
89-60-19

LifUUEAS~TY

Implementation of an Object-Oriented Shell

James B. Rudolf
Timothy A. Budd

Computer Science Department
Oregon State University

Corvallis, OR 97331-3902

7
1
n
n
[]

]

l
7
n

r J

I
f]

l I

l J

Li

u
J

Implementation of an Object-Oriented Shell

James B. Rudolf
Timothy A. Budd

Computer Science Department
Oregon State University

August 30, 1989

n
n
n
n
n
l

f 1

lJ
l]

J

u

1 Introduction

As computers continue to infiltrate our society and become a part of everyday life, the makeup of the
user community is changing. Unlike the old days when computers were used exclusively by scientists and
computer programmers, we can no longer expect users to be computer literate or to have a certain level of
education. And as processing speeds continue to increase, attention is being drawn away from raw MIPS
capability and instead aimed towards the necessary dialog between user and machine [Fis89]. As software
complexity increases, the computer becomes not only a computational engine but also a communication
vehicle. These events make it necessary to redefine how an interface should interact with this changing
user group.

Since concern over the human-computer dialog has increased fairly recently, much of the existing
software was written assuming a certain amount of expertise. The Unix operating system is an excellent
example. It was developed in a research environment by programmers who wanted a powerful software
development facility. To the uninitiated, Unix commands can be terse and not always intuitive. Limited
and equally terse online documentation is not enough to help a naive user. As a result, this difficulty of
use has been one of the biggest complaints about Unix: it is productive only for those that have used it
enough to know their way around.

This perceived "unfriendliness" is unfortunate, because Unix is becoming the de facto standard for
workstations and even some mainframes in the engineering community, after having been created on a
minicomputer and spending much of its evolution in academia. This popularity is also spilling over into the
business and non-technical sectors. Many people with little or no computer experience are now working
on Unix systems, and finding them difficult to use.

There are two apparent solutions to this problem of user-hostility: discard Unix for a more friendly
alternative, or find a way to make Unix more palatable to the less computer literate masses. The first
solution simply will not occur. No clearly superior operating system exists that can fill the same niche,
and even if one did, the popularity of Unix is growing steadily and it is a powerful environment.

Without changing the operating system itself and creating yet another version of Unix, we can construct
an interface that will sit between Unix and the end user. What is needed is an interface that will translate
a terse Unix dialog into a dialog more meaningful to casual users. This might include hiding the portions
of Unix that complicate its use, and letting the user enter understandable commands that the interface will
map onto the corresponding Unix commands.

We have looked into creating such an interface. We hope that by combining graphics with object­
oriented concepts, we can create an interface that takes some of the complexity out of working with Unix,
without sacrificing the features that make it powerful. We will attempt to bridge the gap between Unix
and the end user with a graphical object shell.

In this paper we review the work that went into the interface definition for the object shell, also called
OSH. After taking a brief look at some existing interfaces, we will discuss the look and behavior of the
object shell. On some occasions we will describe how a feature would look to the user even though the
feature was not implemented. We then take a look at the implementation, because the flexibility of the
object shell is due in large part to how it was designed. Finally, we list directions that further research
could take, and comment on what we have accomplished and learned up to this point

2 Background

2.1 Existing Interfaces

In the last few years, much attention has been paid to the interface separating the user and the computer.
Graphical interfaces are becoming more common, so we mention a handful of graphical interfaces here
for comparison purposes.

1

Suntools and Cedar

Suntools is a popular kernel-based windowing system available from Sun Microsystems [Sun86]. It
creates a graphical interface on top of Unix and provides graphical equivalents to certain Unix tools, such
as mail and dbx. It also provides a shelltool which is a shell running within a window. Thus, multiple
windows can be running multiple shells at once so a user can be working on multiple tasks at once.

A Suntools icon represents a "closed" window or application. It is closed in the sense that the
task represented by a window is now an icon and thus using less screen real estate, though the process
represented by the window continues to execute while it is in iconic fonn . The icon has no other meaning
in the Suntools definition.

The Cedar programming environment [Tei84], developed at Xerox PARC, is not a front end for Unix
as Suntools is, but it uses icons in a similar fashion. When windows are closed, they are stored as icons
along the bottom of the screen. As with Suntools, the icon merely saves screen space; the process that
it represents continues to execute.

We suggest that while these interfaces are graphical, they (and others like them) are not much of a
conceptual departure from the traditional command line interface. They use windows to allow multiple
ASCII terminal sessions and an easier-to-use front end for some existing text-based tools, but they don't
really have any object-oriented qualities.

The Macintosh Finder

The Apple Macintosh introduced the first commercially successful graphical interface along with the
first taste of object-oriented behavior in an interface. Using techniques developed in large part at Xerox
PARC, Apple integrated windows, menus, icons, and mice to offer an alternative to the command line
interpreter.

In addition to an icon representing a closed window, the Macintosh Finder uses icons to represent
files, and introduced the concept of files as objects. These objects are divided into a few discrete classes,
and only certain operations can be perfonned on an object of a given class. Some commands even display
polymorphism (unbeknownst to most users) by offering similar menu items (such as print) for different
types of objects. This was the first glimpse of an object-oriented model in a commercial user interface.

The WISh Interface

Some current work being done by Beaudouin-Lafon has experimented with an object-oriented interface
for Unix [Bea89]. In his Window Icon Shell interface (WISh), objects not only represent Unix files, but
they can also represent users, processes, or remote machines. Beaudouin also introduced the electric icon,
which is an icon that initiates a process if another icon is dragged over it For example, to print a textual
object, Beaudouin would drag that object over the printer object. While this technique offers objects in
a number of classes, it looks more like passing an object as an argument to a process instead of passing
a message (representing a process) to an object.

Open Look

The Open Look interface definition is a joint project between Sun and AT&T [Su089], that is not an
actual piece of software but a definition of how an interface should look and behave. Some of its behavior
is similar to that of the WISh interface described above.

Open Look attempts to create a completely integrated desktop, so that objects from one application
can be passed to another application, which will know what to do with the object based on its type . If
you are editing a document and you wish to edit a new one, you can simply drag the icon representing
the new document from the file manager into the editor. Or if you receive a mail message with a meeting
announcement (in a standard fonnat), drag the message object over your calendar tool, and your calendar
will be updated with the time and date of the meeting.

2

n
n
n

l
l
l
l
j

l
l I
l I
u

J

l
n
n
n

r 1

n

I J

u
11

[J

l J

J

J

u

2.2 A Different Approach

This paper and the work supporting it are a further investigation of work done by Tim Budd [Bud89l,
in which he discussed the rationale for developing a graphical interface for Unix that also had an object­
oriented feel throughout. Though he gave a textual object-oriented shell as an example, he considered the
benefits of a graphical representation for his shell. The following is a brief review of the more important
points from his paper that helped us to define our interface.

A Graphical Interface

We have seen how the interface of the Macintosh has made computers accessible to a wider audience.
We also want to use a graphical representation to hide as much system complexity as possible from the user.

A logical approach, based on some existing systems, is to use icons to represent files. A window
can represent a Unix directory, and the icons in the window represent the files in that directory. Different
buttons on a mouse can be used to perform different functions. One button can be used to display a menu .
The items within this menu will vary depending upon the type of object the cursor is over. These menu
items will be the set of valid commands that can be performed on the particular type of object. The user
will not have to remember the exact name of the command or where that command resides.

In situations when specifying a command is not enough, the graphical interface will also supply dialogs
in order to transfer information (such as the options common to many Unix commands) between user and
machine. Another mouse button can be used to select icons to be passed as the arguments of a command.

Object-Oriented Design

As object-oriented programming becomes better understood, we are learning how it can help us design
and develop applications faster than before because of reuseable code and the fact that some real-world
situations can be more accurately modeled using an object-oriented approach [Bud87].

There is no reason why the same properties cannot lead to a cleaner command interpreter. The
characteristics of object-oriented design can help to make an interface that is easier for naive users to
comprehend and that reuses existing pieces of the system when possible. Specifically, these features of
object-oriented design can benefit our interface:

• By defining all Unix files as objects, we can divide them into classes and therefore define a structure
and behavior for each file. All objects of the same class will share the same structure (though they
may have different values) and behavior. The behavior of our Unix file is defined by the set of valid
operations that can be performed on the file and all other files of the same type.

• Data encapsulation protects an object from a dangerous world. The data (or instance variables) of
an object cannot be directly accessed or modified by other objects. Only the valid operations (or
methods) defined for the object's class can access the instance variables. Therefore, some level of
protection is provided, since the methods control what can be done to an object's data. Another object
cannot print a text file. It can only ask the text file to print itself.

• When a new class is defined, it is done in terms of an existing class. An object in the new class inherits
the structure and behavior of the existing class, and possibly build on that structure and behavior.
This concept of inheritance makes reuseable code possible, so that every subclass of a text class can
use the print method inherited from the text class, or create a more specific print method that will
override the method in the text class.

• Message passing provides an insulating layer between what the user requests and what needs to be
done to satisfy that request Polymorphism lets the user concentrate on what she wants to accomplish,
without worrying about how the task is actually carried out. By specifying that she wants to print
a text file, all she needs to remember is print. The particular method that is invoked will take care
of the details of printing.

As we saw above, the Macintosh has a somewhat object-oriented flavor. The proposed interface could
go even further than the Mac by supporting inheritance, message passing, and by allowing the creation
of abstract data types to represent Unix files.

3

A Difference in Philosophy

Hopefully, this interface will hide some of the complexities of Unix from the user. But the philosophies
of Unix and object-oriented design are different enough that creating a successful interface is a challenge.

A fundamental difference between these two philosophies is how they treat data. In Unix, files are
treated merely as byte streams; they have no structure or type. Files are commonly passed from one filter
to another, with each filter able to do whatever it wants to the original file. Commands are executed and
files are passed as arguments. In contrast, the object-oriented model surrounds or protects data with a
number of routines that have sole access to the data. Other processes that wish to read or modify the
data have to ask the privileged routines to do so. The data is an object, and the task to be performed
is in a sense an argument

A different problem involves some of the strengths of Unix: 1/0 redirection, pipes, and background
execution. How can they be accurately represented by the interface in a clear and straightforward manner?
How does one graphically represent a pipe? Implementation notwithstanding, how can these features be
supported while remaining true to an interface we've defined? The immediate solution was to avoid these
strengths, at least at the command level, while each feature can still be used from within programs.

3 Using the Object Shell

3.1 Goals

Before embarking on this project, we wanted to set some goals to reach. Though they were only
qualitative, they were at least factors to keep in mind during the design and development of the interface.

Appear Graphical & Object-Oriented

We wanted to present a graphical object-oriented interface, in hopes that a "traditional" interface such
as the Unix command line interpreter could be made more approachable. As Budd's paper described, each
Unix file would be represented by an icon, with pop-up menus providing the valid messages for each type
of file. Dialogs and the ability to select icons as arguments added to the graphical nature.

The object-oriented features mentioned earlier are essential to our interface definition. We hope that
by using them we can provide benefits for people who only use the existing classes as well as those that
want to build upon it.

Appear Consistent

In general, it is important to provide consistent behavior in a user interface. A user will become
accustomed to the behavior of an interface, and eventually will rely on this consistency. This will lower
the learning curve when the interface is consistent across applications. However, it is important to note
that there are occasions when consistency can be sacrificed. Occasionally, a break with a paradigm is more
natural for a user than to live and die by a set of interface rules. Unfortunately, when to make this tradeoff
is not something that can be derived mathematically; the answer lies in the results of empirical studies that
reflect the whims and biases of users, a group whose behavior is not always predictable.

For example, the designers of the Macintosh interface broke with their paradigm on at least one
occasion. Generally, dragging an icon over the trash can represents deleting that object. However, when
you drag a floppy disk icon over the trash can, it ejects the disk. This is an inconsistency, but most people
feel comfortable with the deviation from the model.

Cater to a Diverse User Group

Another goal of any user interface is to be "friendly" to a diverse group. It should be intuitive for
new users. In our interface, someone shouldn't have to know that cc is how the C compiler is invoked;
or that -P is the printer option to route a job to a non-default printer.

An interface should also be efficient for veteran users who don't want to resort to the time consuming
steps that a new user might. A regular user, or a previously novice user who has learned over time,

4

l

n
n

l
l
7

J

j

J
J

l
n
n
n

n
l
n
[l

11

I J

ll
11

u

J
u
u

should not be slowed down by an interface. There should be shortcuts available for users that are more
familiar with a system. ·

It is understandably difficult to reach both of these goals all the time. Providing some sort of shortcut
is not always easy, nor does it necessarily fit within the model. And though offering a command line might
make an advanced user very happy, it isn't necessarily the best way to provide shortcuts.

Support the Strengths of Unix

This was an experiment in mapping Unix functionality to another paradigm, so we wanted to preserve
as many of the strengths of Unix as possible. The three main strengths we hoped to support were I/0
redirection, pipes, and background execution.

Pipes and 1/0 redirection are two facilities that are often used to create larger applications out of the
smaller tools or filters. Background execution lets users perform multiple tasks asynchronously.

These features contribute to the differences between the object-oriented and Unix philosophies.
However, they are such an integral part of Unix that we will try to include them in our model.

3.2 The Interface

··· · ·· · · · • · · •· -~vv

Figure 1 The OSH root folder

What the User Sees

Earlier we saw that Budd defined a framework from which to build our interface, but further definition
was beyond the scope of his paper. This paper will pick up where he left off, as we look at the graphical
and object-oriented features of our interface in more detail.

Each Unix file is an object, and appears as an icon. The most common exception to this is a Unix
directory (called a/older in our interface), which can also be represented as a window, with the contents
of the directory displayed as icons in the window. When the object shell is started, a window will display
the root of the osH file system, and the title bar of the folder will show the path of the OSH root directory.
When a folder is opened, it creates a new window that is offset slightly from the window that contains
the closed representation of that foldei::.

Each icon contains two pieces of infonnation. The name of the object is in small text at the bottom of
the icon. The first two characters of the object's class are displayed in a large bold font as the icon's image.

Figure 1 shows the OSH root folder opened with its contents represented as icons. The menu shows
commands that are valid for a C object. The Include object has been highlighted and will be passed as
a positional argument when the compile message is sent

5

Mouse Behavior

Because the object shell was developed on a Sun workstation, we followed the default actions for
mouse button behavior [Sun87]. The left button is called the Poir11Bu11on. For our purposes it is used to
select or unselect objects used as arguments. The middle button is the AdjustButton, and it can be used to
move windows. Usually it is also used to move icons, but that has been disabled in the object shell. The
right button is the MenuButton, and it will bring up a context-specific pop-up menu when it is depressed.
By context-specific we mean that you see a different menu depending upon the class of the object that the
cursor is over when the MenuBuJton is pressed. By doing this the new user will see what operations are
valid for a particular object There is no need to remember command names.

Object-Oriented Design

Every Unix file is represented as an object, and is therefore in the Object class or some descendent
class of Object. (We will always list a class name in bold type.) A descendent class of Object is some
subclass of Object, where the class can have Object as its immediate superclass, or it can have classes
in between them. All other classes are descendents of the Object class. Likewise, an ancestor class is
either the immediate superclass of a class, or some superclass thereof. Object has no ancestor class, and
every other class has Object as an ancestor class.

The folders that represent Unix directories are of class Folder , and are a subclass of Object . So a
folder responds not only to all messages in its own class, but also to all messages defined in class Object .
When the mouse is pressed over a window background, you see the menu for the class of the window,
which is Folder or some descendent class of Folder. You see the same menu whether the folder is closed
(as an icon) or open (as a window), though not all messages make sense in both cases.

The context-specific menus described above display the names of the messages that can be sent to
an object. You often have access to messages in multiple classes, starting . with the messages from the
class of the object at the top of the menu, working down to all its ancestor classes at the bottom of the
menu. Therefore, all objects have the messages copy and cui from class Object at the bottom of the menu.
Overriding messages are shown only once in the menu.

The methods in the object shell use inheritance to cut down on multiple copies of code. For example,
class Textual is a subclass of Object. When you want to create a new text object, the new method in
class Textual invokes the new method in class Object to complete the tasks necessary for all new objects.
Then the new method in class Textual will perform tasks specific to text objects. This capability will be
discussed in more detail in the section Programming in the Object Shell.

Figure 2 shows an example of code reuse. In the top window, the new message is sent to the instance
ShScript of type Class. (The italic and bold p~t are supposed to help clarify the difference between
the name and the class of an instance, respectively.) The new method in Class invokes new in ShScript
since the new message was sent to the class instance ShScript. The new method in class ShScript invokes
new in its superclass, Textual, which in tum invokes new in Object. The new method in class Object is
responsible for pulling up the dialog in the middle window. Once a name for the object has been entered
and the OK button has been pressed, the three new methods terminate in the opposite order in which they
were invoked, and a new instance of class ShScript (noticeable by the big Sh in the icon) will exist By
using code in its ancestor classes, the new method in class ShScript did not have to explicitly do any of
the work necessary for new instances of Textual or Object.

The Object Shell Menu

Most Unix commands that take a file as an argument fit naturally into the object-oriented model:
treat the file as an object, and treat the command as a message that is to be sent to the object. But
Unix commands without arguments do not have a clean representation in the object shell. It is for those
commands that we created an object shell menu, which does not simulate the sending of a message to
an object. The OSH menu is located in the frame menu, which provides window movement and resizing
capabilities to all windows in NeWS. It appears at the top of the frame menu and is a walking menu, so
if you keep the mouse button depressed and move slightly to the right of the OSH Menu menu item, a
sub-menu will appear. A picture of the OSH menu can be found with the discussion of 1/0 redirection.

6

l
7
n
n
n
l

]

I
I
I

n
n
n
ii
fl

l
n

l J

J

l J

u
J

u
J

... ,., ..

l!ddMethod

/classu

Input name of new object:

rename

Figure 2 Creating a new instance of class ShScript

The OSH menu currently provides only for 1/0 redirection and creation of a console. Descriptions of
these operations can be found later in the paper. In a more complete implementation the OSH menu might
include items to list the active processes or to see who else is logged in.

The Object Shell Console

While trying to construct our graphical interface, we realized that existing Unix programs rely on stdin,
stdout, and suierr for communication with the user. Any 1/0 exchanges between a user and a program

7

or any messages produced by a Unix tool involve these file descriptors. So the object shell must have a
way to handle this textual input and output

We chose to do so with an object shell console . Like the OSH menu, the console does not fit into the
object-oriented paradigm. But it is a feature that is necessary in order to make the object shell functional
with existing tools. The object shell console can be opened by choosing the console menu item in the OSH

menu . Once the console exists, it is the default source and destination of stdin , stdout, and stderr . If no
console exists , all three file descriptors are set to /devlnull.

The Object Shell Buffer

Since we chose the cut and paste approach to deleting objects or moving objects around, there needed
to be a buffer that would hold the affected object . This buffer is not visible to the user , but it saves a
single object that is sent the cut or copy message . Sending the paste message to a folder retrieves the
object residing in the object shell buffer and places it in that folder .

3.3 Class Descriptions

A base set of classes has been defined and implemented in order to give the user wishing to extend
the object shell something to build upon. Where noted, a class has been defined but not implemented if
another class demonstrating similar function has been implemented .

C

The class C represents all behavior that a C source file or executable program can have. It is a
subclass of Textual, so it can be printed or edited. Once you have typed in a C program, send compile to
the object to compile it Likewise, link generates an executable instance variable. Finally, sending execute
executes the compiled version of the C source code, using the OSH console for default input and output.

When you compile a C object, you can pass Include objects by selecting them before you send the
compile message. Likewise , you can include a C library (represented by a C object) by selecting the C
object before sending link to the C object that references the library.

CI~

This class provides most of the extensibility in the object shell. All classes must reside in the !classes
folder of the object shell. The object shell expects to find the classes and accompanying methods here, and
it will react unpredictably otherwise. Its superclass is Object, and it has two methods. The first is new,
and by sending it to an instance of type C~. you can instantiate that class as shown in Figure 2. When
you send new' to a C~ instance, it asks you to enter the name of the new instance it is creating, and
then creates it in that folder. To create a new class, send new to the object named Class. It will ask you
to type in the name of the new class, which should begin with an upper-case letter. It will then display
a dialog asking you for the superclass of the new class.

There is a shortcut for users familiar with creating new classes. Before sending the new message ,
select the object that is the superclass using the PointButton. Then the selected object will be passed as
an argument of the new message, and you will be prompted only for the name of the new object.

The other method in this class is called addMethod. It is used to add a new method to an existing class .
To add a new method to a class, first create an object that will become the method. Currently , only objects
of class C or ShScript can be methods because they are the only classes that have an execute message .
We informally consider these to be of an executable type, though they are formally both subclasses of
Textual. Type in the code that will make up the method. Chances are, it will be difficult to debug the
method by sending it an execute message, especially if it needs to do anything elaborate like requesting
services from the OSH server (discussed later). To make debugging easier, you can add the new object to
the proper class and then test it. To do so, send addMethod to the class you want to add the method to.
You will be prompted for the full OSH path name leading to the new method.

A shortcut can be used here as well. Select the new method and then send addMethod to the object
of type Class that you want to add the new method to.

8

n
n
n

l

u
J

l
j

J

J

l
n
n
n
fl

l 1

I'

u
lJ
j

j

Figure 3 The methods in class Class

Regardless of the process you used to add the new method. all existing instances of that class, as well
as all instances of descendent classes, will now have an additional message in their menu (asswning the
new method is not overriding an existing method in an ancestor class).

To look at the methods for a particular class, open the /classes folder and send open to one of the
instances. You will see a window with all the method objects for that class. Since a method must respond
to an execute message, all methods are in class C or ShScript. Figure 3 shows all the method objects
in class Chw.

Folder

As we've mentioned nwnerous times, a folder is the equivalent of a Unix directory. It contains
objects, including other folders. It retains the hierarchical strucwre of the Unix file system. Class Folder
is a subclass of Object, and the class contains three methods. Messages can be sent to folders in either
an open (window) or closed (icon) state. To bring up the menu in an open folder, press the MenuButton
while the cursor is over the window background. Sending open to a folder displays the contents of that
folder. Sending close removes a window from the screen, symbolically closing that folder (and removing
the window). It does not make sense to open an already open folder, or send close to a folder that is in
iconic (closed) fonn. Finally, sending paste to a folder places the current contents of the OSH buffer into
that folder. The cut and copy methods in class Object can be used to place objects into the buffer.

Include

Class Include is a subclass of Textual, and an instance of class Include is equivalent to a C header
file. This class does not introduce any new methods, though the most common operations that might be
performed are the print and edit methods inherited from class Textual.

Mail

The Mail class is used to represent Unix mail. It is possible for multiple instances of class Mail to
exist, as each instance represents a mailbox. A user generally has one Mail instance that corresponds to
the active mailbox, and others can exist that correspond to mailboxes where old mail is saved. The class
Mail is a subclass of Folder, so instances respond to open, and close. It also responds to a compose
message for sending mail. Opening an instance of Mail displays instances of class Letter.

The class Letter represents individual Unix mail messages, and are a subclass of Folder. They are
never instantiated by the user, since the mail object handles the creation of new letters when compose is
sent to the Mail object. Objects of class Letter respond to mail messages as one would expect Sending

9

open to the object opens a window and displays the letter, and close likewise closes the letter and deletes
it The reply message allows the user to respond to the sender of that letter. Sending save will save the
letter in the Unix default file mbox before deleting it from the active mailbox.

There was enough similarity between the Mail and News classes that we chose to implement only
one of them. And since windowed mailers are rather common, we chose to concentrate on a windowed
read.news tool instead.

Tr Fo Ne
d dir readne.w

De C

sem ltMek

C C In
mekdt

inc

cut

Figure 4 A sample Make folder in iconic and window forms

Make

The make facility under Unix lets you automate the management of large numbers of files with
interdependencies. Probably the most common use of make is to define compilation dependencies between
routines that access one another. This capability is one that we wanted in the object shell as well.

The Make class is a subclass of Folder, so instances respond to open and close the same way folders
do. You can create a new instance of class Make the same way you create instances of other classes, by
going to the /classes folder and sending the message new to the class Make. The only types of objects
that are allowed in a Make folder are:

• Objects of class Include. These are the objects described earlier that are equivalent to the C header
files found in Unix.

• Objects of class C. One of these objects must be called main and will become the entry point for
the compiled and linked executable. To include objects of class Include into your C objects, put a
line in the C object like

#include "fred"

if you have an Include object called /red in the Make folder.

l
n
n
n

l
l

. I

j

l
I

J

l

n
n

l

n
l

l I

I J

u

J
J

J

Once all the objects of class C and Include are created, send the message makeit to the Make folder. This
can be done either from within the Make folder by bringing up a menu over the folder background, or
by closing the folder and pressing the MenuButton while the cursor is over the icon of the Make object.
Once the malceit process has completed, the resulting executable object will be the C object named main
in the Make folder.

Figure 4 shows a Make folder in closed and open form. The lower window shows the open folder
and all the objects that will be used to build the main object when ma/ceit is sent to it Note that the
menus in both windows are the same, though not all messages are valid in both forms. Sending close to
the Make object in the upper window would not make sense.

This is admittedly a limited implementation of maJce that supports only simple dependencies. One
could imagine a more sophisticated method called something like depend. By selecting objects A, B, and
C, and then sending depend to object D, we could generate two lines in a makefile describing a dependency
where routine D must be recompiled if any of the other routines change. Repeating this process a few times
with different objects and dependencies could result in a malcefile that has more complicated dependencies,
as well as removing the requirement that a C object named main exist in the folder.

News

This class implements the USENET readnews facility. It is a subclass of Folder, and thus responds
to open and close. When you send open to a News object, you will see a folder containing instances of
class Group, one for each newsgroup with unread articles. The News folder should contain only objects
of class Group. Likewise, each object of class Group is a folder that can contain only objects of class
Article, corresponding to individual news articles in that group.

To view a certain group with unread articles, send open to the object of class Group. If you want
to look at an unsubscribed group or a group with no unread articles, send get to the News object. It will
prompt you for the name of the group and make sure it is a valid newsgroup before adding it.

Group is a subclass of Folder, so objects of class Group respond to the same messages as folders, as
well as two others. Catchup will mark all articles in the group as read, and unsubscribe removes the Group
object and no longer show it when it has unread articles. Readnews articles are represented as instances
of class Article, and are a subclass of Folder. The Article class does not add any methods of its own.

One might argue that Article should be a subclass of Textual. That argument has some validity. The
print message from class Textual would make sense if Article were a subclass of Textual, but the edit
message would not And since the open and close messages from Folder were used to represent entering
and leaving instances of both News and Group, it was decided to follow this consistency instead of any
relationship that an Article instance may have with all text objects.

Figures 5 and 6 show how some of the News methods work. Once open is sent to the instance of
class News, you see the top window in Figure 5, showing all the groups with unread articles. Sending
open to a Group object displays the middle window with instances of class Article. Finally, sending open
to an article displays the actual article.

Once the News object has been opened, you can send get to the News object to retrieve an unsubscribed
group or a group with no unread articles. The middle window in Figure 6 shows the dialog where you
type in the newsgroup of preference, and the lower window has displayed the group.

Object

The Object class is at the top of the class hierarchy. It has no superclass. When modeling the Unix
file system, it becomes an abstract superclass; there are no instances of class Object in the object shell. But
the class does provide methods that apply to every object in the object shell. The two methods provided
by the Object class are similar to those found on the Macintosh: cut and copy. When you send either
of these messages to an object, the object is placed in the OSH buffer. The contents of the buffer can be
retrieved using the paste message in class Folder. The difference between the two messages is that copy
leaves the receiving object alone, whereas cut deletes the object from the folder.

11

ShScript

eadnew

Gr C2tthup Gr Gr
unsubsaibe

m .!en dose elt Irie. .1111iz.wiz

paste
copy

Gr a.tt Gr

/readn~ll'IIP'co Jan .misd2625
Artide262S (2. more) in coff11.lllllg,misc
From: ck@voa3. UUCP (Cbrls Kem)
Subjr:a: Re: Being a consultmt
Summary: BASIC Isn't Working
Message.-ID: <21l@voa3.UUCP>
D.-:c: 19 Aug 89 15:39:52 GMT
Rcf'crmccs: <SS9S@fia:. uu.ncr> <622l@huhCl!p, dcmson. t'.du.> <166@bbxeng. UU C
Reply-To: ck@voa3.UUCP (Cbrls Kem)
Orglllizlllion: V alee of America, WIISbingmn, D .C.
Lines: 25

In ardde <S778@fla:.uu.net> peu:r@tlcc.uu.net (Peter da Silva) writes:
>My favorite (lab 111si1tmt smry) was the business administration
>student who cane up to me md sad "Baslcisn'twmking".
[Hewu typing BASIC st11tm1C11J into his command int~ (shell).]

Thus has it been sincr. thcDll'w'll of BASIC. This type of 'problem" was
not uncommon when I first stll'ted programming In B outh in

't remember ever bdn

Figure 5 Steps to view an instance of Article

Instances of this class are the equivalent of shell scripts in Unix, and the class is a subclass of Textual.
The object shell accepts any of three script types: Bourne shell, C shell, or Postscript shell. Which
interpreter to invoke is specified on the first line of the shell script. Besides the messages it inherits from
classes Textual and Object, instances of this class also respond to execute, which will execute the object.

12

l
n
n
n

l
l
n

]

J

J

l
j

l
n
n
n
n
l
I
1

l
I
l J

J

u

u

J

Input name of newsgroup:

rec.humor.funny

Figure 6 Getting an undisplayed newsgroup

The PostScript shell script is something unique to the NeWS environment. To invoke the PostScript
interpreter, the script should contain

#! /usr/NeWS/bin/psh

on the first line. Note that due to the current OSH implementation, a PostScript shell script will not be able
to access any of the OSH data structures located in the object shell kernel. This will be discussed further
in the Implementation section. All referenced routines and data must be either self-contained or defined
in the global Postscript dictionary systemdict.

13

Textual

Most Unix files will be represented within the object shell as instances of class Textual or some more
specific descendent class. The Textual class is a subclass of Object, and it contributes two methods to the
object shell . They are edit , which will bring up the vi editor for that particular object, and print , which
will send the text representation of the object to the default line printer .

Cl
Or

Cl
Troff

Cl

Troff

Ii(pie

□ ideal

Ii(rel•
O bib

□ pph
Otbl

□ eqn

□ m4

Args: -p dm:abase

Args: _______ _

Trofhrp: -ms j lpr -Pimagm

Figure 7 Dialog for new instances of class Troff

Cl

Tr
resum~

The Troff class represents troff documents. It is a subclass of Textual, and has a message called
format that will prepare the object for printing and send it to an output device.

In the Unix environment it is common to use other filters (such as refer or tbl) in combination with
troff . We support that capability in the object shell. When a new instance of class Troff is created, a dialog
(shown in Figure 7) is displayed that gives the user a chance to specify various filters to include when
the object is formatted. There are also fields to type in options that will be passed to the filters and troff
itself. Once the OK button is pressed, a string is generated that contains the information entered into the
dialog. (See the Implementation section for the string generated by this dialog.) Thus, each Troff instance
can have unique properties. One common troff option may be to redirect the output to a printer that is not
the default, which can be specified on the troff line in the dialog.

14

l
n
n
n

1

l
7

)

l I

1

I
J

J

n
n
n
n
n

n

l I

l J

IJ
J

3.4 Programming in the Object Shell

Useful Library Routines

The object shell kernel (described in the lmplementatum section) acts as a resource server for all
methods. It can provide NeWS services such as updating a window on the screen, and it can provide
class services such as supplying the class of a particular object. To make new method creation as easy as
possible, we designed a few routines that hide some of the complexity of our implementation.

All service requests are initiated in methods by a call to sendCommand which identifies the desired
service to the OSH server . Any required arguments are passed using the sendArgs routine . If the OSH server
returns a reply, the reply can be read using getArgs.

We attempt to use inheritance whenever possible to reduce redundant code in the object shell. When
passed an object and a message, routine send will find the first class where that message is defined, and
send that message to the object When passed similar information, routine super will also send a message
to the object , but it will begin looking for the message in the superclass of the specified class.

Without send and super, methods would need to be hard-coded with the class of methods they invoke.
For example, when you instantiate the SbScript class , the new method in class ShScript calls new in
its superclass, Textual, which in tum calls new in its superclass, Object. Without super, the method in
class ShScript would need to have the call to the Textual new method hard-coded. Then later, if for
some reason we chose to remove the Textual new method, we would have to modify the method in class
ShScript to reference new in class Object instead of Textual. Having to remember these special cases is
prone to error. But if we use super, then the new method in class ShScript will dynamically find the first
ancestor class that contains new, whether it be in class Textual or class Object.

A handful of small utility routines rounds out our library: the dirname routine is used to return all
but the last level of a path name. Though it was described in the SunOS manual pages, the routine could
not be found, so we wrote our own. And the routines gettmp and puttmp are used to simulate passing
information between methods.

A Method Walkthrough

To give an example of what a method looks like, we describe a sample that shows some of the features
of the object shell and the library routines . Figure 8 shows the Bourne shell script for the new method
in class Object, and Figure 9 shows the shell script for method new in class Textual. First we'll walk
through the method for class Object .

The comments on each line with sendCommand are the names of the C constants for the request
C routines can reference these constants and though scripts cannot, they have been added as a form of
documentation.

When the user selects a menu item and effectively sends a mes$age to an object, the object shell will
execute a method and pass it the object as the first argument Methods are also passed integers representing
the file descriptors used for communication with the OSH server, as well as any arguments needed by the
method. Briefly, the new method in class Object asks the user for the name of the new object, checks
to see if an object with that name already exists, and if not, creates an object. Now we will examine
the method in more detail.

Line 5 exists in any method that wants to access the library routines; it adds the library directory to
the search path. Lines 8-17 make sure that the object is of type Class. Instances of a class should not
be able to instantiate the class. Lines 20-22 put up a dialog asking for the name of the new object, and
then read the response 1• If the returned value is a null string (meaning the user clicked the Cancel button
instead of the OK button), then exit. We'll explain line 26 later. Line 34 tests to see if an object with this
name already exists. If so, put up a dialog stating so and exit If not, do what's necessary to create a new
object first, create a directory with the new name. In that directory, create an ASCII file that contains
the class of this new object. Tell the OSH server to add a new icon in the window (lines 42-43) , and then

Any C routines that include $0SHHOME/srclosh.h have access to server constants. In this case, we arc using the constant
#def i ne DLOGR -3.

15

1
2
3
4
5
6

7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#! /bin/sh
Class: Object Method: new
$l=objectPath $2=writePipe readPipe $3=args

PATH="SOSHHOME/lib:SPATH"

Make sure this is not an instance!!
sendCommand "$2" "53"
sendArgs "$2" "$1"
class='getArgs "$2"'
if ["$class" != "Class"

then
sendCommand "$2" "l"

GETCLASS (objPath) => class

DLOG (msg)
sendArgs "$2" "You can only send 'new' to a Class object . "
puttmp ""
exit

fi

Ask user for name of new object
sendCommand "$2" "-3" # DLOGR (prompt) => reply
sendArgs "$2" "Input name of new object:"
newobj='getArgs "$2"'
Check for canceled method
if ["$newobj" = ""]

then
puttmp ""

27 exit
28 fi
29
30 # Make sure an object doesn't already have that name
31 objpath='dirname $1'
32 class='basename $1'
33 cd $objpath
34 if 'test -s $newobj '
35 then
36 sendCommand "$2" "l" # DLOG (msg)
37 sendArgs "$2" "An object of that name already exists."
38 else
39 mkdir $newobj
40 echo $class> Snewobj/.class
41 # Add icon to the screen
42
43
44
45
46
47
48 fi
49
50 exit

sendCommand "$2" "7" # ADD OBJS (name, class)
sendArgs "$2" "$newobj,$class"
Redraw the window
sendCommand "$2" "5" # REDRAW
Save the name in case this was invoked w/ super
puttmp "$newobj"

Figure 8 Listing of method new in class Object

redraw the window (line 45). The call to puttmp on lines 15, 26, and 47 will be explained next when
we talk about the Textual method.

16

l
n

n
l
l

l

J

ll
j

J
J

u

l

n
n
fl
n

n

J

q

ll
u
j

u
J

1
2

3

4
5
6

7

8

9

10
11
12
13
14
15

#! / bin / sh
Class: Textual Method: new
Sl=objectPath $2=writePipe readPipe $3=args

PATH="$OSHHOME/ l i b:$PATH"

Execute 'new' for superclass of Textua l
super "$1" "$2" "Textual" "new" "$3"
Get name that was tucked away
objname='gettmp'
if ["$objname" != "" l

then
objpath='dirname $1'
cd $objpath/$objname
touch text

16 fi
17

18 exit
Figure 9 Listing of method new in class Textual

The new method in class Textual is relatively small and straightforward, thanks in large part to the
new method in class Object that it inherits. Line 8 in Figure 9 is a call to the super routine in our library .
Since text objects are also a type of object, we can use the new method in class Object to first create the
object The arguments passed to super are: the object, the file descriptors, the class of this method which
we want the superclass of, the message to look for beginning in the superclass, and any arguments passed.

Line 10 shows how we use the puttmp and gettmp routines lQ simulate communication between method
calls. In an object-oriented system like Smalltalk, methods return an object by default In this case, the
new method would return the new instance (or a nullstring if the user aborted). We simulate this by placing
the object we want to return into a private buffer . The method in class Object places the name of the
new object (or a nullstring) into the buffer using puttmp , and the method in class Textual can read it after
control has returned on line 10.

On line 11 we can see if the user aborted during execution of the Object new method. If it wasn't
aborted. we create an instance variable text (in the directory representing the object) that all instances of
class Textual have. It is this instance variable that is referenced when the print or edit message is sent
to the instance.

Creating a New Method

We can create a new method and add it to the object shell very easily. We will show how to add a
method called rename to the Object class. We choose to make this a Bourne shell script, because we might
need to communicate with the OSH server, and a C-shell script cannot utilize pipes the way we need to.

To create the method, first go into the /classes folder and send new to the class object named ShScript.
When prompted, give it the name rename which will create an instance of class ShScript . Now send edit
to the object , and type in the code. The code in Figure 10 will do what we want. Since we can ' t change
the name of an existing icon, lines 29-32 delete the old icon and add a new one with a new name and
the old class.

Once we have finished editing, we want to make a method out of this ShScript instance. Click
the PointButton over the object to select it Then send addMethod to the Class instance named Object.
You are now done! The message rename has been added to the menu for every instance of class Object
(and every descendent class of Object as well), and the method was copied into the Object class. (Since
the superclass of Class is Folder, you can send open to Object to see all the methods in class Object,
including the one you just added.)

Notice that the new method we created does not take care of renaming all objects . Some classes
have an instance variable that is the name of the object. (See the Implementation section for a list of all

17

ii ! / bin/sh
~ Class: Object Method: rename

1
2
3 # Sl=objectPath $2=writePipe readPipe $3=args
4

PATH="SOSHHOME/lib:SPATH"

Ask for new name

5
6
7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

sendCommand "$2" " - 3" It DLOGR (prompt) => reply
sendArgs "$2" "Input new name of object:"
newname='getArgs "$2"'

It Check for bailout
if ["Snewname"

then
exit

""

See if one already exists
objpath='dirname $1'
objname='basename $1'
cd Sobjpath
if 'test -s Snewname '

then
24 sendCommand "$2" "l" # DLOG (msg)
25 sendArgs "$2" "Sorry, Snewname already exists."
26 else
27 mv Sobjname Snewname
28 class='cat Snewname/ . class'
29 sendCommand "$2" "10" It DEL_OBJ (obj)
30 sendArgs "$2" "$objname"
31 sendCommand "$2" "7" It ADD OBJS (name,class)
32 sendArgs "$2" "$newname,$class"
33 sendCommand "$2" "5" It REDRAW
34 fi
35
36 exit

Figure 10 Possible code for new method rename in class Object

classes and their instance variables.) All this method does is rename the object. It can't be responsible for
checking all descendent classes for instance variables with the same name. So in order to fully implement
rename correctly, you would" have to create methods for the classes that have these instance variables.
Within those methods you could use the super library routine to call the rename method in class Object
to perfonn the work common to all objects.

3.5 Support of Unix Features

As we mentioned before, Budd's initial paper decided not to deal with certain aspects of Unix for the
prototype. It was felt that 1/0 redirection, pipes, and background execution were difficult enough problems
at the command level to delay their consideration. They are still supported within programs or scripts that
may be executed by the object shell. Though most were not implemented, we at least looked at these
factors and tried to visualize how we might represent them within an object-oriented paradigm.

Input/Output Redirection

There were a number of ways to represent the redirection of input and output. Using the technique
we implemented, the OSH menu has two items called inputFrom and outputTo. By default, 1/0 will be

18

n
n
1

1

l

l I

ll
I
J
J

l
7
n
n
n
I l

l
l
l

I J

lJ
l l
J

u
J

J

Te
111cii

Fo Ne
readncw

nt:NI

edit
print
copy
alt

Fo
Move

Move Constnin
Tap

Bottom
Zap

Resize
Stretch Carmr
Stretch Edge

Case
Redisplq

De

Figure 11 Redirecting output of a C object

l\1a

directed to and from the OSH console, which talces the place of stdin and stdout in the Unix shell. However,
input or output can be redirected on a command-by-command basis (that is, redirection only talces effect
for one message send). For example, to execute a C object and redirect output to a text file, first select
the desired text file and choose the outpuffo menu item on the object shell menu. Next, send execute to
the desired C object. The output replaces any existing text •in the Textual object. Similar results can be
achieved by redirecting input.

Figure 11 shows how this process works. In the upper window, the OSH menu is found by "walking "
right along the first item in the frame menu. Selecting outpuffo while the ascii textual object is highlighted
sets up output redirection for the next message sent Recall that the OSH menu does not generate a message
send. In the lower window, execute is being sent to a C object called hello that prints the string "hello
world". After the message has been sent, the string will have replaced the contents of ascii.

Remember that after a message has been sent, both input and output are reset to the OSH console. If
you have specified redirection and then decide against it, you can undo the redirection by having no object
selected when the outpuffo or inputFrom menu item is chosen.

It is not possible to redirect output to a text object that doesn't exist yet (not unlike the Macintosh),
because in the object shell you can reference only objects that you can select or send a message to.
Therefore, the object must exist in order to be referenced.

There is another way to redirect 1/0 that is possibly more intuitive than the former methods, but that
requires the use of graphics. This technique would use a feature where holding down the PointButton and
dragging the mouse would create a rubber band line until the button is released, at which point a line would
be drawn with an arrow at the second endpoint. This could be used for both input and output redirection,
depending upon the types of objects at either end. If the arrow pointed from a C object towards a Textual
object, then output would be redirected. If the arrow pointed from a Textual object towards the object to be

19

executed, input would be redirected. This fonn of redirection could be undone by dragging the arrow out
of the window. As with the fonner techniques, the redirection would only take effect for one command.

The graphical approach may allow output redirection into an object that does not yet exist By having
the arrowhead point to the background of the window where the output object will reside, we could specify
where the new object would go. In the implementation, the kernel could detect the need for a new object
and invoke new in class Textual before the original method was executed. This way, the invoked method
would never have to know that a new object was created for this command. But in the interface, does it
make sense to have an arrow point to nothing? Even though this is unambiguous, is it a reasonable way
to graphically represent the implicit instantiation of an object?

Pipes

With pipes as well as with redirection, there are a number of possible representations in the object
shell. A less graphical solution would involve a meta key in combination with the mouse. By sending a
number of messages to objects while a meta key is depressed, the object shell would build a sequence of
objects and messages connected by pipes but not yet executed. Once the meta key is released and an item
from the OSH menu called something like doPipe is selected, the object shell would then begin execution
of the objects in the proper order, with intennediate I/0 piped from one executable object to the next in
the sequence. I/0 redirection could be inclQded in this example without ambiguity .

We have seen how graphical arrows could represent I/0 redirection. If an arrow connected two
executable objects instead, one could imagine how a pipe might work. An arrow could lead from an object
generating output to an object that requires input. Unfortunately, this cannot be done without ambiguity.
If you have an arrow pointing from a C object to a ShScript object, it could either represent output
redirection to a text object or a pipe to an object that will be executed.

Ours is not the only attempt at integrating pipes and I/0 redirection into an interface for Unix.
The Open Look design team has not been able to define a satisfactory graphical representation for pipes
and filters either [Su089] . If nothing else, this is convincing evidence that the problem of an accurate
representation is not a trivial one.

Background Execution

We weren't able to come up with a satisfactory way to represent background execution. This is a
result of our limited model where objects represent Unix files. If we were to have a Proce~ class where
an object could represent a running process, we would need methods like kill, suspend, fore ground and
background. We would also want some way to get process infonnation , similar to the Unix jobs command.

If such a class existed, Proce~ would be a descendent class of Object, which means it would respond
to the copy and cut messages. Would we equate cut with a Unix kill() and copy with a Unix fork()? How
would we store such an object in the OSH buffer? It is clear that a whole new set of possibilities and
problems arise when we let an object represent something other than a Unix file.

3.6 Comments

Shortcuts

We found that our interface does not provide shortcuts for advanced users, or for users that learn with
time and want to skip the steps that they used while learning. This is unfortunate. We could have added
a command line to appease Unix hackers, but that would have been a quick fix and not something that
was carefully thought out to fit into our model.

Probably the most glaring example of the lack of shortcuts was the readnews tool. Granted, the
command line version of rn was designed to be efficient and to require a minimum of keystrokes. In the
object shell, even a minimum of menu clicks takes longer and could eventually become aggravating for
regular users. In our defense, let's not overlook how a new user might react to the two different readnews
interfaces. The OSH version would almost surely be easier to use.

20

l
n
n
n

l
l
7

I
I
J

j

J

n

n
11

n

l I

f I
I J

I J

Supporting DifTerent User Groups

Though we found that the object shell does not provide many shortcuts for advanced users, it can be
a productive environment for these users nonetheless.

While occasional users may be satisfied with the classes and methods that already exist to perform
their tasks, advanced users and hackers might want to dabble at the Unix level. Developers could create
applications in the Unix environment with system calls galore, which could then be invoked by methods
in the object shell. The News class is an example of this. Other users not as familiar with Unix internals
could define new classes or methods to take advantage of existing Unix tools, similar to our Troff class.

This ability to satisfy different user groups was suggested by Budd [Bud89], and our further
experimentation supports his observation.

Limitations

Due to the complexity of NeWS and our unfamiliarity with it. some things were not done simply
because we did not know how. And once we learned how, we were far enough along in our implementation
that time did not permit the necessary changes to be made.

For example, all user actions are a result of menu selecting. There is no direct icon manipulation such
as drawing arrows from one icon to another to represent redirection or pipes. Also, some operations are
clumsy. Moving an object involves cut and paste operations. In comparison with the Macintosh Finder,
where icons can be dragged from one folder to another, our method is indeed awkward considering how
often the operation is likely to be performed.

Still, considering the expressive restrictions of our interface, we were able to demonstrate that common
tasks can be performed without. too much effort.

Large Menus

As more classes and more methods are added to the object shell, the size of menus will increase.
At what point has a menu grown too large, and how could we break large menus up? If we broke them
up based on classes and provided a walking menu with the primary menu showing the classes, then we
would lose a sense of polymorphism in our system. The user would need to know what classes have
certain messages, and in what classes messages are overridden. Another technique might be to break the
items up into levels according to frequency of use. This is subjective, and not something that a designer
or user could easily and accurately predict.

Factory Methods

The design of the object shell was heavily influenced by the structure Brad Cox uses in his book
[Cox86]. His definition of a class includes two types of methods. The factory methods are those that
apply to the entire class, or that might set a class variable that will apply to the entire class. For example,
the new method that creates a new instance of a class should really only apply to the class itself. An
instance method is one that can be sent to a specific instance of the class. Sending a rename message to
an instance renames only that instance. Note that class definitions are themselves instances of class Class.
For example, the Troff class object (that defines class Troff) also responds to the rename message.

After working with both types of methods, we came to the conclusion that factory methods were a
mixed blessing. They were useful in that if methods did arise that made sense only when applied to the
entire class, we could support them. An unfortunate side effect is that a user wishing to add a method to
a class needs to understand the difference between the two types of methods, and has to specify whether
the method being added is a factory or instance method. We felt this was unacceptable. Even users well
versed in object-oriented design might not be familiar with Cox's terminology.

In the end we chose not to offer two types of methods, which has caused one unfortunate quirk in
the object shell. When factory methods were supported, there were two menus for each class: one for
factory methods and one for instance methods. But now a single menu contains all valid messages for a
class. Therefore, every object in the system now contains the new message in its menu of valid messages,
because there is a new method in class Object. When sent a new message, instances will display an error

21

dialog, since only objects of type Class should respond to new. On the positive side, we have not come up
with any other needs for factory methods. If we had chosen to implement the Troff class differently, we
might have wanted a Troff class variable that would be set using a factory method. This could be done if
we wanted to have a Troff class variable, such as the printer where the troff output would be sent

Adding New Methods

In order to provide shortcuts or options for users who prefer doing things a certain way over another,
we tried to avoid long sequences of operations like answering many dialogs. For instance, when a user
creates a new class, he is prompted by the object shell for the name of the new class and its superclass.
The user may speed up this process a little by selecting the superclass before sending the new message
to Class. Then the user is prompted only for the name of the new class, and the new method reads the
superclass from the list of selected icons.

We tried to offer the same sort of flexibility when adding a new method to a class, but were only
partially successful. The beginner's way to add a new method to a class is to send addMethod to a class
instance, at which point a dialog will ask you to type in the full OSH path to that method. Implementation
problems kept us from a more elegant solution. Instead of prompting for the full path, the object shell
could have displayed a dialog telling the user to select the method to be added, and then have the user
click the OK button on the dialog once it was found. This may have required moving around the object
shell and opening folders if the method was not already visible, and it was an instance when concurrency
would have been useful. In its current form, the object shell can only have one method executing at a
time. A method must terminate before another message can be sent to an object If addMethod displayed
a dialog prompting the user to find the method to be added, addMethod would wait until the user had
found the object and selected jt. But opening a folder requires the open method, and it would not execute
until addM ethod had terminated.

Pure or Practical? .

There is a fine line between straying from the object-oriented paradigm and providing functions that
do not follow the paradigm but are added to make the use of the object shell easier. In other words, it is
acceptable to provide something that doesn't exactly follow the model if there is no straightforward way
to do it from within the model. But if we can do something within the object-oriented model, there is no
reason to add another way to do it that is outside the model.

This was the philosophy we took with the object shell. We were willing to go to reasonable lengths to
keep our interface consistent. In extreme cases, this attitude can lead to a product that is pure but useless
because of its awkwardness. We tried to be patient and resist quick solutions that were not consistent
with our interface behavior.

One example of this is the arrows that were proposed for I/O redirection. Using arrows would make
the process more graphical, but it would not agree with our admittedly minimalistic graphical interface.
Another feature that could have been added was the movement of objects by dragging them A la Macintosh
Finder, which would have been much easier than the current method of cutting and pasting.

Textual vs. Executable

The object shell supports single inheritance only. This is not to say that there weren't any occasions
where multiple inheritance might have been useful. Take the classes C and ShScript for example. Both
are a subclass of Textual, which makes sense since both have a textual representation, and both will need
to be printed or edited on occasion. But both of these classes could also be a subclass of Executable, if
such an abstract superclass existed. We could use this to specify that all methods must have Executable
as an ancestor class. A redirection arrow would then connect an Executable instance (or descendent) with
a Textual instance (or descendent). An arrow that was being used as a pipe would connect two instances
with an ancestor class of Executable.

Budd envisioned an OSH menu item called execute that would execute a selected icon [Bud89]. Having
an Executable class would have made that easier. We have chosen to give the textual relationship priority
over any other similarities. Providing an execute item in the object shell menu would demonstrate how

22

n
n
n
l

1-

1

I
J

J

I

l
n
n
n

n
l

1

l
d

j

u
lJ

I J

an imperative execution capability could be combined with the existing paradigm. However, it would
not enhance the object-oriented model we are trying to develop, and it is not as appropriate without an
Executable class.

Representation or Objects

In our design we chose to represent objects by the standard size icon. It seemed to be a natural
shape to use; there was a label along the bottom for the object's name, and given the time, we could have
designed a more elaborate image than the first two characters of the object's class.

By the time we started to define the classes for mail and readnews, we realized that the icon was
going to be too restrictive a representation; the label of an icon can be on the average ten characters long.
This became a problem for three of our classes: Group, Article, and Letter. Newsgroup names would
need to be either truncated or abbreviated in order to fit most of them into ten characters. An article
now displays the article number in the icon, which is unique but not very infonnative. We would almost
have to show the subject line and the article number since subject lines aren't necessarily unique. And
though we didn't implement Unix mail, we did realize that we would have a similar problem with Letter
instances. The letter number would be unique but uninfonnative, so we would most likely need at least
parts of the header line in order to be unique.

One solution to this problem would be to make the size of the icon adjustable. If the label were 40
or 80 characters, we could have much more descriptive object names, though we still could not guarantee
uniqueness.

While defining the mail interface we thought of another potential problem. If a user opens up his Mail
object and sees a group of uniquely named objects, he still won't know which of the Letter instances have
been read and which haven't A more flexible object representation would allow the icon drawing to change
depending upon the state of the object. Using Sun's mailtool as an example, when there is no unread mail,
the mailtool icon displays a mailbox with its flag down. When new mail arrives, the flag goes up.

4 The Implementation

The object shell was developed on a Sun-3 workstation running SunOS 3.5. It was implemented
using a combination of C, NeWS, and shell scripts. The total lines of code were approximately 1000 lines
each of C, NeWS and shell scripts. The methods were written mostly using the Bourne shell, except for a
couple methods that were written in C. The object shell kernel was written in C and NeWS.

The Network Extensible Window System is a network-based windowing system by Sun Microsystems.
It is a superset of Adobe Systems' PostScript that includes primitives for network communications and
event handling. Abstract data typing and message sending are part of the extensions to PostScript, and the
NeWS system comes with a basic set of class definitions for windows, menus, and dialog boxes.

The cps facility of NeWS allows communication between C programs and the NeWS address space. By
compiling a file that contains PostScript routines with C-like procedure headers, you can invoke Postscript
routines from C and pass data between the two environments.

The object shell consists of four parts: The driver (or main routine) spawns a daemon process and
then acts as the main event loop for the life of the object shell. The OSH server is a daemo!) that satisfies
NeWS and class requests from methods. As the driver and daemon are the core of the object shell and
are not meant to be modified, together they are called the osH kernel. The osH file system is an abstract
hierarchical file system in which all objects reside. Finally, the classes and methods created from within
the OSH environment actually define the state and behavior of all objects in the OSH file system.

Figure 12 shows how the pieces fit together. The object shell server is the interface between methods
and both the NeWS environment and the class mechanism. In most respects, the main routine is treated
just like a method. The OSH server cannot tell the difference between a request from the main routine and
a request from a method. Note that C-shell methods have no access to the OSH server, so they are very
limited in what they can do. PostScript methods can access the global NeWS environment directly, but
not the class structure nor the PostScript routines defined by the osu server.

23

Main Event C Bourne Shell C-Shell PoatScrlpl

Loop Melhoda Melhoda Melhoda Methodl

' '
OSH Server

I Claa Mechanllm I I CPS Interface I
Unix Address Space

NeWS Address Space

Figure 12 Slnlcture of the Object Shell

4.1 The Object Shell Driver

This routine is the entry point of the object shell. Upon invocation, the driver creates two pipes : one to
be used by methods to send requests to the osu server, and another for the server's replies. It then forks off
a child process that becomes the object shell server. Since a child process inherits the open file descriptors
of its parent. the daemon process will have both pipes needed for method-server communication .

Once the osu server has been started, the driver goes into a main event loop. The loop continually
waits for menu input from the user. It sends a read-menu request to the server and waits until the server
returns the result of a menu click. The returned information will include the object and the message
sent to it. as well as any message arguments2• The driver does some minor processing of the returned
information, and then returns the data and requests a messager event, which asks the OSH server to carry out
the operation on the passed object The driver cannot carry out the operation itself, because only the class
mechanism in the osu server knows the relationships between classes and where to look for methods . Once
a messager request is sent to the daemon, the main event loop will go into a synchronous wait until the
method terminates. The driver will continue in this loop until the server responds to a read-menu request
with a flag stating that the user wishes to exit At this point the driver closes all open pipes and terminates.

4.2 The Object Shell Server

The object shell server controls access to the class mechanism and the NeWS environment. Since
scripts or independently compiled programs cannot directly access either the class structure or NeWS
environment, the server communicates with methods (and the main event loop) via Unix pipes. When
the daemon process is initiated, it inherits open file descriptors from the main routine which will have
created the necessary two pipes

The most common requests made to the server are read-menu and messager requests. When a read­
menu request is received, the server will pass control to a PostScript routine to detect a menu item selection.
Once a selection has occurred, NeWS will return an object, a message (the menu item selected), and a list
of any other objects that were highlighted when the menu item was selected. The server then writes this
data into the pipe read by methods. Soon the server will get a messager request with the same data (albeit
slightly modified), and pass the information to the messager routine.

For another example of what the object shell server does, consider the new method in class Object,
which will need to create a new icon in the current window to represent the new instance. After the

2 Message arg1D11cnts in the object shell are equivalent to keyword argurnenu in Smalltalk. where inda and value are the keyword
argmnenu in the statement my Array at: index put: value.

24

l
n
n
n

l
l
l

l

I

]

J

l
n
n

fl

l
l
7

l l
l I
1

j

method new has created a new object in the Unix file system, it will need to send requests to the NeWS
interface (via the OSH server) to create a new icon, re-arrange the icons in the window, and redraw the
window. Or, if a user wanted to add a new method to the ShScript class, the method called addMethod
would use the OSH server to update the class data structure to reflect the addition of a new message to
the class ShScript. The server would also be asked to update the NeWS menus for the ShScript class
and any descendent classes.

A different approach to distributing tasks between the server and methods could have been taken.
The kernel could be responsible for knowing all the steps that need to be taken for a certain operation,
so that methods don't have to. This would make methods smaller but the kernel much more complex.
For instance, in the first example above, the method could simply tell the OSH server the name of a new
instance of a certain class, and make the server remember the correct sequence of steps to update the
screen and the class data structure. Doing so would increase the chances that the kernel would have to
be modified when new methods are added.

The object shell server attempts to supply all the necessary functions that a method might need. These
are relatively low-level functions so that the kernel will not have to be modified to support new methods.
Hopefully, any services a new method might need can be obtained using a combination of the existing
services. This approach was taken in order to make the environment as extensible as possible. Standish
has claimed that many extensibility experiments have failed because the systems were so complex that
they resisted change [Sta75]. We feel that by keeping requests simple, more can be done in the object
shell without modifying the OSH kernel.

It is for this reason that a window isn't automatically redrawn if an icon is added or deleted. An
explicit redraw request must be made since a method may add multiple icons, and we don't want the
window redrawn until the last icon has been added.

The Clim Mechanism

The class mechanism consists of a data structure containing all class information and the routines
used to access or update that structure. For every class, a part of the structure holds the superclass of
the class and all the messages that an instance of the class should respond to. When the OSH server first
begins, it calls a class initialization routine, passing the Unix path to the root of the OSH file system. The
initialization routine will expect to find a folder called !classes where all the class definitions and methods
reside. It will scan all classes and load class names, superclasses, and method names into the data structure
used for message lookup at run-time. If modifications are made to a class definition during execution,
the changes will be made both to the OSH file system and the internal data structure. As a result, any
changes to the class definitions are reflected in persistent memory (the Unix file system), and will remain
between OSH . invocations.

When a method makes a class related request, the object shell server calls one of a number of routines
that only it has access to. Typical operations that the server may satisfy are: finding the class of an object,
returning a list of messages that a class will respond to, and adding a new class to the class data structure.

The most frequently used routine in the class mechanism is the messager. When passed an object, a
message, and any message arguments, the messager will find the first class where the message exists in
the class data structure. If the message doesn't exist in the class of the object, the messager will check
the superclass for it, and continue to follow the superclass chain until the message is found. Once the
message is found, the messager knows where to find the method in the OSH file system, since all class
definitions (and the corresponding methods) must exist in the /classes folder. Using the fork() and execl()
system calls, the messager will spawn a new process and overlay the child with the proper method. The
newly spawned method will inherit both open pipes, and will have the resources to communicate with the
OSH server in order to make NeWS or class requests.

4.3 The Class Methods

It is the methods that give the object shell its power and extensibility. As we noted above, we designed
the OSH server so it would supply a base set of functions that we thought would satisfy all requests from

25

methods. The OSH kernel should never need to be modified once a comprehensive set of NeWS and class
services have been defined and implemented.

Any object that is executable can be a method. Currently, C and ShScript are the only implemented
classes that have an execute message. Instances of class ShScript can be written for either the Bourne
shell, C shell, or PostScript shell by setting the first line of the script accordingly . However, only the
Bourne shell can be used if a method plans to communicate with the osH server , because it is the only
shell that can redirect I/O to a pipe. Most methods implemented so far have used the Bourne shell for this
reason, with the exception of the open and close methods in class Folder, which are C objects in order
to speed up opening and closing of folders.

When a method first gains control after being spawned by the messager , it is passed three arguments :
the object that this method shall operate on, the file descriptors used for communication with the OSH

server, and any message arguments that may be passed. The arguments will vary depending upon the
method being invoked and whether or not the user selected other objects before sending a message to this
objecL Currently , only the makeit method in class Make takes advantage of message arguments. It passes
a list of Include objects when compile is sent to each of the C objects , and it passes a list of the compiled
C objects when it sends link to the C object named main in the Make folder .

Though the Bourne shell is preferable, either the C shell or the PostScript shell can be used to develop
new scripts that will become methods. The C shell might be used by someone who wants a more C-Iike
syntax, while the PostScript shell would allow direct manipulation of the screen. But only methods using
the Bourne shell will be able to use the library routines developed to ease new method creation .

4.4 The Object Shell File System

When the object shell is started, it looks for the $0SHHOME environment variable , which specifies
where the object shell directory resides. The subdirectories of $0SHHOME we need are bin (containing
binaries for the main routine and the daemon), lib (containing the library routines), root (the root of the·
OSH file system), and src (containing the PostScript code that is loaded at run-time).

In the underlying implementation, each object is represented by a Unix directory. When a class is
instantiated, a Unix directory is created with the name of the object. The directory will have an ASCII
file called .class that contains the class of the objecL Consider this file the sole instance variable for clas_s
Object. Directories that represent an instance of Class (a class definition) will also have an ASCII file
called .super that contains the superclass of the class. The Class Implementation section lists the methods
and instance variables for all implemented classes .

4.5 Class Implementation

We have tried to define a base set of classes that are appropriate for a simulation of the Unix
environment. Classes and methods have been defined that will allow for common operations to be
performed . We have listed the classes alphabetically here.

In the following descriptions, self is the object that is receiving the message. This is similar to the
way Smalltalk identifies the receiver. It is also the name of the· directory that represents the object and
contains any instance variables of the object in the Unix file system .

Article

Superclass: Textual
Instance Variables: none
Methods: close Mark article self as read and close the window.

open Create a window and read article self.
Instances of class Article represent articles in the readnews application . It is a class that can only be

manipulated while the application is running, and there is no Unix directory for each instance. Dummy
methods exist in the OSH file system so that the messages are added to the Article class menu when the
object shell begins.

26

l
7

n
l

J

]

l
l
l
]

J
J

u

l
n
n
n
n
n

7

l I
11

r I
l 1

I J

j

j

J

C

Superclass:
Instance Variables:

Methods:

Textual

self
compile
execute
link

new

A symbolic link to text (inherited from Textual).

Compile the source file self.c into self.o.
Execute the binary file self.
Link the object file self.o with any passed libraries, creat­
ing self.
Invoke new in Textual, and create the self instance vari­
able upon return.

An object of class C is similar to an ASCII file with the .c suffix. The C code itself resides in text,
but the symbolic link was added since the C compiler prefers file names with a suffix . The executable is
called self instead of a.out so that either a C or ShScript object can be executed by specifying self.

Class

Superclass :
Instance Variables :

Methods:

· Object

. super
addMethod
new

An ASCII file containing the name of the superclass .

Add a method to class self.
Create a new instance of class self by invoking the new
method in class self.

There is no equivalent to the Cl~ type in Unix, since Unix is void of any type information. This
class forces a type, at least upon objects in the OSH file system . As with all methods that move objects
around, addMethod uses tar to move the new method in order to preserve any symbolic links. Since the
new method is invoked every time a class is instantiated, it determines ·the class of self, and then starts
looking in that class for a new method .

Folder

Superclass : Object
Instance Variables: none
Methods : close Close folder self and remove its window.

open Open folder self and display the contents in a new window.
paste Copy the contents of the object shell buffer into self.

An object of class Folder is the equivalent of a Unix directory. Both open and close are written in
C for speed, although they could easily be Bourne shell scripts .

Group

Superclass:
Instance Variables:
Methods:

Folder
none
catchup
close
open

unsubscribe

Mark all articles in group self as read.
Leave newsgroup self and remove the window.
Open window and display all unread articles in newsgroup
self.
Unsubscribe from newsgroup self.

The class Group represents a newsgroup within the readnews application. It is a class that can only
be manipulated while the application is running , and there is no Unix directory for each instance. Dummy
methods exist in the osH file system so that the messages are added to the Group class menu when the
object shell begins.

27

Include

Superclass:
Instance Variables:
Methods :

Textual
none
none

An instance of Include is comparable to a C file that ends in .h.

Make

Superclass:
Instance Variables:
Methods :

Folder
none
makeit Compile all C objects, including any Include objects, and

link to create a binary file called self in object main.

The Make class provides some. of the functionality of the Unix make facility. It is a type of folder
containing all objects that will become part of the final binary file. The makeit method will make sure all
objects are either C or Include and that one of the C objects is called main, make a list of all Include
instances to pass when each C object is compiled, and finally pass a list of C objects (except for main)
for linking main.

News

Superclass:
Instance Variables:
Methods:

Folder
none
close
get

open

Remove the window and exit readnews.
Show a group with no unread articles, or subscribe to an
unsubscribed newsgroup.
Open a readnews window and display all groups with
unread articles .

The class News represents the readnews application. It is the only application so far that reads the
menu and has a main event loop of its own. Though it has no instance variables, it is conceivable that
.newsrc could be considered one since it defines the state of the readnews object. This application was
developed by starting with Larry Wall's public domain rn code, stripping out most of the 1/0 support
(which is sizeable), and then inserting calls to our routines which in turn requested many services from
the OSH server. The logic of the original rn was left largely intact.

For those familiar with the rn source, files were not modified if the only purpose was to comment
out extraneous 1/0 calls. The files that were modified either needed a change in logic or required services
from the object shell. Those routines are: art.c, final.c, init.c, ng.c, rcstuffc, and rn.c. In order to add as
few lines to rn proper as possible, we added a file called oshrn.c that included our interface code .

Object

Superclass:
Instance Variables:

Methods:

Undefined

.class An ASCII file containing the class of self.
copy Copy self into the object shell buffer, leaving the original

intact
cut Copy self into the object shell buffer, deleting the original.
new Create a Unix directory called self to represent the object

and create the .class instance variable that holds the class
of self.

There is no equivalent in Unix to the Object class. Both methods in this class use tar to copy the
object in order to preserve symbolic links. This is an abstract class; there should never be an instance
of class Object.

28

l

n
n
n
n
l

I
u
[I

I

l
7
n
n
n
l

l

u
l I

l I

ll
u

ShScript

Superclass:
Instance Variables:

Methods:

Textual

self

execute

new

A symbolic link to text.

Execute the shell script in text. Use line 1 to dctennine
which interpreter to invoke.
Invoke new in Textual and create the self instance variable
upon return .

The ShScript class can be used to represent Bourne shell, C shell, or Postscript shell scripts. The
symbolic link is included so that both C and ShScript instances can be executed by calling self .

Textual

Superclass:
Instance Variables:

Methods:

Object

text

edit
print
new

The instance variable that holds the ASCII representation
of self.

Edit text using the vi editor.
Print text.
Invoke new in Object and create the text instance variable
upon return .

ASCII files under Unix that don't have a more specific class to represent them are represented as
instances of class Textual. Instances of Textual (or descendent classes) are the only valid source/destination
for input/output redirection.

Troff

Superclass:
Instance Variables:

Textual
command The ASCII command string that contains all troff options

for self.

Methods: format Use command to fonnat and print text.
new Invoke new in Textual and display dialog upon return.

The Troff class is used to represent troff source files in Unix. When a new Troff instance is created,
the user is shown a dialog that lets them choose options for this instance. If the user clicks the OK button,
then the new method will generate the instance variable command that will record all the options. Given
the dialog in Figure 7, clicking the OK button will generate the unsophisticated though effective string

cat text I refer -p database I pie I troff -ms I lpr -Pimagen

which will be stored in the command instance variable . When the instance is sentformat, it will simply
execute this command and the desired output will be obtained.

4.6 Comments

A Prototype

The object shell was an experiment in a different type of user interface. Since it was a prototype,
our first concern was not how polished or flashy it looked. If our aim was a polished application, our
priorities would have been different

A few features were neglected in the object shell that were not necessary but which would have been
more elegant The first was any ability for a user to create NeWS dialogs other than the basic infonnative
(shown in Figure 13) or reply (shown in Figure 2) varieties which the OSH server supports. The new
method in class Troff is a complex dialog with check boxes and multiple fields that are used to choose
filters and processing options. We had hoped to come up with some sort of facility that would let users
create new dialogs that contained check boxes or other widgets without going through the details that were

29

You cannot open a folder that is
already open.

Figure 13 A simple informative dialog

necessary for the Troff dialog. However, automating or simplifying the construction of user interfaces is
a research area in itself, and we chose not to get sidettacked.

The second feature that wasn't included was the ability to have multiple methods running concurrently .
The actual simultaneous running of multiple processes would not have been difficult to implement, but we
would have needed some sort of locking mechanism to protect critical objects and synchronize messages.
We also would need a way to let the user know which processes were still running .and which had completed .
The latter problem might have been solved by having the cursor in the shape of an hourglass only when
it is over objects that are "locked".

One last feature we left out involved menus that could detect the state of the object. There are
occasions when some menu ite~ for an object are not valid. For example, immediately after a new C
object has been created, the ·unk. and execute messages do not make sense. Our implementation checks
once the message has been sent, and if the message is inappropriate, an error dialog is displayed. We
would have preferred to be able to disable menu items for those messages that are not currently valid.
However, there is no existing facility in NeWS to accomplish this, and it wasn't important enough for us
to devote the necessary time to _develop it ourselves.

The Readnews Application

Up until the readnews tool was developed, a method would always terminate before the user could
send the next message. The main event loop would wait until the method terminated before sending another
read-menu request to the OSH server. Readnews was the first attempt at a tool that reads menu selections
directly. Therefore, once open was sent to the News object, the main event loop would wait while any
news is read, and would not continue until close was sent to the object

A drawback to supporting a standalone application was that we had to in effect do the work of the
messager for the messages we were processing. For messages that we did not process, we could use the
OSH server to carry out the message send. But in our particular instance, that wasn't necessary since any
message we didn't process was an invalid operation. For instance, you could send cut to an Article object,
and the application would trap it and display an error message since for the readnews application , only
messages in class Article can be sent to articles. We justified this as the equivalent of having an overriding
cut method in class Article.

The NeWS Environment

One factor that would have led to a more polished product would have been some sort of NeWS
toolkit. NeWS 1.1 does come with a limited set of classes and methods for windows, menus, and so forth,
but some very primitive operations still needed to be done by hand.

As an example of the lack of basic functions, we had wanted to use a scrolling window to display text
foe mail or readnews articles. The supplied ScrollWindow class did not supply any text scrolling routines,
so it would have involved writing text on a canvas, and computing where to begin each line as well as

30

l
n
n
n
n
l
l _

u

j

j

J

n
n
n
n
n
fl
l
1

l I
lJ
[I

J

u

how many characters or words could fit on a line. The methods to define scrolling would also need to
be written. This seemed extreme after seeing how easily scrolling could be done using the text window
class in the NeXT Application Toolkit [NeX88]. Luckily, the USENET newsgroup comp.windows .news
has its share of NeWS wizards willing to help· out, and we were able to modify some window scrolling
code that already existed.

Another contributing factor was the availability of NeWS docwnentation. What we had was terse and
had few good examples. A long-awaited book was delayed until after this project was finished.

5 What Next?

Generalize Objects

In our implementation, objects can only represent Unix files. This restriction may have kept us from
representing some features of Unix. In order to take advantage of networking and concurrency, we need
to have a more general object definition. That is, objects should be able to represent entities other than
Unix files. In order to make the object shell more flexible, we would need class definitions to represent
such objects as processes, hosts, and printers.

Work on Unix Strengths

Without a doubt, Unix derives much of its strength from 1/0 redirection, pipes, and background
execution. With these strengths, it is possible to combine small tools or filters into a more complex tool.
Unfortunately, we did not come up with any clear ways to represent these activities in our interface, and
we need these features in some shape or form if the object shell is to provide the power of Unix.

The fact that all 1/0 in Unix is treated as character streams presents another difficulty. Ideally, an
object-oriented interface would pass typed objects instead of character streams to insure that the sender
and the receiver of a transaction are expecting the same type of object This feature would add structure
to the currently free-form transfer used by pipes and redirection.

More Tools

Creating (or failing to create) more tools for the OSH environment will help to prove one way or
another whether the object shell concept is useful. An implementation of mail would be useful, and it
would not be difficult to expand on current implementations of make or rn. The methods we implemented
gave a general feel of the interface, but they were not full-featured or robust

Along the lines of exploiting the strengths of Unix, once an interface definition for pipes (and thus
filters) existed, implementations of filters like grep and awk would add noticeable power to the object shell.

Networking

As was mentioned by Beaudouin, not many people exist in an isolated computing environment
Machines need to talk to one another, though the user doesn't need to be aware of it. The current trend
in distributed systems tends to hide networking information from the user so that he doesn't need to know
if he is using a remote processor or if his files are on a remote file system. In our case, supporting a
remote file system would not have affected our interface definition. Where the object actually resides is
important only at the implementation level.

We might point out that although the object shell was designed for local execution only, the OSH

kernel is a server that could conceivably communicate with a remote user as well as a local user if pipes
were replaced with sockets.

Concurrency

Once the representation problem of background execution is solved, we can better support concurrent
processes. This would allow more than one method to execute at once, which would be useful for
applications like readnews where the open method in class News is essentially executing until the application
has exited.

31

6 Conclusions

We have found that it is difficult to create an interface for a wide range of users. There need to be
shortcuts for advanced users, which the object shell did not do a good job of supplying. Even casual users
will improve and change over time. This deficiency was probably most noticeable in the object-oriented
readnews tool which in its command line form is designed to be very efficient, with only a minimum of
keystrokes necessary. For proficient users, it is difficult for a menu-driven system to compete with single
keystrokes. But we should not forget that rn is not user-friendly to the new user.

We discovered that solving the problems related to J/O redirection, pipes, and background execution
are formidable ones. It is clear that the implementation would be the least of our problems. Defining
a concise and unambiguous representation for these features is difficult Defining a representation that
seems natural for a large group of users and that also fits within our interface model gives new meaning
to the word "difficult".

Though there were snags and stumbling blocks, we don't believe they were major enough to question
the usefulness of our object shell. A graphical interface is ideal for the casual user who doesn't want
to do many complicated things, and the object-oriented flavor makes it even more approachable. Valid
commands are easily found in an object's menu, and a user doesn't need to know how to print different
types of objects. He need only tell it to print itself. Perhaps this interface cannot satisfy the needs of
expert users, but since a majority of Unix users only perform a handful of operations on a regular basis
[Bea89], this type of interface might prove useful.

Our classes and methods were not polished or robust, but they were complete enough to demonstrate
that common Unix commands can be supported. They also demonstrated that the object shell is extensible,
so that the environment can grow. The OSH server provides a relatively simple interface to services that
will ease the addition of new classes and methods. It also allows development at different levels, whether
the user wants to create complex Unix functions or just take advantage of existing Unix tools.

This project has answered some of our original questions, and also caused us to ask new questions that
we hadn't thought of before. We have discovered that an object-based shell can accomplish much of what
an average user might want to do on a daily basis. Still, there are some real limitations, or at least issues
that require much more study. We must also be sure that we recognize the difference between problems
with the interface model itself, and problems resulting from our implementation and understanding of
some of our development tools.

Though there are still some major problems to be addressed, our results are encouraging. Graphical
interfaces are growing in popularity, but no product that we know of has tried to introduce a paradigm
similar to ours to the general public. Perhaps it would be too big a step for the public to take all at once.
Hopefully, as new and evolving interfaces include more features of object-oriented design, enthusiasm for
this kind of interface will grow and the concepts will prosper.

References

[Bea89]

[Bud87]

[Bud89]

[Cox86]

[Fis89]

[GoR84]

Beaudouin-Lafon, Michel. "User Interface Support for the Integration of Software Tools: an
Iconic Model of Interaction", 1988 Proceedings of the Software Engineering Symposium on
Practical Software Development Environments, reprinted as Sigplan Notices, February 1989.

Budd, T.A. A Little Smalltalk, Addison-Wesley, Reading, Massachusetts, 1987.

Budd, T.A. '"The Design of an Object-Oriented Command Interpreter", Software: Practice &
Experience, January 1989.

Cox, Brad J. Object-Oriented Programming: An Evolutionary Approach, Addison-Wesley,
Reading, Massachusetts, 1986.

Fischer, Gerhard. "Human-Computer Interaction Software: Lessons Learned, Challenges
Ahead", IEEE Software, January 1989.

Goldberg, Adele, and Robson, David. Smalltalk-BO: The Language and its Implementation ,
Addison-Wesley, Reading, Massachusetts, 1984.

32

7
n
n
n
n
l
l

I
I
]

J

]

l
7
n
n
I 1

1

n
1

I J

I J

l J

u
I J

J

u

[Mye88]

[NeX88]

[Sta75]

[Sun86]

[Sun87]

[Su089]

[Tei84]

Myers, Brad. "A Taxonomy of Window Manager User Interfaces", IEEE Computer Graphics
& Applications, September 1988.

NeXT, Inc. NeXI' Application Toolkit, 1988.

Standish, T.A. "Extensibility in Language Design", Sigp/an Notices, July 1975.

Sun Microsystems. Windows and Window Based Tools: Beginner's Guide, 1986.

Sun Microsystems. NeWS Manual, 1987.

"Designing the Ultimate GUI: An Interview with Dr. Lin Brown", Sun Observer, August
1989.

Teitelman, Warren. "A Tour Through Cedar", IEEE Software, April 1984.

33

	Rudolf_Budd_89_60_19_A
	Rudolf_Budd_89_60_19_B

