
. I

91-60-15

5C~EflCE

Piece-Wise Scheduling of Composite Task Graphs
onto Distributed Memory Parallel Computers

T. G. Lewis
Computer Science Department

Oregon State University
Corvallis, OR 97331-3202

l

n
n

j

l I
lJ

J

J

Piece-Wise Scheduling
of

Composite Task Graphs
onto

Distributed Memory Parallel Computers

Abstract

T. G. Lewis
Computer Science Dept.
Oregon State University

Corvallis, OR. 97331-3202
lewis@cs.orst.edu

(503)-737-5577

Heuristics for static scheduling of task graphs using list scheduling techniques have continued to improve
by adding real-world factors such as processor speed, network transmission speed, interconnection topology,
and link contention considerations to the basic task graph model. Yet, the resulting schedules do not fully
model program loops and branches, startup costs for both process creation and message initiation, and a
number of interesting parallel processing patterns such as meshes, tress, and supervisor/workers. In fact,
improvements in the schedule may be obtained when the task graph is regular as when it contains repeated
or replicated tasks, divide-and-conquer patterns of communication, or a mesh-structured pattern of
computation.

In this paper we describe a limited approach to scheduling composite task graphs that considers process and
message startup costs, and three regular patterns : replicated, tree, and mesh. The approach is to model
programs with such regular patterns as a composite task graph, where each regular structure is a
decomposable sub-task node in the task graph. Then, we compute an optimal schedule for each sub-task .
graph, piece the sub-tasks together, and perform an ordinary static scheduling heuristic on the pieces, to
produce an overall schedule.

We define a composite task graph as a hierarchical task graph containing regular-structured sub-task graphs
as components. At the top level of this hierarchy, each graph node represents either a simple task or a
hierarchically decomposable sub-task graph. We propose a piece-wise scheduling algorithm that simply
allocates processors to sub-task graphs according to closed-form expressions which give determine the
optimal number of processors, and then uses a list scheduling algorithm to schedule the flattened graph onto
these processors.

We do not address the pressing problem of loops and branches in the task graph representation, but we
speculate that the technique of piece-wise scheduling introduced here can be adapted to a hybrid form of
scheduling that may accommodate branches and loops.

Piece-wise scheduling is not guaranteed to yield the best global schedule. Rather, it pieces together locally
optimum sub-schedules. Finding globally optimum schedules for composite task graphs remains an open
problem. We present an heuristic approach that has been experimentally used to schedule small parallel
programs with encouraging results. More empirical evidence is needed to determine the usefulness of this
technique, but early indications are encouraging.

Introduction
The problem of scheduling parallel program tasks onto distributed-memory parallel computers has received
considerable attention in recent years (see bibliography). This problem is known to be computationally
intensive. The complexity of the problem rises even further when real-world factors such as process
initiation time, message initiation time, transmission delay time, and time-complexity of the problem
being solved are included in the analysis. Regardless, many researchers have studied restricted forms of the
problem by constraining the task graph representing the parallel program or the parallel system model.
Most investigators make simplifying assumptions to reduce the complexity of the problem. These
assumptions ignore most of the critically important features needed to model modern parallel processor
systems.

Recent static scheduling heuristics have been proposed to handle link contention, processor topology (some
communication time delays are no longer sensitive to source-destination node distances created due to
interconnection topologies, but some are), and transmission speeds of the network. Even so, many pressing
problems remain in the literature: methods to handle message and process initiation costs, data parallelism
(task replication), and program branches and loops. In this paper, we address the problem of statically
scheduling regular task graphs onto a fully connected, distributed-memory parallel processor when message
and process initiation times are included. We do not address the problem of program branches and loops, nor
do we consider other factors such as network topology and link contention which have received attention
elsewhere [ArRo91, Bala89, BeBa90, B1We84, B1Ch91, Carr90, Coff76, Cole91, DJLe89, ErSa89,
HoSh88, JBGh90, Kamp89, Kant89, Lang84, Lee91, LSTa90, Robe89, Seth76, Ullm75].

A parallel program schedule must perform both a mapping of tasks onto processors, and an ordering, in
time, of task executions. In the final analysis, it may be necessary to devise new scheduling heuristics, as
opposed to optimum algorithms, that consider: 1) tasks taking a sizeable amount of time to be initiated and
variable execution time given by a computational complexity formula, and 2) communication links
requiring a significant message-passing startup time and taking a variable amount of communication time
to pass data from one task to another.

Niether heuristic nor algorithmic solutions to scheduling programs that consider such factors have been
proposed. This paper attempts a purely analytical analysis of such task graphs, to produce an analytically
derived schedule. Our analytical analysis combines mapping with sequencing to form a schedule. We have
simplified the analysis by assuming a fully connected interconnection network, and homogeneous
processors. The results can be generalized to these more realistic conditions, but we have not attempted such
a general solution, here.

In addition, our appoach does not consider the possibility of a global minimum time solution, but instead
gives locally minimum solutions. That is, each analytical schedule is designed to minimize the completion
time of a sub-task graph. When the schedule of a sub-task graph is combined with other sub-tasks to form a
larger task graph for the complete parallel program, the combined schedules are not guaranteed to give a
globally minimum execution time. That is, the solutions are only piece-wise minimal, hence we call these
piece-wise schedules.We show one method of combining piece-wise schedules into a larger schedule, and
describe some remaining problems with this approach.

Recent surveys and classifications of scheduling are given in [CaK.u88, Chen90, WaCh91]. PPSE (Parallel
Programming Support Environment) was inspired by early work done by Snyder (POKER), Berman (Prep
P), Wu (HYPERTOOL), Purtilo {Polylith), and others. This paper is an extension of on-going work on
PPSE initiated by the author in 1988. PPSE most nearly resembles HYPERTOOL developed by Gajski and
students at University of California, Irvine, and reported by Wu and Kwan. While independently developed
both HYPERTOOL and PPSE suffer from lack of consideration of several real-world factors mentioned
above. The mapping heuristics of Lo and Berman are related to this work, but only in that both approaches
exploit task graph regularity, see Lo, Bokhari, Cybenco, McCreary, Muhlenbein, Razouk, et al., in the
bibliography.

HYPERTOOL and PPSE incorporate static list scheduling techniques based on critical path analysis.
HYPERTOOL takes as its input a C program and constructs a task graph that is analyzed and then

)

1
n
n

)

I

l
l
n
n
n
n
l

l

I J

j

u

scheduled onto a hypercube. PPSE takes as its input a design in the form of a hierarchical dataflow graph,
and schedules a flattened equivalent of the dataflow graph onto an arbitrary interconnected target machine.
HYPERTOOL requires that the program be written before it can be analyzed, while PPSE does not. But,
both tools automate much of the production of synchronization and message-passing code.

The PPSE approach is nQt as closely related to dynamic scheduling work done by a number of others such
as [Cyben89, Feo86, Fost91, Gree88, JiJe90, MuSi90, PoKu87, SCMi90, VeDa90, XHYu90]. While it is
possible to adapt some of these dynamic scheduling heuristics to our static heuristics to arrive at a hybrid
method, our work is predominantly aimed at static scheduling. Furthermore, our work has little to do with
mapping algorithms [BeSn87, Bokh81b, ChAg90, ChSh86, Efe82, Erca88, KPVe86, LeAg87, Lo84,
LRGK90, MoSk90, NiKi89, SaEr87, SLHH91, ShFo90]. These are important algorithms, but scheduling
differs from mapping mainly in the way tasks are scheduled to execute in a certain order. Concern for the
order of execution increases the complexity of the algorithms. Finally, our approach is fundamentally aimed
at practical considerations, which means we are primarily concerned with the impact of target machine
factors on schedules.

The Model
We seek a unified model that considers real world factors in both the target machine and the parallel
program. For distributed-memory target machines these parameters are: interconnection topology, processor
and communication link characteristics, and message/processor startup costs. For parallel programs these
parameters are: size of problem, computational complexity of the tasks, conditional branching, and loops.

Target Machine Model

The target machine can be described as a general system (P, cPijl, [Si], [Ii], CBil,CRijD as follows:

1. P = { P1, ... , Pm} is a set of processors forming the parallel machine.
2. cPijl is an mxm interconnection topology matrix.
3. Si. l~c;;m, specifies the speed of processor Pi•
4. Ii. l~i~m. specifies the startup cost of initiating a message on processor Pi•

5. Bi. l~c;;m, specifies the startup cost of initiating a process on processor Pi•
6. Rij is the transmission rate over the link connecting two adjacent processors Pi and Pj-

This is a general model. For most of this paper, we will simplify this model by assuming a uniformity
across the parallel computer system. Processors will all operate at the same speed, and message-passing
parameters are equal on all links. Thus, the simplified model becomes:

1. P = number of identical processors, numbered from zero to P-1.
2. The mxm interconnection topology is assumed to be a complete graph.
3. All processors run at the same speed, denoted by Parameter a..
4. Parameter a= the startup cost of initiating a message on all processors.
5. Parameter p = the startup cost of initiating a process on all processors.
6. Parameter b = the time to transmit a unit of data across all links.

Parallel Program Task Model

The task system for a given set of resources can be defined as the system (T, <, CDijl, [Fil) as follows:

1. T = { T1, ... , Tn} is a set of tasks to be executed.
2. < is a partial order defined on T which specifies operational precedence constraints. That is Ti < Tj
signifies that Ti must be completed before Tj can begin.
3. CDijl is an n x n matrix of communication data, where Dij > 0 is the amount of data required to be
transmitted from task Ti to task Tj, l~i,j~n.

4. [Fi] is an n vector of the amount of computations, where Fi > 0 is the number of instructions required to
execute Ti, l~i5n. The elements of this vector are functions which give the computational complexity of
each task's execution time as a function of inputs, Dij- In many cases, all execution times are alike, so we
will use the simple form, F.

Execution and Communication Cost

The following parameters are required to represent the computational costs and communication costs
incurred by a parallel program on a specific parallel processing system.

1. Ti : the execution time of task i when executed on a processor. It should consider the size of the tasks
Fi, and process startup time, ~- In general, Tij = Fi +~

In most of the following analysis, this model is further simplified by making Fi a function of the
computational complexity of the task. For example, Fi(S,k) might be used to model the movement of S
bytes of data to k replicated tasks.

2. C(i1_iij1j2): the communication delay between tasks i1 and i2 when they are executed on processing
elements j 1 and fa, respectively. It reflects the target machine performance parameters as well as the size of
the data to be transmitted.

When the 1/0 processors take the same amount of time to initiate a message and the transmission rate is the
same over the interconnection network, the formula for communication cost is

C(i 1,i2 j 1 h)=(<x+~Di 1 i2)*Hj U2
where Hij is the number of hops between processing elements i and j. If we further assume that all links
take equal time, (hops are ignored) then Hij = 1, and the formula simplifies to

C(i1hj1h) =Cx+~Di1i2

Our goal is to schedule a task graph like the one shown in Figure 1, such that the parallel program executes
in the shortest elapsed time. Where it is appropriate, the task graph is annotated with a node number or
formula specifying the task's identification and/or execution time, and size of data to be passed in a message
(arcs). The static schedule is given in the form of a Gantt chart, Figure 1. The Gantt chart will be drawn so
that time progresses from left-to-right and processor numbers progress from top-to-bottom.

Parallel programs are fully modelled as a task graph that can be partitioned into sub-task graphs, where each
sub-task graph is a regular structure such as a fan, tree, or mesh. The partitioned sub-task graphs are
scheduled independently by the algorithms presented in the following sections of this paper. Then, the
schedules for the sub-task graphs are pieced together to form the full schedule. This approach is called piece
wise scheduling for obvious reasons. While the schedules of each sub-task graph may be optimal, the
global schedule of the entire graph is not guaranteed to result in minimum execution times. Hence, this
approach cannot guarantee the best overall schedule. However, this technique is useful for large programs
where the pattern of parallelism may differ in different parts of the program, and there are more tasks than
processors during much of the program's execution.

First, we derive analytical formulas for three regular task graphs: fan, tree, and mesh. Then, we show how
to use piece-wise scheduling to derive a global schedule for larger task graphs containing fan, tree, and mesh
sub-task graphs as components. The goal is to produce the shortest execution time by piece-wise scheduling
of optimal sub-task graphs.

l
~

l
n
n
n
l
fl

11

j

j

' ' ' ' 0 G
s

a+b-f
s: s:

a+b-f: a+b-f: .. .k ...

1 F

2

3
F

k

Figure 1. The Replicate Task Graph, and its Schedule as a Gantt Chart

Replicates

Perhaps the most common pattern of parallel computation is the supervisor/worker pattern shown in Figure
1. The supervisor task is modelled by subtasks G+H, where G distributes equal-sized data partitions to
identical processing functions represented by the worker tasks labelled F. Such a pattern is used, for
example, to search a list in parallel by breaking up the list into equal-length sub-lists, searching each sub
list in parallel, and then returning a result R to the supervisor, who performs a sequential search for the
exact match. Other common operations of finding the minimum, maximum, sum, average, and so forth can
be solved with this simple pattern. [This is not the only pattern that can be used to solve these kinds of
problems].

The identical functions F accept input of size f • where we assume k replicated workers, list of size S, and

even distribution of data across all workers. After a period of parallel computation, the workers each return a
value of size R to the supervisor, who then completes the computation.

Suppose the execution time of G, F, and H are given as a function of the size of their inputs. Specifically,
suppose G and H execute in some constant time, and F(x) is a function of the computational complexity of
each worker subtask, where xis the size of the input to a worker. Finally, assume the returned value from
each worker is of size R << S.

~

I

The Gantt chart of Figure 1 gives a possible schedule for this pattern. We assume a linear model for
communication, a+bx, where a is the time to initiate a message, b is the time to transmit a unit of
message, and x is the number of units in the message. The Gantt chart shows the supervisor as mapping
onto processor zero, and workers 1 through k mapping onto processors 1 through k. [A slightly tighter
schedule might be had if the first worker is mapped onto processor zero, also, but this depends on the
amount of communication overhead].

Communication time is charged to the sender, who we assume, can only send one message at a time. The
receiver is assumed to buffer all incoming messages, so they are available as soon as requested. This
assumption may not be valid, in general, but from the Gantt chart we observe that H must wait on only the
last worker to finish before making access to all returned messages.

The question we pose is, "what is the best value of k, considering both computational complexity of each
worker, and communication costs?" That is,

Minimize
Subject to

: T(S ,k) ; where T = total elapsed execution time for the Gantt chart
: k = 0,1,2, ... ,min(S,P); where P=number of processors

From the Gantt chart of Figure 1 we get an expression for T(S,k) by substituting x-;_ and collecting terms:

s s s
Minimize : T(S,k) = G+k(a+~)+H+F(k)+(a+bR) = C+ak+F~); where C=G+H+a+bR+bS

This is the well-known grain-size determination problem, where we seek to determine the best packing of
worker tasks onto processors, such that the computation time is balanced with the communication time. In
practice, this may require placement of many workers per processor. If too many tasks are allocated to a
single processor, performance decreases due to loss of parallelism. If too few are allocated, performance may
also diminish due to communication overhead (a variant of the min-max problem).

Setting the first derivative of T with respect to k to zero and solving fork produces an optimum value k *.
That is, solve the following equation fork*.

a+~~= 0; k* in (0, min(S,P)]

Case L Polynomial Complexity : F(x) = xil; n>0

When the computational complexity of each worker is O(x), the derivative off is (-: 2), so we get a

surprising result: k * = min(~ P). In general, a polynomial-complex worker results in a schedule given

* nsn n+~
by k = min(~' P).

The interpretation of this result is straight-forward. The message sending startup cost can have a major
impact on the optimum parallelism. However, as the complexity of each worker tasks execution time
grows, communication startup time has a lessor influence. That is, as the computation to be performed
increases, the grain-size increases, leading to greater benefits of parallelism.

This result also explains why relative speedup is sometimes disappointing for distributed-memory

. h h' h U . T(S,O) f 1 . d S computers wit 1g message startup costs. smg * as our measure o re ative spee up p,
T(S,k)

assuming we have an infinite number of processors, setting n=l for simplicity, and substituting k * :

l
n
n
n
n
n

J

n
I
I
j

j

I
l
u
t

u

C C a+bR+bS
Sp = - - r;: - r;:

C+ak * +_S _ C+2-v aS a+bR+bS+2-v aS
✓ s/a

where C=G+H+a+bR+bS

The last term above is obtained by assuming G=H=O. If S is dominant, the speedup behaves as OCVS), but
high values of a and b can alter this approximation. Nonetheless, this interesting result suggests a speedup
far from theoretical estimates that ignore communication costs and task initialization times (That is, G, H
>0).

For F(x) = log2(x), k * = 0. A supervisor/worker pattern should not be used to parallelize a sub-polynomial

algorithm. But, what is the value ofk* when F(x) = x log2(x)? It has been speculated that an 0(x log(x))
algorithm can be solved in O(x) time using parallel processors. We tum to this problem in the next section.

0

1 ::::!:::::::::!::::::::::;::::::::::::::

2

3

4

5

6

7

s
a+17

... k ...

... k ...

... k ...

... k ...

... k ...

... k ...

... k ...

... k ...

Figure 2. Divide-and-Conquer Task Graph and Gantt Chart Schedule

Divide-and-Conquer Patterns
Divide-and-conquer algorithms are very common in sequential programming, but take on a different
character in parallel programming as shown in Figure 2. Here we see a tree-structured collection of workers
performing a two-phase calculation: 1. data of size S is partitioned and distributed to two neighboring tasks,
who in turn, partition and distribute their inputs of size S/2 to neighbors, and so forth, until some depth k
is reached, and 2. the leaf nodes at level k take time F(x) to compute a result which is passed up a level to a
parent task, which in turn computes a result and passes it up a level, and so forth, until the final answer
reaches the root task.

A simple binary tree of tasks can be mapped onto a simple binary tree of processors, but this would be
inefficient because all but the leaf processors would become idle while the leaf nodes become over burdened
with work. Therefore, the mapping shown in Figure 2 is used whereby the root task shares a processor with
one of its sibling tasks. This folding of tasks onto processors assures higher processor utilization, reduces
communication delays, and in general improves performance of the divide-and-conquer algorithm.

In Figure 2, processor zero sends S/2 units of data to processor one, then performs a second task to divide
the remaining S/2 units of data between processors two and three. Similarly, processor one sends S/4 units
of data to processor four, and then performs a second task of dividing the remaining units of data between
processor five, etc. Figure 2. shows three levels of division, but in general, any number of levels might be
used. In fact, the question is, "what is the optimum number of levels, k *, to obtain a minimum time
divide-and-conquer algorithm?"

Minimize
Subject to

: T(S,k); where T = total elapsed execution time for the Gantt chart
: k = 0,l,2, ... ,min(log2(S),P); where P=number of processors

From the Gantt chart we can derive an expression for T(S,k), as follows. The total distribution phase
k

communication time is (~a+~) , and the total collection time is k(a+bR). All tasks compute at the £..J 21
i=l

same time, so only one F(ik) is needed We have assumed the collection time is zero on all processors, so

the algorithm terminates as soon as all results are returned to task zero. Thus, the total elapsed time is
k

T(S,k) = <L a+b1i) + k(a+bR) + F(;). This expression simplifies to bS-b(ik)+(2a+bR)k+F(ik).

i=l

When k=O, this parallel algorithm reduces to a serial algorithm running on one processor. When k=log(S),
we would expect maximum speedup, assuming communication costs are ignored . That is, the idea speedup

is of fordet og<~)).
_ T(S,0) F(S)

Sp - T(S,log(S)) = S-1
F(l)+(2a+bR)log(S)+bS(S)

F(S)
F(1)+(2a+bR)log(S)+bS

The last term is an approximation when S/ "' 1, for large S. Furthermore, if we assume communication

costs are negligible, a=b=0, and F(l) is negligible, so the ideal speedup is simply Ob{~)) _ For example,

an O(S) problem can be solved in time 0(1), because F(S)=O(S), and a serial divide-and-conquer problem
that can be solved in 0(S log(S)), can be solved in parallel in time proportional to O(S) . But, these
estimates assume no communication costs.

l
1
n
n
l
n

j

1
J

j

j

Lets examine two realistic cases. First, suppose F(x) is linear as in the replicated pattern, and then suppose
F(x) is O(x log(x)), and communication costs are considered, too.

Case I. Linear Algorithm: F(:1c) = (:k).

Minimize : T(S,k) = (:k) -b(:k)+(2a+bR)k+bS

Subject to : k = 0, 1, 2, ... , min(log(S),P).

Setting the derivative to zero and solving fork yields k *, as before.

Solve : ~~ = 0 = (b-l~k(ln2)+(2a+bR) ; where ln2 is the natural logarithm of 2.

This equation has no solution within the constraints when B> 1 and S>O, so k * = 0. That is, the high cost
of communication makes running a linear algorithm in the divide-and-conquer pattern run slower that its
serial version. This is intuitive.

Case II. Quadratic Algorithm : F(:k) = (:k)2

Minimize

Subject to

S 2 S
: T(S,k) = (2k) -b(2k)+(2a+bR)k+bS

: k = 0, 1, 2, ... , min(log(S),P).

Setting the derivative to zero and solving fork yields k *, as before.

Solve
elT bS(ln2) 2s2(ln2) . .

: elk = 0 = 2k - 22k +(2a+bR) ; where ln2 IS the natural logarithm of 2.

When S;tO, a positive solution exists, k* = log2 S - log2 X, where Xis the solution to a quadratic

equation: X = ~+(½)✓~ +5.771a+2.885bR. For example, suppose a=250 ms, b=lO ms/byte, R=lO bytes,

and S=lOOO bytes. Then X = 23, and k * = 5. Without consideration of communication, the optimal value of
k * = 10 is twice the optimum with communication costs. Suppose b=0, then k *"' 6, which shows a small
effect. Note that X = 0 when a=b=0: the result is valid only for a>0, b>0.

Case II. Logarithmic Algorithm : F(~) = (:k) log(:k)

An interesting case arises when attempting to match a divide-and-conquer algorithm to a divide-and-conquer
schedule. Intuitively, the match is exact, but this is not the case when communication costs are included in
the analysis.

Minimize

Subject to

s s s
: T(S,k) = (2,k)log(2k)-b(2k)+(2a+bR)k+bS

: k = 0, 1, 2, ... , min(log(S),P).

Setting the derivative to zero and attempting to solve fork yields an intractable equation to solve in closed
form:

elT k-logS-loge+b . .
Solve : elk = 0 = 2k +(2a+bR) ; where loge IS the base-two logarithm of e.

The theoretical speedup can be approximated by setting k = logS, as before, and showing that
communication costs play a critical role in even the predicted speedup:

Sp = T~.~~~)S) (2a~~i)~ogS = (2a!bR)" Once again, if a=250ms, b=lOms/byte, R=lO bytes, and S =

1000, the speedup is reduced from its theoretical (linear) improvement by a factor of~ (100)= 60%.

Figure 3 illustrates the sensitivity of k * to communication cost parameters. The minimum points in these
curves is where k = k * · Notice how k * quickly decreases with small increases in a,b, or R. The optimum
level of the tree is very sensitive to small amounts of overhead in communication .

a=lOO,b=l,R=l

a=S0, b=l, R=l

700
a=lO, b=4, R=l

600
500

T 400
300 a=lO,b=l,R=l

200
100

0
a=l,b=0,R=l

1 2 3 4 5 6 7 8 9 10 11

k

Figure 3. Time vs. Level, k for 0(S logS) Algorithm Scheduled onto a Tree of Processors

Nearest Neighbor Meshes

Nearest neighbor calculations, typically done on a mesh of processors, is a regular pattern that might be
sensitive to communication overhead, because every processor must communicate with one or more
neighbors. The 5-point stencil of Figure 4 is an example. This pattern is used to solve the wave equation
by successive overrelaxation techniques. The central grid point is replaced by the average of the four
neighbors, N=North, E=East, W=West, and S=South. The 5-point stencil is sometimes called the NEWS
pattern.

1
n
l

l
l

I

J

j

l
I
J

! I
l

7
n
Fl

I
n

j

u
! l

11

I J

j

L=l
W=l

L=3
W=2

Figure 4. The NEWS stencil for one processor, and six processor mesh.

In Figure 4, the dark nodes perform calculations from data passed to them by the light nodes. Thus, in a
single-node stencil, four messages are needed to do one calculation. However, in a NEWS mesh containing
(20(3)=6 calculation nodes, only 10 messages, or 1.4 messages per calculation are needed to do a
calculation. As the grain size of the stencil increases, the number of messages per calculation decreases.
This is due to the fact that communication occurs along the periphery, while calculation occurs across a
"surface".

In general, a mesh of dimensions L by W takes 2(L+ W) messages to perform L W calculations. Assuming a
computational complexity at each node ofF(x), where xis the size of the data passed to the calculation by
incoming messages, the time to perform on "seep" of calculations across a surface ofLW tasks is given by
the formula:

T(L,W) = F(LW)+2(L+W)(a+bR); where R is the size of the message passed along each link in the mesh.

Case I. Linear Algorithm: F(LW) = aLW+ ~. where a and~ are constants for a particular system. The
value of a relates to processor speed, and the value of~ relates to process initiation time on each processor
node.

Minimize
Subject to:

: T(L, W) = aLW+~+4(L+W)(a+bR)
: L W ~ P, where P is the number of processors.

Suppose L=W=n, for simplicity. Then, T(n,n) = an 2+~+4n(a+bR). The first derivative of this expression
is always positive, hence T(n,n) is a monotonic increasing function in n. This means the optimum value

2
occurs when n is as large as possible, e.g. n = ~.

. . T(n,n) an 2+6+4n(a+bR) .
Relative speedup 1s defined as T(l l)' so Sp= 2 . We should consider two extreme cases:

, n n
ap+l3+4(a+bR~

TP
Computational Intense: 4n(a+bR) << an 2+13; Sp"'O(P). Alternately, when 4n(a+bR) >> an 2+13 we say

2
the algorithm is communicationally intense, and Sp"'o({/P). That is, even though communication grows

2
more slowly than computation, communication costs can degrade performance by a factor of ~.

This analysis clearly demonstrates why nearest neighbor mesh calculations perform especially well for
small-grained algorithms. Scalability is not a major problem because most of the communication is
overlapped. That is, communication as well as computation is performed in parallel. This is shown in
Figure 5, which gives a schedule for the 5-point stencil.

0

1

2

n-1

Communicate

4(L+W)(a+bR)

4(L+W)(a+bR)

4(L+W)(a+bR)

·····
4(L+W)(a+bR)

Calculate

a.LW+j3

a.LW+j3

a.LW+j3

a.LW+j3

Figure 5. Schedule for 5-Point Stencil Pattern

However, this analysis does not include the cost of data partitioning and distribution to the mesh. For
example, we might use the divide-and-conquer pattern to distribute a matrix of data throughout the mesh
prior to iterating the 5-point stencil. Once the iterations converge at each processor, we must collect the
results back on a single (root) processor. This communication time must be included in a through analysis.

Assuming S = n2, where n is the dimension of a matrix containing 5-point stencils; R=0, and F(x)=0 for
the divide-and-conquer communication delay. An analysis quite similar to the previous divide-and-conquer
analysis can be performed to arrive at the following cost function to communication delay:

Tcommunication(n,k) =ak+ <2kk12n2b; where 2k = P = number of processors involved in the mesh
(2)

calculation.

Assuming a square matrix for simplicity, we can use the mesh formula for execution time, where I is the
number of nearest neighbor iterations needed to converge to a solution, and the computational complexity at
each node is assumed to be F(x)=ax 2+13 :

n n2 n
Tcalculation(-, k) = I(a-+j3+47a+bR))

TP TP ~
Then, the total time is 2Tcommunication+Tcalculation, and the minimization problem is as follows.

Case I: Communication + Mesh Calculation.

l
l
7

n

l

I
I

l

j

j

J

11

n
7
n
n

Li
) 1

I

j

Minimize
r2k-n 2 n2 n

: 2(~ b) + I(a.-+p+47a+bR))
<2--1 TP TP

Subject to
k P-1

: n > P; P = 2 >>1 so that p"' 1.

With the simplifying assumptions given above, we can re-write the objective function in a simplified form,
with some loss of generality:

T(n, P) = alog2(P)+bn2+I(a.1 +P + ~a+bR)) which produces the following equation to solve for P,

TP
2

when setting the derivative to zero as before: 2alog(e)P - (2nI(a+bR))\IF- a.n2I=O. This equation is
solved by substituting P=Q2, and solving for Q by the quadratic formula. After a number of factorizations,
the result can be shown to be P = 0(n2). We omit the lengthy calculations here.

Nearest neighbor calculations are so efficient, they can easily absorb communication overhead costs, process
and message-passing startup costs, and the effects of iteration. Communication costs dominate during the
distribution phase, but have little effect on processing speed during the iterative phase. Thus, maximizing
the size of the mesh pays off.

Composite Task Graphs
A composite task graph is a hierarchical task graph containing nodes and arcs as defined earlier, but with the
added hierarchical structure shown in Figures 6,7, and 8. For example, in Figure 6, the top level of the
hierarchical task graph shows parallel mesh and tree components. At level two, the mesh is expanded into a
mesh structure, Figure 7, and the tree is expanded into a tree structure, Figure 8.

One approach to scheduling such hierarchies of task graphs is to proceed from the top, down. That is,
schedule the top-level graph, assuming time and computation estimates as developed in the previous
sections. Then, independently schedule the sub-task, e.g. the mesh followed by the tree. This method is
simple, but not very accurate, because it cannot detect parallelism among siblings.

Another approach is to schedule from the bottom up. First, the lowest-level sub-tasks are scheduled, then
the next, and so forth, until the top-level graph is scheduling using the information derived from lower level
schedules. This has the advantage of making better use of the processors, but it does not recognize all the
possibilities for parallelism.

A third, approach, which is used here, is to flatten the entire hierarchical graph into one large task graph,
and use list scheduling techniques described in [EILe90] and elsewhere. That is, we can transform the
hierarchical graph into one that we know how to schedule. The algorithm is as follows:

1. Estimate the optimal number of processors needed for each sub-task according to the analytical formulas
for each sub-task communication pattern.

2. Partition the available processors into groups, such that the parallel sub-tasks are allocated their
"optimal" number of processors. (In general, this is a kind of bin packing problem that we leave as an
exercise for the reader. The simple examples given here allocate the simple tasks and divide-and-conquer
trees, first, then give all remaining processors to mesh calculations second. This, however, may not be the
best partition].

3. Flatten the entire hierarchical composite task graph into a single level, using a depth-first traversal
algorithm. For two-level graphs as described here, this means expansion of the sub-task graphs in place,
while maintaining the intended graph topology.

4. Schedule the flattened static task graph using some list processing algorithm. We use the MH heuristic
to schedule the flattened graph. MH considers nearest neighbors to minimize the number of hops across the
network, as well as communication delays and task execution times.

A consequence of flattening and list scheduling is that the sub-tasks become merged with surrounding sub
tasks, and the uniformity of each sub-task graph is lost. This may be an advantage or a disadvantage. More
work is needed to examine the effects of flattening on the globally optimum schedule. We have not
attempted to answer this important question, here.

Figure 6 shows a simple composite task graph containing two parallel sub-tasks: a mesh and a divide-and
conquer tree. The sub-task graphs show the communication patterns of both distribution and collection of
the results. Hence, they do not look as simple as a mesh or tree. Instead, they contain a mesh or tree
embedded in a pattern of communication that first distributes the data to all tasks, followed by a collection
pattern that collects data from all tasks. Tasks labelled S2, S4, S8, and ONE, R, are part of the distribution
and collection patterns, respectively. In the sub-task graphs, "Paraml" and "Param2" boxes show data input
and output parameters for each of the sub-tasks, see Figures 7 and 8.

Tasks are scheduled by first estimating the optimal number of processors needed, then allocating processors
while computing the best schedule using the bottom-up list scheduling approach. The result of scheduling
the flattened graph obtained from Figures 6,7, and 8 is shown in Figure 9. The light colored part of each
Gantt line shows tasks waiting for communication, and the light parts show duration of a task executing on
a certain processor. The total elapsed time is 1413 time units, for the particular parameters used in this
example.

The scheduling heuristics employed to obtain the Gantt chart of Figure 9 use the analytical formulas derived
in the previous section to estimate the number of processors and length of time to perform a sub-task.
These schedules are then adjusted to take advantage of earliest processor ready times and idle processors.
Thus, the individual schedules can be compacted to reduce "empty spaces" between adjacent sub-task
schedules.

[We simplified this example to conserve space: S=128, F takes 256 time units for the tree, and varies for
the mesh over 180, 150, 120, and 100 units each, depending on the size of data block being processed.
Tasks labelled as ONE, take 1 time unit each, because they simply pass data along the network. In the
divide-and-conquer cases, S/2=64, S/4=32, S/8=16 were used along data dependency arcs.]

l
l
1
n
n

l

I
I
l

J

j

l
n
n
fl

n
I

j

l l
j

Start

Figure 6. Example Task Graph Consisting of Parallel Tree and Mesh Sub-Task Graphs.

Param1

Param2

Figure 7. Mesh Sub-Task Graph Showing Communication Patterns, Only

Param1

R

root

Figure 8. Tree Sub-Task Showing Communication Pattern.

p 0
r 1
0 2
C 3
e 4
s 5
s
0 6
r 7
s

Task Graph: Mesh&Tree
T apology : hypercube, 8 Processors
Heuristic : Rewini's Mapping Heuristic - MH

Time in µs
1 pixel= 10 µs

1413
0 1000

Param2

Figure 9. Gantt Chart Schedule For The Composite Task Graph of Figures 6, 7, and 8. We have used the
MH algorithm and a hypercube topology consisting of 8 processors.

. l

l
~

n
9
. I

l

J

I
J

J

7
n
n

l

I
I
j

l

l

j

J

Conclusions

An automatic scheduling tool has been constructed for piece-wise scheduling of composite task graphs.
Figures 6,7,8, and 9 illustrate the use of this tool on a small example. Further work is needed to extend the
method to larger and more complex patterns of parallelism, and to calibrate parameters such as process and
message startup times, processor speed, and transmission speeds of real machines . Also, further work is
needed to study how to perform global optimizations.

Furthermore, this technique does not solve a number of lingering problems with static schedulers . The most
pronounce is that of scheduling programs containing branches . We speculate that the piece-wise technique
described here can be adapted to this problem as follows. The task graph is flattened as before, but at each
branch in the program the flattened graph produces a tree of alternatives. Thus, for programs containing
only two-way branches, the flattened graph becomes a binary tree of alternative flattened task graphs. The
scheduler then produces a binary tree of Gantt charts, based on all paths through the program . Finally, the
program dynamically selects the best schedule after each branch, and self-schedules until reaching the next
branch, etc.

This brute-force method of scheduling combines static and dynamic methods into a hybrid. Such hybrid
methods have been tried with success in self-scheduling loops [PoKu87]. The value of this approach
remains speculative , however. Yet, it may offer a solution to a most vexing problem for parallel program
schedulers.

Bibliography

[ACDi74] Adam, T., Chandy, K., and Dickson, J. A Comparison of list Schedulers for Parallel
Processing Systems . Comm. ACM, vol. 17, December 1974, pp. 685-690 .

[Andri88] Andriessen, J., Task scheduling programming system for the Delft parallel processor, J.
Microprocessor and Microprogramming, vol 23, no 1-5, Mar 1988, pp . 283.

[ArRo91] Arkin, E. M., and R. 0 . Roundy, Weighted-Tardiness Scheduling on Parallel Machines With
Proportional Weights, Operations Research, vol 39, no 1, Jan 1991, pp. 64.

[Bala89] Balakrishnan , A., Preemptive Scheduling of Hybrid Parallel Machines, Operations Research,
vol 37, no 2, Mar 1989, pp . 301.

[BPNi90] Beck, M., Pingali, K. K., and A. Nicolau, Static Scheduling for Dynamic Dataflow
Machines , Journal Parallel and Distributed Computing, vol 10, no 4, Dec 1990, pp. 279.

[BeBa90] Belkhale, K. P., and P. Banerjee, Approximate algorithms for the partitionable independent
task scheduling problem, Proc.1990 Int'l Conf on Parallel Processing , Aug 1990, pp. I-72.

[BeSn87] Berman, F ., and L. Snyder, On mapping parallel algorithms to parallel architectures , -Journal
of Parallel and Distributed Computing, vol 4, 1987, pp. 439.

[BeSt89] Berman , F., and B. Stramm, Prep-P: Evolution and overview, TR CS89-158, Univ. Calif.
San Diego, 1989.

[B1We84] Blazewicz, J., and J. Weglarz, Scheduling independent 2-processor tasks to minimize schedule
length, Inf Procss . Letters, vol 18, no 5, Jun 1984, pp. 267.

[B1Ch91] Blocher, J. D., and S. Chand, Scheduling of Parallel Processors: A Posterior Bound on LPL
Sequencing and a Two-Step Algorithm, Naval Research Logistics, vol 38, no 2, Apr 1991.,
pp. 273.

[Bokh81a] Bokhari, S. A Shortest Tree Algorithm for Optimal Assignments Across Space and Time in
Distributed Processor System, IEEE Transaction on Software Engineering, vol. SE-7, no. 6,
November 1981.

[Bokh81b] Bokhari, S. On the Mapping Problem, IEEE Transactions on Computers, C-30, 3, 1981, pp
207-214.

[Bokh88] Bokhari, S. Partitioning problems in parallel, pipelined, and distributed computing, IEEE
Transactions on Computers, C-37, 1, 1988, pp 48-57.

[Carr90] Carreno, J., J., Economic Lot Scheduling for Multiple Products on Parallel Identical
Processors, Management Science, vol 36, no 3, Mar 1990.

[CaKu88] Casavant, T., and J. A. Kuhl, Taxonomy of Scheduling in General Purpose Distributed
Computing Systems, IEEE Transaction on Software Engineering, vol. SE-14, no. 2,
February 1988.

. [ChAg90] Chaudhary, V ., and J. K. Aggarwal, Generalized Mapping of Parallel Algorithms Onto
Parallel Architectures, Proc.1990 Int'l Conj. on Parallel Processing, Aug 1990, pp. 11-137.

[ChSh86] Chen, M., and Shin, K. Embedment of Interacting Task Modules into a Hypercube
Multiprocessor. Proc. Second Hypercube Conj., Oct. 1986, pp. 121-129.

[Chen90] Cheng, T.C.E., A state-of-the-art review of parallel-machine scheduling research, European
Journal of Operational Research, vol 47, no 3, Aug 1990, pp. 271.

[ChSi91] Cheng, T.C.E., and C. C. S. Sin, An algorithm for the N/M paralleV Cmax preemptive due
date scheduling problem, Engineering Costs and Production Economics, vol 21, no 1,
Feb1991, pp. 743.

[ChAb81] Chou, T., and Abraham, J. Load Balancing in Distributed Systems. IEEE Transaction on
Software Engineering, vol. SE-8, no. 4, July 1981.

[CHLE80] Chu, W., Holloway, L., Lan, M., and K. Efe, Task Allocation in Distributed Data
Processing. IEEE Computer, Nov 1980, pp. 57-69.

[ChLa87] Chu, W., and M. Lan, Task allocation and precedence relations for distributed real-time
systems, IEEE Trans. Comput., C-36, 6, Jun 1987, pp. 667.

[Coft76] Coffman, E. Computer and Job-Shop Scheduling Theory. John Wiley & Sons. 1976.

[Cole91] Cole, R., Approximate Parallel Scheduling: Applications to Logarithmic-Time Optimal
Parallel Graph Algorithms. Information and Computation, vol 92 no 1, May 91. pp.I.

[Cyben89] Cybenko, G., Dynamic load balancing for distributed memory multiprocessors, J. Parallel
Distrib. Comput., vol 7, no 2, Oct 1989, pp. 279.

[Cytr84] Cytron, R., Compile-time Scheduling and Optimization for Asynchronous Machines, PhD
thesis, Dept. Computer Science, Univ. Illinois, Urbana-Champaign, 1984.

[Dono86] Donovan, K, Multiprocessor scheduling with practical constraints, PhD thesis, Univ. Central
Florida, GAX86-21094, 1986.

[DJLe89] Du, Jianzhong, and Y. T. Leung, Complexity of Scheduling Parallel Task Systems., SIAM
Journal on Discrete Mathematics, vol 2, no 4, Dec 1989, pp. 473.

[EbNi89] Ebciogiu, K., and A. Nicolau, Percolation scheduling with resource constraints, TR No 89-
31, Dept. Information and Computer Science, Univ. California, Irvine, CA. 92717, 1989.

7
I
n
l

n

I
u

J

JI
JI

l
n
fl

~

l

l

j

I
1

l

u

[Efe82] Efe, K., Heuristic models of task assignment scheduling in distributed systems,
COMPUTER, July 1982, pp. 50.

[EW91] El-Rewini, H., and H. H. Ali, Scheduling Conditional Branching using Representative Task
Graphs, Accepted for publication in The Journal of Combinatorial Mathematics and
Combinatorial Computing, 1991.

[EILe90] El-Rewini, H., and T. G. Lewis, Scheduling Parallel Program Tasks onto Arbitrary Target
Machines, Journal of Parallel and Distributed Computing, vol 9, no 2, Jun 1990, pp. 138.

[Emmo90] Emmons, H., Scheduling stochastic jobs with due dates on parallel machines, European
Journal of Operational Research, vol 47, nol, July 1990, pp. 49.

[Erca88] Ercal, F., Heuristic approaches to task allocation for parallel computing, PhD thesis, Ohio
State Univ., GAX:88-20290

[ErSa89] Erel, E., and S. C. Sarin, Scheduling independent jobs with stochastic processing times and a
common due date on parallel and identical machines, Annals of Operations Research, vol 17,
no 1/4, 1989, pp. 181.

[FIYe90] Fang, Z., Tang, P., and P-C. Yew, Dynamic Processor Self-Scheduling for General Parallel
Nested Loops, IEEE Trans. Computers, vol39, no 7, Jul 1990, pp. 919.

[FeRu90] Feitelson, D. G., and L. Rudolph, Mapping and scheduling in a shared parallel environment
using distributed hierarchical control, Proc. 1990 Int'l Conf on Parallel Processing, Aug
1990, pp. I-1.

[Feo86] Feo, J, Dynamic, distributed resource allocation on regular SW-Banyans, PhD thesis, Univ.
Texas-austin, GAX86-18463

[Fost91] Foster, I., Automatic Generation of Self-Scheduling Programs, IEEE Trans. on Parallel and
Distributed Sys., vol 2, no 1, Jan 1991, pp. 68.

[FuKa85] Fuchs, K, and D. Kafura, Memory-constrained task scheduling on a network of dual
processors, J. ACM, vol 32, no 1, Jan 1985, pp. 102.

[GeNg89] Geist, G.A., and E. Ng, Task Scheduling for Parallel Sparse Cholesky Factorization, Int'l
Journal of Parallel Programming, vol 18, no 4, Aug 1989, pp. 291.

[Gonz77] Gonzalez, M. Deterministic Processor Scheduling. Computing Surveys, vol. 9, no. 3,
September 1977.

[Gree88] Green, J., Load balancing algorithms in a distributed processing environment, PhD thesis,
UCLA, GAX88-22294, 1988.

[GNRe90] Grunwald, D. C., Nazief, B. A. A., and D. A. Reed, Empirical Comparison of Heuristic Load
Distribution in Point-to-Point Multicomputer Networks, Proc. 5th Distributed Memory
Computing Conf, Apr 1990, Charleston, SC., pp. 984.

[GTUr91] Gupta, A., Tucker, A., and S. Urushibara, The Impact of Operating System Scheduling
Policies and Synchronization Methods on the Performance of Parallel Applications,
Performance Evaluation Review, vol 19, no 1, May 91, pp. 120.

[HaPo91] Hariri, AM.A., and C. N. Potts, Heuristics for scheduling unrelated parallel machines,
Computers & Operations Research, vol 18, no 3, 1991, pp. 323.

[HoSh88] Hochbaum, D, and D. Shmoys, A polynomial approximation scheme for scheduling on
uniform processors: using the dual approximation approach, SIAM J. Comput., vol 17, no 3,
Jun 1988, pp. 539.

[HLMa90] Hoitomt, D. J., Luh, P. B., and E. Max, Scheduling Jobs with Simple Precedence
Constraints on Parallel Machines, IEEE Control Systems Magazine, vol 10, n0 2, feb 1990,
pp. 34.

[Hu61] Hu, T. Parallel Sequencing and Assembly Line Problems. Operations Research, vol.9, 1961,
pp. 841-848.

[HXLu90] Hu, Y ., Xie, Z., and X. Lu, Approaches to decentralized control job scheduling for
homogeneous and heterogeneous parallel computer systems, Future Generations Computer
Systems, vol 6, no 1, Jun 1990, pp. 91.

[JiJe90] Ji J., and M. Jeng, Dynamic task allocation on shared memory multiprocessor systems, Proc.
1990 Int'l Conf on Parallel Processing, Aug 1990, pp. 1-17.

[JBGh90] Jiang, H., Bhuyan, L. N., and D. Ghosal, Approximate Analysis of Multiprocessing Task
Graphs, Pre. 1990 lnt'l Conf. on Parallel Processing, Penn State Univ., Aug 1990, pp. III-
228.

[Kamp89] Kampke, T., Optimal Scheduling of Jobs with Exponential Service Times on Identical
Parallel Processors, Operations Research, vol 37, no 1, Jan 1989, pp: 126.

[Kant89] Kantsedal, S.A., Sequential and Parallel Computations in the General Scheduling Problem,
Automation and Remote Control, vol 50, no 12, Dec 1989, pp. 1737.

[Kauf74] Kaufman, M. T. An Almost-Optimal Algorithm for the Assembly Line Scheduling Problem.

[Kim88]

IEEE Trans. Computers, Vol. c-23, No. 11, Nov. 1974, pp. 1169-1174.

Kim, S., A general approach to multiprocessor scheduling, PhD thesis, Univ. Texas-austin,
GAX88-16494, 1988.

[Kohl75] Kohler, W. H. A Preliminary Evaluation of the Critical Path Method for Scheduling Tasks on
Multiprocessor Systems. IEEE Trans. Computers, Vol. c-15, No. 12, Dec. 1975, pp. 1235-
1238.

[KPVe86] Koutsougeras, C., Papachristou, C., and R. Vemuri, Data flow graph partitioning to reduce
communication cost, SigMicro TC-Micro Newsletter, vol. 17, no. 4, Dec 1986, pp. 82.

[Krua87] Kruatrachue, B. Static Task Scheduling and Grain Packing in Parallel Processing Systems.
Ph.D. thesis, Department of Computer Science, Oregon State University, 1987.

[Kwan89] Kwan, A. W., Programming environments for parallel programming, TR 89-06, Dept.
Information and Computer Science, Univ. California, Irvine, CA., Jan 1989.

[KBGa89] Kwan, A. W., Bic, L., and D. D. Gajski, Improving parallel program performance using
critical path analysis, TR 89-05, Dept. Information and Computer Science, Univ. California,
Irvine, CA., Jan 1989.

[Lang84] Langston, M., Performance of heuristics for a computer resource allocation problem, SIAM J.
Algebraic Discrete Methods, vol 5, no 2, Jun 1984, pp. 154.

[LTBo91] Lau, K., Tylavsky, D.J., and A. Bose, Course Grain Scheduling in Parallel Triangular
Factorization and Solution of Power System Matrices. IEEE Trans. on Power Systems, vol 6,
no 2, May 1991, pp.708.

[LHCA88] Lee C. Y., Hwang, J. J., Chow, Y. C., and Anger, F. D. Multiprocessor Scheduling with
Interprocessor Communication Delays. Operations Research Letters, 7, 3, 1988, pp 141-147.

[Lee91] Lee, C.Y., Parallel machine scheduling with non-simultaneous machine available time,
Discrete Applied Mathematics and Combinatorics, vol 30, no 1, Jan 1991, pp. 53.

[LeMe87] Lee, E., and D. Messerschmitt, Static scheduling of synchronous data flow programs for
digital signal processing, IEEE Trans . Computers, C-36, 1, Jan 1987, pp. 24-35.

)

l
n
n
A

j

l

j

J

J

J

J

fl

7

n
fl

j

'j

11

11

J

J

[LeAg87] Lee, S., and J. Aggarwal, A mapping strategy for parallel processing, IEEE Trans.
Computers, C-36, 4, Apr. 1987, pp. 433 .

[LSTa90] Lenstra, J.K., Shmoys, D.B., and E. Tardos, Approximation algorithms for scheduling
unrelated parallel machines, Mathematical Programming, vol 46, no 3, Apr 1990, pp. 259.

[LiCh90] Li, K., and H. Cheng, Job scheduling in PMCS using a 2DBS as the system partitioning
scheme, Proc. 1990 Int'l Con[. on Parallel Processing, Aug 1990, pp. I-119.

[LiKa90] Li, K. C., and H. Kam, Static Job Scheduling in Partitionable Mesh Connected Systems,
Journal Parallel and Distributed Computing, vol 10, no 2., Oct 1990, pp. 152.

[LiKe87] Lin, F., and R. Keller, The gradient model load balancing method, IEEE Trans. Software
Eng., vol 13, no 1, Jan 1987, pp. 32.

[Linn85] Linnemann, V. Deterministic Processor Scheduling with Communication Cost, Fachedaling
Informatik Universitat, Frankfurt, 1985.

[LiYa90] Liu, K. J. R., and K. Yao, Multi-phase systolic architectures for spectral decomposition ,
Proc. 1990 Int'l Conf on Parallel Processing, Aug 1990, pp. I-123.

[Lo84] Lo , V. M., Heuristic Algorithms for Task Assignment in Distributed Systems. Proc . 4th Int.
Conf Distr . Comput. Syst., May 1984, pp.30-39.

[LRGK90] Lo, V. M., Rajopadhye, S., Gupta, S., Keldsen, D. , Mohamed, M.A., and J. A. Telle,
OREGAMI: Software Tools for Mapping Parallel Computations to Parallel Architectures ,
Proc.1990 Int'l Conf on Parallel Processing, Aug 1990, pp. II-88.

[Mart88] Martel , C. U., A Parallel Algorithm for Preemptive Scheduling of Uniform Machines .,
Journal of Parallel and Distributed Computing, vol 5, no 6, Dec 1988, pp . 700 .

[MINi90] Masuda , T., Ishii, H., and T. Nishida, Scheduling problem on quasidentical parallel machines ,
Mathematica Japonica , vol 35, no 3, May 1990, pp. 545.

[McGi90] McCreary C., and H. Gill, Effiecient Exploitation of Concurrency Using Graph
Decomposition, Proc. 1990 Int'l Conf on Parallel Processing, Aug 1990, pp. 11-199.

[MoSk90] Moon, Y., and J. Sklansky, A Class of Mapping Algorithms for Hypercube Computers,
Proc. 5th Distributed Memory Computing Conf, Apr 1990, Charleston, SC., pp. 903.

[MKLM88] Muhlenbein, H., Kraemer, 0 ., Limburger, F ., Mevenkamp, M., and S. Streitz, Design
rationale for MUPPET: A programming environment for message-based multiprocessors,
Proc. First Int'l Conj. on Supercomputing, Lecture Notes in Computer Science 297,
Springer-Verlag, Berlin, 1988.

[MuSi90] Munshi, A. A., and B. Simons, Scheduling Sequential Loops on Parallel Processors, SIAM
Journal on Computing, vol 19, no 4, Aug 1990, pp. 728.

[MuEv89] Musier, R.F.H., and L. B. Evans, An approximate method for the production scheduling of
industrial batch processes with parallel units, Computers and Chemical Engineering, vol 13,
no 1/2, Jan 1989, pp. 229 .

[NiWu] Ni, L, and C. Wu, Design tradeoffs for process scheduling in shared memory multiprocessor
systems, IEEE Trans. Software Eng ., vol 15, no 3, Mar 1989, pp. 327.

[NiKi89] Ni, L., and C. King , On partitioning and mapping for hypercube computing , Int'l J. Parallel
Programming , vol 17, no 6, Dec 1989, pp. 475.

[PaTs87] Papadimitriou, C., and J. Tsitsiklis, On stochastic scheduling with in-tree precedence
constraints, SIAM J. Comput., vol 16, no 1, Feb 1987, pp.I.

[PMMc90] Pekny, J.P., Miller, D.L., and G. J. McRae, An exact parallel algorithm for scheduling when
production costs depend on consecutive system states, Computers & Chemical Engineering,
vol 14, no 9, Sept 1990, pp. 1009.

[PoKu87] Polychronopoulos, C., and D. Kuck, Guided self-scheduling: A practical scheduling scheme
for parallel supercomputers, IEEE Trans. Comput.~, C-36, 11, Nov 1987, pp. 1374.

[Pras87] Prastein, M. Precedence-Constrained Scheduling with Minimum Time and Communication.
MS thesis, University of Illinois at Urbana-Champaign, 1987.

[PRGr87] Purtilo, J., Reed, D. A., and D. C. Grunwald, Environments for prototyping parallel
algorithms, Proc. 1987 Int'/ Conf Parallel Processing, The Pennsylvania State Univ. Press,
University Park, PA., 1987.

[Rayw87] Rayward-Smith, V., The complexity of preemptive scheduling given interprocesor
communication delays, Inf Process. Letters, vol 25, no 2, May 1987, pp. 123.

[Razo87] Razouk, R. R., A guided tour of P-NUT (release 2.2), TR 86-25, Dept. of Information and
Computer Science, Univ. California, Irvine, CA., Jan 1987.

[Robe89]

SaEr87]

[SSAh89]

[SCMi90]

[Sark87]

[SLHH91]

[Seot91]

[Seth76]

Robert, Y., Optimal scheduling algorithms for parallel Gaussian elimination, Theoretical
Computer Science, vol 64, no 2, May 1989, pp. 159.

Sadayappan, P., and F. Ercal, Mapping of finite element graphs onto processor meshes, IEEE
Trans. on Computers, vol C-36, no 12, Dec 1987, pp. 1408.

Sagar, G., Sarje, A., and K. Ahmed, Task allocation techniques for distributed computing
systems, J. Microcomput. Appl., vol 12, no 2, Apr 1989, pp. 97.

Saltz, J., Crowley, K., and R. Michandaney, Run-Time Scheduling and Execution of Loops
on Message Passing Machines, Journal of Parallel and Distributed Computing, vol 8, no 4,
apr 1990, pp. 303.

Sarkar, V., Partitioning and scheduling parallel programs for execution on multiprocessors,
PhD thesis, Stanford, GAX87-23080, 1987.

Sartor, J. M., Lamont, G. B., Hammell II, R. J., and T. C. Hartrum, Mapping Precedence
constrained simulation tasks for a parallel environment, Proc. 6th Distributed Memory
Computing Conf, Portland, OR. Apr. 1991, pp. 2.

Seitz, C. L., Resources in Parallel and Concurrent Systems, ACM Press, 1991.

Sethi, R. Scheduling Graphs on Two Processors. SIAM J. Computers, vol. 5, no. 1, March
1976, pp. 73-82.

[SiLe90] Sih G. C., and E. A. Lee, Scheduling to account for interprocessor communication within
interconnection-constrained processor networks, Proc.1990 Int'l Conf on Parallel Processing,
Aug 1990, pp. I-101.

[ShFo90] Shang, W., and J. A. B. Fortes, Time-optimal and conflict-free mappings of uniform
dependence algorithms into lower dimensional processor arrays, Proc. 1990 Int'l Conf on
Parallel Processing, Aug 1990, pp. Il-88.

[SWPa90] Shirazi, B., Wang, M., and G. Pathak, Analysis and Evaluation of Heuristic Methods for
Static Task Scheduling, Journal Parallel and Distributed Computing, vol 10, no 3, Nov
1990, pp . 222.

[SySo86] Synder, L., and D. Socha, POKER on the Cosmic Cube: The first retargetable parallel
programming language and environment, Proc.1986 Int'l Conf Parallel Processing, IEEE
Computer Society Press, Washington, DC., 1986.

l

J

J

l
7
n
n
n
n
l
~

I I
l J

l

j

J

J

[So90]

[Sumi87]

[fang90]

[faLi90]

[fows86]

[fyNi89]

[Ullm75]

[VLLe90]

[VeDa90]

So, K. C., Some Heuristics for Scheduling Jobs on Parallel Machines with Setups,
Management Science, vol 36, no 4, Apr 1990, pp. 467.

Sumichrast, R., Scheduling parallel processors to minimize setup time, Comput. Oper. Res.,
vol 14, no 4, Oct 1987, pp. 305.

Tang, C.S., Scheduling batches on parallel machines with major and minor set-ups, European
Journal of Operational Research, vol 46, no 1, May 1990, pp. 28.

Tang, Z., and G. J. Li, Optimal granularity of grid iteration problems, Proc. 1990 Int'l Conj.
on Parallel Processing, Aug 1990, pp. 1-111.

Towsley, D. Allocating Programs Containing Branches and Loops Within a Multiple
Processor System, IEEE Transaction on Software Engineering, vol. SE-12, no. 10, October
1986.

Tyrrell, A., and J. Nicoud, Scheduling and parallel operations on the transputer, J.
Microprocessor and Microprogramming, vol 26, no 3, Oct 1989, pp. 175.

Ullman, J. NP-Complete Scheduling Problems, Journal of Computer and System Sciences,
vol. 10, 1975, pp. 384-393.

Veltman, B., Lageweg, BJ., and J. K. Lenstra, Multiprocessor scheduling with
communication delays, Parallel Computing, vol 16, no 2/3, Dec 1990, pp. 173.

Venkatesh, R., and G. R. Dattatreya, Adaptive optimal load balancing of loosely coupled
processors with arbitrary service time distributions, Proc. 1990 Int'l Conj on Parallel
Processing, Aug 1990, pp. 1-22.

[WaCh91] Wang, Q., and K. H. Cheng, List scheduling of parallel tasks, Information Processing Letters,
vol 37 no 5, Mar 1991, pp. 291.

[Weis90] Weiss, G., Approximation results in parallel machines stochastic scheduling, Annals of
Operations Research, vol 26, no 1/4, Dec 1990, pp. 195.

[Wool] Woolsey, R. E. D., Production Scheduling Quick and Dirty Methods for Parallel Machines,
Production and Inventory Management Journal, vol 31, no 3, pp. 84.

[WuGa88] Wu, M. Y., and D. D. Gajski, Computer-aided programming for multiprocessor systems, 1R
88-19, Dept. Information and Computer Science, Univ.California, Irvine, CA. Jun 1988.

[WuGa88] Wu, M. Y., and D. D. Gajski, A programming aid for hypercube architectures, J.
Supercomputing, vol 2, no 3, 1988.

[XHYu90] Xuejun, Y., Haibo, C., and C. Yungui, Processor Self-Scheduling for parallel loops in pre- .
emptive environments, Future Generations Computer Systems, vol 6, no 1, Jul 1990, pp. 97.

[Yu84] Yu, W. H., LU Decomposition on a Multiprocessing System with Communication Delay.
Ph.D . thesis, Department of Electrical Engineering and Computer Sciences, University of
California, Berkeley, 1984.

[ZLEa91] Zahorjan, J., Lazowska, E.D., and D. L. Eager, The Effect of Scheduling Discipline on Spin
Overhead in Shared Memory Parallel Systems, IEEE Transactions on Parallel and Distributed
Sys., vol 2, no 2, Apr 1991, pp. 180.

	Lewis_T_G_91_60_15_A
	Lewis_T_G_91_60_15_B

