preserve several statistical
properties,

• separately identify points within feet for
each channel

To obtain cloud free radiances:
• compare the channel specific means and

standard deviations for certain spots and
determine there is agreement in
identifying a particular foot as
representing a cloud free region, the
radiance distnbutions comply with one
another if the difference between their
means is less than the root-mean-square
of their standard deviations.

• as a second check, perform a threshold
test with the visible channel data.

Finally, all the data which is to be preserved for
further processing is saved to file. A VHTST reduces the
data volume by a factor of 15 while preserving most of
the important properties for further processing.

3. Parallel Design of A VHTST
The following sections describe the use of PPSE in

parallelizing A VHTST. First, the ELGDF design editor
is used to enter a parallel program design. Next, several
potential target machines are described using the target
machine editor. The scheduling tool is then used to
experiment with program schedules and examine
possible speedup due to parallelization. Glue code is
briefly discussed, followed by a section on theoretical
results.

3.1 ELGDF Design

A simplified top level description of a parallel
version of A VHTST might look as in figure 8.

AUHTST

Figure 8. Top level ELGDF description of the
parallel solution.

Node Sl would be responsible for all data input
from file. Distinct problem instances would be passed
to replicated node Pl. Each replicated node of Pl can
execute independently. Node Fl would collect the
results and write answers to file. For some problem
instances this will be all the parallelism necessary.
However, the task is to design a parallel program
which is able to handle all problem instances.
Different parallel solutions are required to properly
handle different geometries in the input. The input may
consist of many scenes of data or it may consist of one
extremely large scene. To hardwire a parallel solution
to this problem without considering the input is a
mistake. Each replicated node of Pl should be expanded
into a smaller grained parallel solution. Figure 9 shows
this expansion.

6

Pl

Figure 9. Expansion of node Pl.

In node Pll, all the means and standard deviations
for each frame and each channel could be calculated
simultaneously. If the data consists of 16 frames and 5
channels, the potential parallelism will be 80
concurrent processes. P12 will use these calculations
to attempt to determine the subframe properties . The
number of possible concurrent processes will equal the
product of the number of frames and the number of
subframes. However, if this level of granularity is
smaller than necessary, the number of concurrent
processes could be changed to equal the number of
frames. Node P13 will need to determine for each
subframe whether a default estimate of the subframe
property is necessary. If so, then the subframe
properties will be interpolated from the nearest
neighbor subframe properties. An expansion of node
Pl3 is shown in figure 10.

1• 1 P13

Q

::::11

Figure 10. Expansion of node Pl3

As mentioned above, node P12 could be designed
to concurrently perform calculations by the number of

l
n
n
n
n
l
l
l

j

j

J

J
J

l
7
n
n
n
n

I J

l

l I
ll
J

j

u

frames or by the number of subframes yielding a
different level of granularity in each case. Figure 11
shows the expansions of P12 for each case. If the
expansion uses a for loop, then we are sequentially
making subframe calculations, but concurrently
malcing frame calculations. If we use a replicator loop
instead, then we are concurrently malcing calculations
for all subframes. The data calculated in P12 is
necessary for P131. In P131, subframes which couldn't
be determined must be filled in with default estimates
interpolated from nearest neighbor subframes. First a
check is made to see if good data exists . If not, data
must be fed in from previous calculations. This is
shown in the expansion of P13 (figure 10) at node
P131 by the bridge arc being fed in from P121.

P12

131

(a)

P12

······:•.•·································:·.········;·:.:.:.:.;.;,;.:.:.

(b)

Figure 11. In a, the expansion of Node P12 is done
using a for loop for sequential execution. In b, another
replicator is used in order to perform smaller grained
concurrent analysis.

7

3.2 Target Machine

Two sample target machine descriptions were
entered. The first for the OSU Sequent Balance 21000.
The graphical input is shown in figure 12.

I

Figure 12. Target machine description of a 20
processor Sequent Balance.

The Topology File Generator block for the
Sequent Balance target machine was given input as
shown in figure 13.

~ J Cenc■I) {E!il 1'111 IIMdr: • 111e 111ece t• ent«RIIIL
HmM IN"NMIITleN .

-1a,., _ ,..-1■""'11111-

•-- iiii.i I ~,_,,..,w_, I~ I ,, _..... 111111111 CID 111 ... - - •-•• ,_

laUIICV Pa...,alaro 0. • •• • •t Pl'lllate-., ·-•I I
a ~ _, 11,1 52 . ~
SI.IE UH INFI: l1■t--11■~ lalance 21111

l .. ,.... . fDIDBM I
1----- ---...!:===·-=-~--=·---181 w,na ••... O!!!!!] ••IV - ,,,.,_,...,., 11111 -•• to -.

Figure 13. Dialog box of Topology File Generator
block .

The generated Topology File is partially shown in
figure 14. The topology file contains three main
sections:

general information

block identification

• adjacency list

The topology file contains a textual description of
the target machine . Potentially, other PPSE modules
will be able to use this information to advantageously
create a running parallel program which is optimally
fit to the target machine . For effective use of parallel
systems, it is essential to obtain a good match between
algorithm requirements and architecture capabilities
(13].

<SSST ART T ARGETSS>
•procs 20
•caches 20
•buses 5
•swttch o
•1tnks o
•ethn 0
•mems I
network shared
latency_e 1
latency_b 0
busnite 26.S
sheredmem I 6000
privmem 8
sysname
language

Sequent Be lance 21000
FORTRAN

Block 1dentlf1cation
processor 1 a
pspeed 18 1
processor 1
pspeed I 1

• •
Adjacency L1st (self ,lnputs to self from._)
18 19
1 2
16 17
14 15
12 13

•
Adjecency Ltst lself, outputs from self to .. .)

18 19
1 2
16 17
14 15

•
21° 44
23 46
45 24
<SSEND T ARGETSS>

Figure 14. Topology File

A description of the second target machine
description is delayed until the next section. The idea
there is to first examine the dependency graph of a
particular instance of the problem and then design a
fictitious target machine that might match the
algorithm nicely.

8

3.2 Scheduling

From the ELGDF design, we need to form a
dependency (or task) graph. The dependency graph is
the required input for the scheduling algorithms in the
scheduler tooL The program design is trmsfonned into
a dependency graph. The schedule is an assignment of
processes to processors. In order to form a dependency
graph for this problem, actual parameter values will
need to be known. As an example, 2 channels of data
for a 2 by 2 scene are specified as input parameters. The
dependency graph with relative runtime estimates is
~hown in ~gure. 15. In each bubble, the number on top
is a node identifier and the nwnber below is relative
runtime for the specific code fragment which the
bubble represents. The arcs represent communication
time. In this example, these values have all been set to
unity, signifying that communication time is
constant.

Figure 15. Dependency graph.

It is important to note that this dependency graph
is for only one simple instance of the problem - when
we have one scene of data with 2 frames in each
direction. The typical scene of data with 4 scenes in
each direction would have a different dependency
graph. Its graph would contain at least 66 nodes (as
opposed to only 18 for this example) and the edges
between the third and fourth level would correspond to
a nearest neighbor dependency (in the actual geometry
of the problem).

With the PPSE scheduler software, a gann chart
~d speedup graph can be estimated for this problem
mstance. The speedup curve is shown in figure 16 and
the gann chart in figure 17.

l
n
l

l
l

1

J

J

1

J

j

J
J

7

n
n
n
n

l

J

l I

IJ

J
J
J

:5
s
p ..

•
• J
4
u 2 ,

0
2 J .. I
NlanlMrafPr-•ors

■ DSH • ta • 1SH C Kl 0 VU> OIIJ

Figure 16. Speedup curve

The speedup curve shows that with two
processors, we get a speedup of two. For 4 processors,
the speedup is slightly more than 3. The speedup graph
also shows that the choice of scheduling algorithm
makes very little difference . Although the current
scheduler does not take full advantage of the
architecture information supplied in the topology file,
the scheduler tool provides useful information to the
parallel program designer. We are able to roughly
determine the useful number of processors for a given
application from the speedup curve, and we are able to
compare different parallel solutions to a problem by
comparing the gantt charts produced by each program
description.

p,.

T-
0

2

lS

◄
15

6

7

• ,
10

11

12

1ll

1 ◄

,:1

16

17

1 ■

" 20

21

22

2:S

24

2~

26

27

Figure 17. Gantt chart

9

Across the top of the gantt chart is a column for
each processor. Down the column is a schedule of
processes which will be assigned to the particular
processor. Blank space in a column signifies that the
processor is idle (although communication from
another processor may be taking place) .

To a naive parallel programmer, an ideal computer
for this problem (2 by 2 scene) might exactly match
the dependency graph. A fictitious system meeting this
description could be described with the target machine
editor. Such a system is shown in figure 18.

Figure 18. A hardware topology that might perform
well for 2 by 2 scenes.

When this system's Topology file is input to the
scheduler, we find that the system will not perform
much better than a 4 processor fully connected system .
The best schedule produced using this topology reveals
that the program will complete in 23 time units. With
4 processors, the program completes in 26 time units.
The useful processor point for this problem is 8. We
can achieve the same or better results with 8 processors
than we can achieve with more than 8 processors. A
look at the speedup curve for this problem reveals that
the curve reaches maximum at about 4 processors (see
Figure 18a). Devoting more processors to the problem
will not provide any benefit. The scheduler is
extremely useful for determining these types of issues.

p ~

• • :s
" u 2
p

o.i....---,U--5~~--,-~--1-0~~--11~~--1-U--1~1~ ,..,.....,,
■ DSH •Kl

Figure 18a. Speedup Curve for alternate topology
reveals that using more than 4 processors yields little
benefit, and more than 8 processors yields no benefit
for this instance of the problem.

For different input, another architecture
possibility would be to use a distnouted system with n
processors, where n is equal to at least twice the
number of scenes being analyzed. Each pair of
processors would independently analyze a scene of data
and write results to a common file system. The choice
of best architecture depends entirely on the input.
Analyzing 600 scenes would be faster on a distributed
system with lots of processors. Analyzing 1 large
scene would be faster on a more tightly coupled system
whose topology closely matches the needs of the
dependency graph.

3.4 Glue Code

Currently, PPSE does not have a module which can
transform FORTRAN code fragments and an ELGDF
design into a working parallel program. The glue code
step was accomplished manually and is discussed in

• section 4.2. Recommendations for FORTRAN glue
code are given in section 5.7.

3.5 Theory

At the top level of design detail, independent
processors can perform calculations on independent
scenes. Sequential A VHTST nms in time O(n), where n
is the number of scenes being analyzed. This can be
shown when actually running the program (see Table
1). Analysis of one scene takes 10 minutes on one
Sequent processor. Two scenes take 20 minutes, and 50
scenes take 500 minutes. Parallelizing the program so
that all scenes can be analyzed simultaneously creates a
program with constant runtime (0(1)) if the number of
scenes being analyzed is less than the number of
processors. We will use the notation T(p,n.A) to
express the execution time of algorithm A with input
size n on p processors [11). If we use twice as many
processors as scenes, we should be able to achieve:

T(2n,n,A VHTST) < T(l,1.A VHTST)

That is, multiple scenes can be processed in less
time in parallel than 1 scene sequentially. In the next
section, an implementation of the program which
achieves this goal is discussed.

10

4. Parallel Implementation of
AVHTST

A parallel version of A VHTST was constructed
which generally adheres to the PPSE design. The target
machine was a Sequent Balance 21000. Parallelism was
achieved using compiler directives which are
preprocessed to generate a parallel version of the code
acceptable to the compiler [17). Data type and data
dependency analysis were performed manually.

4.1 Preliminary Steps - Porting

In order to get parallel FORTRAN code to work on
a parallel machine, it may be necessary to first port the
sequential version (if one exists) and learn the tricks of
the machine and the compiler. FORTRAN, unlilce C, is
typically difficult to port. The three most common
problems are as follows:

• Fonnat of binary input/output data - different
machines maintain different internal formats
for storage of FORTRAN unformatted
(binary) data. When processing data in a
distributed manner, each machine must be
able to receive data from a remote machine
and correctly handle differences in binary data
format. Differences involve word size (ie. 64
bits for Cray X-MP, 32 for Sequent), floating
point format (ie. VAX doesn't adhere to the
IEEE standard for floating point), and record
length byte counts (ie. VAX maintains a 4
byte header to all records, Sun maintains 8
byte headers and trailers, Sequent doesn't use
byte counts). Many machines also maintain
different byte orderings. This becomes
apparent after binary file transfer occurs. Code
that compiles may not work because of these
input format problems.

0 Input/output statements - most machines
allow I/0 extensions to the FORTRAN 77
standard and much of the actual code in
existence uses these extensions. However,
they typically aren't uniform over a range of
machines. OPEN, READ, WRITE and
INQUIRE statements typically need to be
translated in some way from machine to
machine.

• Adherence to FORTRAN 77 standard - most
compilers don't strictly adhere to the
FORTRAN 77 standard [19). The FORTRAN
77 standard provides that variables internal to
a subroutine are not guaranteed to be saved
between successive calls to that subroutine
unless the variable is declared global in a
SA VE statement If this part of the standard
were enforced, a large fraction of all programs
written would immediately cease to function

l

n
n
l
1

l

l
)

j

J
J

J

l
n
n
n
1

n

7
J

j

[]

J

J

J

[19). The Sequent Balance FORTRAN
compiler does enforce this part of the
standard. This creates a problem for code
written on less strict compilers like the VAX
compiler which is to be ported to the
Sequent.

To get A VHTST poned to the Sequent Balance, the
binary 1/0 problem and the 1/0 statement problems
needed to be addressed. A VIITST takes binary input and
produces binary output. The binary output is typically
processed on a Sun Workstation. Figure 19 shows the
steps necessary for running A VIITST on a parallel
machine in a production mode .

Figure 19. Production mode of A VHTST on a Parallel
Machine. Input to A VIITST would typically come from
another machine (Machine X) . The data would be
transferred to the parallel machine via binary FTP. The
data then needs to be transformed into the parallel
machine's desired input format. A VHTST processes the
data and produces a binary output file. This file would
be sent to another machine for further processing (ie
imaging). Once arriving on Machine Y, the binary data
must again be transformed into a form acceptable by
Machine Y.

4.2 The Working Version

Once the porting problems are handled, the
problem of creating compilable source code can be
dealt with. PPSE will eventually attempt to automate
this process for FORTRAN code, but for now it must be
done manually . The simplest way to create replicated
code from FORTRAN DO loops is to recode the loops
as C$DOACROSS loops. An example of this is shown
in figure 20.

11

CSdoac:n,11 1hare(1p,kcor,x,11, 1cor,nxf nn,kchan,tchan,xx 1 ,q11wt,
CS& 11111r,xl1v,nplt,tplot,nywt,fll1nam ,
CS& i,wt,n1>1r,nptcx,n11tn,nntn,111un).
C$& local(n1ptc,nfptc,k,tch,t,xmtn,xmex,xmean,
CS& ndl1p,tuwt ,numf11t,1tp,111,112,11op1,m1cel1 ,l,x3,
CS& n 1,n2,n3,np,11md,ll,
C$& hplt,11pll,zpll ,t1c1l1,dl1p,
CS& ndlY,mdlY,n1x,n1tg,lpk,nptc11,ht1tm,
C$& lblx,tlblx,klblg,lblglen,lbll,lbltlen,
C$& hl1t,11ht1l)

do 300 lxun = 1, nxfrm
pnnt• ,'ENTERED PARAUEL LOOP - PROCESS: ',1xun . .

300 CONTINUE

Figure 20. Example code

Sequent requires variable analysis for all variables
within parallel portions of the code. This was
accomplished manually but perhaps could have been
done using the static analysis code analyzer being
developed at Portland State University as part of the
PPSE projecL All sections specified as replicated in the
PPSE design were coded with CSDOACROSS loops.
Thus the PPSE design was implemented . All variables
that were passed on data arcs in the design were
implemented as shared variables. When necessary,
access to shared variables was controlled with
LOCK/UNLOCK statements.

4.3 Timing Comparisons

From section 3.5, we had hoped to achieve the
following result:

T(2n,n,A VHTST) < T(l,l,A VIITST).

Using 2n processors to process n scenes of data
will take less time than processing 1 scene
sequentially. For real machines, this holds as long as
2n is less than or equal to the number of processors for
the particular target machine. A sequent Balance with
16 processors should be able to process 8 scenes in
parallel faster than 1 scene with a sequential program.
Table 1 illustrates the timing results achieved with the
parallel version of A VHTST.

Date S1qu1nt11l Parel11l Proc111ors Sp11dup Efflct1ncy
S1ZI Time Ttm1 U11d

1 10:32 7:02 2 1.49 0.745
2 21:06 7:03 4 2.99 0.748
3 31:39 7:08 6 4.44 0.739
4 42:10 7:06 8 S.93 0.742
s S2:45 7:10 10 7.36 0.736
6 63:20 7:18 12 B.67 0.723
7 73:S6 7:1S 14 10.18 0.728
8 84:32 7:2S 16 11.40 0.712

Table 1. A VIITST timing data. Data size is number of
scenes. Processors used is the number of processors
used to achieve the parallel time shown. Speedup is
defined as sequential time divided by parallel time for
the same sized problem. Efficiency is equal to the
speedup divided by the number of processors used.

The significant result is that for a problem of size
n, as long as at least 2n processors are available, the
complexity of the algorithm is 0(1) . The parallel
solution has reduced the order of complexity from O(n)
--> 0(1).

5. Subjective Analysis of PPSE

tools
Overall, the PPSE tools (even in their conceptual

state) were useful for parallelizing the satellite data
analysis problem. The tools provide a framework for
good structured design of parallel programs . An
essential feature is the splitting of the program design
from the architecture description. This idea should help
program designers to produce portable parallel code.
The scheduler tool provides useful information to the
programmer and the glue code module should prove to
be a great time saver in the future. The rest of this
section deals with proposed additions, enhancements
and clarifications which may help to strengthen the
PPSE tools.

The parallel solution to A VHTST is simple.
Creating a parallel version of A VHI'ST is extremely
difficult and time consuming to do manually, and the
resulting program will likely be bound to a specific
architecture. PPSE should offer support to problems
which have a conceptually simple parallel solution,
but unload a time consuming and difficult task of
redesign and restructure on the parallel programmer. In
this problem, the amount of independence in the
resulting data structure is so large that the real concern
of the parallel programmer is not whether to parallelize
but where to parallelize. The following sections
discuss possible ways to improve PPSE in order to
better deal with problems like A VHI'ST .

5.1 Visualization of the conceptual class of the parallel
program.

While ELGDF allows design specification for
A VHI'ST, it doesn't help the parallel program designer
write a parallel program. It's like being given a
dictionary of a foreign language and attempting to
make coherent sentences without first learning the
rules of grammar. ELGDF should provide a top level
structure which adheres to a parallel programming
conceptual class. Parallel programs fall into several
conceptual classes [4]. Three main conceptual classes
are result parallelism, agenda parallelism and specialist
parallelism. These three conceptual classes can be
programmed with the following three parallel
programming methods: message passing, distributed
data structures, and live data structures. The following
discussion addresses the conceptual class in which
A VHI'ST most naturally falls - the result parallelism
class .

12

In result parallelism, the programmer must
visualize the resulting data structure which the program
produces as a finished product The result can be broken
into components which can be computed concurrently.
Some components may rely on others (and thus we
have dependencies), but other components may be
completely independent. The highest level concurrent
processes in this model are all responsible for
producing part of the final result . In A VHTST the
resulting data structure is an array. The following
diagram is a high level visualization of one way to
design the program:

0 0
0 0
0 0

0
0
0

0
0
0
• • •

101010101

••• 0
• •• 0
••• 0

•••

Figure 21. Result Data Structure partitioned into
sections which can be computed concurrently.

The resulting data structure has been partitioned
into sections whose computations can all proceed in
parallel. Each circle represents a process which
computes the corresponding section of the result. The
dependencies between the different section will need to
be shown at a lower level of detail. This type of higher
level diagram could easily be animated to show the
progress of the parallel program as it computes the
result (idea from [4]).

@ @

® 0
@ 0

®
0
0

0
0
0
. . .

... ~ ... ~ @ Terminated

... ~ 0 Actiw

~ Stlx:k

Figure 22. Possible animated scene of the parallel
computation of the resulting data structure.

l
n
n
n

1
l

l

l
l

J

]

7
n
n
n
n
n

I J

l J

lJ

j

J
J

Each of the circles (processes) in the resulting data
structure could be expanded into an ELGDF description
of the necessary calculation steps.

5.2 Specify an input parameter file.

An input parameter file would help generate
accurate Task Graphs, schedules and glue code while
allowing the programmer to generalize the ELGDF
design. The ELGDF editor should allow the programmer
to enter variable parameters in the design for things
like nwnber of replicated processes and upper ranges of
loops. A variable template should be created by the
editor which is filled in by the user before generating
task graphs, schedules or glue code. The input
parameters would specify possible problem sizes.

For example, with A VHTST we would like to be
able to specify a variable nwnber of scenes of variable
size, variable pixel array sizes, variable nwnber of
frames and subframes, and variable size of frames or
subframes . With different input parameters, the
schedulers should parallelize around different
parameters. In some cases, parallelization by scene
might be effective . In other cases, parallelization by
channel, or by frame or some other parameter might be
effective.

5.3 Data structure design should be more prevalent in
the program design.

While the program flow is an important concept,
the parallel data structures involved in the parallel
program are equally, if not more, important. The
ELGDF storage construct is woefully inadequate for the
design of real parallel programs . Most programmers
would like assistance in visualizing the data structures
involved in parallel computation. For example, the
concept of a distributed data structure is one that can be
effectively implemented on both shared memory or
distributed memory machines. A distributed data
structure is logically shared but may exist in different
physical memories. The programmer should be able to
design a distributed (or any kind) of data structure and
then design processes which work with the data
structure.

5.4 Need a formal syntax specification of ELGDF.

The following list of examples illustrate the
problem:

• In a FOR loop structure the control variable
and ranges are input in a dialog box. If the
next level down is a code fragment. is the loop
control from the dialog automatically appended
to the code fragment or should the programmer

13

specifically include the control line and
associated (syntactic characters ?). What if the
control and ranges specified in the dialog box
don't match the control and ranges specified in
the code fragment?

• Replicated code may need different input for
each node, and the input may not correspond
exactly with the control variable . For example,
replicated code may need to read and write
according to a file name which was input to
the specific code segmenL Where should the
input be specified in an ELGDF diagram.
Another example is the representation of a
queue or stack structure which provide input to
a number of replicated processes. It is not clear
how to represent these structures in ELGDF .

• The proper usage of storage construct is
completely unclear. Do they need to be
included at all in the design specification?
Only for synchronization?

A clear specification for the usage of the ELGDF
constructs needs to be formulated.

5.5 User/PPSE Responsibilities

The user should not have to specify bytes on arcs
or run times of code fragments. Bytes on arcs should be
estimated from the input parameter file and the
topology file. Overloading the user with details will
not make the task of parallel programming easier.
Estimating the run time of code fragments is a more
difficult problem, but one that should be dealt with by
PPSE and not the user. With an input parameter file and
a topology file, an estimate of the run time of the code
fragment should be possible. The original estimates
should OCCW' when the user first attempts to generate a
schedule and the values of unaltered sections of code
should be saved thus reducing the run time for
additional schedule generations.

5.6 Theoretical Obstacles with Common Structures

Preswnably, ELGDF common structures like while
loops and repeat-until loops will need to be
transformed into task graph elements. They can't be
expanded because the expansion of a conditional loop
may be infinite . They need to be dealt with as singular
computation units, but doing this will prevent any
further hierarchical breakdown of the conditional loop
program segmenL Thus, a while loop as the top level
bubble in an ELGDF description may mean that the
entire program must be specified in a programm ing
language unless a method of merging textual
descriptions with iconic descriptions is worked out.
Such methods are not presently available .

The use of conditional while loops will also
present a difficult theoretical problem to schedulers .

First of all, it is impossible to predict the nm time of a
code fragment which contains a conditional while
loop. In fact, it is impossible to even know if the code
fragment will terminate. We can't require that
conditional loops not be allowed; that would be absurd.
A programming language with no conditional loops
can't represent all possible programs and would be less
powerful than the Basic language even. The use of
common structures needs to be clearly explained and a
method of transforming them to task graph and glue
code elements should be thoroughly worked out.

5.7 FORTRAN Glue Code

Creating FORTRAN glue code may tum out to be
slightly more difficult than for other languages (such
as C) because many real FORTRAN code fragments will
lack structure and strict adherence to the FORTRAN
standard. There are two basic options when creating
glue code:

1 . translate to a portable parallel language.

2. translate to a machine specific language.

With the first option, there is FORTRAN-Linda,
FORTRAN-BX, or packages such as Schedule
(developed at Argonne National Labs). FORTRAN­
Linda is not yet released and FORTRAN-BX is not
implemented on many machines and does not support
multitasking. Schedule is currently available for a
number of parallel machines, but by the developer's
admission, has a limited lifetime [7].

A tradeoff exists between the two options. The
second option will probably yield higher performance
code at the expense of code comprehension. This may
be a severe drawback in the debugging phase. Also,
developing separate glue code for each parallel
machine may prove to be an unwieldy process.

The purpose of PPSE is to demonstrate the
feasibility of the idea rather than demonstration of
high performance. For this reason, we should pursue
the first option of translating to a portable parallel
language. Specific vendors should be responsible for
implementing the portable parallel language into their
system.

If we choose to implement the first option
immediately for FORTRAN, then we must go with
Schedule. Since Schedule programs develop naturally
from data dependency graphs, this may be the best
choice anyway. If the development of FORTRAN glue
code is to be delayed for several months, then waiting
for the release of FORTRAN-Linda may be the best
move.

14

5.8 ELGDF Representation of Iterative Relaxation
Class of Problems

According to Finkel [11), most distributed
algorithms fall into one of several classes. Iterative
relaxation is somewhat analogous to result
parallelism. The data space is divided into adjacent
regions which are then parcelled out to different
processes. Each process carries out activities local to
its region, communicating with neighbors when
necessary. This category includes the solution to PDEs
and graph problems like finding a minimum spanning
tree . Figure 23 illustrates an iterative relaxation
solution to A VHTST.

I
I

--

.L
-I ~

Figure 23. The data space is split by frame and by
channel (top). All possible frame calculations are made
- black squares indicate missing data (middle). Missing
values are interpolated from nearest neighbor results
(bottom).

In fact, this is exactly the intended design of the
problem as specified in the data dependency graph
(Figure 15). The original ELGDF design (section 3.1
and Figures 8-11) is intended to represent this same
idea. However, in order to transform the ELGDF

l
n
n
n

7

7

J

u
J

J

J
J

l
n
n
n
n
n

f J

I j

1
u
J

description of the algorithm to the proper task graph,
more information needs to be present in the design.
The representation of nearest neighbor communication
does not seem possible with either the replicator or fan
structures. The replicated structure would need to be
bypassed in this case - the design needs to more
closely resemble the task graph. But if program
designers must frequently bypass the ELGDF
convenient structures in order to properly represent the
program design, the utility of these structures will be
lost; they will become an unnecessary and
inconvenient intermediary step towards the final
intended design. Although a replicated loop seems to
be an intuitive choice for representing this program
design with ELGDF, it doesn't capture the necessary
amount of information to properly represent the
design. This is a common problem with ELGDF
structures: convenience has been placed ahead of
information content.

6. A Plan for integration of the

PPSE tools
Conceivably, the ELGDF editor, task grapher,

scheduler, and glue code module could all exist within
the same shell program . The current Target Machine
editor is based on a commercial product and wouldn't
integrate as easily. The two programs could be run
simultaneously using multifinder or a new target
machine editor should be developed which more easily
integrates into the system. A possible sequence for
designing a parallel program could adhere to the
following steps:

1. From within the Target Machine Editor program.
enter the descriptions of several target machines.
Generate topology files for these machines and exit
the program.

2. Enter top level design of program based on the
most natural parallel program design method. This
might correspond to the resulting data structure, the
agenda of activities, or specialist parallelism. From
the top level design. enter the ELGDF description

• of the program.

3. Enter constant input parameters which correspond
to the generalized ranges for ELGDF convenient
structures (ie. loops, replicators, etc.). These input
parameters will be needed for construction of the
task graph and schedules.

4. Generate a schedule. User will need to specify the
location of the Topology file and Input Parameter
file. The task graph should be automatically
generated and used as input to the scheduling
routines. The user will be interested in viewing
schedules as a means of comparing different
program designs, different input parameters, and

15

different target architectures. The user may also
want to view speedup charts, and possibly a graph
showing the correspondence of nmtirne to problem
size (problem size will be a function of the input

5 . Generate Glue Code. The user may want to specify
variables around which to parallelize. Using
A VHTST as an example, I might want to calculate
all scenes in parallel, or I might want to calculate
all channels concurrently, or I might want to
calculate all x-direction frames concurrently. The
program design should be general enough to handle
all these situations and the gantt chart should have
given me a hint about which parts of the program
should compute concurrently. The glue code module
must be told how to parallelize the program. The
decision must be made by the user or by PPSE.

6. Transfer the Glue Code to the Target Machine,
compile, and run.

These steps are not currently possible.
While this paper is not a requirements
analysis study, the tool designers should
pay close attention to the needs of parallel
programmers. The needs for creating a
parallel FOR1RAN program may not be the
general needs, but they are important to an
extremely large class of potential parallel
programs.

7. Conclusion
In an article about a programming environment

similar to PPSE [3], the authors state, " .. we believe no
one should be allowed to publish an article about their
programming environment until it has been used by
some threshold number of users." PPSE has not yet
been used by an acceptable threshold, but shows
extreme promise as a viable environment. The
designers of PPSE realize that the system must be
iteratively refined and are willing to implement their
ideas into usable software tools in order to facilitate
the necessary interaction between themselves and
parallel programmers. The availability of these tools
allows useful testing of concepts.

Clearly, PPSE is on the right track. More research
needs to be done in the area of graphical program
description. ELGDF has some problems. Specifically,
the transformation of ELGDF gr11,phs into dependency
graphs is a difficult problem because an information
void must be dealt with. Current ELGDF structures can
not handle the necessary level of detail for proper
transformation into accurate task graph
representations of the program. On the one hand,
ELGDF needs to capture more of the programmer's

intent, but not at the expense of overburdening the
design process with details which could properly be
left until further refinement is necessary. Also, many
of the structures and paradigms which are important to
parallel programming are difficult or impossible to
represent in El.GDF . The design description language
should not inhibit program designers from designing
programs, but rather facilitate the process. PPSE has
this goal in mind.

The prototype parallel version of A VHTST was
successful. More test cases should be worked through
PPSE in a manner similar to that described in this
paper. There are two benefits to this . The first is a
benefit to PPSE. Whether successful or unsuccessful,
the more test cases which are run through PPSE, the
better the final product will be. Unsuccessful test cases
will give insight into ways to improve PPSE into a
more robust set of tools. Successful test cases will be
forward steps toward proving a set of important
concepts . The second benefit is experience with
parallel programming. Designers of parallel
programming environments need to have a large
amount of this experience in order to understand the
problems , frustrations, and complexities involved
with the task of designing parallel programs.

References

1. R.G. Babb, Programming Parallel Processors,
Addison-Wesley Publishing Company, Inc., New
York, 1988.

2 . R.G. Babb, D. DiNucci, "Design and
Implementation of Parallel Programs with Large
Grain Dataflow, in The Characteristics of Parallel
Algorithms, L. Jamieson , D. Gannon, R.
Douglass (editors), MIT Press, Cambridge, Mass.,

3 . J.C Browne, M. Azam, S. Sobek, "CODE: A
unified Approach to Parallel Programming", IEEE
Software, Volume 6, Number 4, July, 1989.

4. N. Carriero, D. Gelemter, "How to Write Parallel
Programs", Report #SCA-140, Scientific
Computing Associates, Inc., New Haven, CT,
November, 1988.

5. J. A. Coakley, D. G. Baldwin, "Towards the
Objective Analysis of Clouds from Satellite
Imagery Data", Journal of Climate and Applied
Meteorology, Vol 23, No 7, July 1984.

16

6. J. A. Coakley, F. P. Bretherton. "Cloud Cover
from High Resolution Scanner Data: Detecting and
Allowing for Partially Filled Fields of View",
Journal Geophysics Research, 87, 4917-4932,

7. J. Dongarra, D. Sorenson. "SCHEDULE: Tools for
Developing and Analyzing Parallel FORTRAN
Programs", in The Characterjstics of Parallel
Algorithms, L. Jamieson, D. Gannon, R.
Douglass (editors), MIT Press, Cambridge, Mass.,
1987 .

8 . H. El-Rewini and T. Lew is ," Software
Development in Parallax: The El.GDF Language,"
Technical Report (88-60-17), Dept. of Computer
Science, Oregon State, University, July 1988.

9. EOS: Earth Observing System , Science and
Mission Requirements Working Group Report,
Volume I, National Aeronautics and Space
Administration, Goddard Space Flight Center,
Greenbelt, Maryland, 1984.

10 . EOS: From Pattern to Process: The Strategy of the
Earth Observing System, EOS Science Steering
Committee Report, Volume II, National
Aeronautics and Space Administration, Goddard
Space Flight Center, Greenbelt, Maryland, 1986.

11 . R. Finkel, "Large Grain Parallelism - Three Case
Studies", in The Characteristics of Para!lel
Algorithms, L. Jamieson, D. Gannon, R.
Douglass (editors), MIT Press, Cambridge, Mass.,

12 . A. Henderson-Sellers, Satellite Sensing of a
C)oudy Atmosphere, Taylor & Francis Ltd.,
Philadelphia, PA. 1984.

13 . L. Jamieson, "Characteriz ing Parallel
Algorithms", in The Characteristics of Parallel
A)gorithms, L. Jamieson, D. Gannon, R.
Douglass (editors), MIT Press, Cambridge, Mass.,

14 . A. KaJP, R. Babb, " A Comparison of 12 Parallel
Fortran Dialects", IEEE Software, September
1988 .

15 . B. Kruatrachue, "Static Task Scheduling and Grain
Packing in Parallel Processing Systems," Ph.D.
Thesis, Oregon State University, Corvallis,
Oregon. 1987.

l
n
n
n
n
l
]

u

j

J
J

n
n
n
n
n
J
n
0
0
D
0
J

ll
lJ

1

16. T. Lewis, "Parallel Programming Support
Environment Research", TR-PPSE-89-1, Oregon
Advanced Computing Institute, Beaverton ,
Oregon, 1989.

1 7. A. Osterhaug, Guide to Parn!JeJ Programming on
Sequent Computer Systems. Sequent Computer
Systems, Beaverton, Oregon, 1987.

18. C. Parkinson, W. Campbell, et al, Arctic Sea Ice,
1973-1976· Sate)Jjte Passive-Microwave
Obseryatjons. National Aeronautics and Space
Admirtistration. Washington, DC, 1987.

19. W. Press, B. Flannery, S. Teukolsky, W.
Vetterling, Numerjcaj Recjpes. Cambridge
University Press, New York, 1986.

20. D. Siewiorek, C. G. Bell, A. Newell, Computer
Structures: Principles and Examples. Mcgraw-Hill
Book Co, 1982.

17

Additional Figures

Figure 3. Infrared Image from NOAA-7 Satellite. The image is 384*256 pixels. The
scene is over the Atlantic Ocean.

l
n
n

]

J

u
J

u
J
u

7
n
n
n
il

I
l

I
)

I

[j

l J

lJ
J

u
J

Figure 4. Infrared Image over
Africa and Spain. The Image
is 512*128 sampled pixels.

"'KM GAC 2 X 2
10

11 , 11

8
z
0
;:::
< >
"" 6 Q

Q
a::
<
Q
z
<

"' --
....

Ill _,
<
0
0
...J

2

0
70 80 90 100

LOCAL MEAN 11µ. RADIANCE

Figure 5. Local means vs standard deviations for a frame of data form an arch.

"'KM GAC 2 X 2 "'KM GAC 2X2

200 800

11,11 11. 11

150 600

► 0
z ~ "" 100 "'00 ::, C, a Q,

"" a:: ...

50 200

LOCAL MEAN 11µ. RADIANCE LOCAL MEAN 11µ. RADIANCE

Figure 6. Frequency Distribution and Probability Distribution .

n

n
n

J

l
1
j

l
j

I I
j

J

u

7
n
n
n
n
fl

I
f j

j

J

[j

(J

u

4 KM GAC 2 X 2
10

11. 11

8
z
0
;:::
< >
"' 6 0

0
a:
<
0
z
~ 4
Vl
...J
< u
0
...J

2

~~~ ·~ 
0 1..- ........ -~f .... · ..;...__._...._...._...._....._...,'---'-__.__' l!!!!!!!,,.--.J 

70 80 90 100 

LOCAL ME.AN 11µ. RADIANCE 

Figure 7. Feet of the arches. 


	Judge_Rudd_89_80_02_A
	Judge_Rudd_89_80_02_B

