
un~UEAS~TY

5C~EnCE

A Deadlock Prevention Method for a Sequence Controller for Manufacturing Control

89-60-13

Toshimi Minoura
Chi han Ding

Department of Computer Science
Oregon State University

Corvallis, Oregon 97331-3902

n
n
n
n
fl
n

I

[)

l 1

u
ti
J

u

A Deadlock Prevention Method for
a Sequence Controller for Manufacturing Control

Toshimi Minoura and Chihan Ding
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

Abstract

In a manufacturing system, machines, robots and storage areas are used as

serially-reusable resources. If the usage of these resources is not properly con­

trolled, deadlocks may occur. In this paper, we present a simple deadlock pre­

vention method for a linear manufacturing line. Our deadlock prevention method

can be implemented simply by adding some dummy resources to a Petri net-based

sequence controller. Heuristic strategies for the algorithms that assist us to design

such sequence controllers are also discussed.

Key Words and Phrases: manufacturing line, sequence controller, Petri net,

deadlock prevention .

1 Introduction

Computer systems are widely used in modern manufacturing systems for such functions

as inventory control, job scheduling, and machine control. An automatic manufactur­

ing system usually consists of manufacturing lines containing machine stations, robots,

- and transport devices controlled by computers. While a job, which is often etnbbdied

as a workpiece, goes through manufacturing stages, various resources such as machines,

robots, and storage areas are allocated to it, and a manufacturing operation is performed

at each manufacturing stage. Furthermore, a manufacturing system normally accom­

modates multiple jobs at various stages of manufacturing. A Petri net-based sequence

1

l
·1

n
n
l
l
I
l

J

. J

I

J

J

J

controller that guarantees mutually exclusive accesses to serially reusable resources can

be designed for scheduling job movements [KOM0-84, MAIM-83]. However, without

a deadlock prevention or avoidance mechanism, this type of controller may encounter

deadlocks.

This paper presents a simple deadlock prevention method for a Petri net-based se­

quence controller for a linear manufacturing line. A linear manufacturing line consists

of a linear sequence of manufacturing stages, and it neither splits into multiple manu ­

facturing lines nor merges with other manufacturing lines. Deadlocks are prevented by

restricting accesses to dummy resources added to a Petri net-based sequence controller.

These dummy resources serve as generalized locks that prevent the system from entering

unsafe states .

Section 2 describes a model of a linear manufacturing line. A deadlock prevention

method using dummy resources is presented in Section 3. Algorithms that assist us

in implementing the deadlock prevention method are described in Section 4, and their

effectiveness is compared in Section 5. Section 6 concludes this paper .

2 Model

A linear manufacturing line consists of a sequence of stages, and at each of these stages a

specific operation such as moving a workpiece onto or off from a conveyor and machining

a workpiece is performed. While each job proceeds through a manufacturing line, un­

dergoing a manufacturing activity at each stage, various serially-reusable resources are

allocated to the job. When a job proceeds to a new stage, all the resources required by

the job at that stage must be allocated. If this requirement is not satisfied, progression

of the job is blocked until those resources become available. A serially-reusable resource

can be allocated to at most one job at any time.

A linear manufacturing line can be characterized by a quadruple (M, N, u, w0), where

2

n
n
n

l
I

J

l J

u
u
J

u
J
u

M indicates the number of stages in the manufacturing line, N indicates the number of

resource types utilized by the manufacturing line, the resource usage matrix u[l..M, 1..N]

is a two-dimensional array of non-negative integers of size M * N, and the resource array

w0 [1..N] is an array of positive integers of size N. An matrix element u[i,j] indicates

the number of resource units of type j used by a job at stage i. An array element w0 [j]

indicates the number of resource units of type j initially available.

An example of a manufacturing line is shown in Fig. 1. This manufacturing line

utilizes five resource types: one unit of conveyor space (C), one unit of robot 1 (Rl), two

units of storage (S), one unit of robot 2 (R2), and one unit of machine (M), Therefore,

w0 =< 1, 1, 2, 1, 1 >. This manufacturing line involves the following manufacturing

stages as shown in Fig. 2: in-conveyor, unloadingl, in-storage, loadingl, machining,

unloading2, out-storage, loading2, and out-conveyor. An incoming job J must first reach

the conveyor. At this point J is in stage in-conveyor. It then is picked up by robot 1 and

moved to a slot in the storage. While J is being moved from the conveyor to the storage,

it is in stage unloadingl. The stage unloadingl requires one unit of each of C, Rl, and S.

While J is in the storage, it is in stage in-storage. The job then is picked up by robot 2

and loaded onto the machine (loadingl). After machining (machining), robot 2 unloads

the job from the machine and places it in a slot of the storage (unloading2). Finally,

robot 1 moves J back onto the conveyor (loading2). The conveyor and the storage are

shared by both incoming and outgoing jobs. Thus, the complete resource usage matrix

is the following:

10000
11100
00100
00111

u= 00001
00111
00100
11100
10000

A state s[l..M] of a manufacturing line (M, N, u, w0) is an array of non-negative integers

3

11

J

1

lJ
u
J

J

J
Ll

of size M. An aiTay element s[i] indicates the number of jobs at stage i. A particular

state s0 =< 0, ... , 0 > is called the initial state. No jobs are in the manufacturing line

when it is in the initial state. We denote the number of jobs in states by Isl, Note that

Isl = "I:f°;1 s[i]. For example, in state s1 =< 1, 0, O, 0, O, O, 2, 0, 0 >, one job is in stage

in-conveyor, and two jobs are in stage out-storage.

The array h8 [1..N], each of whose element h8 [j] indicates the number ofresource units

of type j being used by the jobs in states, is defined as follows: h8 [j] = Ef°;1 s[i] *u[i,j].

A state s is called legal if hs :::; w0 • 1 Let state s1 =< O, 1, 0, O, 1, O, 1, O, 0 >. Then

hs =< 1, 1, 2, O, 1 >, and s1 is a legal state since h8 :::; w0 •

A state s' is a next state of state s (s --+ s') if both s and s' are legal states and if

one of the following conditions hold.

Al. s' is a state after a new job is introduced to s: s'[l] = s[l] + 1, and s'[i] = s[i] for

every i such that 2 :::; i :::; M.

1 2 M-1 M

➔ I l·--1 I· --I I I
A2. s' is the state that results when a job in some stage i ins is advanced by one stage:

for some i such that 1 :::; i:::; M -1, s'[i] = s[i] -1 and s'[i + 1] = s[i + 1] + 1, and

s'[k] = s[k] for 1 :::; k :::; i - 1 and i + 2 :::; k < M.

1 2 1-1 1+1 M-1 M

I I I· ■ -1 IFI+ l·--1 I I
A3. s' is a state after a job in s leaves the manufacturing line: s'[i] = s[i] for 1 :::; i :::;

M - 1 and s'[.l\1] = s[M] - 1.

1 2 M-1 M

I I· · · I I l···I I~
1 Let x[l..N] and y[l..N] be arrays of the same size. Then x :=; y if and only if x[i] ::; y[i] for every i

such that 1::; i::; N. When x::; y, we also say that y covers .i:.

4

7
n
n
n
fl

n

l I
f I
l I
lJ

Li

lJ
j

J

j

u

The closure of the relation --+ is indicated by ~- A state s is called reachable if

so~ s. A states is safe ifs ~ so, otherwise it is unsafe. A states such that Isl > 0

is a deadlock state if for no states', s--+s1• A deadlock state is always an unsafe state .

A deadlock involving a set of two or more jobs occurs when these jobs, while holding

some resources, issue requests for the resources held by other jobs. Fig. 3 shows all the

cases of deadlocks that can occur in the manufacturing line given in Fig. 1. Consider the

case depicted in Fig. 3a. The job on the conveyor cannot proceed because the storage

space is not available. On the other hand, the jobs in the storage cannot proceed because

the conveyor space is not available.

A Petri net is often used as a modeling tool because it can encode the state of a

system by tokens on it . It has been used for modeling a variety of systems including

computer hardware and software [MURA-84, PETE-81] . It has also been effectively

used to design and implement a sequence controller [HURA-87].

A Petri net is a bipartite directed graph. It contains two kinds of nodes, i.e., places

drawn as circles and transitions drawn as line segments, and directed arcs are used to

connect places and transitions. We represent a sequence controller by a Petri net as

follows. A stage place is provided for each manufacturing stage, and a resource place

is provided for each resource type. A token in a stage place represents a job in the

manufacturing stage associated with that stage place, and a token in a resource place

represents a unit of free resource of the resource type associated with that resource place.

The Petri net in Fig. 2 models the manufacturing line given in Fig . 1.

The state transition diagram G = (S, T) , where S is the set of states and T is the

set of edges representing state transitions, for a manufacturing line (M, N , u, w0) can

be obtain ed by constructing S and T as the minimum closures satisfying the following

rules:

Bl. The initial state s 0 is in S.

5

I
j

j

11

lJ

ti

u
j

B2. Ifs~ s' for some sin S, then s' is in S and (s, s') is in T.

We label an edge in a state transition diagram by the transition that the edge rep­

resent. A state transition diagram is a convenient tool for explaining safe, unsafe, and

deadlock states. There is a path from a node representing a safe state to the node repre­

senting s0 , and there is no such path from a node representing an unsafe node. A node

representing a deadlock state has no outgoing edges. An abbreviated state transition

diagram for the manufacturing line shown in Fig. 1 is given in Fig. 4.

3 Deadlock Prevention

In Section 2 we discussed examples of deadlocks that can occur in a manufacturing

line. Without deadlock prevention or avoidance, a Petri net-based sequence controller

. that guarantees only mutually exclusive accesses to serially reusable resources may cause

deadlocks as discussed in Section 2.

We prevent deadlocks by disallowing every state transition that leads to an unsafe

state. For this purpose we define unsafe entry states. An unsafe state s' is an unsafe

entry state if for some safe state s, s ~ s'. It is obvious that if every unsafe entry state

is prevented from occurring, a deadlock will never occur.

Assume that s' is an unsafe entry state of a manufacturing line L = (M, N, u, w0).

Then s' can be prevented from occurring as follows. Provide a new dummy resource

type D with ls'I - 1 units, and require every job to reserve one unit of D when it enters

any stage i such that s'[i] =/= 0. Since there are only ls'I - 1 units of D, s' cannot occur

as it involves ls'I jobs using ls'I units of D.

More formally, L can be modified to L' = (M, N + l, u', wri) as follows:

Cl. (New dummy resource type)

w~[j] = w0 [j] for 1 :::; j :=:; N and w~[N + 1] = ls'I - 1.

6

l
n
n
n
fl

l
l
l

11

l J

J

I
J

J
J

C2. (Reserving dummy resources)

I • { 0 if S1[i] = 0
u [i, N + 1] =

1 if s'[i] =J 0, and

u'[i,j] = u[i,j] for 1 ~ i ~ M, 1 ~ j ~ N.

When an unsafe entry state s1 is prevented from occurring as above, some other

state s11 may also be prevented from occurring. This happens if ls'I < ls"I, and if the

stages of non-zero components of s' are also non-zero components of s11 (if s'[i] =J 0, then

s"[i] =J 0). If s 11 is a safe state, new deadlock states that do not occur in L may occur

in L', although such deadlocks are very rare in practice. Therefore we should prevent

one unsafe entry state at a time until every unsafe entry state is removed. When all

the unsafe entry states disappear, all the unsafe (and hence deadlock) states will also

disappear.

We obtained the Petri net-based sequence controller shown in Fig. 5 by adding three

dummy resource types Dummy1, Dummy2, and Dummy3 to the sequence controller

given in Fig. 2. The dummy resources of type Dummy1 are used to prevent the unsafe

entry states' =< 1, O, 0, 0, 0, 1, 1, 0, 0 > (see Fig. 4 also). Since ls'I = 3, two units of type

Dummy1 resources are .provided, and they are used in stages in-conveyor, unloading2,

and out-storage. The dummy resources of type Dummy2 are used to prevent the unsafe

entry states'=< O, 1, 1, O, 1, O, 0, O, 0 >, and the dummy resources of type Dummy3 are

used to prevent the unsafe entry state s' =< l, 0, 0, 0, 0, 1, 1, 0, 0 >.

In implementing our deadlock prevention method, all the unsafe entry states must

be prevented from occurring. Since the deadlock prediction problem for our model is

NP-complete [MIN0-82], there is most likely no algorithm that can solve this problem

efficiently. Therefore, we basically exhaustively search for unsafe entry states. However,

the following properties allow us to eliminate certain legal states from our search.

D 1. A state covered by a safe state is also a safe state.

7

l
n
n
n
il
7

l
I

I
j

j

j

D2. A state covering an unsafe state is also an unsafe state.

In the following section, we discuss how some heuristic search strategies can effectively

utilize these properties.

4 Enumerating Unsafe Entry States

A program that assists us to implement the deadlock prevention method described in

Section 3 was written in C. We developed four algorithms for enumerating unsafe entry

states, and each of them was tested with several test cases to determine their effective­

ness. In this section, those four algorithms are described. Their effectiveness is compared

in the next section.

Algorithm 1

In order to detect unsafe entry states, the first algorithm enumerates all the legal states

and classify them into safe states and unsafe states. In expanding the reachability tree,

Algorithm 1 performs depth-first search starting from the initial state and stores safe

and unsafe states in lists.

Each time a new state nodes is enumerated, procedure saf eTest(s) compares it with

other nodes in the SafeStates and UnsafeStates lists to examine whether it is already

known to be safe or unsafe. If safety of sis not known yet, the procedure safeTest(s)

generates all the next states ss such that lss I ::; Isl-If any such node ss is safe, s is safe.

Otherwise, s is unsafe. When s is safe, the next state obtained by adding a new job to

stage 1, if it is legal, is added to the queue of unresolved states. When s is unsafe, such

a state is unsafe.

Matching a newly generated state with those in the SafeStates and UnsafeStates

8

l
n
n
n

7

I
I
I
l I

lJ

11

I
J
J
u

/* main procedure for Algorithm 1 *I

main()
state; s, ss

SafeStates
UnsafeStates
Unresolved

set of (safe) states;
set of (unsafe) states;

{

}

queue of (unresolved) states;

SafeStates = {sO};
UnsafeStates ={};
Unresolved={};

nextState(sO, 0, ss);
insertTail(ss, Unresolved);

while (Unresolved!={})
{ removeTail(Unresolved, s);

void safeTest(s);

}

if (unsafeState(s))
s->UnsafeEntry = TRUE;

I* sO = <O, ... ,O> *I

I* s1 = <1,0, ... ,0> *I
I* safety of sO must be resolved *I

I* perform recursive safety test *I
I* for every unresolved state *I

I* ifs is unsafe, it is unsafe entry *I
I* since it was unresolved state and *I
I* unresolved state is reachable from *I
I* safe state *I

Fig. 6. Procedure main() of Algorithm 1.

lists is time-consuming. In Algorithm 2, we will use hashing for this purpose. Algorithm

1 is intended to be the base case since hashing cannot be used in Algorithms 3 and 4

that will be discussed later.

The procedures main() and safeTest(s) of Algorithm 1 are given in Figs. 6 and 7.

Algorithm 2

Algorithm 1 is inefficient because it consumes most of its time comparing a new state

with those in the SafeStates and UnsafeStates lists. In order to eliminate this problem,

Algorithm 2 uses hash tables instead of lists to store safe and unsafe states. The hash

9

l
n
n
n

n
1

l

I
J

l]

l l

J

J
j

I* safeTest procedure for algorithm 1 *I

boolean safeTest(s)
s' ss' sss
UnsafeLocalQueue
status

state;
queue of states;
boolean;

{

}

if safeState(s) return(TRUE); I* already known to be safe *I
if unsafeState(s) return(FALSE); I* already known to be unsafe *I

UnsafeLocalQueue = {};
status= UNSAFE;
for (i=M; i>=1; i--)
{ nextstate(s, i, ss);

if (ss != NIL)
{ switch(status)

{ case UNSAFE:
if safeTest(ss)
{ status = SAFE;

I* sis not safe yet *I
I* i=M for A3, others for A2 - *I

I* generate next state ss *I

I* sis not safe yet
I* if ss is safe, sis safe

while ((sss = remove(UnsafeLocalQueue)) != NIL)
sss->UnsafeEntry = TRUE; I* s safe, sss unsafe *I

} else I* ss is unsafe, reachable from s *I
insert(ss, UnsafeLocalQueue);

case SAFE: I* sis already known to be safe *I
insertFront(ss, Unresolved);

}
}

}

nextState(s, 0, ss);
if ((ss != NIL) && (status --

if (status== SAFE)
{ insertSafeState(s);

return(TRUE);
} else
{ insertUnsafeState(s);

return(FALSE);
}

I* add a job to stage 1 *I
SAFE) insertTail(ss, Unresolved);

I* s was found to be safe *I

I* sis unsafe

Fig. 7. Procedure safeTest(s) of Algorithm 1.

10

l
n
n
n
n
fl

]

l

l l

L I
l l

11

d
j

J
J

tables are arrays of pointers to lists of nodes representing states. A hashing function is

applied to the binary value representing a state.

Algorithm 3

In order to reduce the amount of memory space required for storing the safe and unsafe

states enumerated, Algorithm 3 keeps only the safe-cover states (safe-covers) and unsafe­

basis states (unsafe-bases) instead of safe and unsafe states. Thus, not only the amount

of memory space used storing state information is reduced, but also the execution time

of the program is reduced. This is because a newly generated state need be checked

against fewer state nodes.

Algorithm 4

Enumerating unsafe entry states means determining the boundaries between safe states

and unsafe states. Algorithm 4 tries to reach this boundary quickly by bimodal search.

Assume that safeness of a state s must be resolved. In its first phase, Algorithm 4 tries

to obtain a largest legal state s' reachable from s by adding jobs to the current state.

Before a job can be added, some jobs may have to be moved. Once a largest legal state

s' is reached, the algorithm enters its second phase. In its second phase, the algorithm

tries to determine the safeness of s' by only reducing and moving jobs. Algorithm 4,

like Algorithm 3, uses the SafeCovers and Unsaf eBases lists. However, the queue

of unresolved states is organized as a priority queue according to the number of jobs

in each state. Each time when the algorithm selects a new node from the Unresolved

queue, it always selects the state with the largest number of jobs in it in order to find

the largest safe cover quickly.

The earlier large safe covers and smaller unsafe bases are found, the shorter the

SafeCovers and UnsafeBases lists will be. Smaller sizes of these lists mean shorter

11

l
n
n
n
fl

~

l
I
l
I
l
j

l
]

J

j

j

I
u

comparison time.

5 Comparisons

In order to determine the relative efficiency of the four algorithms described in the

preceding section, they were subjected to the following test cases.

Case A. The system contains eight stages and eight resource types. Each stage i is

associated with a particular resource type Ri, and only one unit is provided for

each resource type. A job uses one unit of~ at each stage i. Since at every stage

a job can proceed to the next stage as soon as the next stage becomes empty, every

legal state is safe.

Case B. Case Bis identical to Case A, except that Case B consists of nine stages and

nine resource units.

Case C. Case C is identical to Case A, except that Case C consists of 10 stages and 10

resource units.

Case D. The system consists of five stages and three resource types, and several dead­

lock states can result.

Case E. Case E is identical to Case D, except that one dummy resource is added to

Case E in order to prevent a deadlock state.

Case F. Case F is identical to Case D, except that three dummy resources are added

to Case F in order to prevent all the deadlocks states.

Case G. The system consists of nine stages and five resource types as shown in Fig. 2.

Case H. Case His identical to Case G, except that in order to prevent all the deadlock

states, three dummy resource types are added to Case G as shown in Fig. 5.

12

l
7
n
n
ll

fl

I
l

I
. I
I
I
l l
lJ
1

j

Case I. Case I is rather complex. It contains 15 stages and eight resource types, and

many deadlock states can result.

Table 1 show the the amount of CPU time required for enumerating all the unsafe

entry states. Programs were executed on Sequent Balance 21. Several conclusions can

be drawn from the results shown in Table 1 and some other results.

1. Algorithms 1 and 2 generate all the legal states, and they are inefficient especially

when most states generated are safe as in Cases A - C.

2. If we generate all the states, hashing as used in Algorithm 2 is a good way to match

states.

3. Safe-covers and unsafe-base states can certainly reduce the number of states gener­

ated. In Case C, the maximum number of safe states generated by Algorithms 1

and 2 is 1024 while the number of safe-cover states generated by Algorithm 3 is

48 .

4. Algorithm 2 is comparable to Algorithm 3. Time required for matching a state against

stored states by hashing seems to be comparable to that required for comparing a

state against safe-cover states and unsafe-base states stored in lists.

5. Algorithm 4 performs better than Algorithm 3 when most states are safe as in Cases

A - C. This fact shows that the enumeration order of states affects the number of

safe-cover and unsafe-base states generated. For example, in Case C, Algorithm 4

generates only 10 safe-cover states, while Algorithm 3 generates 58.

Overall, Algorithm 4 is the best algorithm among those which we investigated.

13

l
n
n
n
n
n
l
I
l
I
I
I
u
ll
11

I
u
u
u

6 Conclusion

A simple deadlock prevention method for a Petri net-based sequence controller for a

linear manufacturing line was presented. This method prevents deadlocks by disallow­

ing any state transition that leads to an unsafe entry state, and the method can be

implemented by simply adding some dummy resources. A program that enumerates all

the unsafe entry states was written, and four algorithms were developed for this pro­

gram; These algorithms were tested with several test cases in order to determine their

effectiveness.

Algorithm 4, which performed best for most cases, tries to find safe/unsafe boundary

states as quickly as possible. In order to save storage space, safe states and unsafe states

were reduced into safe cover states and unsafe base states, respectively.

Even in a more complex manufacturing system that includes multiple manufacturing

lines, deadlocks can be prevented if all the unsafe entry states are prohibited. It is

possible to further extend our program to handle such a case.

Since the problem we tried to solve is in general NP-complete, there is a fundamental

limit to the maximum number of stages allowed, which it somewhere between 15 to 20.

However, as it is often not easy to figure out manually a deadlock prevention method

for a manufacturing system even in this complexity range, the method presented will

be useful in many real systems. A more complex system must be decomposed into

subsystems of manageable sizes. This problem is left for future research.

References

[KOMO-84] Komoda, N., Kera, K., and Kubo., T. An autonomous, decentralized con­

trol system for factory automation. IEEE Computer 17, 12 (Dec. 1984),

73-83.

14

l
l
l
l
il
n
l
l
l
l
l
J

ri
l J

lJ

l
J
I
u

(MAIM-83] Maimon, O.Z., and Nof, S.Y. Activity controller for a multiple robot as­

sembly cell. In Control of Afanufacturing Processes and Robotic Systems,

ASME, 1983, pp. 267-284.

(MART-84] Martinez, J., and Silva, M. A language for the description of concurrent

systems modelled by coloured Petri nets: Application to the control of

flexible manufacturing systems. Proc. IEEE Workshop on Languages for

Automation, 1984, pp. 72- 77.

(MINO-82] · Minoura, T. Deadlock Avoidance Revisited. JACM 29, 4 (Oct. 1982),

1023-1048.

[MURA-84] Murata, T. Modeling and analysis of concurrent systems, In Handbook of

Software Engineering, Van Nostrand Reinhold, 1984, pp . 39-63.

(PETE-81] Peterson, J.L. Petri Net Theory and the Modeling of Systems, Prentice­

Hall, 1981.

15

l
n
n
n Machine

D fl

n t •

8 l t Storaget

I
I • 8 I

t t
I I Conveyor I ___.
l l Fig.I. A manufacturing line.

ll
lJ
u
I
u
I

l
1
n
n
il
r l
I
l

I
l

I

j

u
l J

I
j

j

u

t 1

In­
conveyor

2

unloadlngl

t
8

3

In­
storage

4

loadingl

5

6

unloading2

out­
storage

8

loadlng2

t

t

5

out­
conveyor

Fig. 2. The Petri net for the manufacturing line in Fig. I.

1

r I
n
n
n
fl

I

1

l

l

l

l

fl
u
I

l

J

Conveyor

D Machine

Q Robot 2

J, j J, j Storage

Q Robot 1

a) 100000200

WMachine

Q Robot 2

I f I -1, I Storage

Q Robot 1

Conveyor 1)

C)101010100

GJ Machine

0 Robot 2

I t I f __ I Storage

Q Robot 1

Conveyor)

b) 002010000

Fig. 3. Deadlocks in a manufacturing line.

1

n
n
n
. 1

l

I

l

I

l

r
I ,

l

l

l
I

000000000

+ tl
100000000

+ t2 OlOF
001~

• 101000000

000000000~ 12, ~ oz;:71=
· t2 100010100

010010100✓ + 16
[100001100]

t7

100000200

) - unsafe entry state

c::::J - deadlock state

Fig. 4. The state transition diagram (part).

1

n
n
n
i1
l
I
'l

I

l
l
J

J

j

j

J
j

J

-

• •
t 1 4tt2 t cJ / ~

\...
... / 1 "I / 2 "" 3 "I ~~~ Dummy2
~ ... - -
=-

--,., .. - unloadingl - ..
in- - In-... _.

_conveyor/ - \. -~ - \.. storage / ~ ~

,r
, _

• -C 4~

•· r T t
... ', I 4

/ 4 "I

\.. loadingl

• ,, + t
,~ I 5

/ 5 ""
--

• machining ,_

,, \.. /
~ • • ~ A M ., , , r • t -I 6 a R2 ... - , ,
B /' 6 "I

unloading2
- L \..

L.(•• -il , ,
t7

~ ,, I
.i~ Dummyl / 7 "I

out- / \. storage ./

.. • u • t

~
,...

•• I 8
- u • ...

/ 8 "I - - -.. ...
Dummy3 loadlng2 --

\.

Fig. 5. The Petri net-based sequence controller
with three dummy resource types.

/ 9

out-
conveyor

\. /

•
Rl

V
t 10

-... ._
-..

7
n
n
n
n
n
I
l
l

u
1

1

u
lJ

J

u
u
u

Algorithms

1 2 3 4

A 22.1 8.0 8.6 1 . 1

B 93.2 28.6 31.2 2.1 ---

C 388.9 99.3 11 0. 7 3.1

D 0.2 0.1 0.1 0.2

Test
E 0.2 0.2 0.1. 0.2

Cases

F 0.3 0.2 0.2 0.3

G 1. 6 0.9 1 .0 1 . 1

H 1.7 1 . 0 1 .0 1 . 1

I 1225.4 249.5 122.2 82.5

Table 1. Test results of four algorithms (run times in secs.).

	Minoura_Ding_89_60_13_A
	Minoura_Ding_89_60_13_B

