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Consistent Linear Speedups* 

L. V. Kaietand Vikram A. Saletoret 

ABSTRACT 

Consider the problem of exploring a large state-space for a goal state where although 

many such states may exist in the state-space, finding any one state satisfying the 

requirements is sufficient. All the methods known until now for conducting such search 

in parallel using multiprocessors fail to provide consistent linear speedups over sequential 

execution. The speedups vary between sublinear to superlinear and from one execution 

to another. Further, adding more processors may sometimes lead to a slow-down rather 

than speedup, giving rise to speedup anomalies reported in literature. We present 

a prioritizing strategy which yields consistent speedups that are close to P with P 

processors, and that monotonically increase with the addition of processors. This is 

achieved by keeping the total number of nodes expanded during parallel search very close 

to that of a sequential search. In addition, the strategy requires substantially smaller 

memory relative to other methods. The performance of this strategy is demonstrated 

on a multiprocessor with several state-space search problems. 

KEY WORDS: Parallel algorithms; parallel depth-first search; first solution; state-space trees; 

l j linear speedup. 

u 

u 
u 
J 

*This research has been supported in part by the National Science Foundation under Contract No. CCR-89-02496. 
t Authors Address: Department of Computer Science, Univer sity of Illinois at Urbana-Champaign, Urbana, Illinois 

61801. 
t Author's Current Address: Department of Computer Science, Oregon State University, Corvallis, Oregon 97331. 



List of Figures 

1 Sequential depth-first search of a search tree and wasted work with parallel execution. 

2 Search tree expansion using bit-vector priorities. 

3 Binary decomposition of a search tree ......... 

4 Broomstick sweep of a search tree using the delayed-release technique. 

5 Algorithm for the implementation of the delayed-release techniq11:e. 

6 Expansion of a search tree using the delayed-release technique. 

7 126-Queens: Speedups to the first solution on Sequent Symmetry .. 

8 126-Queens: Maximum queue lengths to the first solution on Sequent Symmetry 

9 126-Queens: Maximum memory usage to the first solution on Sequent Symmetry 

10 8 x 8 Knights-Tour: Speedups to the first solution on Sequent Symmetry. .. 
11 6 x_ 6 Magic-Squares: Speedups to the first solution on Sequent Symmetry. . . 

12 Parallel IDA*: Speedups to the first optimal solution of the 15-Puzzle problem. 

13 PPIDA *: Speedups to 1st optimal solution of the 15-Puzzle. Problem size: Small 

14 Concurrent execution of prioritized iterations in PIO-PIDA *. ............ 
15 PIO-PIDA *: Speedups to 1st optimal solution of the 15-Puzzle. Problem size: Small 

16 PIO-PIDA *: Speedups to 1st optimal solution of the 15-Puzzle. Problem size: Large 

32 

33 

34 

35 

36 

37 

38 

40 

41 

43 

45 

47 

49 

50 

51 

52 

~ 

l 
1 
D 
l 
I 
] 

I 

I 

lJ 
LI 

I 
J 



l 
l 

.1 

l 
D 
n 

~ 

J 

l 

j 

l I 
I 
u 
u 
J 

J 
u 
u 

List of Tables 

I 

II 

III 

126-Queens: Number of nodes expanded to the first solution. 

126-Queens: Performance to the first solution with increasing branching factor. 

8 X 8 Knights-Tour: Maximum queue lengths to the 1st solution ...... . 

39 

42 

44 

IV 6 x 6 Magic Squares: Queue lengths and memory usage to the 1st solution. 46 

V Parallel IDA*: Queue lengths and memory usage to the 1st optimal solution of the 

15-Puzzle problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 



l 
n 
.n 

0 
n 
I l 

1 

j 

LI 
] 

] 

j 



l 

D 

1 Introduction 

Consider the problem of searching for a solution in a large state space, starting from a given initial 

state. The state space is usually structured as a tree, with operators that can transform one 

state ( also called a node) to another forming arcs between different states 1 . In a large class of 

such problems, the computations tend to be unpredictably structured and have multiple solutions. 

Frequently, the desired solution is specified by certain properties, and any state satisfying these 

properties is an acceptable solution. Sometimes one is interested in optimal solution( s) based on 

certain cost criteria. However, many times, one is interested in just any solution. We focus on n parallel exploration of search spaces in the latter context. 
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Search is a major computational paradigm in Artificial Intelligence, and with developments 

and advances in AI, sophisticated AI computations are taking longer and longer times to run even 

on the new faster processors. ff AI research is to achieve its long term, ambitious objectives, it 

seems clear ·that it must use parallel processing techniques [1, 2, 3, 4). Secondly, many 'real-life' 

applications such as in planning (plan construction) [5, 6), symbolic integration [7, 8, 9), synthesis 

paths for organic compounds in Gelernter's SYNCHEM [10), test generation for VLSI circuits [11), 

etc. require finding an adequate solution rather than an optimal one. Another example is theorem 

proving, which requires only one proof, although many proofs may exist. 

The search space involved in search problems tends to be very large, and is a highly computa­

tionally intensive problem. Search may appear to be naturally parallel computation. At any state 

one may apply multiple operators to obtain successor states, and then subtrees beneath each node 

can be searched by different processors. The parallelism between alternative subtrees is called spec­

ulative parallelism [1, 12, 13, 14). This simple illusion of parallelism is shattered by the following 

observation. If a solution is found in the first subtree, the work done in the other subtrees is wasted. 

This phenomenon was observed early on [15), and it was noted that due to this, parallel search may 

present anomalous results i.e. the addition of processors is not guaranteed to increase speedups. 

Speedup performance of parallel state-space search is given by the ratio of the time taken by a 

sequential depth-first search algorithm to the time taken by the parallel version. The problem we 

address here is: how should we conduct a parallel search efficiently for finding any one solution to 

such problems. 

What criteria should be used to evaluate parallel search execution schemes in this context? We 

believe that the following two criteria are essential. 

1 The first and foremost criterion is the time required to find a solution. A parallel scheme 

1 When it is possible to go from one state to another via two distinct sequences of operators, the state-space is a 
graph rather than tree. However, we will confine ourselves to state-space trees in this paper. 
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must be able to consistently generate a solution faster than the best sequential scheme, 

and preferably close to P times faster, where P is the number of processors in the 

system. Also, speedups must increase monotonically with the addition of processors. 

2 A second important performance criterion is the amount of memory required to conduct 

a search. The complexity of a state-space search problem may be expressed in terms 

of two parameters: the average branching factor B of the search tree, and the depth D 

at which a solution is found. The branching factor Bis the number of new states that 

can be generated by the application to a given state. The state space to be searched is 

exponential in the depth of the tree, given by O(BD). The memory required to conduct 

the search is dependent on the search strategy and may vary from linear to exponential 

function of the depth. With parallel processing techniques, the memory requirement 

may increase proportionately to the number of processors P. It is therefore important 

to coniider the memory usage of different schemes. 

In this paper we present a series of strategies that achieve these objectives. In Section 2, 

we examine stack-based parallel execution schemes and show how they lead to ano:m'alous and 

inconsistent speedups, and relatively high memory usage. Our scheme is described in Section 3 as 

a progression of improvements to a basic priority based scheme. The Chare-Kernel [16), a run time 

execution environment for parallel programming within which these schemes are implemented, is 

reviewed in Section 4. The performance results in Section 5 demonstrate that our schemes indeed 

_achieve the objectives stated above. Application of these techniques to the IDA* [17, 18) search 

technique to obtain first optimal solution is described in Section 6. In Section 7, we extend the 

techniques developed earlier to improve the performance of parallel IDA*. We discuss some of the 

limitations of our scheme and the future work in this area in Section 8. 

2 Stack Based Search Techniques 

A sequential depth-first search begins by expanding the root of an OR tree into its children. At 

each successive step, the most recently generated node is expanded into its descendents. This is 

continued until a goal node is found. A sequential depth-first search can be efficiently implemented 

using a last-in-first-out (LIFO) stack of active nodes. The depth of the stack is the depth of the 

node currently being searched. The worst case stack length defines the storage requirement for the 

depth-first search. 

The advantage of the sequential stack-based depth-first search over other search techniques 

is its low storage requirement. For other search techniques such as the best-first and breadth­

first searches, the storage requirements is exponential 0(2D) in the depth of the tree, whereas for 
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sequential depth-first search, the storage requirement is linear in the depth of the tree O(D) [6]. 

Memory required by a depth-first search defines the lower bound on the memory usage by a search 

algorithm. 

A parallel stack-based depth-first search algorithm is an extension of the serial algorithm. Two 

approaches have been taken by other researchers [19, 20, 21, 22]. One approach is to have a 

single stack shared by all processors . This approach is suitable and easily implemented on small 

shared-memory machines. In the other approach there is a separate stack for each processor. The 

multiple stack model is suitable for distributed-memory machines, but has been implemented on 

shared-memory machines as well [22]. 

2.1 The Multiple Stack Model 

In the multiple stack model, a processor is initially given the root node. It expands it and inserts 

the descend~nts into its local stack. Several load balancing algorithms [21] can be used to distribute 

work among processors. Each processor searches a disjoint part of the search tree using its local 

stack in a depth-first manner. When a processor completes its search without finding a solution, 
' 

it tries to get active nodes from other processors and executes a depth-first search. When any one 

processor finds a solution all of them quit. 

Significant earlier work on parallel search includes schemes proposed by Kumar et al. [20, 

21, 22]. They have implemented the multiple stack model for their parallel version of Iterative 

Deepeillng-A * (IDA*) [17, 18], on the Sequent Balance shared-memory multiprocessor and on the 

Intel Hypercube iPSC/2, a distributed-memory multiprocessor. In this model the strategy attempts 

to divide the search tree at the top equally among the processors. A stack splitting strategy is used 

to rebalance work, if any processor exhausts its subtree. The IDA* algorithm is used to obtain 

optimal solutions to the 15-puzzle problem. They report speedups in [22] that range from 3.46 to 

16.27 using 9 processors for the first optimal solution to the same problem instance on the shared­

memory multiprocessor. The inconsistency in the speedups is due to the anomalies that exist 

due to the asynchronous nature of parallel stack-based search . The scheme is shown to lead to 

linear speedups for all optimal solutions to the 15-puzzle problem on the shared-memory machine. 

However, in our context, these strategies are not satisfactory, as they do not consistently give close 

to linear speedups for times to the first solution. 

Speedup Anomalies 

Since our objective is to find any one solution, the search terminates whenever any processor en­

counters a solution. As the search space searched by different processors is determined dynamically, 
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the speedups can differ greatly from one execution to another. In this model, since processors search 

disjoint parts of the search space, a solution may be found by visiting fewer or more nodes than a 

sequential depth-first search resulting in superlinear (speedup > P) or extreme sublinear (speedup 

much< P) speedups. Since all processors run asynchronously, the order in which the active nodes 

are selected and expanded is random and very different than that for a sequential search; it may 

also vary from one execution to another. 

It is possible that a processor may find a solution more quickly by searching a smaller search 

space than the space searched with a sequential search leading to an acceleration anomaly ( a very 

large increase in speedup with an increase in the number of processors). Deceleration anomalies ( a 

decrease in speedup with an increase in . the number of processors) are also possible [23], because 

there is no guarantee that the work performed by the addition of a processor will contribute to 

finding the first solution, and such work may generate more futile work for other processors. In this 

model [22], :detrimental anomalies (speedup of less than 1) do not exist, assuming all processors 

have equal speed. This is because there will be at least one processor at any time working on a 

node n so that everything to the left of n in the tree will have been searched. Kumar ,_and Rao's 

splitting strategy for load redistribution ensures that when the local stack is split, the node that 

was leftmost in the original stack is still leftmost in one of the two new stacks. 

Many researchers [19, 15, 23] have reported this phenomenon of speedup being superlinear or 

extremely sublinear in isolated executions of parallel depth-first search using P processors. Lai and 

Sahni have shown that it is possible for a parallel branch-and-bound algorithm using n2 processors, 

to take more time than one using n1 processors, although n1 < n2 ; furthermore, it is also possible 

to achieve superlinear speedups in excess of the ratio n2/n1. Although their result is obtained in 

the context of branch-and-bound algorithms, it applies to pure search algorithms as well. 

Memory Requirement 

To determine the worst case memory required for the multiple .stack model consider a search tree 

and let B be the uniform node branching factor and D be the depth of the tree. Since each processor 

has its own separate stack, the memory needed for the search will be proportionate to the worst case 

sum of the individual stack lengths of all the processors in the system. We also assume for the worst 

case that each processor has equal speed and that all node expansions take about the same amount 

of time. Initially, a processor picks up the root node and expands into its B desceridents. The B 

descendents are then put on its local stack, making the stack length equal to B. Idle processors 

will try to acquire untried nodes from this processor. Now as long as the number of active nodes 

in the system is less than P, a breadth-first search will ensue until each processor is assigned to 
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one active node. This will occur at a depth d equal to riog8 Pl when there are P active nodes in 

the system, one node in each processor's local stack. The sum of the stack lengths will therefore be 

equal to P. Each processor will pick up a node from its stack and conduct a depth-first search of 

subtrees of depth (D - riog8 Pl), The worst case stack length for a tree of depth x and branching 

factor b with a sequential depth-first search is given by 1 + x(b- 1). Therefore, each processor will 

require a worst case stack length of (1 + (D - riog8 Pl)(B - 1)). Since there are P such stacks, 

the stack length for the parallel system in the worst case will be given by 

Stack Lengthworst case= P + P * (D - riogB Pl)* (B -1) ~ P * D * (B - 1) 

The worst case memory required will be equal to k * StackLengthworst case, where k is the node 

size (usually in bytes/node). The expression shows that the memory needed for parallel depth-first 

search is roughly proportional to the product of the number of processors P in the system, the 

branching fictor B of the problem, and the maximum depth D of the search space. 

2.2 The Shared Stack Model 

In the single stack model [19], all processors share a global single stack. Processors pick up nodes 

from the shared stack and expand them and push the descendents onto the stack. Since the global 

stack is shared among all processors, a locking mechanism is needed to avoid multiple access hazards 

during insert and delete operations. As before, when a goal node is reached, all processors quit. 

Speedup Anomalies 

In the shared stack model, as all processors run asynchronously, the set of nodes examined by the 

time a solution is generated may be very different from run to run as well as from the one processor 

case. This behavior causes the parallel search to expand fewer or more nodes than a serial search 

causing anomalies [15, 23]. 

In this model, detrimental anomaly is also possible even assuming all processors have equal 

speed. This is because one can not guarantee that a processor is working on the leftmost unexplored 

node at any time during the search. If nodes generated to the right of a node n are the most recent 

and are inserted last in the stack, then these nodes will be the first ones to be selected and expanded. 

A situation can occur where node n is selected after all the subtrees to its right are explored. If 

all the solutions to the problem exist to the left of node n, then processors may first complete the 

search space to the right of n and then search the subtrees to the left of n, resulting in detrimental 

j speedup anomalies to the first solution. 
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Memory Requirement 

To obtain an expression for the worst case memory needed for the single stack model, again assume 

that all processors are identical and have equal speed. As before, let B be the uniform branching 

factor and D be the depth of the search space. Initially, a processor picks up the root node and 

expands into its B descendents. The B descendents are then put on the stack causing the stack 

length to equal B. 

As long as the stack length remains less than the number of processors P, all the nodes from 

the stack get picked up and expanded, and the tree is explored in a breadth-first fashion until the 

number of active nodes in the stack becomes greater than P. This occurs at a depth d equal to 

flogB Pl when there are at least P active nodes · in the shared stack. From this point onwards, 

each processor may pick up a node from the stack, expand it and insert the B descendents onto 

the stack. In the worst case (assuming all processors work synchronously), the P processors may 

pick P nod~s at depth x, for example and put (P * B) nodes on the stack all at depth x + 1, a 

net increase of P * ( B - l) nodes in the stack. At each successive iteration the stack length will 

increase by P * (B - 1). At depth D the worst case stack length will become 

Stack Lengthworst case= P + P * (D - flogB Pl)* (B - 1) ~ P * D * (B - 1) 

A similar expression has also been derived by · Imai et al. in [19]. For a uniform tree this 

expression gives the worst case stack length required to conduct a parallel depth-first search using 

.a single shared stack. The expression derived here is identical to that for . a multiple stack model. 

The worst case memory requirement is k * Stack Lengthworst case, where k is the average node 

size. The space requirement is again proportional to the product of number of processors P in the 

system, the branching factor B for the problem, and the depth D of the search space. 

As shown by the expressions above, the space usage presents another problem. Although it is 

relatively easy to prevent exponential memory usage with a stack, memory usage tends to increase 

proportionately with the number of processors, in the worst case. In fact, empirical experiments 

( see Section 5) confirm that the average case also performs in the · same proportion. In the following 

sections, we will describe techniques that attempt to eliminate the dependence of memory usage 

on the branching factor B and the product P * D in the above expression. 

3 A Priority Based Search 

We associate priorities with work (computations) in a parallel depth-first search and show how this 

would eliminate the anomalies and achieve linear speedups to a first solution. In a pure search, 

any of the alternatives at a choice point may lead to a solution. The alternatives may be ordered 
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left-to -right using any local (value ordering) heuristic . A sequential depth-first search algorithm 

searches the tree left-to-right and in a sense gives higher priority to alternatives on the left than 

to the alternatives on the right. The parallel scheme we develop achieves a similar behavior by 

examining nodes from left-to-right and the set of nodes expanded is very close to that expanded 

by a sequential depth-first search. 

In the context of a first solution, the work to the right of the solution path does not contribute 

to the solution and therefore constitutes wasted work. In a parallel search environment, since we 

want to focus the processors towards the first solution, the alternatives at a choice point must have 

priorities, with the work in the leftmost alternative having the highest priority. The work on other 

alternatives (speculative work) can only speed up in finding the solution to the problem if work 

under left subtrees fails to find a solution; otherwise, it is wasted work. As explained earlier, the 

anomalies in a parallel search are caused by the random selection of nodes for expansion that could 

possibly result in an increased wasted work. The wasted work can be reduced if the nodes are 

expanded roughly in the same order as they are expanded during a sequential depth-first search. 

Figure 1 shows the work performed (left of the solution path) to reach a first solut!on with a 

sequential depth-first search. A parallel depth-first search may expand nodes both to the left and 

to the right of the solution path. To obtain consistent speedups with parallel execution, one must 

try to reduce work performed on the right of the solution path. This also implies that the system 

resources must focus on work towards the left in the search space. In a sequential depth-first search, 

the subtree under a node l on the left is explored completely before expanding a node r on the 

right and exploring subtrees beneath r. To mimic the sequential order of node expansions, every 

descendent of node l receives higher priority than node r and all its descendents. This policy is 

applied again recursively to nodes in the smaller subtrees within this larger subtree. Any deviation 

from this policy that causes nodes to the right of the solution path to be expanded, when nodes to 

its left are available, results in increased wasted work, if a solution is obtained from the left subtree. 

Consider a root node R of a subtree expanded into its descendents A, B, C, and D, with node 

A being the leftmost, as shown in Figure 2. If the nodes are ranked from left-to-right with node 

A having the highest priority and node D the lowest, then assuming all processors share a single 

priority queue ( a priority queue is now needed instead of a stack to manage nodes with priorities), 

node A will be selected first for expansion. If there are idle processors in the system, then nodes 

B, C, and D will be selected, in that order. Let node A be expanded into its children E, F, G, 

and H. Let another processor expand node B into its children I and J. All the nodes generated 

are inserted into the queue. The serial behavior of node expansions dictates that with the current 

set of nodes in the queue the order of node selection and expansion should be E, F, G, H, I, J, C, 
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and D. This suggests that node E being the leftmost must have the highest priority. Also, the set 

of descendents E, F, G, arid H of node A must have higher priority than descendents I, J, of node 

B. In addition, all descendents of leftward nodes A and B must have higher priority than their 

parent's sibling nodes C and D. To achieve these goals, descendent nodes must be ranked from 

left-to-right and the priority of descendents of high priority nodes must have higher priority than 

the descendents of low priority nodes. 

Associating priorities this way reflects the policy that until there is no prospect of a solution from 

the left subtree beneath a node, the system should not spend its resources on the right subtrees, 

unless there are idle processors, i.e., if for a time period, the work available in the left subtree is 

not sufficient to keep all the processors busy, the idle processors may expand the right subtrees. 

But as soon as high priority nodes become available in the left subtree, the processors must focus 

their efforts in that left subtree. For example, if two processors search the tree in Figure 2, nodes A 

and Bare picked up for execution when node R is expanded. When nodes A and Bare expanded, 

the processors explore nodes E and F ( of higher priority) in the next cycle. In the following cycle 

after the children of nodes E and F are put back in the queue, then nodes K and L are,_ picked up 

next for execution. We describe next a scheme to generate and assign priorities dynamically to the 

nodes of a search tree that would schedule them for execution to accomplish our objectives. 

At times it is possible that a more favored (higher priority) node may be waiting for a resource 

while the less favored node is being executed.- This occurs when a processor expands a high priority 

node and puts its descendents into the pool of work while another processor is still executing a 

low priority node. Assigning priorities to nodes only suggests to the resource management strategy 

that, in a given small window in time, the highest priority node in a common pool of work must 

always get a resource, if one is available. 

3.1 Bit-Vector Priorities and Priority Assignment 

A priority bit-vector ( also referred to as priority vector) is a sequence of bits of any arbitrary length. 

Priorities are dynamically assigned to the nodes when they are created and are not modified once 

assigned. A node with a priority bit-vector P1 is defined · to be at a higher priority than another 

node with priority P2 if Pi is lexicographically smaller than P2. 

Consider the OR tree of Figure 2. Let the root of this subtree R, have a priority p represented as 

a bit-vector. The root node of the entire search space is assigned a null (priority bit-vector oflength 

0) priority at the start of the search process. The m ( m=4) descendents of the node R represent 

the m alternatives for solving the subproblem. The descendents are assigned priority bit-vectors by 

extending the parent's priority based on their rank. Nodes may be ranked using any local ( value 

ordering) heuristics. If a descendent node is ranked nth among m siblings, its relative priority ( or 
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rank) among its siblings is represented as an encoding of n as a riog ml bit binary number say 

Pchild· Let the priority vector of the pa.rent node be Pparent• Then the priority vector of the child 

node Pchild is obtained by appending Pchild to Pparent (The idea of associating a similar sequence 

using pa.th numbers with nodes of OR trees has appeared in [24, 25]). In Figure 2, consider node A 

with a, priority Pparent = p00 and if we assume a, left to right ranking of its children E, F, G, and 

H, the relative priority (ranking) of the second child F out of the four siblings will be Pchild = 01. 

Then the priority vector of node F is obtained as Pchild = p000l (p is priority of node R). The 

bit-vector length of Pchild increases correspondingly . It can be shown that lexicographic ordering 

of these priorities corresponds to left-to-right ordering of the nodes in the tree. However, there 

is a loss of information in the bit-vector representation: a node with priority 0110110 may be at 

level 7 of a binary tree, or level 3, with the top -level branching factor of 2, and the next two levels 

(grand-parent and parent of this node) with a branching factors of 7 and 5 respectively, among 

many other:-possibilities. Fortunately, this loss of information does not destroy the left-to-right 

ordering in a specific tree, and saves much in storage and comparison costs over a scheme that 

assigns a fixed number of bits to each level. Priorities assigned this way have the prefi:i; property: 

no two children of a node have priority such that one is a prefix of the other. Assigning bit-vector 

priorities this way achieves two goals . 

1 The relative priority or the rank of the sibling nodes preserves the left to right order 

by ensuring that a node on the left is always at a higher priority than all its siblings on 

the right. Thus, local ranking heuristics are honored. 

2 Appending the relative priority of the child to the priority inherited from its parent 

ensures that descendents of high priority nodes get higher priority than the descendents 

of low priority nodes. (For example, in Figure 2 node M (priority p00010) has higher 

priority than node J (priority p0ll) as p00010 is lexicographically smaller than p0ll). 

Since the leftmost node has the highest priority, it always gets a resource, thus preventing 

detrimental anomalies. Some acceleration anomalies are preserved because it is possible that when 

there is not enough work in the left subtree, idle processors that are expanding the right subtrees 

may find a solution faster. With such a prioritizing scheme, since processing effort is focussed 

leftward, the parallel depth-first search behavior is similar to that of a sequential depth-first search. 

This results in a decrease in wasted work and the elimination of deceleration anomalies. Therefore, 

this prioritizing strategy guarantees monotonic, almost linear, speedups. 
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3.2 Eliminating Space Dependence on Branching Factor 

We have shown earlier that the worst case memory requirement for a parallel search using single 

or multiple stacks is proportional to the stack length given by the following expression: 

Stack Lengthworst case ~ P * D * ( B - 1) 

When bit-vector priorities are used in conjunction with a shared priority queue, the search 

behavior using P processors is very similar to that of a sequential case using a stack. However, the 

worst case queue length for a prioritized search is given by the same expression. This is because 

there cannot be more than P * B active nodes at any level in the tree, and as in the single-stack, 

this upper bound can be realized by having the P processors pick the leftmost P nodes at each 

level, in lock-step. 

The branching factor Bis problem dependent. For example, in the N-Queens problem where 

one must place N Queens on an N x N chessboard such that no queen attacks another, the 

average number of choices where a queen can be placed is close to N in the shallower parts of 

the search space (a 100-Queens problem will have close to 100 alternatives for placing' ·a queen). 

For large values of B, the memory requirement can be prohibitive by the expression above. A 

sequential depth-first algorithm selects the current leftmost unexplored node at each level of the 

search space, backtracking to the choice point for remaining alternatives if no solution is found from 

the cm:~ent alternative. The successor node is usually generated from the parent node by making 

~ppropriate modifications to the parent node. The difference of information between the parent 

and the child is stored on a 'trail' to create the next child after backtracking to the choice point 

[26]. With priority based parallel depth-first search, one can mimic this behavior by generating the 

first descendent node by modifying the parent node in the usual manner, and copying the parent 

node with appropriate modifications for lumping work for generating remaining descendent nodes 

into an independent single lumped-node. We call this technique as the binary decomposition of a 

search tree. 

Figure 3 shows the binary decomposition of a search tree, where node S is expanded into its child 

S1 and a lumped node (S2, S3, .. , Sb) with a branching factor b. When this lumped-node is picked up 

for ·expansion, it generates the next sibling node E (S 2 ) and a.lumped-node F that represents work 

for generating the rest of the sibling nodes (S3 , S4 , •• , Sb). Thus, the lumped-node represents the 

remaining available parallelism in the subproblem in a form that is extractable whenever needed. 

This binary decomposition technique reduces an arbitrarily large branching factor B to 2 and 

effectively eliminates the ( B - 1) factor in the memory usage expression P * D * ( B - 1). In doing 

so, we have increased the maximum depth of the tree by a factor of B towards the right, but if 
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the solution is much closer to the left in the search space, as is frequently the case, this effect is 

small. Note that the derivation of P * D * (B - l) is 'worst-case'. When the leftmost subtree is 

being searched, the ( B - 1) right siblings are on the stack, but when the rightmost sibling is being 

searched, there are no other nodes (for that level) on the stack. Therefore, although the depth 

increases, the memory requirement does not increase. This is because only one lumped sibling node 

occupies the storage at any time. (The lumped nodes are analogous to the choice-points used in 

OR-parallel Prolog systems (27].) 

Therefore, the binary decomposition of a uniform tree with branching factor B transforms it to 

a skewed binary tree with a depth increasing from D on the left to D * B on the right. The number 

of internal nodes increases by a factor of(B-1), since for each internal node (B-1) lumped nodes 

are created. Thus, the total number of nodes in the search tree doubles. However, the amount of 

work does not increase much. 

The major advantage of this technique is that since the all the descendents of a node are not 

produced until absolutely needed, the wasted work is reduced considerably. Moreover, using the 

priority scheme of Section 3.1 with this technique ensures that the leftmost nodes are picked up 

for execution. The bit-vector priorities associated with a binary decomposed tree are shown in 

Figure 3. 

One might argue that by converting a B-ary tree into a binary tree, we have reduced the 

available parallelism of the problem. This is true only when the total number of nodes in the queue 

( or statk) is less than the available number of processors in the system. This happens at the initial 

and relatively small stages of the search as the tree is explored. Once the number of nodes in 

the queue becomes greater than the number of processors, the available parallelism is more than 

sufficient to keep all processors busy. Without binary decomposition, unnecessary work may be 

performed to produce all the children of a node that is picked up for execution resulting in an 

increase in the memory requirement to store the active nodes. Binary decomposition technique 

results in a decrease in the memory requirement and as well as reduced wasted work. 

3.3 Reducing Space Dependence on Number of Processors: Delayed-Release 

As shown by the expression for the stack length in Section 2, the memory usage in a parallel 

search also depends on the number of processors in the system. In both the multiple and shared 

stack models, the increase in the memory usage with processors occurs because of the availability 

of possibly a large number untried alternatives (nodes) at each level of the search space. This 

immediate availability of parallelism (alternatives) at shallower levels in the search space is the 

major cause for increased wasted work. 

With bit-vector priorities, processors pick the leftmost P nodes. Although this eliminates 
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anomalies, the memory requirement is still proportionate to ( P * D) for a search space with depth 

D. This is because at every level of the search tree, P processors may pick P nodes from the shared 

queue and create (P * B) children. Thus, there is an increase of at most P * (B-1) nodes at every 

successive level of the search space. This can be avoided by delaying the nodes at shallower levels 

of the search space and making them available to processors at the bottom level when a leaf node 

is encountered. This delaying effect can be achieved if processors skip intermediate levels in the 

search space and after reaching the deepest level (leaves) of the tree explore nodes from the bottom 

of the search tree. This bottom-first strategy gives rise to a search behavior called the broomstick 

sweep of the search space as shown in Figure 4. The set of nodes searched is represented in figure 

by a long narrow stick and the parallelism ( active nodes) exploited at the bottom of the tree gives 

rise to the shape of a broom. 

We achieve this broomstick behavior by a technique called delayed-release as described below. 

The search l>egins at the root in the usual manner. When a node is expanded, all its children except 

the leftmost child l are put in a list accessible from l. This list is local to land the children nodes in 

the list are not immediately available to other processors at the time they are generated., _ The local 

list inherited by a node (parent node) is appended to the local list of its leftmost child l. Therefore, 

each processor effectively creates only one child when a node is expanded, which is inserted into 

the shared priority queue. This technique is applied to every node that is picked up for execution 

until a leaf node is encountered. At this point, all the nodes kept in the list are released as active 

nodes and made available to be picked up by other processors. Parallelism is suppressed due to the 

delaying of nodes to the bottom of the search space. However, this delay is insignificantly small 

and parallelism is quickly available and exploited from the bottom of the search space. Figure 5 

gives the algorithm for the delayed-release scheme. 

Figure 6 shows the state of a binary search tree using the delayed-release technique. When 

node R is expanded, only one supernode consisting of the linked list [L1 , R 1] is produced. A 

supernode may contain several regular nodes as well as lumped-nodes. Node R 1 may represent a 

single right child for a binary tree or a lumped-node representing the remaining right children for 

a b-ary tree. When this supernode is picked up for execution, only the first node L1 from the list 

is expanded, and a supernode [L2, R2, R1] is released. Eventually, when the supernode consisting 

of [A, B, Rs, R4, Ra, R2, R1] is picked up for expansion, it is discovered that node A is a leaf; thus, 

all the nodes in the list are released as individual nodes. Processors in the system now pick the 

highest priority nodes and explore the search space in a similar fashion. (Note that this delayed 

the expansion of the shallower, low priority node R 1). With the current state of the search tree, 

nodes A, B, C, D, E, R2, and R1 form the set of frontier nodes. The nodes linked by solid arrows 
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~ within a frontier node are the nodes created but not yet released to other processors. The bit-vector 

D 
l 

priorities assigned in the usual manner ensure that the P processors in the system pick the bottom 

P nodes for execution. 

3.4 Memory Usage with Delayed-Release 

We now determine if there is any saving in memory usage in exploring the search space in a delayed­

release manner. Let D be the depth of the uniform search tree and Bits branching factor. At each 

level, only one node is made available for execution and the remaining ( B - 1) nodes are collected 

in a list which is passed down from the parent to its leftmost child. Therefore, when a leaf node 

is encountered at depth D, (B - 1) * D nodes are released for execution. Thus, memory is needed 

to store ( B - 1) * D active nodes in the queue. Since the bottom nodes have higher priorities, the 

processors pick the P highest priority nodes for execution and proceed in a similar manner. We 

assume that _ all processors take the same amount of time to expand a node to create its children. 

,_l We also assume that the time to insert and delete nodes in a shared pool of work is small, compared 

to a node expansion time and therefore is ignored for this analysis. 
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Let P = k( B - 1) be the number of nodes picked up from the depth D to depth D - k where 

k is some integer greater than or equal to 1. If k = 1, then P ~ (B - 1) and only the nodes from 

the depth D are picked up for execution. Also, let n be the least i such that P ~ (B - l)i; i.e. for 

some i, the number of nodes (B - l)i becomes larger than P. If there are sufficient nodes then P 

nodes are picked up for execution each cycle. The (B - 1) nodes created at depth D are the leaf 

nodes and thus do not produce any children. The ( B - 1) nodes created at depth ( D - 1) generate 

( B - l )2 children one cycle later. This is because each of ( B - 1) children at depth ( D - 1) release 

(B - 1) nodes at depth D one cycle later. Similarly, (B - 1) nodes created at depth (D - 2) will 

generate (B - 1)3 at least 2 cycles later. If there are sufficient nodes available at depth D, then 

nodes at shallower depths will not be picked up for execution, thus limiting further expansion of 

nodes. This happens at the ith iteration when (B - l)i becomes larger than P. 

Therefore, the multiplicative factor of P in the worst case stack length is reduced to an additive 

factor and the stack length is given by 

Maximum Stack Length~ (B - 1) * D -P * i + max((B- li,P) + P * B * i 

Objectives Achieved 

We summarize the following objectives achieved by the delayed-release technique. 

1 The wasted work is virtually eliminated as processors are forced to skip node expansions 

at intermediate levels and focus on the nodes deeper in the search space. 
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2 The memory required by the search algorithm is now proportional to sum of P and D 

as opposed to their product. 

3 As wasted work is reduced, it results in consistent and good linear speedups to the first 

solution. 

4 Since the number of active nodes in the priority queue at any time is reduced, the 

overhead of managing the queue is reduced, thus marginally improving the time to the 

first solution. 

3.4 .1 A Refinement: Delayed Partial Release 

In the above strategy when a processor picks up a leaf node it releases all the nodes created and 

stored thus far in the local list of the leaf node. If P is the number of processors in the system, 

then at most P highest priority nodes will be picked up for execution. If the number of nodes 

released is larger than the number of processors in the system, then the nodes released in excess 

of P constitute excess parallelism that can not be exploited at the time of release since,_ there will 

be enough work to keep all processors busy. These excess nodes can always be released at a later 

time if no solution is generated from the first P nodes picked up for execution. 

The delayed partial release technique works as follows. Whenever a processor needs to release 

nodes, a maximum of P highest priority nodes and a supernode that is comprised of the remaining 

nodes are released, i.e., a maximum of P nodes are released. In this way, parallelism is controlled and 

limited to P at every release. If a processor completes its task and cannot find other high priority 

nodes (possibly created by expanding leftward nodes) it can expand the supernode comprising the 

excess nodes and proceed in the usual manner. This technique does not result in a reduction in 

memory space, since memory space is still needed to store the unreleased excess nodes in the list. 

Since now there are even fewer entries in the queue than with the delayed-release strategy, the 

overhead of managing the priority queue is further reduced. 

4 Chare-Kernel: The Run Time Execution Environment 

The above strategies are implemented in the Chare-Kernelparallel programming system [28, 29, 16], 

with a base language similar to C. The Chare-kernel provides the user with a run time environment 

for machine independent parallel programming. Using the base language, one can break down the 

execution of a program into small processes or tasks ( called chares) of medium-grain size. The 

Chare-Kernel enables the programmer to implement process models for implicitly parallel High 
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The Chare-Kernel is a message driven execution environment. A message is either a seed for a 

medi:um-grained process ( called a chare) or a response to a (parent) chare. Chares are activated 

upon creation or receipt of a message. Once active they may create other chares, generate and assign 

priorities to them or send response messages to other (or parent) chares. However, they cannot 

receive messages in a specific order, nor can they wait on messages of specific types. A message 

specifies an entry point, a chare-id, and a priority in addition to the message data. Activating a 

chare involves jumping to the entry point associated with it and executing instructions, until either 

it suspends itself or creates new chares or messages and completes. A suspended chare is awakened 

when a message meant for it is selected for execution. There is no preemption and the chares are 

allowed to run till they either suspend or terminate. 

The ChCLre-Kernel maintains a pool of messages and is responsible for supplying work to the 

processors from this pool. It manages and schedules messages, provides different queueing strategies 

for message selection, performs load distribution, and memory management on both shar~_d-memory 

and message-passing machines . Currently it supports bit-vector priorities of arbitrary lengths 

in addition to integer priorities on several shared memory multiprocessors such as the Encore 

Multimax, Sequent Balance and Symmetry and Alliant FX/8 . Response messages from children 

chares to other chares that carry partial solution are assigned the same priority as that of the 

childreh chares so that response messages also get executed in a prioritized fashion [30]. The 

message selection, queue and memory management are all invisible to the application . It therefore 

provides a clean separation between decomposition of computation into parallel parts and selection 

and allocation of parallel actions to processors. 

When an idle processor requests for a chare or a message for execution, the queueing strategy 

decides which message to schedule next from a pool of messages. Also, when load needs to be 

balanced in the system the queueing strategy selects which message needs to be sent to a remote 

processor based on their priorities . The load balancing decisions affect the processor utilization, 

· and the execution time of a program, while memory utilization and time to first solution depend on 

the task decomposition techniques, priorities associated, and the queueing strategies that manage 

the priorities in an efficient manner . 

The queueing strategy in the shared-memory implementation of the Chare-Kernel currently 

provides a global message queue shared by all processors and separate response queues for each in­

dividual processor. The response message carries either the partial solution or a failure to its parent 

chare. Since processors share the queue the simplest way to provide access under mutual exclusion 
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is to associate a lock with the queue. This scheme is feasible for shared-memory multiprocessors 

with up to 20-30 processors. 

The Chare-Kernel provides its own memory management that avoids the contention in the 

allocation of shared-memory space. Two memory management schemes, a quick fit allocator and a 

buddy system allocator are provided on the shared-memory machines. We have used the quick fit 

allocator in all our experiments. For a detailed explanation of memory management schemes see 

[31]. 

4.1 Grain Size Control 

If the cost of making work available to another processor exceeds the cost of executing it at the local 

processor, then it does not make sense to decompose and parallelize work beyond a certain size or 

granularity of work. The ideal grain size for a shared-memory system depends on the actual over­

head involved in picking up new work from the shared pool, creating parallel new chares or sending 

responses to parent chares, and putting them back into the work pool. In a distributed-memory 

system, the overhead includes the cost of distributing work to other processors, and therefore de-
, 

pends on the load balancing strategies used. If the granularity is too large, the loss in parallelism 

and uneven load distribution may cause processors to idle. And if the granularity is too small, 

then the cost of decomposing work to parallel subcomputations may exceed the cost of executing 

it sequentially. 

Granularity control is used to determine when to stop breaking down a computation into parallel 

computations at a frontier node, treating it as a leaf node and executing it sequentially. A simple 

technique to control grain size, in state-space search, is to decide a cut-off depth. The search space 

beneath a node at the cut-off depth is searched sequentially by a processor. Other techniques 

that attempt to gauge the size (granularity) of subtrees beneath a node and make a decision to 

either expand into parallel subtasks or explore it sequentially, are also possible. With grain size 

control, the overhead cost of parallelization is amortized over the total execution time. We found 

that such simple techniques using cut-off depths were sufficient to prevent the priority queue from 

being a sequential bottleneck. With a large number of processors one may increase the grain size 

to maintain the frequency of access to the shared queue. In terms of processing time the average 

grain size is defined as 

Total Sequential Execution Time 
Average Grain Size = 

Total Number of Messages Processed 

To retain similar speedup properties the grain size and the number of granules must both 

increase proportionally to the number of processors P; therefore, the overall problem size will have 

to increase with P 2 • This can be alleviated somewhat by using concurrent heap access techniques 
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n [32, 33, 34, 35]. More importantly, as absolute adherence to priorities is not essential, techniques 

using multiple heaps with load balancing techniques that enforce processors to pick high priority 

work are possible. Experiments conducted on shared-memory machines of up to 30 processors using 
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the Chare-Kernel have shown that with an average grain size of about 10-100 millisecond, the total 

overhead for parallelizing computations is insignificantly low compared to the total execution time. 

5 Performance on Shared Memory Architectures 

We implemented the above search techniques for parallel search on a shared-memory machine with 

a bus-based architecture and studied their performance. The Sequent Symmetry was used as the 

shared-memory architecture. The strategies were implemented using the Chare-Kernel [36] parallel 

programming system. 

We present and discuss the performance data on a few OR-parallel search problems to obtain 

the first solution . We discuss the performance on the N-Queens, Knights-Tour, and Magic Squares 

problems below. 

J 5.1 N-Queens Problem 

The N-Queens problem is an established benchmark for OR parallel search. The goal is to place N 

J Queens on an N X N chessboard such that no two queens are placed on the same row, column or 

diagon~ (i.e., no two queens attack each other). This problem has a large number of solutions ( e.g., 

tp.e 8-Queens problem has 92 solutions), where any one solution may be acceptable. The search 

space can be represented by an OR-tree with the OR branches specifying the different choices for 
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placing the next queen. To place the next queen, the search algorithm uses the 'most constrained' 

heuristic of selecting a row that has the fewest placement choices [37, 38]. Since at every placement 

there are at most N ways of placing the queen, the average branching factor at shallow depths 

of the search space is close to N. At deeper levels of the search space, as queens are placed, the 

number of queens that can be placed decreases since many of the positions are pruned. 

We obtained performance data for the first solution to the 126-Queens problem. The problem 

size N was chosen to be large to show that a large problem can be solved within a reasonable amount 

of memory usage and time . The sequential depth-first search to a first solution expanded 35,248 

nodes. A grain size of 20-Queens was used, i.e., the first 106 queens are placed by breaking down 

computations and parallelizing work with the last 20 queens placed using a sequential algorithm 

within a processor. This led to an average grain size of 45 milliseconds. 
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Performance Data and Comparison 

The experiments were carried out on the Sequent Symmetry with up to 20 processors. For the 

126-Queens problem it is not possible to run the experiment with a complete decomposition at 

every level since the memory requirement overflows the available memory. Therefore, all the search 

strategies used the binary decomposition technique of Section 3. In a later experiment we show 

how memory usage increases as the decomposition factor is increased. 

The speedup plots in Figure 7 show that with bit-vector priorities the wasted work is reduced, 

resulting in linear, clearly monotonic speedups. The delayed-release technique further improves 

the speedup performance. The performance data is obtained from a single run of the 126-Queens 

problem and is very consistent over different runs. Thus, it supports our claim that priority bit­

vectors do indeed eliminate anomalies and consistent linear speedups are obtainable. The stack­

based strategies yield speedups that vary from run to run, as documented by Kumar et al. in [22]. 

The speedups with the shared stack model also varied wildly between highly superlinear and extreme 

sublinear and thus are not reported here. The sequential execution time for the first solution to the 

126-Queens on Sequent Symmetry took 201 seconds . Figure 8 shows the maximum queue lengths 

measured in number of messages obtained for different strategies. The plot for worst-case queue 

length obtained from the expression derived earlier is shown in the figure for comparison. The 

plots in the figure show that the maximum queue lengths increase proportionately to the number 

of processors with the binary decomposition technique using bit-vector priorities. This dependence 

qn the number of processors is eliminated with the delayed-release technique. With the delayed 

partial release technique the queue lengths are reduced even further. 

Comparing the two figures for maximum queue lengths in Figure 8 and maximum memory used 

(in MBytes) in Figure 9, we observe that memory usage is proportional to the to the maximum queue 

lengths obtained. The average message size (including the size of the node state) is approximately 

1000 bytes for the stack and 1200 bytes for the priority queue. The increase in memory space for 

messages is needed to store the bit-vector priorities and related information to manage messages 

with priorities. The memory plots also show that the memory usage is roughly the same for the 

two delayed-release techniques (see Section 3.4). Both Figures 8 and Figure 9 support our claim 

that memory usage can be reduced considerably with our techniques. 

Table I shows the total number of nodes expanded for the three binary decomposition schemes 

using bit-vector priorities. It shows that (a) with priorities, the work performed with P processors 

is not significantly more than with 1 processor (for example, for the delayed-release technique 

36,507 nodes are expanded using 18 processors compared to 35,248 nodes with a sequential search: 

an increase of 3.57%) and (b) the wasted work is reduced when delayed-release techniques are 
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employed. Table II shows that the maximum queue lengths and memory usage increase considerably 

when the branching factor is allowed to increase. In this experiment instead of using the binary 

decomposition, we have used k-ary decomposition where k is called the decomposition factor, such 

that if no solution is found from the left k - 1 nodes; the kth node (lumped-node) is expanded 

to create another set of at most k children nodes. The corresponding speedup figures in Table II 

shows that an increase in the decomposition factor increases wasted work resulting in a performance 

degradation. 

5.2 Knights-Tour Problem 

The knights-tour of an N x N chess board is another example of state-space search. The knight must 

visit each position on the chess board once and return to its starting position. Many solutions exist 

for the knights-tour problem (the knights-tour is an instance of the Hamiltonian circuit problem). 

The knight must move according to the following conditions. The knight may move from its current n position to another position on the board by moving 2 positions along a row (or column) and 1 

position along the column (or row). Therefore, there are at most 8 distinct positions a ~night can 

reach from a given position. 
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We used an 8X8 chessboard for this problem. The knight starts the tour from a corner of 

the board returning to the same position. To improve performance, the search algorithm uses the 

following heuristic . From any position the knight looks ahead to see if out of the 8 possible positions 

there exists a position that can be reached from the current position and only one other position. 

If such a position exists, it moves to that new position discarding the remaining choices. If there is 

no such position, then the possible moves are ranked left-to-right arbitrarily (in clockwise order). 

Performance Data and Comparison 

Figure 10 shows the speedup plots to the first solution of the knights-tour problem on the Sequent 

Symmetry multiprocessor. All of the strategies used bit-vector priorities. The sequential execution 

examines approximately 30,000 nodes before obtaining the first solution. Again, consistent linear 

speedups are obtained. The maximum queue lengths in Table III shows that the stack length 

increases considerably with full decomposition of the search tree. Considerable improvement in 

performance is obtained with delayed-release techniques. The performance figures were obtained 

from a single run and are very consistent over different runs . 

5.3 Magic Squares Problem 

The Magic Squares is also an example of a state-space search. The problem is to place integers 

from 1 to N 2 on a N X N square board, one integer in each smaller square such that the sum of the 
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integers along any row, column or diagonal is identical. For any N, the sum of the integers along 

a row ( column or diagonal) must be equal to N * (N 2 + 1)/2. 

Performance Data and Comparison 

We used a 6 x 6 board for the Magic-Square problem. Figure 11 shows the speedup plots to the 

first solution using bit-vector priority strategies. Very consistent and linear speedups were obtained 

up to 18 processors that improved with delayed-release schemes. Table IV shows the improvement 

in maximum queue length and memory usage with our search techniques. The data reflects the 

performance from a single run and is very consistent over different runs. 

6 Applicability to Iterative Deepening-A* (IDA*) 

In the earlier sections we demonstrated the effectiveness of priority based parallel search to eliminate 

anomalies and obtain consistent linear speedups to first solution for state-space searches. In this 

section we extend those ideas and apply to Parallel Iterative Deepening A* algorithm for obtaining 

optimal solutions. 

Heuristic state-space search [39, 6] is an important problem-solving method that is used to solve 

a large variety of problems in Artificial Intelligence. A large class of such problems has multiple 

solutions. Sometimes, one is interested in an optimal solution based on certain cost criteria. Best­

first se~rch algorithms are generally used to find optimal solution to such problems. Han admissible 

heuristic is available, one can use the A* algorithm [39], which ensures that the first solution found 

is the optimal one. The drawback of A* algorithm is that it requires an exponential amount of 

memory to store the set of active nodes. The Iterative Deepening A* (IDA*) algorithm [17, 18], 

on the other hand, requires memory linear in the depth of the search space. 

IDA* is a state-space search algorithm for finding an optimal solution. It works by iteratively 

conducting a cost-bounded depth-first search over the search space with increasing bounds. Similar 

to other heuristics search procedures ( e.g. A* algorithm), it uses two functions g and h, where for 

each node n, g( n) is the cost of reaching n from the initial node (root) and h( n) is a conservative 

estimate of the cost of reaching the closest goal node from n (i.e. h( n) is an admissible heuristic). 

In each iteration, IDA* expands nodes in a depth-first manner until the branch is cut off when the 

total estimated cost (J( n) = g( n) + h( n)) of the last node on that path exceeds the cost threshold 

for that iteration. The threshold for the first iteration starts at the estimate of the cost of the 

initial state, and increases for successive iteration of the algorithm. For each succeeding iterations, 

the threshold is set to the minimum f value of all node costs that exceeded the previous threshold 

in the previous iteration. Successive iterations continue until a goal node is selected for expansion. 
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If the heuristic function is admissible, then IDA* ( similar to A*) is guaranteed to find an optimal 

solution to the problem. Furthermore, Korf in [18] has shown that IDA* expands the same number 

of nodes, asymptotically, as in A* for exponential tree searches. Also, since at any point it is 

performing a depth-first search, and never searches deeper than depth D of the search-space, IDA* 

requires storage O(D) [40], and is highly space efficient. A seeming disadvantage ofIDA * is that it 

performs duplicate computations of all but the last iteration prior to reaching the goal depth. Korf 

in [18] has shown that under reasonable assumptions, the duplicate computations do not affect the 

asymptotic growth of the run time for exponential tree searches. 

Parallelizing the IDA* search algorithm to obtain the first optimal solution in a multiple solution 

domain has the same objectives as for a parallel depth-first search stated earlier. In addition the 

overhead must be low, so that (a) the speedups ,compared to a sequential algorithm are significant, 

and (b) small sized problems can be effectively parallelized. 

6.1 Parallel Iterative Deepening A* 

The Parallel IDA* (PIDA *) scheme was proposed by Kumar et al. [20, 21, 22] to obt~n optimal 

solutions to random instances of the 15-Puzzle problem. They implemented a multiple stack model 

for shared-memory and distributed-memory machines. They report anomalous speedups (from 3.46 

to 16.27 with 9 processors) in [22] for the first optimal solution to the 15-Puzzle problem. Since 

PIDA* performs a stack-based depth-first search, the memory space needed by PIDA * increases 

proportionately to the number of processors in the system. Kumar et al. in [22] have reported 

good speedup performance for large to very large problem sizes ( sequential execution times of 

900 seconds to 36000 seconds). However, since each successive iteration of IDA* does not begin 

until the previous one is completed, processor idling for small problem sizes leads to performance 

degradation, even for all solutions. This phenomenon is not so visible for the large problem sizes 

that Kumar et al. have selected, but can become more pronounced if the number of processors is 

increased, keeping the problem size fixed. 

Another approach by Powley and Korf using the IDA* algorithm in [41] employs different 

processes to search different thresholds (windows) simultaneously, hoping that one of them will 

find a solution, i.e., each process performs a separate iteration of the IDA* algorithm, except that 

some processes may do work beyond the goal iteration. Their objective is to find quickly any 

solution, optimal or non-optimal. Since the search time is dominated by the last (goal) iteration, 

even if others are performed in parallel, this strategy leads to poor utilization of processors, even 

for finding a nonoptimal solution. This is because even when there is enough work in iterations 

preceding the goal iteration, processors may be assigned to iterations beyond the goal iteration, and 

the processing effort may not contribute to a first solution. The IDA* algorithm computes several 
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iterations of increasing sizes. Due to processor idling between successive iterations and insufficient 

work in the initial iterations, there may be a loss of speedup and efficiency. Running multiple 

iterations in parallel may improve the processor utilization but can be problematic because work 

done in iterations beyond the goal iteration ( one with an optimal solution) is wasted. 

We will show that with our techniques, speedup anomalies and the dependence of memory 

requirement on the number of processors are virtually eliminated, resulting in reduced wasted work 

and consistent linear speedups to the first optimal solution. In addition our techniques improve the 

speedup performance that scales up as the number of processors is increased. 

6.2 PPIDA * - Prioritized PIDA * 

To eliminate anomalies and achieve linear . speedups to a first optimal solution, we use priorities with 

the Parallel IDA* algorithm. We call this technique Prioritized Parallel IDA* (PPIDA *). Each 

successive it~ration of IDA* is essentially a depth-first search of the cost bounded search tree and 

thus can be easily parallelized. We use the priority schemes described earlier in Section 3.1 to search 

each of the cost-bounded · tree in parallel. Priorities are· dynamically assigned to the nodes when 
, 

they are created. In Parallel IDA* the root node of each new iteration of the cost bounded search 

tree is assigned a null (priority bit-vector of length 0) priority at the start of the search process. 

Them children of a node are assigned priority bit-vectors by extending the parent's priority, based 

on their rank as described earlier Section 3. 

(}.3 Performance of Prioritized PIDA * on Multiprocessors 

To test the effectiveness of our Prioritized Parallel IDA* scheme, we used the 15-Puzzle problem, 

a larger 4 x 4 relative of the 8-Puzzle. The 15-Puzzle problem consists of a 4 x 4 square board 

containing 15 square tiles numbered from 1 through 15. The sixteenth square on the board is a 

blank. Any tile adjacent to the blank space can be slid into that space thus constituting a move. 

The problem is to start with any given board position where the numbered tiles occupy the square 

spaces in a random fashion and to slide the tiles around to reach a desired board configuration. We 

used the Manhattan distance heuristic ( the h( n) function) [39] to estimate the cost of a particular 

board configuration from the goal configuration. The average branching factor for this problem is 

2. Depending on the initial board configuration, the 15-Puzzle problem can have a large number 

of solutions. We are interested in searching for a first optimal solution to the 15-Puzzle problem. 

We implemented both the Parallel IDA* (PIDA *) and the Prioritized Parallel IDA* (PPIDA *) 

to solve the 15-Puzzle problem on shared-memory machines. Sequent Symmetry was selected as the 

shared-memory multiprocessor. For our experiment a problem instance from [18] was selected that 

expanded approximately 10,500,000 nodes and to a depth of 53 to the first optimal solution. For 
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the same problem instance sequential IDA* expands 9,982,569 nodes to the first optimal solution. 

The difference is due to the order in which the tiles are slid into the blank space. The sequential 

execution to the first optimal solution for this problem instance takes 1100 seconds on the Sequent 

Symmetry. We used grain size control to decide when to stop breaking a computation into parallel 

subcomputations and executing it sequentially on a processor. Since IDA* searches a cost-bounded 

search space iteratively, we stop decomposing the computations when the difference between the 

current bound and the cost (/( n)) of a node n drops below the specified grain size; i.e., when 

bound - f(n) ~ grain size, the cost-bounded subtree under node n is searched sequentially. In 

our experiments for the 15-Puzzle problem, a grain s1ze of 6 was selected, which led to an average 

grain size of 40 milliseconds. 

The performance data was obtained using a last-in-first-out (LIFO) stack to show that anoma­

lous speedups are obtained and which vary from one execution to another. We also obtained 

performance with delayed-release techniques using bit-vector priorities. The speedup plot in Fig­

ure 12 shows the anomalous behavior to the first solution using a LIFO stack with PIDA * on the 

Sequent Symmetry. The speedup plots obtained with our scheme (Prioritized PIDA *) sc~eme show 

that linear and monotonic speedups are obtained up to 18 processors . Table V gives the maximum 

memory used to obtain the first optimal solution. The memory usage increases rapidly with a 

stack-based technique as the number of processors increase. With our schemes using priorities, 

memory usage is reduced that does not increase proportional to the number of processors (for ex­

ample, "memory usage of 0.27 MBytes with priorities compared to 0.403 MBytes with a stack based 

~cheme using 18 processors). We again emphasize that the performance data represents results of 

an experiment by running a problem instance once as opposed to the average over several runs. We 

ran our algorithm using bit-vector priorities on different problem instances. The results obtained 

from multiple runs of any problem instance are the same. This supports our claim that bit-vector 

priorities do indeed eliminate anomalies and very consistent speedup performance can be obtained. 

7 Prioritized Iteration Overlapped Parallel IDA* 

Although we obtained consistent and good linear speedups to large problems on shared-memory 

multiprocessors, the speedups performance on small problems are not as high as they could be. In 

PIDA *, processors pick up nodes from the queue and search in a depth-first manner within the 

same cost-bounded space. The threshold starts at the estimate of the cost of the initial state and 

increases for each iteration of the algorithm. The cost-bounded trees correspondingly increase in 

size. Therefore, in the parallel version of IDA*, all processors search in parallel, an iteration k with 

a lower threshold completely before proceeding to the next iteration k + 1 with a higher threshold. 
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The difficulty is that parallelism increases and decreases in waves with each successive iteration. 

At the beginning of each iteration the parallelism is low. It increases · quickly as the search space 

is explored to occupy as many processors as possible, and then trails off as the iteration winds 

down before the next iteration begins. If enough work is not generated to keep all processors busy, 

the processors idle. Thus, processors may idle because of diminishing work during the completion 

phase of one iteration until enough work can be generated in the next iteration which causes the 

performance to degrade. 

The problem size selected in the previous section was large ( sequential execution ~ 1100 seconds) 

and expanded close to 10 million nodes. Since the computation is dominated by the last iteration 

the effect of processor idling in between iterations with a small number of processors ( of up to 20) 

is not very apparent. If we were · to select a small problem size, we would witness the degradation 

in performance even with a small number of processors. Figure 13 shows the speedup performance 

of another instance of the 15-Puzzle problem expanding 300,000 nodes to the first optimal solution 

( sequential execution time of 42 seconds). Although we obtain consistent performance to the first 

optimal solution, the speedup performance drops rapidly as the number of processor~ increase. 

Also, if a large number of processors is used for the large problem size, then a situation similar to 

that shown in Figure 13 could exist as processor idling may occur. 

We now show that the processor idling can be reduced if the idle processors are allowed to start 

the next iteration in a speculative manner, hoping that in case no solution is found from the current 

iteration, then work performed speculatively in the successive iterations will not be wasted and may 

possibly contribute to the solution if one of the successive iterations contains the optimal solution. 

In general, the idle processors are allowed to start not one but several iterations concurrently using 

priorities, as shown in Figure 14. This technique is called Prioritized Iteration Overlapped PIDA * 
(PIO-PIDA *) [12]. However, this technique requires that if the threshold at an iteration is known, 

then one must be able to compute the threshold for the next several iterations. 

For the 15-Puzzle problem, if the threshold at an iteration k is a, then the threshold for the 

next iteration k + l is given by a+ 2. In problems such as these it is possible to know the threshold 

for the next iteration without completing the current iteration. The number of iterations that can 

exist at any given time is called the Speculative Computing Factor (SCF) for this search strategy. 

Since several iterations may be executing concurrently, there may be computations (nodes) from 

different iterations in the work pool at any given time. To obtain an optimal solution, it is necessary 

to ensure that work from the iteration with the smallest threshold receives the highest priority. We 

achieve this using bit-vectors priorities. Each root node of a successive iteration is assigned a 

nonempty and decreasing bit-vector priority using a novel scheme described below. 
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If the total number of iterations is known a priori, we can set aside a fixed number of hits 

to encode each iteration distinctly. If we use n bits, called the static bits, to encode priorities, a 

maximum of 2n iterations can be assigned distinctly encodings. For iterations greater than 2n the 

encoding is set to all ones giving the same priority to any further iterations. 

As the total number of iterations is generally not known a priori, one cannot use a fixed number 

of hits to assign priorities distinctly to each iteration. Instead we use dynamic bits (30) to encode 

an unbounded number of iterations that are started. The dynamic bits encode each iteration 

dynamically and distinctly. The dynamic bits are of the form XOY, where X is a string of n 1 's and 

Y is a string of n bits ranging from 00 ... 0 to 11 ... 1. The first iteration is encoded with a priority 0 

( n = 0). The second and third iterations are encoded in the form XOY as 100 and 101. To obtain 

the encoding hits for next iteration, Y is incremented unless Y is already all 11...1, in which case X 

is extended by one hit and Y is set to (n+l) O's. An iteration number N can be represented with 

this scheme :hY 1koy where k = flogNl and Y = N - 2k + 1 is a k-bit binary number. 

The work in any particular iteration would still need priorities as explained in Section 6.2 to 

order the nodes left-to-right to eliminate anomalies and reduce wasted work. In this st~_ategy, the 

root nodes of each new iteration will have the priority of that iteration ( as explained above) instead 

of a null priority as in the Prioritized PIDA * scheme of Section 6.2. Note that due to the prefix 

property satisfied by the dynamic hits, all nodes in an iteration with a smaller threshold are at 

higher priority than nodes in iterations with larger thresholds. If an idle processor can not find 

work in iterations that have already started, it leapfrogs and begins the next successive iteration 

using the dynamic count. Since there are now many iterations running in parallel it is possible 

that a nonoptimal solution may be found before an optimal one, despite the priorities. Therefore, 

optimality is guaranteed by completing all earlier iterations (an iteration 'completes' if it either 

finds a solution or exhausts its search space) with smaller thresholds once a solution is found. 

The idea of allowing multiple iterations in parallel to search different thresholds (windows) was 

used by Powley and Korf in [41) with a different objective. In Powley and Korf's implementation, 

each of the P processes is assigned an iteration each with different thresholds to search. Each 

process expands the root node to a fixed number of nodes, called the fixed frontier set. When all 

the nodes in the fixed frontier set are examined, the minimum h value for each node, its associated 

path information and the value of the threshold are broadcast to other processes to order their 

nodes. This ordering information from one iteration to the next is therefore sequentialized. Their 

analysis shows that the minimum number of processes required in the best case is D /2 where D is 

the length of the optimal path. The disadvantage of this scheme is that if there are more than D /2 

processes running concurrently, work performed in iterations with thresholds much larger than the 
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one that generates the optimal solution may be wasted. If there are less than D /2 processes, then 

work may not be sufficient to keep all processors busy. Moreover, since Dis not known a priori, 

one can not determine the minimum number of processes needed accurately. However, Powley 

and Korf 's scheme can be supplemented with our prioritizing strategy, which will ensure that the 

iterations with lower thresholds receive the maximum resources to improve performance. 

Performance of PIO-PIDA * Scheme 

To_ test the effectiveness of our technique we ran experiments using PIO-PIDA * (Prioritized Itera­

tion Overlapped Parallel IDA*) to solve instances of the 15-Puzzle problem. We used two problem 

instances of different sizes . .. One .expanding .. 300,000 nodes (small problem size: sequential execu­

tion time of 42 seconds) .. and the other ,expanding 2,000,000 nodes (larger problem size: sequential 

execution time of 116 seconds). We obtained performance data for the two different problems 

with different values of speculative computing factors (SCF) on the Sequent Symmetry. The SCF 

was varied from 1 to 4 to observe the effect of running several iterations concurrently on the per­

formance. Running an experiment with SCF=l corresponds to the Parallel IDA* (PIDA *) using 
, 

priorities, i.e., the next larger iteration is not started before the previous one is completed. 

The speedup plots for the two problem sizes are shown in Figure 15 and Figure 16. For the 

smaller problem instance (Figure 15), the speedups improve considerably as the number of con­

current iterations are allowed to increase from 1 to 4 (speedup of 11.2 for SCF=l to speedup of 

18.5 for SCF=4 using 20 processors). This is because with a smaller problem size the percentage 

of time that processors remain idle (mainly between iterations and earlier non-parallel iterations) 

is large compared to the time to the first optimal solution. The improvement in speedup for the 

larger problem (Figure 16) from 1 iteration to 4 iterations in parallel is also significant. 

8 Discussion 

We demonstrated the effectiveness of priority based parallel sear-ch techniques to eliminate anoma­

lies and obtain consistent linear speedups to first solution in state-space searches. We also extended 

these techniques for Parallel IDA*. The extensions were needed because IDA* involves a series of 

increasing depth-first searches. An important extension to our basic scheme allows successive iter­

ations to run concurrently with minimum wastage. This improves the speedups for small problems 

or for systems with a large number of processors. 

To the best of our knowledge, no other method proposed to date consistently achieves monotoni­

cally increasing speedups for a first solution. In addition to speedups, our methods also substantially 

reduces the memory requirements. Compared to other methods, which require memory propor-
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tionate to the product of depth D of the search tree and number of processors P, our technique is 

proportional to their sum. It was demonstrated that in practice, with as low as 10-20 processors, 

the savings were substantial. It may be argued that this is unimportant as the amount of memory 

available grows linearly with the number of processors. However, this argument misses the point: 

on a P processor system our scheme requires a small fraction of the memory required by a stack­

based scheme. With 18 processors, 126-Queens required 0.4 MBytes of memory compared to 1.8 

MBytes with a shared stack. With a large number of processors and large problems, our scheme 

will be able to solve problems that the stack-based scheme cannot solve due to a memory overflow. 

An advantage of our scheme is that it adheres to local value-ordering heuristic, which are very 

important for first solution searches . . However, even when good ordering heuristic is not available, 

our scheme is still valuable, because of its , consistent and monotonic speedups. The limitation of 

our technique is that priorities once assigned do not change and therefore the scheme cannot be 

generalized to other searches such as the best-first search techniques. 

Recently, Rao and Kumar have derived an interesting result in [42] concerning the multiple­

stack model for parallel search, where the solution density are highly non-uniform across the search 

space. Although the speedups are anomalous, they show that on the average (i.e. averaged over 

several runs), the speedups tend to be larger than P, compared with the standard backtracking 

search, where P is the number of processors. In such types of search spaces our result is still 

valuable for the following reasons. First, the prioritizing scheme we presented ensures speedups 

close to P in all runs, and for varying values of P ( assuming, of course, that there is enough work 

available in the part of the search tree to the left of the solution). Second, their results also show 

that the 'superlinearity' of speedup is not further enhanced beyond a few processors. Therefore, in 

a system with many processors we can exploit the non-linear solution densities better by setting 

the priorities of the top few nodes in the search tree to be null (i.e. empty bit-vectors). This retains 

the advantage of exploring different regions of the search-space, hoping to exploit the non-uniform 

solution densities (probabilities) while still focusing the processors within these search-spaces for 

more consistent speedups 2 • 

The use of priorities effectively decouple the parallel search algorithm from the scheduling strat­

egy [43]. (In contrast, schemes such as [44, 45] for OR-parallel execution of Prolog use an explicit 

tree representation shared by all processors). This decoupling has several advantages. Scheduling 

strategies can be chosen independently of the search algorithm itself. Synchronization is much 

2Their results prove that depth-first search is not the best sequential algorithm for these search domains. Further, 
it suggests a possibly best sequential algorithm: to use k stacks each with a node from a frontier of size k around the 
root, and to conduct a depth-first search within each stack by time-slicing between nodes on all stacks. k is problem 
dependent, but usually small according to empirical evidence of [42). The synthesis we suggest essentially applies our 
prioritization strategy to this modified sequential algorithm. 
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simpler, as the interactions between processors are limited to. accessing the common pool of work 

on small shared-memory machines. Most important, the prioritization strategies can be extend­

ed to distributed-memory machines such as the Intel iPSC/2 and BBN Butterfly, by providing a 

priority-balancing strategy in conjunction with the load balancing scheme. We are developing such 

a strategy. 

Problem reduction based problem solving and Logic Programming are (related) areas in which, 

frequently, one is looking for one solution while many solutions may exist. However, this is sub­

stantially a more complex situation than the pure state-space (OR-tree) search discussed in this 

paper, if AND-parallelism is also to be exploited. AND/OR trees, and their extensions such as 

the Reduce/Or Trees [46], are . used to represent such computations. Unlike the OR nodes, all the 

children of an AND node must have a .solution for the AND node to succeed. We have proposed and 

implemented a prioritization scheme for AND/OR parallel execution of Logic Programs [30]. The 

techniques developed in this paper, such as the delayed-release technique, can be incorporated in 

such schemes with appropriate modifications, to ensure monotonic speedups and reduced ·memory 

requirements [47]. 
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Figure 1: Sequential depth-first search of a search tree and wasted work with parallel execution. 
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Figure 2: Search tree expansion using bit-vector priorities. 

33 



pOOO 

Q Partial solution generated up to the node 

D Remaining Alternative paths to reach a solution 

Figure 3: Binary decomposition of a search tree. 
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Delayed_Release(parentNode) 

if (leaf(parentNode)) I* parentNode is leaf node *I 

'* 

else 

release() releases all nodes in the list 
pointed by parentNode 

*' release(parentNode); 

'* 

*' 

expand() returns pointers to the leftmost and rightmost 
nodes of the list of children nodes created as a 
result of expansion of parent node. 
append() appends the list of children nodes to the 
list of nodes pointed by parent node. 

expand(parentNode, leftmost, rightmost); 
append(parentNode, leftmost, rightmost); 
Enqueue(leftmost); 

Figure 5: Algorithm for the implementation of the delayed-release technique. 
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Figure 6: Expansion of a search tree using the delayed-release technique. 
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Figure 7: 126-Queens: Speedups to the first solution on Sequent Symmetry. 
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Table I: 126-Queens: Number of nodes expanded to the first solution. 

126-Queens: Number of Nodes Expanded on Sequent Symmetry 
PEs 1 2 4 6 8 10 12 14 16 18 
BD 35248 35338 35574 35917 36164 36371 36578 36637 36795 36944 
BD-DR 35248 35241 35306 35532 35601 35738 35987 36051 36229 36507 
BD-DPR 35248 35265 35357 35439 35644 35786 35870 36077 36219 36448 

BD: Binary Decomposition BD-DR: BD Delayed Release 

BD-DPR: BD Delayed Partial Release 
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Figure 8: 126-Queens: Maximum queue lengths to the first solution on Sequent Symmetry 
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Figure 9: 126-Queens: Maximum memory usage to the first solution on Sequent Symmetry 
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Table II: 126-Queens: Performance to the first solution with increasing branching factor. 

126-Queens: First Solution Speedup 
PEs 1 · 2 4 6 8 10 

Branching Factor=2 0.99 1.99 3.93 5.82 7.62 9.33 
Branching Factor=3 0.99 1.99 3.89 5.41 7.43 9.05 
Branching Factor=4 0.99 1.97 3.85 5.61 7.28 8.10 

126-Queens: Maximum Queue Lengths (Msgs.) 
PEs 1 2 4 6 8 10 

Branching Factor=2 108 215 417 613 755 819 
Branching Factor=3 213 416 801 1154 1413 1571 
Branching Factor=4 317 714 1213 1797 2176 2397 

126-Queens: Maximum Memory Usage (MBytes) 
PEs 1 2 4 6 8 10 

Branching Factor=2 0.138 0.266 0.501 0.705 0.890 0.972 
Branching Factor=3 0.238 0.498 0.907 1.278 1.587 1.737 
Branching Factor=4 0.344 0.714 1.318 1.938 2.343 2.580 
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Figure 10: 8 X 8 Knights-Tour: Speedups to the first solution on Sequent Symmetry. 
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Table III: 8 x 8 Knights-Tour: Maximum queue lengths to the 1st solution. 

Knights-Tour: Max. Queue Size ( # Msgs.) on Symmetry 
PEs 1 2 4 6 8 10 12 14 16 18 

FD 78 138 226 285 298 400 405 403 395 471 
BD 35 57 88 108 126 149 175 181 197 217 
BD-DR 34 36 39 43 49 59 51 46 47 47 
BD-DPR 7 13 20 20 26 21 27 30 35 37 

FD: Full Decomposition BD: Binary Decomposition 

BD-DR: BD Delayed Release BD-DPR: BD Delayed Partial Release 
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Figure 11: 6 x 6 Magic-Squares: Speedups to the first solution on Sequent Symmetry. 
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Table IV: 6 x 6 Magic Squares: Queue lengths and memory usage to the 1st solution. 

Max. Que . Lengths (Msgs.) on Sequent Symmetry 
PEs 1 2 4 6 8 10 12 14 16 18 

BD 17 35 50 68 74 68 74 84 99 143 
BD-DR 15 17 19 22 25 24 34 38 48 54 
BD-DPR 4 9 15 18 20 24 28 39 41 42 

Maximum Memory Usage (KBytes) on Sequent Symmetry 
PEs 1 2 4 6 8 10 12 14 16 18 

BD 13.0 27.6 38.0 52.6 58.8 59.2 64.1 72.7 84.8 114.2 
BD-DR 12.3 15.9 26.6 38.5 43.8 43.9 52.8 64.9 70.0 79.6 
BD-DPR 11.7 16.0 26.0 34.8 36.8 48.7 55.2 65.8 71.2 78.6 

BD: Binary Decomposition (Prioritized) 

BD-DR: BD Delayed Release (Prioritized) BD-DPR: BD Delayed Partial Release (Prioritized) 
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Figure 12: Parallel IDA*: Speedups to the first optimal solution of the 15-Puzzle problem. 
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Table V: Parallel IDA*: Queue lengths and memory usage to the 1st optimal solution of the 
15-Puzzle problem. 

Max. Que. Lengths (Msgs.) on Sequent Symmetry 
PEs 1 2 4 6 8 10 12 14 16 18 

FD-LIFO 21 22 21 36 36 55 52 67 55 73 
BD 26 27 31 42 43 45 48 53 59 64 
BD-DR 26 27 33 36 38 42 44 48 55 55 
BD-DPR 14 19 28 33 35 45 46 48 55 56 

Maximum Memory Usage (MBytes) on Sequent Symmetry 
PEs 1 2 4 6 8 10 12 14 16 18 

FD-LIFO 0.116 0.121 0.116 0.198 0.198 0.305 0.287 0.370 0.303 0.403 
BD 0.144 0.170 0.203 0.216 0.229 0.245 0.250 0.258 0.258 0.267 
BD-DR 0.143 0.174 0.196 0.218 0.228 0.243 0.249 0.257 0.265 0.277 
BD-DPR 0.143 0.167 0.201 0.235 0.247 0.253 0.247 0.253 0.259 0.270 

FD-LIFO: Full Decomposition with Stack BD: Binary Decomposition 

BD-DR: BD Delayed Release BD-DPR: BD Delayed Partial Release 
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Figure 13: PPIDA *: Speedups to 1st optimal solution of the 15-Puzzle. Problem size: Small 
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Figure 14: Concurrent execution of prioritized iterations in PIO-PIDA *. 
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Figure 15: PIO-PIDA *: Speedups to 1st optimal solution of the 15-Puzzle. Problem size: Small 
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Figure 16: PIO-PIDA *: Speedups to 1st optimal solution of the 15-Puzzle. Problem size: Large 
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