
l

90-60-11

LiillUEASlT'r'

5ClEilCE

DESIGN AND CODE TRACEABILITY USING A PDL METRICS TOOL

Dr . Paul w. Oman
Department of Computer Science

University of Idaho
Moscow, Idaho 83843

Dr. Curtis R. Cook
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331-3902

l
l
l
n
1

1

Li

J

J

DESIGN AND CODE TRACEABILITY USING A PDL METRICS TOOL

Dr . Paul W. Oman
Department of Computer Science

University of Idaho
Moscow, Idaho 83843

(208) 885-6589
oman@ted.cs .uidaho.edu

Dr. Curtis R. Cook
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331-3902

(503) 737-3273
cook@mist.cs.orst.edu

Abstract

This paper describes an analysis tool that extracts complexity metrics from Program Design Lan­
guage (PDL) as contained in desigri specification documents . The tool analyzes pseudocode and computes
token-count metrics of PDL complexity on a module by module basis . We used the tool to measure consis­
tency within and across modules and for assessing traceability between PDL and the corresponding source
code. In applications of the tool we were able to identify PDL descriptions that were too detailed , those
lacking sufficient detail, identify inconsistent PDL descriptions , and measure traceability between the PDL
description and the corresponding source code.

INTRODUCTION

Software design decisions have considerable impact on later phases of the software life cycle.
For instance , studies have shown that most errors discovered and correct ed during the testing phase were
introduced during the design phase (Basi84]. Maintenance , the most costly phase , is significantly impacted
by design decisions . A typical program undergoes numerous changes durin g maint enance; for this reason,
Parnas (Parn79] believes that ease of change should be a major design crite rion.

The importance of early defect removal and the utilization of software complexity metri cs have
long been established in numerous software studies (Basi84, Boeh 76, Boeh84, Jone79]. It is many tim es
more costly to remove an error late in the software life cycle than early in the software life cycle. Software
complexity metrics have been shown to be useful in identifying error-prone or difficult ~o test modul es
(Grem84 , Shen85, Taka85]. However, these metrics are derived from the actual program code - late in the
software life cycle.

Some recent studies have described the use of design-time software metrics to aid later phases of
software development and maintenance . For instance , Henry and Selig (Henr90] found correlations between
the structural complexity of Ada-like design descriptions and the corresponding source code complexity. In

l

1

n

l

u

j

J

LJ

another study, Rombach [Romb90] found correlations between structural complexity measures of high level
designs and the cost of changes during maintenance. Rombach points out that the difficulty in assessing
design complexity is partially due to the creativity of the design process. Because design documentation
ranges from informal English descriptions to formal graphic notations, the computation of design metrics
must be tailored to a specific design method and notation. In this paper we demonstrate the ability to extract
complexity metrics from-Program Design Language (PDL), as contained in design specification documents .
We show the utility of these metrics in providing a mechanism for measuring consistency within and across
modules and for assessing traceability between POL and source code.

We implemented a prototype POL metric extractor that analyzes pseudocode from design spec­
ification documents and computes simple measures of PDL complexity. · Specifically, Halstead's software
science metrics [Hals77], the number of lines of pseudocode, and the number of tokens are calculated on a
module by module basis. When used in conjunction with a software tool for identifying metric "outliers,"
these measures provide a basis for (i) rank ordering the complexity of modules, (ii) identifying inadequate
POL descriptions of modules, (iii) identifying inconsistencies within the design document, and (iv) targeting
potential problems prior to coding. When used in conjunction with source code complexity metrics obtained
after coding, the comparison of POL metrics to code metrics provides a verification mechanism to check for
consistency and traceability.

In the next section we review the literature on applying complexity metrics to source code , and
then discuss how metrics can be applied to software designs. The third section describes our prototype -POL
metrics extractor and the fourth section describes our experiments applying the tool to software designs.
The final section reviews our findings and discusses how these tools need to be verified in empirical tests
with ongoing software development efforts.

APPLYING COMPLEXITY METRlCS TO SOFTWARE DESIGN

Software complexity metrics are objective measures of how complex a piece of code is and how
difficult it may be for a programmer to test, maintain, or understand [Cook84]. Software complexity metrics
do not measure the complexity itself, but instead measure the degree to which those characteristics thought
to contribute to complexity exist within the source code. For example, a program may be considered complex
if it has complicated control flow and many different execution paths . In this instance, a suitable software
complexity metric would be the number of decision statements.

Numerous studies have demonstrated the utility of software complexity metrics [Bern84, Elsh85 ,
Gord79, Grem84, Kafu85, Shen85, Taka85]. Experiments have shown a strong relation between programs
with high complexity metric values and the difficulty of performing programming tasks such as program
comprehension, debugging, and maintenance. Software complexity metrics have been used to identify error­
prone program modules and have provided reasonable predictions of the number of errors in modul es. For
instance, in a study of three IBM systems, Shen, et. al., found that modul es most likely to contain errors
could be identified through Halstead 's n2 metric (distinct operands) and the number of decision statements
[Shen85].

Software complexity metrics can aid in the allocation of resources for testing and maintenanc e
[Harr86]. Modules with high metric values are likely to be more difficult to test and maintain. They contain
most of the errors and, hence, should be allocated more resources. Program errors are the major cost
associated with software development. Over half of the program development effort is spent on program
testing and debugging. The cost of finding and correcting errors is related to the software life cycle phase
in which the error is found : The earlier an error is found, the less expensive it will be to correct. But
most surprising is the dramatic increase in costs. It is over ten times as expensive to find and fix an error
discovered during the test phase as during the design phase. Although errors can be introduced in any phase
of the life cycle, most (well over 50 percent) are introduced during the design stage [Basi84, Zelk79].

2

l
l
l
n
n

l

j

j

Since software complexity metrics have been shown to identify modules likely to be error-prone,
it seems natural to extend complexity metrics to program design documents. Two reasons for choosing
the program design phase are (1) most errors are introduced in this development phase and (2) the cost of
finding and correcting an error increases the longer the error is undetected. Hence, the objective behind
design complexity metrics is to identify sections of a program's design that are likely to be hard to test and
to contain errors.

The major problem in extending software complexity metrics to the analysis of software design is
that program designs range from diagrams to natural language descriptions. Examples illustrating the range
of program design languages are flow diagrams, pseudocode, and Nassi-Shneiderman charts (Pfle87]. A flow
diagram is like a flowchart with enforced structure. The basic building blocks (process, decision, collection
point, and expansion point) have distinct geometric shapes, but design structures can only be built using
sequence, selection (if-then-else, case), and repetition (do-while, repeat-until) structures.

Pseudocode is similar to a procedural programming language ·. It has similar control structures
(if-then-else, case, repeat-until, while-do), but English-like phrases or sentences exist in place of the formally
defined statements and conditions. There are many varieties of pseudocode depending on the allowable
control structure constructs and allowed forms of the English-like phrases.

N assi-Shneiderman charts are like pseudo code with program design statements enclosed in rect­
angles. The interior of the rectangle is partitioned into sections corresponding to processes of the design.
Control constructs are indicated by partitioning the rectangles to clearly indicate the conditions (if-then-else,
do-while, repeat-until, case) and the processes executed for each condition.

Most program design languages are highly visual and allow considerable freedom in the types of
natural language statements which can be placed inside the various geometrical shapes and boxes. This leads
to the second major problem in extending software complexity metrics to program designs : variation in the
level of detail in the design documentation. Some designs can be very detailed with an almost one-to-one
relation between the design and program statements. In others, this relation is one-to-many . Not only is
there a difference in level of detail between designs, but individual parts within the same design may differ
considerably in level of detail.

Several extensions of software complexity metrics for software designs have been proposed. Szulewski,
et. al., (Szul81] defined Halstead's metrics for the elements of a graphical representation of design. Troy and
Zweben (Troy81] defined 21 metrics for structure charts, and Brandl (Bran90] recently described applying
structure chart metrics to Hughes Aircraft Company designs. Hall and Preiser (Hall84] applied McCabe's
cyclomatic complexity to hierarchically structured design graphs. Later this was extended by McCabe and
Butler (McCa89], who defined three levels of complexity: Module complexity, the cyclomatic complexity of
a reduced graph; Design complexity, the sum of the module complexities; and Integration complexity , the
design complexity minus the number of modules plus one. All of these attempts at applying complexity
metrics to software design show promise, but further empirical tests are necessary to determine how they
will affect the development process.

In this paper we have restricted ourselves to extending complexity metrics to pseudocode design
descriptions. The next section describes the prototype POL metrics tool that analyzes pseudocode and
computes simple token-count metrics such as Halstead's Software Science measures and the number of
lines of pseudocode. The tool allows the user to interactively define operands and operators or to use the
program's defined values. Our work is similar to that of Reynolds (Reyn87], who developed a pseudocode
complexity metrics analyzer as part of his automatic programming Partial Metrics System. His system uses a
database and reasoning system to "hypothesize" which words in the pseudocode are operators and which are
operands. Ours is simpler because we use external state tables and binary search trees to classify operators
and operands .

3

l
l
l

n

l

j

J

l
J

A PROTOTYPE POL METRICS EXTRACTION TOOL

The initial purpose in building our POL metrics extractor was simply to establish the feasibility
of doing so. It is an experimental tool to assist us in determining what metrics can be calculated from
pseudocode descriptions, and bow those metrics can be used to influence software development. The primary
design consideration in building the tool was that it had to be able to process any and all pseudocode
descriptions . This demand for flexibility excluded the use of syntax directed parsing and restricted the tool
to simple token scanning and analysis.

The metrics extractor is a window oriented TurboPascal program written for PC compatible
microcomputers. It uses an external state table to drive the scanning of the input file containing pseudocode.
Tokens extracted from the pseudocode are identified as being either Operators, Operands, Skipped (for
extraneous prepositions), or control tokens for directing the calculation of the metrics. Two modes of
identification are possible: Automatic, which automatically classifies all tokens, and Query, which asks the
user for direction whenever the current token has not been previously classified. External default lists of
operators, operands, and tokens to be skipped are used to initialize binary search trees which guide the token
classification . These binary search trees are updated with every token and token counts are then used to
compute the metrics.

Figure l(a) shows the metric extractor in Query mode. The tool is querying the user for instructions
on how to process the "4.15" token. The input pseudocode scrolls through the upper window while classified
tokens are added to the three scrolling windows for operators, operands, and skipped tokens. Queries to the
user appear in the middle and bottom lines of the display. Figure l(b) shows the metrics extractor upon
reaching the end of a module. The binary search trees are scanned and dumped into the three scrolling
windows at the bottom of the display. The frequency of occurrence is listed next to each token.

The external state table and external token lists permit the metric extractor to be tailored to
specific applications (like processing the reserved words in a programming language). The default lists are
based on the counting strategies first enumerated by Salt [Salt82] and later adopted by Conte , Dunsmore,
and Shen [Cont86]. Thus, when using its default tables, the metric extractor is capable of processing any
text file, but is most accurate with Pascal-like pseudocode. Figure 2(a) shows the metric extractor processing
pseudo code for a program that calculates the dates of Easter (taken from (Rohl83]). Figure 2(b) shows the
metric extractor processing the Pascal code resulting from that design.

Output from the metrics extractor includes: (1) a screen display of the total number of lines of
pseudocode processed (LOC), the total number of tokens processed (TOK) , and totals for Halstead's four
baseline metrics (nl , Nl, n2 and N2), and (2) an output file containing these metrics on a line by line basis
for each module processed by the tool. This format is consistent with the output from our source code
metrics extractor (designed and implemented for earlier studies). Table 1 shows an example PD L metrics
output file; Table 2 shows the corresponding source code metrics as calculated by our source code metrics
extractor. Both files are compatible with our metric outlier identification program (described in the next
section) and commonly used statistical packages. ·

TESTING THE POL METRICS TOOL

Initial testing of the PDL metrics extractor was conducted with small pseudocode samples taken
from published sources [Nann85, Rohl83, Shel86]. These tests showed the metrics extractor was reliable and
useful for calculating token-based metrics such as Halstead's Software Science measures. Harder to calculate
structure and hybrid metrics [Kafu85] could not be approximated reliably . Also, input was limited to the
"polished" pseudocode as typically found in academic texts, so except for demonstrating the feasibility of
extracting metrics from clean pseudocode, these tests did little to establish the relationship between real­
world designs and the code derived from them.

4

1

l
l
n

l

J

Pseudo Code Metrics Extractor
Pseudo Code--------------------------------------.

set xtemp, ytemp, and ztemp = translated and scaled x,y,
and z values

Bezsurf (limitvector, xtemp, ytemp, ztemp, nview)
interrupt #5
ScrRen_setup

_Bvzsurf (limitvector,x, y, z, nview>
End . . -

4.15 Description of Module SORT

New Token -->4.15<-- ••••••• ACTION REQUIRED (see below>.
xtracted Operators----. xtracted Operands----

interrupt xtemp
Screen_setup ytemp
Bez surf ztemp
(nview

s
limitvector
)C

y
z

End nview

kipped Tokens-----~
the
updated
of
the
Procedure
of
var
of

*

Menu: 1 □tor, 2 □and, 3 Skip, 4 Skip eoln, S End Module, x skip to "x"?

Figure l(a). Query Mode.

Pseudo Code Metrics Extractor
Pseudo Cod-

x[jJ = >c[j+lJ
y[j] = y[j+l J
x[j+ll = hold
y[j+lJ .. hold2

end
pass = pass + 1

end
end.

,-Extracted Operators ,-Extracted Operands Sl.ipped Tokens
UNTIL 2 TWO 1 TYF'E 0
WHILE 1 VALUES 1 UPDATED 1
WITH 0 X 15 USE 0
WRITE 0 XTEMP 2 USED 0
WRITELN 0 y 13 USER 0
XOR 0 YES 0 VAR ... _,
[10 YTEMP 2 WHAT 0
] 10 z 9 WHICH 0
.. · .. 0 ZTEMP 2 WILL 0

----------------------- ----------------------- -----------------------
Enter module name -- > done

Figure l(b). At the End of a Module.

Figure 1. screen Displays of the PDL Metrics Extractor.

I

.

l

l

D
7

J

I
I
I
J

I

Pseudo Code Metrics Extractor
Pseudo Code---------------------------------------.

else
begin
calculate the date of Easter;
wrtte out the date
end

end;
write out the ti"'tl e_
end.

xtracted Operators----,
write
else
begin
;
write
end
end
;
write
end

Enter module name--> easter

xtracted Operands---­
a
suitable
message
c:alc:ulate
date
Easter
out
date
out
title

kipped Tokens------,

the
the
of
the
the

Figure 2(a). Processing Pseudocode.

Pseudo Code Metrics Extractor
Pseudo Code--,

writeln(' ':b,Easter:2,'April':b>
else

writeln(' • :b,Easter+31:2, 'March' :b>

end;
writeln<' ':4,'Some Easter Dates'>;
writeln(• •:4,••=z=•=•=•••m2=•==•>
end.

xtracted Operators----,

;
writeln
(

end

Enter module name--> easter

xtrac:ted Operands---~
31
2
'March'
b

4
'SomeEasterDates'

4
·================='

kipped Tokens------,

var
integer

Figure 2(b). Processing Source Code.

Figure 2. Processing Pseudocode and Code.

--- - ___, ___,

Table 2. Code Metrics Extractor Output File.
Table 1. POL Metrics Extractor Output File.

name dsl loc tok com Vg Nst , n,l Nl n2 N2
name tok loc nl Nl n2 N2 '

1 CHECK CU 6 5 47 18
, I

1 0 7 16 8 14

1 Init 21 10 3 7 11 14
2 OrawHenu 89 22 3 15 22 74
3 Control 43 16 7 16 24 26
4 MoveCUrsor 124 25 7 24 33 99
5 LoadData 190 39 17 96 33 92
6 SaveData 79 17 13 40 21 38
7 PrintData 16 10 6 6 7 9
8 Simulate 37 13 9 17 11 19
9 DrawEdge 131 45 16 63 31 67
10 Clearscree 35 15 9 14 12 20
11 DrawNode 67 22 15 29 21 38
12 DeleteNode 81 22 18 38 23 43
13 Delete Edge 37 15 10 17 14 20
14 QuitRGS 32 14 9 16 8 16
15 PrintTable 95 26 8 60 12 34
16 PrintSimul 47 9 12 17 18 24
17 GetNextCha 6 4 3 3 J J
18 CalcPath 24 8 6 11 11 12
19 .SimPath 52 10 9 18 12 32
20 BuildNodeT 15 4 4 7 4 8
21 UpdateNode 40 7 10 21 11 19
22 LabelEdge 14 10 4 5 7 9
23 BuildEdgeT 118 16 15 50 29 64
24 Update Edge 65 14 13 30 21 33
25 Beziercurv 153 29 15 76 28 77
26 Updates tat 25 5 9 10 10 13
27 CalcFact 20 6 7 10 5 10
28 Drawcursor 5 4 1 1 3 3
29 CheckCUrso 20 5 6 8 7 12
30 StatusLine 6 4 1 1 5 5
31 BuildState 26 4 8 9 13 15

2 DRAW CUR 45 42 390 19 16 5 1,4 176 22 151
3 HOVE-CUR 276 273 1553 46 37 28 21 781 74 531
4 CALC-FAC 10 6 43 16 2 1 6 12 4 9
5 BEZIER C 48 41 396 23 5 2 19 156 37 116
6 LABEL ED 131 122 981 46 16 10 26 433 64 349
7 BUILD-ED 22 19 112 24 2 1 5 34 JO 30
8 BUILD=ST 23 18 231 19 8 5 19 92 21 60
9 ATAN2 24 19 133 15 16 7 16 55 6 40

10 DRAWARRO 49 38 360 37 12 3 23 146 35 108
11 DRAW_EDG 309 291 2165 86 58 16 37 1043 82 720
12 UPDATE E 20 19 76 16 2 1 5 34 18 30
13 UPDATE-S 10 7 65 16 3 2 10 21 11 19
14 DELETE-E 112 104 806 39 20 8 30 361 67 282
15 BUILD NO 5 4 29 14 1 0 5 10 4 8
16 DRAW NOD 82 75 539 35 15 8 33 261 40 161
17 UPDATE N 5 4 29 15 1 0 5 10 5 8
18 DELETE-N 77 70 534 35 18 8 34 258 44 160
19 PRINT ST 152 140 1014 18 52 13 18 474 36 294
20 PRINT-SI 26 24 211 15 8 4 23 95 23 71
21 PRINT-DA 23 21 143 15 6 2 22 70 17 39
22 STATUSLI 9 8 71 18 1 0 4 24 17 22
23 INITIALI 47 42 231 23 6 2 12 101 53 92
24 LOAD DAT 150 137 1014 39 28 10 38 444 76 360
25 SAVE-DAT 58 51 388 30 13 6 29 172 50 134
26 GET NEXT 16 15 97 16 2 1 15 47 19 31
27 CALCULAT 9 6 53 18 3 1 11 16 8 11
28 SIM PATH 17 16 106 19 4 1 9 41 12 33
29 SIMULATE 237 221 1501 65 53 11 36 738 68 471
30 QUIT RGS 34 31 194 20 8 3 23 102 26 54
31 CLEAR SC 35 32 203 22 8 3 24 108 25 56
32 DRAW HEN 87 45 850 35 1 0 5 142 41 140
33 CONTROL 22 19 83 26 3 2 20 47 17 21
34 RGS 73 12 344 38 2 1 11 27 11 15

l
1

l

n
n
l

J

LI

j

J

As a more rigorous and practical test, we applied the metrics extractor to ongoing software de­
velopment projects at the University of Idaho. In their senior year of study, all computer science majors
at the University of Idaho must complete two software engineering practicums where they are required to
find a customer with a problem requiring software design and implement a solution in one semester . In
the first semester students work individually; in the second, they work in groups of four or five. At the
time of this study, both practicums called for a specifying approach to software development using abridged
versions of the IEEE standards for requirements and design specifications (IEEE Std. 830-1984 and IEEE
Std . 1016-1987, respectively) [IEEE87]. Details of the U.I. software engineering practicums can be found in
[Oman86}.

The POL metrics extractor was tested on pseudocode taken from the design documents of three
second-semester group projects: (1) A Bezier curve fitting program, (2) A materials and resource planning
system , and (3) An interactive DFA simulator. In all cases, the metric analysis was conducted unbeknown
to the students working on the project. This was done deliberately to avoid interfering with the ongoing
development and to exclude Hawthorne effects. All three projects were implemented successfully (each
exceeding 3000 lines of Pascal code) and passed the customer's implementation sign-off. The data shown in
Tables 1 and 2 are from the DFA simulator project.

The POL metrics were analyzed statistically to determine intrasystem characteristics, and they
were compared to metrics calculated from the final source code. These results showed:

l. POL metrics follow many of the same statistical patterns exhibited in code metrics. Specifically,
there are high correlations (r> .75) between size related metrics such as LOC, Halstead's Vocabulary
(V), Halstead's Volume (N) and estimated Volume (N).

2. Metrics for detailed pseudocode modules correlated very high with corresponding source code
metrics (r>.8), while metrics for loosely written pseudocode showed almost no correlation to the
corresponding code (r< .3).

3. A generic linear regression model predicting source code metrics from POL metrics could not be
constructed because of variations within a system (as in #2 above) and across systems.

4. Pseudocode modules could be rank ordered by complexity as estimated from the POL metrics .
However, this rank ordering did not always follow the complexity ordering of source code modules .
Differences can be attributed to variations mentioned above.

5. Unusual POL module descriptions could be identified by calculating metric outliers (i .e., values
greater than 2 standard deviations away from the average) in precisely the same manner as is done
for source code metrics. Furthermore, these POL outliers frequently matched source code outliers.
That is, modules flagged as unusual in the pseudocode descriptions were frequently unusual in the
source code implementations.

This last result is the most promising because it provides a mechanism for identifying error-prone
designs. Table 3 shows the output from our metric-outlier program as it processed the data from Table l.
Likewise, Table 4 shows the metric-outliers for the source code metrics in Table 2. As shown in these tables ,
the metric- outlier program calculates average metric values for each column of metrics and then prints,
on a module-by-module basis, flags indicating where metric outliers exist. For instance, the value "+2+"
indicates the value for a metric (column) of a module (row) is greater than two, but less than three, standard
deviations above the average.

Using the calculation of metric outliers we were able to identify anomalies in the POL. Outliers with

5

L.. -- - ---- - ---- :.::J -- ,__J

Table 4. Code Metrics Outlier Table.

Table 3. PDL Metrics Outlier Table.
name dsl loc tok com Vg Nst n;L , Nl n2 N2

--------------- --- (

. ' name tok loc nl Nl n2 N2 1 CHECK CU -1- -1-
--------------- i · DRAW_CUR
1 Init -1- 3 MOVE CUR +2+ +2+ +2+ +l+ +l+ +3+ . +2+ +l+ +2+
2 DrawMenu -1- +1+ 4 CALC_FAC -1- -1-
3 Control 5 BEZIER_C
4 MoveCursor +l+ +l+ +l+ +2+ 6 LABEL ED +l+ +l+ +l+ +l+
5 LoadData +2+ +2+ +l+ +3+ +l+ +2+ 7 BUILD=ED -1-
6 saveData 8 BUILD_ST
7 PrintData 9 ATAN2 -1-
8 Simulate 10 DRAWARRO
9 DrawEdge +l+ +2+ +1+ +l+ +l+ +l+ 11 DRAW EOG +3+ +3+ +3+ +3+ +2+ +l+ +l+ +3+ +2+ +3+
10 ClearScree 12 UPDATE_E -1-
11 DrawNode +1+ 13 UPDATES
12 DeleteNode +1+ 14 DELETE E +l+ +1+
13 DeleteEdge 15 BUILD NO -1- -1-
14 QuitRGS 16 DRAW NOD +l+
15 PrintTable +1+ +1+ 17 UPDATE_N -1- -1-
16 PrintSimul 18 DELETE N +l+
17 GetNextCha -1- -1- -1- -1- -1- 19 PRINT_ST +l+ +1+ +l+ +2+ +1+ +1+
18 CalcPath 20 PRINT SI
19 SimPath 21 PRINT-DA
20 BuildNodeT -1- -1- -1- 22 STATUSLI -1-
21 UpdateNode 23 INITIAL!
22 LabelEdge -1- 24 LOAD_DAT +l+ +l+ +l+ +l+ +l+ +l+ +1+
23 BuildEdgeT +1+ +l+ +l+ +l+ +l+ 25 SAVE DAT +l+
24 UpdateEdge 26 GET NEXT
25 BezierCurv +2+ +1+ +1+ +2+ +l+ +l+ 27 CALCULAT -1-
26 Updates tat 28 SIM PATH
27 CalcFact -1- 29 SIMULATE +2+ +2+ +2+ +2+ +2+ +l+ +l+ +2+ +1+ +1+
28 DrawCursor -1- -1- -1- -1- -1- 30 QUIT RGS
29 CheckCurso 31 CLEAR SC
30 StatusLine -1- -1- -1- -1- 32 DRAW MEN -1.;.
31 BuildState -1- 33 CONTROL_

34 RGS

1

l
l
l
n
n
l

J

J

I
I

I
J

extremely low values pointed to pseudocode that was either too vague or described small simple modules .
On the other hand, outliers with extremely high values pointed to pseudocode that was either too detailed
or highly complex. In this fashion we were able to identify "trouble spots" in the PDL. For example, in the
Bezier curve fitting project our POL analysis identified modules Load, Profile, and Sort as three outliers.
Subsequent analysis of the source code identified Change, Profile, and Sort as the three most complicated
code modules. Further -examination showed that both Load and Change had been written by the same
student and in both cases the pseudocode was vaque and inadequate. While the implementation of Load
proceeded within normal bounds, the implementation of Change contained many instances of redundant code
causing abnormally high code metric values. Not unexpectedly, the student designing and implementing these
modules was the least experienced of the five working on the project.

We obtained similar results from our analyses of the other two senior projects. For instance, the
POL outliers for the DFA simulator (shown in Table 3) include: MoveCursor, LoadData, DrawEdge, and
BezierCurve. Source code outliers (shown in Table 4) include: MoveCursor, DrawEdge, PrintStateTable,
and Simulate. MoveCursor and DrawEdge are examples of overly complex modules in both pseudocode
and code. BezierCurve and LoadData are examples of false hits: Targeting trouble spots that don't exist .
Although the pseudocode showed excessive complexity, the source code showed no unusual characteristics.
That is, the pseudocode complexity was either overstated (as in the case of LoadData) or the coding process
dispersed the complexity into other code modules (which was the case for BezierCurve). On the other
hand, the pseudocode for Simulate and PrintStateTable showed nothing unusual, but the source code was
quite complex. PrintStateTable is not overly complex, but its printing conditions inflate the V(g) metric.
Simulate, however, is an example of a clear miss: Not identifying a trouble spot. The code for Simulate is
quite complex and the pseudocode description does not reflect the true nature of the module .

CONCLUSIONS

We have implemented and tested a prototype POL metrics extractor that calculates token-based
metrics from design pseudocode . The metrics extractor is flexible, but inherently primative because of its
context-free classification of tokens. Further, the metrics extractor cannot process entire design specifications
documents (such as those outlined in the IEEE 1016-1987 Standard). The pseudocode must be extracted
from the design specification prior to processing. Future enhancements of the POL metrics extractor will
include:

1. Context sensitive classification of tokens.

2. Guided processing of whole standard specification documents.

3. Automatic post-processing identification of metric outliers.

To test our metrics extractor we analyzed the PDL sections of design documents from published
sources and from systems being developed in a software engineering lab at the University of Idaho. We
extracted the PDL complexity metrics and then conducted comparative analysis with respect to intramod­
ule and intermodule relatiortships and with respect to metrics derived from the corresponding source code.
Intramodule analysis suggests that POL metrics follow the known patterns of code metrics; i.e., the rela­
tionships observed and documented across code metrics from a single module are also found in PDL metrics
from a single module. Deviations from these known patterns can be used to identify internal inconsistency .

Intermodule relationships are useful in isolating POL descriptions that are inconsistent with respect
to the other modules within the design specification; i.e., identification of metric values that are statistical
outliers with respect to the average metric value for all modules within the system. In this study we were
able to:

6

l
l
l
n
0
n
l
7

I

J

l
ll

J

l
u

1. Identify PDL descriptions that were inadequate because of lack of detail.

2. Identify PDL descriptions that were too detailed .

3. Identify incons_i~tent POL descriptions.

4. Demonstrate a high degree of traceability between detailed PDL descriptions and corresponding
source code.

5. Demonstrate a low degree of traceability between inadequate PDL descriptions and corresponding
source code.

We believe that PDL metrics can be utilized in manners similar to code complexity metrics; namely,
rank ordering module complexity for purposes of resource allocation. Studies are presently underway to
determine how PDL metrics can be used for early fault identification and defect removal.

References

[Basi84] V. Basili & B. Perricone, "Software Errors and Complexity: An Empirical Investigation", Commu­
nications of the ACM, vol. 27(1), Jan. 1984, pp. 42-52.

[Bern84] G. Berns, "Assessing Software Maintainability", Communications of the ACM, vol. 27(1), Jan.
1984, pp. 14-23.

[Boeh76] B. Boehm, "Software Engineering," IEEE Transactions on Computers, vol. C-25(12), Dec. 1976,
pp. 1226-1241.

[Boeh84] B. Boehm, "Verifying and Validating Software Requirements and Design Specifications", IEEE
Software, vol. 1(1), Jan. 1984, pp. 75-88.

[Bran90] D. Brandl, "Quality Measures in Design," ACM SIGSOFT Software Engineering Notes, vol. 15(1),
Jan. 1990, pp. 68-72.

[Cont86] S. Conte, H. Dunsmore, & V. Shen, Software Engineering Metrics and Models, Benjamin/Cummings ,
Menlo Park, Ca., 1986.

[Cook84] C. Cook, "Software Complexity Measures," Proceedings of the 1984 Pacific Northwest Software
Quality Conference, Portland, Oregon, pp. 343-363, 1984.

[Elsh84] J. Elshoff, "Characteristic Program Complexity Measures," Proceedings of the Seventh International
Conference on Software Engineering, IEEE, Florida, pp. 288-293, 1984.

[Gord79] R. Gordon, "Measuring Improvements in Progra,m Clarity", IEEE Transactions on Software Engi-
neering, vol. SE-5(2), Mar. 1979, pp. 79-90. ·

[Grem84] L. Gremillion, "Determinants of Program Repair Maintenance Requirements", Communications
of the ACM, vol. 27(8), Aug. 1984, pp. 826-832.

[Hall84] N. Hall & S. Preiser, "Combined network complexity measures," IBM Journal of Research and

7

1

l
l
l
n

l
1

I
l

u
l
j

J
J

J

Development, Jan. 1984, pp. 15-27.

(Hals77] M. Halstead, Elements of Software Science, Elsevier, New York, N/Y ., 1977.

(Harr86] W. Harrison &;_C. Cook, "A Micro/Macro Measure of Software Complexity," Journal of Software
Systems, vol. 7(3), Aug. 1987, pp . 213-219

[Henr90] S. Henry & C. Selig, "Predicting Source Code Complexity at the Design Stage," IEEE Software,
vol. 7(2), Mar. 1990, pp. 37-44.

(IEEE87] IEEE, Software Engineering Standards, John Wiley, New York, N.Y., 1987.

(Jone79] C. Jones, "A Survey of Programming Design and Specification Techniques", Proceedings , Specifica­
tions of Reliable Software, Apr. 1979, pp. 91-103.

(Kafu85] D. Kafura, "A Survey of Software Metrics," Proceedings of the 1985 ACM Annual Conference , Oct.
1985, pp. 502-506.

(McCa89] T . McCabe & C. Butler, "Design Complexity Measurement and Testing," Communications of the
ACM, vol. 32(12), Dec. 1989, pp. 1415-1425.

(N ann85] T. Nanney , Computing and Problem-Solving with Pascal, Prentice Hall, Englewood Cliffs, N .J .,
1985.

(Oman86] P. Oman, "Software Engineering Practicums: Case Study of a Senior Capstone Sequence," A CM
SIGCSE Bulletin, vol. 18(2), June 1986, pp.53-57 . ·

(Parn79] D. Parnas, "Designing Software for Ease of Extension and Contraction," IEEE Transactions on
Software Engineering, vol. SE-5(2), Mar. 1979, pp. 128-138.

(Pfle87] S. Pfleeger, Software Engineering: The Production of Quality Software, Macmillan, New York, N .Y. ,
1987.

(Reyn87] R. Reynolds, "The Partial Metrics System: Modeling the stepwise refinement process using partial
metrics," Communications of the ACM, vo!. 30(11), Nov. 1987, pp . 956-963.

[Rohl83] J. Rohl, Writing Pascal Programs, Cambridge University Press, London , England, 1983.

[Romb90] D. Rombach, "Design Measurement: Some Lessons Learned," IEEE Software, vol. 7(2), i\lar.
1990, pp . 17-25.

[Salt82] N. Salt, "Defining software science counting strategies," ACM Sigp/an Notices, Mar . 1982, pp. 17-26.

(Shel86] G. Shelly, T . Cashman, & S. Forsythe, Turbo Pascal Programming, Boyd & Fraser, Boston, MA. ,
1986.

[Shen85] V. Shen, T. Yu, S. Thebaut, & L. Paulsen, "Identifying Error Prone Software - An Empirical
Study," IEEE Transactions on Software Engineering, vol. SE-11(4), pp. 317-324, April, 1985.

8

7
n

l

l

J

u

j

[Szul81] P. Szulewski, P. Bucher, S. DeWolf, &: M. Whiteworth, "The measurement of Software Science
parameters in software design," Performance Evaluation Review (ACM SIGMETRICS), vol. 10(1),
1981, pp. 89-94.

[Taka85] M. Takahashi&: Y. Kamayachi, "An Empirical Study of a Model for Error Prediction", Proceedings
of the Eight Intirna,ional Conference on Software Engineering, 1985, pp. 330-336.

[Troy81] D. Troy &: S. Zweben, "Measuring the quality of structured designs," Journal of Software and
Systems, vol. 2, 1981, pp . 113-120.

[Zelk79] M. Zelkowitz, A. Shaw, &: J . Gannon, Principles of Software Engineering and Design , Prentice-Hall,
Englewood Cliffs, N.J., 1979.

9

	Oman_Cook_90_60_11_A
	Oman_Cook_90_60_11_B

