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Heuristics for static scheduling of task graphs using list scheduling techniques have continued to improve 
by adding real-world factors such as processor speed, network transmission speed, interconnection topology, 
and link contention considerations to the basic task graph model. Yet, the resulting schedules do not fully 
model program loops and branches, startup costs for both process creation and message initiation, and a 
number of interesting parallel processing patterns such as meshes, tress, and supervisor/workers. In fact, 
improvements in the schedule may be obtained when the task graph is regular as when it contains repeated 
or replicated tasks, divide-and-conquer patterns of communication, or a mesh-structured pattern of 
computation. 

In this paper we describe a limited approach to scheduling composite task graphs that considers process and 
message startup costs, and three regular patterns : replicated, tree, and mesh. The approach is to model 
programs with such regular patterns as a composite task graph, where each regular structure is a 
decomposable sub-task node in the task graph. Then, we compute an optimal schedule for each sub-task . 
graph, piece the sub-tasks together, and perform an ordinary static scheduling heuristic on the pieces, to 
produce an overall schedule. 

We define a composite task graph as a hierarchical task graph containing regular-structured sub-task graphs 
as components. At the top level of this hierarchy, each graph node represents either a simple task or a 
hierarchically decomposable sub-task graph. We propose a piece-wise scheduling algorithm that simply 
allocates processors to sub-task graphs according to closed-form expressions which give determine the 
optimal number of processors, and then uses a list scheduling algorithm to schedule the flattened graph onto 
these processors. 

We do not address the pressing problem of loops and branches in the task graph representation, but we 
speculate that the technique of piece-wise scheduling introduced here can be adapted to a hybrid form of 
scheduling that may accommodate branches and loops. 

Piece-wise scheduling is not guaranteed to yield the best global schedule. Rather, it pieces together locally 
optimum sub-schedules. Finding globally optimum schedules for composite task graphs remains an open 
problem. We present an heuristic approach that has been experimentally used to schedule small parallel 
programs with encouraging results. More empirical evidence is needed to determine the usefulness of this 
technique, but early indications are encouraging. 



Introduction 
The problem of scheduling parallel program tasks onto distributed-memory parallel computers has received 
considerable attention in recent years (see bibliography). This problem is known to be computationally 
intensive. The complexity of the problem rises even further when real-world factors such as process 
initiation time, message initiation time, transmission delay time, and time-complexity of the problem 
being solved are included in the analysis. Regardless, many researchers have studied restricted forms of the 
problem by constraining the task graph representing the parallel program or the parallel system model. 
Most investigators make simplifying assumptions to reduce the complexity of the problem. These 
assumptions ignore most of the critically important features needed to model modern parallel processor 
systems. 

Recent static scheduling heuristics have been proposed to handle link contention, processor topology (some 
communication time delays are no longer sensitive to source-destination node distances created due to 
interconnection topologies, but some are), and transmission speeds of the network. Even so, many pressing 
problems remain in the literature: methods to handle message and process initiation costs, data parallelism 
(task replication), and program branches and loops. In this paper, we address the problem of statically 
scheduling regular task graphs onto a fully connected, distributed-memory parallel processor when message 
and process initiation times are included. We do not address the problem of program branches and loops, nor 
do we consider other factors such as network topology and link contention which have received attention 
elsewhere [ArRo91, Bala89, BeBa90, B1We84, B1Ch91, Carr90, Coff76, Cole91, DJLe89, ErSa89, 
HoSh88, JBGh90, Kamp89, Kant89, Lang84, Lee91, LSTa90, Robe89, Seth76, Ullm75]. 

A parallel program schedule must perform both a mapping of tasks onto processors, and an ordering, in 
time, of task executions. In the final analysis, it may be necessary to devise new scheduling heuristics, as 
opposed to optimum algorithms, that consider: 1) tasks taking a sizeable amount of time to be initiated and 
variable execution time given by a computational complexity formula, and 2) communication links 
requiring a significant message-passing startup time and taking a variable amount of communication time 
to pass data from one task to another. 

Niether heuristic nor algorithmic solutions to scheduling programs that consider such factors have been 
proposed. This paper attempts a purely analytical analysis of such task graphs, to produce an analytically 
derived schedule. Our analytical analysis combines mapping with sequencing to form a schedule. We have 
simplified the analysis by assuming a fully connected interconnection network, and homogeneous 
processors. The results can be generalized to these more realistic conditions, but we have not attempted such 
a general solution, here. 

In addition, our appoach does not consider the possibility of a global minimum time solution, but instead 
gives locally minimum solutions. That is, each analytical schedule is designed to minimize the completion 
time of a sub-task graph. When the schedule of a sub-task graph is combined with other sub-tasks to form a 
larger task graph for the complete parallel program, the combined schedules are not guaranteed to give a 
globally minimum execution time. That is, the solutions are only piece-wise minimal, hence we call these 
piece-wise schedules.We show one method of combining piece-wise schedules into a larger schedule, and 
describe some remaining problems with this approach. 

Recent surveys and classifications of scheduling are given in [CaK.u88, Chen90, WaCh91]. PPSE (Parallel 
Programming Support Environment) was inspired by early work done by Snyder (POKER), Berman (Prep
P), Wu (HYPERTOOL), Purtilo {Polylith), and others. This paper is an extension of on-going work on 
PPSE initiated by the author in 1988. PPSE most nearly resembles HYPERTOOL developed by Gajski and 
students at University of California, Irvine, and reported by Wu and Kwan. While independently developed 
both HYPERTOOL and PPSE suffer from lack of consideration of several real-world factors mentioned 
above. The mapping heuristics of Lo and Berman are related to this work, but only in that both approaches 
exploit task graph regularity, see Lo, Bokhari, Cybenco, McCreary, Muhlenbein, Razouk, et al., in the 
bibliography. 

HYPERTOOL and PPSE incorporate static list scheduling techniques based on critical path analysis. 
HYPERTOOL takes as its input a C program and constructs a task graph that is analyzed and then 
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scheduled onto a hypercube. PPSE takes as its input a design in the form of a hierarchical dataflow graph, 
and schedules a flattened equivalent of the dataflow graph onto an arbitrary interconnected target machine. 
HYPERTOOL requires that the program be written before it can be analyzed, while PPSE does not. But, 
both tools automate much of the production of synchronization and message-passing code. 

The PPSE approach is nQt as closely related to dynamic scheduling work done by a number of others such 
as [Cyben89, Feo86, Fost91, Gree88, JiJe90, MuSi90, PoKu87, SCMi90, VeDa90, XHYu90]. While it is 
possible to adapt some of these dynamic scheduling heuristics to our static heuristics to arrive at a hybrid 
method, our work is predominantly aimed at static scheduling. Furthermore, our work has little to do with 
mapping algorithms [BeSn87, Bokh81b, ChAg90, ChSh86, Efe82, Erca88, KPVe86, LeAg87, Lo84, 
LRGK90, MoSk90, NiKi89, SaEr87, SLHH91, ShFo90]. These are important algorithms, but scheduling 
differs from mapping mainly in the way tasks are scheduled to execute in a certain order. Concern for the 
order of execution increases the complexity of the algorithms. Finally, our approach is fundamentally aimed 
at practical considerations, which means we are primarily concerned with the impact of target machine 
factors on schedules. 

The Model 
We seek a unified model that considers real world factors in both the target machine and the parallel 
program. For distributed-memory target machines these parameters are: interconnection topology, processor 
and communication link characteristics, and message/processor startup costs. For parallel programs these 
parameters are: size of problem, computational complexity of the tasks, conditional branching, and loops. 

Target Machine Model 

The target machine can be described as a general system ( P, cPijl, [Si], [Ii], CBil,CRijD as follows: 

1. P = { P1, ... , Pm} is a set of processors forming the parallel machine. 
2. cPijl is an mxm interconnection topology matrix. 
3. Si. l~c;;m, specifies the speed of processor Pi• 
4. Ii. l~i~m. specifies the startup cost of initiating a message on processor Pi• 

5. Bi. l~c;;m, specifies the startup cost of initiating a process on processor Pi• 
6. Rij is the transmission rate over the link connecting two adjacent processors Pi and Pj-

This is a general model. For most of this paper, we will simplify this model by assuming a uniformity 
across the parallel computer system. Processors will all operate at the same speed, and message-passing 
parameters are equal on all links. Thus, the simplified model becomes: 

1. P = number of identical processors, numbered from zero to P-1. 
2. The mxm interconnection topology is assumed to be a complete graph. 
3. All processors run at the same speed, denoted by Parameter a.. 
4. Parameter a= the startup cost of initiating a message on all processors. 
5. Parameter p = the startup cost of initiating a process on all processors. 
6. Parameter b = the time to transmit a unit of data across all links. 

Parallel Program Task Model 

The task system for a given set of resources can be defined as the system (T, <, CDijl, [Fil) as follows: 

1. T = { T1, ... , Tn} is a set of tasks to be executed. 
2. < is a partial order defined on T which specifies operational precedence constraints. That is Ti < Tj 
signifies that Ti must be completed before Tj can begin. 
3. CDijl is an n x n matrix of communication data, where Dij > 0 is the amount of data required to be 
transmitted from task Ti to task Tj, l~i,j~n. 



4. [Fi] is an n vector of the amount of computations, where Fi > 0 is the number of instructions required to 
execute Ti, l~i5n. The elements of this vector are functions which give the computational complexity of 
each task's execution time as a function of inputs, Dij- In many cases, all execution times are alike, so we 
will use the simple form, F. 

Execution and Communication Cost 

The following parameters are required to represent the computational costs and communication costs 
incurred by a parallel program on a specific parallel processing system. 

1. Ti : the execution time of task i when executed on a processor. It should consider the size of the tasks 
Fi, and process startup time, ~- In general, Tij = Fi +~ 

In most of the following analysis, this model is further simplified by making Fi a function of the 
computational complexity of the task. For example, Fi(S,k) might be used to model the movement of S 
bytes of data to k replicated tasks. 

2. C(i1_iij1j2): the communication delay between tasks i1 and i2 when they are executed on processing 
elements j 1 and fa, respectively. It reflects the target machine performance parameters as well as the size of 
the data to be transmitted. 

When the 1/0 processors take the same amount of time to initiate a message and the transmission rate is the 
same over the interconnection network, the formula for communication cost is 

C(i 1,i2 j 1 h)=( <x+~Di 1 i2)*Hj U2 
where Hij is the number of hops between processing elements i and j. If we further assume that all links 
take equal time, (hops are ignored) then Hij = 1, and the formula simplifies to 

C(i1hj1h) =Cx+~Di1i2 

Our goal is to schedule a task graph like the one shown in Figure 1, such that the parallel program executes 
in the shortest elapsed time. Where it is appropriate, the task graph is annotated with a node number or 
formula specifying the task's identification and/or execution time, and size of data to be passed in a message 
(arcs). The static schedule is given in the form of a Gantt chart, Figure 1. The Gantt chart will be drawn so 
that time progresses from left-to-right and processor numbers progress from top-to-bottom. 

Parallel programs are fully modelled as a task graph that can be partitioned into sub-task graphs, where each 
sub-task graph is a regular structure such as a fan, tree, or mesh. The partitioned sub-task graphs are 
scheduled independently by the algorithms presented in the following sections of this paper. Then, the 
schedules for the sub-task graphs are pieced together to form the full schedule. This approach is called piece
wise scheduling for obvious reasons. While the schedules of each sub-task graph may be optimal, the 
global schedule of the entire graph is not guaranteed to result in minimum execution times. Hence, this 
approach cannot guarantee the best overall schedule. However, this technique is useful for large programs 
where the pattern of parallelism may differ in different parts of the program, and there are more tasks than 
processors during much of the program's execution. 

First, we derive analytical formulas for three regular task graphs: fan, tree, and mesh. Then, we show how 
to use piece-wise scheduling to derive a global schedule for larger task graphs containing fan, tree, and mesh 
sub-task graphs as components. The goal is to produce the shortest execution time by piece-wise scheduling 
of optimal sub-task graphs. 
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Figure 1. The Replicate Task Graph, and its Schedule as a Gantt Chart 

Replicates 

Perhaps the most common pattern of parallel computation is the supervisor/worker pattern shown in Figure 
1. The supervisor task is modelled by subtasks G+H, where G distributes equal-sized data partitions to 
identical processing functions represented by the worker tasks labelled F. Such a pattern is used, for 
example, to search a list in parallel by breaking up the list into equal-length sub-lists, searching each sub
list in parallel, and then returning a result R to the supervisor, who performs a sequential search for the 
exact match. Other common operations of finding the minimum, maximum, sum, average, and so forth can 
be solved with this simple pattern. [This is not the only pattern that can be used to solve these kinds of 
problems]. 

The identical functions F accept input of size f • where we assume k replicated workers, list of size S, and 

even distribution of data across all workers. After a period of parallel computation, the workers each return a 
value of size R to the supervisor, who then completes the computation. 

Suppose the execution time of G, F, and H are given as a function of the size of their inputs. Specifically, 
suppose G and H execute in some constant time, and F(x) is a function of the computational complexity of 
each worker subtask, where xis the size of the input to a worker. Finally, assume the returned value from 
each worker is of size R << S. 

~ 

I 



The Gantt chart of Figure 1 gives a possible schedule for this pattern. We assume a linear model for 
communication, a+bx, where a is the time to initiate a message, b is the time to transmit a unit of 
message, and x is the number of units in the message. The Gantt chart shows the supervisor as mapping 
onto processor zero, and workers 1 through k mapping onto processors 1 through k. [A slightly tighter 
schedule might be had if the first worker is mapped onto processor zero, also, but this depends on the 
amount of communication overhead]. 

Communication time is charged to the sender, who we assume, can only send one message at a time. The 
receiver is assumed to buffer all incoming messages, so they are available as soon as requested. This 
assumption may not be valid, in general, but from the Gantt chart we observe that H must wait on only the 
last worker to finish before making access to all returned messages. 

The question we pose is, "what is the best value of k, considering both computational complexity of each 
worker, and communication costs?" That is, 

Minimize 
Subject to 

: T(S ,k) ; where T = total elapsed execution time for the Gantt chart 
: k = 0,1,2, ... ,min(S,P); where P=number of processors 

From the Gantt chart of Figure 1 we get an expression for T(S,k) by substituting x-;_ and collecting terms: 

s s s 
Minimize : T(S,k) = G+k(a+~)+H+F(k)+(a+bR) = C+ak+F~); where C=G+H+a+bR+bS 

This is the well-known grain-size determination problem, where we seek to determine the best packing of 
worker tasks onto processors, such that the computation time is balanced with the communication time. In 
practice, this may require placement of many workers per processor. If too many tasks are allocated to a 
single processor, performance decreases due to loss of parallelism. If too few are allocated, performance may 
also diminish due to communication overhead (a variant of the min-max problem). 

Setting the first derivative of T with respect to k to zero and solving fork produces an optimum value k *. 
That is, solve the following equation fork*. 

a+~~= 0; k* in (0, min(S,P)] 

Case L Polynomial Complexity : F(x) = xil; n>0 

When the computational complexity of each worker is O(x), the derivative off is (-: 2), so we get a 

surprising result: k * = min( ~ P). In general, a polynomial-complex worker results in a schedule given 

* nsn n+~ 
by k = min( ~' P). 

The interpretation of this result is straight-forward. The message sending startup cost can have a major 
impact on the optimum parallelism. However, as the complexity of each worker tasks execution time 
grows, communication startup time has a lessor influence. That is, as the computation to be performed 
increases, the grain-size increases, leading to greater benefits of parallelism. 

This result also explains why relative speedup is sometimes disappointing for distributed-memory 

. h h' h U . T(S,O) f 1 . d S computers wit 1g message startup costs. smg * as our measure o re ative spee up p, 
T(S,k ) 

assuming we have an infinite number of processors, setting n=l for simplicity, and substituting k * : 
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C C a+bR+bS 
Sp = - - r;: - r;: 

C+ak * +_S _ C+2-v aS a+bR+bS+2-v aS 
✓ s/a 

where C=G+H+a+bR+bS 

The last term above is obtained by assuming G=H=O. If S is dominant, the speedup behaves as OCVS), but 
high values of a and b can alter this approximation. Nonetheless, this interesting result suggests a speedup 
far from theoretical estimates that ignore communication costs and task initialization times ( That is, G, H 
>0 ). 

For F(x) = log2(x), k * = 0. A supervisor/worker pattern should not be used to parallelize a sub-polynomial 

algorithm. But, what is the value ofk* when F(x) = x log2(x)? It has been speculated that an 0( x log(x)) 
algorithm can be solved in O(x) time using parallel processors. We tum to this problem in the next section. 
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Figure 2. Divide-and-Conquer Task Graph and Gantt Chart Schedule 



Divide-and-Conquer Patterns 
Divide-and-conquer algorithms are very common in sequential programming, but take on a different 
character in parallel programming as shown in Figure 2. Here we see a tree-structured collection of workers 
performing a two-phase calculation: 1. data of size S is partitioned and distributed to two neighboring tasks, 
who in turn, partition and distribute their inputs of size S/2 to neighbors, and so forth, until some depth k 
is reached, and 2. the leaf nodes at level k take time F(x) to compute a result which is passed up a level to a 
parent task, which in turn computes a result and passes it up a level, and so forth, until the final answer 
reaches the root task. 

A simple binary tree of tasks can be mapped onto a simple binary tree of processors, but this would be 
inefficient because all but the leaf processors would become idle while the leaf nodes become over burdened 
with work. Therefore, the mapping shown in Figure 2 is used whereby the root task shares a processor with 
one of its sibling tasks. This folding of tasks onto processors assures higher processor utilization, reduces 
communication delays, and in general improves performance of the divide-and-conquer algorithm. 

In Figure 2, processor zero sends S/2 units of data to processor one, then performs a second task to divide 
the remaining S/2 units of data between processors two and three. Similarly, processor one sends S/4 units 
of data to processor four, and then performs a second task of dividing the remaining units of data between 
processor five, etc. Figure 2. shows three levels of division, but in general, any number of levels might be 
used. In fact, the question is, "what is the optimum number of levels, k *, to obtain a minimum time 
divide-and-conquer algorithm?" 

Minimize 
Subject to 

: T(S,k); where T = total elapsed execution time for the Gantt chart 
: k = 0,l,2, ... ,min(log2(S),P); where P=number of processors 

From the Gantt chart we can derive an expression for T(S,k), as follows. The total distribution phase 
k 

communication time is (~a+~) , and the total collection time is k(a+bR). All tasks compute at the £..J 21 
i=l 

same time, so only one F(ik) is needed We have assumed the collection time is zero on all processors, so 

the algorithm terminates as soon as all results are returned to task zero. Thus, the total elapsed time is 
k 

T(S,k) = <L a+b1i) + k(a+bR) + F(;). This expression simplifies to bS-b(ik)+(2a+bR)k+F(ik). 

i=l 

When k=O, this parallel algorithm reduces to a serial algorithm running on one processor. When k=log(S), 
we would expect maximum speedup, assuming communication costs are ignored . That is, the idea speedup 

is of fordet og<~)). 
_ T(S,0) F(S) 

Sp - T(S,log(S)) = S-1 
F(l)+(2a+bR)log(S)+bS(S) 

F(S) 
F(1)+(2a+bR)log(S)+bS 

The last term is an approximation when S/ "' 1, for large S. Furthermore, if we assume communication 

costs are negligible, a=b=0, and F(l) is negligible, so the ideal speedup is simply Ob{~)) _ For example, 

an O(S) problem can be solved in time 0(1), because F(S)=O(S), and a serial divide-and-conquer problem 
that can be solved in 0( S log(S)), can be solved in parallel in time proportional to O(S) . But, these 
estimates assume no communication costs. 
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Lets examine two realistic cases. First, suppose F(x) is linear as in the replicated pattern, and then suppose 
F(x) is O(x log(x)), and communication costs are considered, too. 

Case I. Linear Algorithm: F(:1c) = (:k). 

Minimize : T(S,k) = (:k) -b(:k)+(2a+bR)k+bS 

Subject to : k = 0, 1, 2, ... , min(log(S),P). 

Setting the derivative to zero and solving fork yields k *, as before. 

Solve : ~~ = 0 = (b-l~k(ln2)+(2a+bR) ; where ln2 is the natural logarithm of 2. 

This equation has no solution within the constraints when B> 1 and S>O, so k * = 0. That is, the high cost 
of communication makes running a linear algorithm in the divide-and-conquer pattern run slower that its 
serial version. This is intuitive. 

Case II. Quadratic Algorithm : F(:k) = (:k)2 

Minimize 

Subject to 

S 2 S 
: T(S,k) = (2k) -b(2k)+(2a+bR)k+bS 

: k = 0, 1, 2, ... , min(log(S),P). 

Setting the derivative to zero and solving fork yields k *, as before. 

Solve 
elT bS(ln2) 2s2(ln2) . . 

: elk = 0 = 2k - 22k +(2a+bR) ; where ln2 IS the natural logarithm of 2. 

When S;tO, a positive solution exists, k* = log2 S - log2 X, where Xis the solution to a quadratic 

equation: X = ~+(½)✓~ +5.771a+2.885bR. For example, suppose a=250 ms, b=lO ms/byte, R=lO bytes, 

and S=lOOO bytes. Then X = 23, and k * = 5. Without consideration of communication, the optimal value of 
k * = 10 is twice the optimum with communication costs. Suppose b=0, then k *"' 6, which shows a small 
effect. Note that X = 0 when a=b=0: the result is valid only for a>0, b>0. 

Case II. Logarithmic Algorithm : F(~) = (:k) log(:k) 

An interesting case arises when attempting to match a divide-and-conquer algorithm to a divide-and-conquer 
schedule. Intuitively, the match is exact, but this is not the case when communication costs are included in 
the analysis. 

Minimize 

Subject to 

s s s 
: T(S,k) = (2,k)log(2k)-b(2k)+(2a+bR)k+bS 

: k = 0, 1, 2, ... , min(log(S),P). 

Setting the derivative to zero and attempting to solve fork yields an intractable equation to solve in closed 
form: 

elT k-logS-loge+b . . 
Solve : elk = 0 = 2k +(2a+bR) ; where loge IS the base-two logarithm of e. 

The theoretical speedup can be approximated by setting k = logS, as before, and showing that 
communication costs play a critical role in even the predicted speedup: 



Sp = T~.~~~)S) (2a~~i)~ogS = (2a!bR)" Once again, if a=250ms, b=lOms/byte, R=lO bytes, and S = 

1000, the speedup is reduced from its theoretical (linear) improvement by a factor of~ (100)= 60%. 

Figure 3 illustrates the sensitivity of k * to communication cost parameters. The minimum points in these 
curves is where k = k * · Notice how k * quickly decreases with small increases in a,b, or R. The optimum 
level of the tree is very sensitive to small amounts of overhead in communication . 
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a=S0, b=l, R=l 

700 
a=lO, b=4, R=l 

600 
500 

T 400 
300 a=lO,b=l,R=l 

200 
100 

0 
a=l,b=0,R=l 

1 2 3 4 5 6 7 8 9 10 11 

k 

Figure 3. Time vs. Level, k for 0( S logS) Algorithm Scheduled onto a Tree of Processors 

Nearest Neighbor Meshes 

Nearest neighbor calculations, typically done on a mesh of processors, is a regular pattern that might be 
sensitive to communication overhead, because every processor must communicate with one or more 
neighbors. The 5-point stencil of Figure 4 is an example. This pattern is used to solve the wave equation 
by successive overrelaxation techniques. The central grid point is replaced by the average of the four 
neighbors, N=North, E=East, W=West, and S=South. The 5-point stencil is sometimes called the NEWS 
pattern. 
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Figure 4. The NEWS stencil for one processor, and six processor mesh. 

In Figure 4, the dark nodes perform calculations from data passed to them by the light nodes. Thus, in a 
single-node stencil, four messages are needed to do one calculation. However, in a NEWS mesh containing 
(20(3)=6 calculation nodes, only 10 messages, or 1.4 messages per calculation are needed to do a 
calculation. As the grain size of the stencil increases, the number of messages per calculation decreases. 
This is due to the fact that communication occurs along the periphery, while calculation occurs across a 
"surface". 

In general, a mesh of dimensions L by W takes 2(L+ W) messages to perform L W calculations. Assuming a 
computational complexity at each node ofF(x), where xis the size of the data passed to the calculation by 
incoming messages, the time to perform on "seep" of calculations across a surface ofLW tasks is given by 
the formula: 

T(L,W) = F(LW)+2(L+W)(a+bR); where R is the size of the message passed along each link in the mesh. 

Case I. Linear Algorithm: F(LW) = aLW+ ~. where a and~ are constants for a particular system. The 
value of a relates to processor speed, and the value of~ relates to process initiation time on each processor 
node. 

Minimize 
Subject to: 

: T(L, W) = aLW+~+4(L+W)(a+bR) 
: L W ~ P, where P is the number of processors. 

Suppose L=W=n, for simplicity. Then, T(n,n) = an 2+~+4n(a+bR). The first derivative of this expression 
is always positive, hence T(n,n) is a monotonic increasing function in n. This means the optimum value 

2 
occurs when n is as large as possible, e.g. n = ~. 



. . T(n,n) an 2+6+4n(a+bR) . 
Relative speedup 1s defined as T(l l)' so Sp= 2 . We should consider two extreme cases: 

, n n 
ap+l3+4(a+bR~ 

TP 
Computational Intense: 4n(a+bR) << an 2+13; Sp"'O(P). Alternately, when 4n(a+bR) >> an 2+13 we say 

2 
the algorithm is communicationally intense, and Sp"'o({/P). That is, even though communication grows 

2 
more slowly than computation, communication costs can degrade performance by a factor of ~. 

This analysis clearly demonstrates why nearest neighbor mesh calculations perform especially well for 
small-grained algorithms. Scalability is not a major problem because most of the communication is 
overlapped. That is, communication as well as computation is performed in parallel. This is shown in 
Figure 5, which gives a schedule for the 5-point stencil. 
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Figure 5. Schedule for 5-Point Stencil Pattern 

However, this analysis does not include the cost of data partitioning and distribution to the mesh. For 
example, we might use the divide-and-conquer pattern to distribute a matrix of data throughout the mesh 
prior to iterating the 5-point stencil. Once the iterations converge at each processor, we must collect the 
results back on a single (root) processor. This communication time must be included in a through analysis. 

Assuming S = n2, where n is the dimension of a matrix containing 5-point stencils; R=0, and F(x)=0 for 
the divide-and-conquer communication delay. An analysis quite similar to the previous divide-and-conquer 
analysis can be performed to arrive at the following cost function to communication delay: 

Tcommunication(n,k) =ak+ <2kk12n2b; where 2k = P = number of processors involved in the mesh 
(2) 

calculation. 

Assuming a square matrix for simplicity, we can use the mesh formula for execution time, where I is the 
number of nearest neighbor iterations needed to converge to a solution, and the computational complexity at 
each node is assumed to be F(x)=ax 2+13 : 

n n2 n 
Tcalculation(-, k) = I(a-+j3+47a+bR)) 

TP TP ~ 
Then, the total time is 2Tcommunication+Tcalculation, and the minimization problem is as follows. 

Case I: Communication + Mesh Calculation. 
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Minimize 
r2k-n 2 n2 n 

: 2(~ b) + I(a.-+p+47a+bR)) 
<2--1 TP TP 

Subject to 
k P-1 

: n > P; P = 2 >>1 so that p"' 1. 

With the simplifying assumptions given above, we can re-write the objective function in a simplified form, 
with some loss of generality: 

T( n, P) = alog2(P)+bn2+I(a.1 +P + ~a+bR)) which produces the following equation to solve for P, 

TP 
2 

when setting the derivative to zero as before: 2alog(e)P - (2nI(a+bR))\IF- a.n2I=O. This equation is 
solved by substituting P=Q2, and solving for Q by the quadratic formula. After a number of factorizations, 
the result can be shown to be P = 0( n2 ). We omit the lengthy calculations here. 

Nearest neighbor calculations are so efficient, they can easily absorb communication overhead costs, process 
and message-passing startup costs, and the effects of iteration. Communication costs dominate during the 
distribution phase, but have little effect on processing speed during the iterative phase. Thus, maximizing 
the size of the mesh pays off. 

Composite Task Graphs 
A composite task graph is a hierarchical task graph containing nodes and arcs as defined earlier, but with the 
added hierarchical structure shown in Figures 6,7, and 8. For example, in Figure 6, the top level of the 
hierarchical task graph shows parallel mesh and tree components. At level two, the mesh is expanded into a 
mesh structure, Figure 7, and the tree is expanded into a tree structure, Figure 8. 

One approach to scheduling such hierarchies of task graphs is to proceed from the top, down. That is, 
schedule the top-level graph, assuming time and computation estimates as developed in the previous 
sections. Then, independently schedule the sub-task, e.g. the mesh followed by the tree. This method is 
simple, but not very accurate, because it cannot detect parallelism among siblings. 

Another approach is to schedule from the bottom up. First, the lowest-level sub-tasks are scheduled, then 
the next, and so forth, until the top-level graph is scheduling using the information derived from lower level 
schedules. This has the advantage of making better use of the processors, but it does not recognize all the 
possibilities for parallelism. 

A third, approach, which is used here, is to flatten the entire hierarchical graph into one large task graph, 
and use list scheduling techniques described in [EILe90] and elsewhere. That is, we can transform the 
hierarchical graph into one that we know how to schedule. The algorithm is as follows: 

1. Estimate the optimal number of processors needed for each sub-task according to the analytical formulas 
for each sub-task communication pattern. 

2. Partition the available processors into groups, such that the parallel sub-tasks are allocated their 
"optimal" number of processors. (In general, this is a kind of bin packing problem that we leave as an 
exercise for the reader. The simple examples given here allocate the simple tasks and divide-and-conquer 
trees, first, then give all remaining processors to mesh calculations second. This, however, may not be the 
best partition]. 



3. Flatten the entire hierarchical composite task graph into a single level, using a depth-first traversal 
algorithm. For two-level graphs as described here, this means expansion of the sub-task graphs in place, 
while maintaining the intended graph topology. 

4. Schedule the flattened static task graph using some list processing algorithm. We use the MH heuristic 
to schedule the flattened graph. MH considers nearest neighbors to minimize the number of hops across the 
network, as well as communication delays and task execution times. 

A consequence of flattening and list scheduling is that the sub-tasks become merged with surrounding sub
tasks, and the uniformity of each sub-task graph is lost. This may be an advantage or a disadvantage. More 
work is needed to examine the effects of flattening on the globally optimum schedule. We have not 
attempted to answer this important question, here. 

Figure 6 shows a simple composite task graph containing two parallel sub-tasks: a mesh and a divide-and
conquer tree. The sub-task graphs show the communication patterns of both distribution and collection of 
the results. Hence, they do not look as simple as a mesh or tree. Instead, they contain a mesh or tree 
embedded in a pattern of communication that first distributes the data to all tasks, followed by a collection 
pattern that collects data from all tasks. Tasks labelled S2, S4, S8, and ONE, R, are part of the distribution 
and collection patterns, respectively. In the sub-task graphs, "Paraml" and "Param2" boxes show data input 
and output parameters for each of the sub-tasks, see Figures 7 and 8. 

Tasks are scheduled by first estimating the optimal number of processors needed, then allocating processors 
while computing the best schedule using the bottom-up list scheduling approach. The result of scheduling 
the flattened graph obtained from Figures 6,7, and 8 is shown in Figure 9. The light colored part of each 
Gantt line shows tasks waiting for communication, and the light parts show duration of a task executing on 
a certain processor. The total elapsed time is 1413 time units, for the particular parameters used in this 
example. 

The scheduling heuristics employed to obtain the Gantt chart of Figure 9 use the analytical formulas derived 
in the previous section to estimate the number of processors and length of time to perform a sub-task. 
These schedules are then adjusted to take advantage of earliest processor ready times and idle processors. 
Thus, the individual schedules can be compacted to reduce "empty spaces" between adjacent sub-task 
schedules. 

[We simplified this example to conserve space: S=128, F takes 256 time units for the tree, and varies for 
the mesh over 180, 150, 120, and 100 units each, depending on the size of data block being processed. 
Tasks labelled as ONE, take 1 time unit each, because they simply pass data along the network. In the 
divide-and-conquer cases, S/2=64, S/4=32, S/8=16 were used along data dependency arcs.] 
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Figure 6. Example Task Graph Consisting of Parallel Tree and Mesh Sub-Task Graphs. 
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Figure 8. Tree Sub-Task Showing Communication Pattern. 
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Figure 9. Gantt Chart Schedule For The Composite Task Graph of Figures 6, 7, and 8. We have used the 
MH algorithm and a hypercube topology consisting of 8 processors. 
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Conclusions 

An automatic scheduling tool has been constructed for piece-wise scheduling of composite task graphs. 
Figures 6,7,8, and 9 illustrate the use of this tool on a small example. Further work is needed to extend the 
method to larger and more complex patterns of parallelism, and to calibrate parameters such as process and 
message startup times, processor speed, and transmission speeds of real machines . Also, further work is 
needed to study how to perform global optimizations. 

Furthermore, this technique does not solve a number of lingering problems with static schedulers . The most 
pronounce is that of scheduling programs containing branches . We speculate that the piece-wise technique 
described here can be adapted to this problem as follows. The task graph is flattened as before, but at each 
branch in the program the flattened graph produces a tree of alternatives. Thus, for programs containing 
only two-way branches, the flattened graph becomes a binary tree of alternative flattened task graphs. The 
scheduler then produces a binary tree of Gantt charts, based on all paths through the program . Finally, the 
program dynamically selects the best schedule after each branch, and self-schedules until reaching the next 
branch, etc. 

This brute-force method of scheduling combines static and dynamic methods into a hybrid. Such hybrid 
methods have been tried with success in self-scheduling loops [PoKu87]. The value of this approach 
remains speculative , however. Yet, it may offer a solution to a most vexing problem for parallel program 
schedulers. 
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