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Abstract 

A modern computerized manufacturing control system must manage production data, coordinate 

control actions, and provide user-friendly interfaces. An actionbase management system (ABMS) is 

a general software system that facilitates implementations of actionbase systems that provide these 

capabilities for different applications. Besides an ordinary data management facility, our ABMS 

includes action control and user interface subsystems implemented as active object systems (AOSs). 

An AOS is a transition-based object-oriented system suitable for the design of various concurrent 

systems. The behavior of each active object is defined by the transition rules, the equational 

assignment statements, and the event routines provided in its class definition. An active object can 

be constructed from its component active objects through structural composition as if it were a 

hardware object. 

The user interface management subsystem of the ABMS allows us to provide declarative de

scriptions of views for active objects. These views provide user interfaces for an actionbase system. 

Key Words and Phrases: manufacturing control, flexible manufacturing system, actionbase sys

tem, active-object system, software IC, object-oriented concurrent system, graphical user interface, 

active-object user interface. 
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1 Introduction 

Numerically-controlled machines, robots, and automatically-guided vehicles (AGVs) are extensively 

used in modern manufacturing. A software system that coordinates the operations of an automated 

factory must provide capabilities for data management, control, and man-machine interface. Although 

the architecture of such a system has been extensively investigated, satisfactory solutions are yet to be 

found [NAYL-87). 

We propose a software system that we call an actionbase management system (ABMS). The goal of 

an ABMS is to achieve for manufacturing-control software development what 4GL systems [INF088, 

ORAC87, ORAC88, UNIF87]1 have achieved for business-application software development . We call 

an application based on an ABMS an actionbase system. 

Figure 1: Actionbase system . 

Fig. 1 shows the architecture of an actionbase system. The data management function of an action

base system is handled by an ordinary database management system (DBMS). The records representing 

such entities as machines and jobs are stored in the database, and they are used in answering queries 

and producing reports. The central feature of an actionbase system is an active object system (AOS) 

[CHOI91a] that takes control actions on external entities such as robots and machines, responding to 

their state changes. The AOS can directly manipulate the objects stored in the database, and their 

states are accessible for such database functions as answering queries and report generation. When AOS 

objects stored in the database are manipulated by ordinary queries, these changes must be notified to 

the AOS as events. 

1 A 4th-generation language ( 4GL) system is an application-specific language at a higher level than procedural 
languages such as Pascal or C, and it ties together its two major components, a database subsystem and a user 
interface subsystem. A 4GL often achieves several-fold productivity gains. 
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The idea of active objects originated from the first object-oriented language SIMULA (BIRT73), 

where active objects are cooperating sequential processes that communicate with each other through 

procedure calls. Several active object systems [AGHA86, BLAC86, YONE87) have been designed since 

then by replacing procedure calls of SIMULA with message passing. Some AI systems allow us to create 

active objects by using active values (KUNZ84, KEHL84) . A KNOs object (TSIC87), which possesses 

an internal state, a set of operations, and a set of rules, is also active. One approach for implementing 

a user interface system from active objects is introduced in (COOT88). 

Our active object system (AOS) uses transition rules, equational assignment statements, and event 

routines for its behavior description. Transition rules are condition-action pairs, and they have been 

known to be suitable for various concurrent systems that require flexible synchronization (DAVI76, 

ZISM78]. Equational assignment statements can maintain simple invariant relationships among object 

states. Event routines are activated by messages. Our AOS supports one-to-many message passing as 

well as ordinary many-to-one message passing. 

We call transition rules, equational assignment statements, and event routines transition statements. 

The behavior of each active object is determined by the transition statements provided in the class 

definition of that object. One key feature of our AOS is that the transition statements provided for 
,' 

each active object can access the states of the other active objects known to it, realizing inter-object 

communication. 

The AOS approach is an object-oriented programming based on active objects with standardized 

structural interfaces, whereas conventional object-oriented languages support passive objects with stan

dardized procedural interfaces . Since active objects provide a higher level of modularity than passive 

objects, AOSs are easier to design, implement, and maintain than ordinary object-oriented programs. 

The major goal of the AOS approach is to construct a certain class of systems by the hierarchical 

composition of active objects, where software objects are constructed and modularized like hardware 

objects. This feature is very useful in constructing manufacturing control software system because we 

can represent such real-world entities as machines, robots, and AGVs by active objects . 

Besides coordination of control actions, the AOS provides a user interface for a manufacturing control 

system . Fig . 2 shows a simple view of a manufacturing line . Through this view an operator can see 

the movements of jobs and query the statuses of jobs and machines . Such views are supported by an 

active-object user interface system (AOUIS), which is an AOS specialized for user-interface description 

[CHOI91b). 
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Figure 2: A view of a manufacturing line. 

In Section 2, we give a brief overview of an AOS. A flow-line manufacturing system is modeled by 

an AOS in Section 3, and a flexible manufacturing system in Section 4. Section 5 concludes this paper . 

2 Simple Queuing System 

In this section, we introduce an AOS program by using a simple example of a queuing system. 

g ql pl q2 p2 

e 
Figure 3: Queuing system with 2 processors and 3 queues. 

The queuing system in Fig. 3 consists of a generator g that generates a stream of jobs, two processors 

p1 and p2 that process jobs, and three queues q1, q2, and q3 that hold jobs. This queuing system is 

similar to a flow-line manufacturing system . 

Fig. 4 gives an AOS description of the system . It can be easily seen that the code corresponds 

exactly to the diagram in Fig . 3; the output of g is connected to q1, the input of p1 is connected to q1 

and its output to q2, and so on. 

An AOS program consists of a main program and classes . A class contains three parts: an interface, 

a set of instance variables, and a behavior description, Instance variables and behavior can be private, 

protected, or public, as in C++ [STRO86] . The main program is defined in the same way as a class but 

is an instance. 
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QueuingSystem { 

} 

Private 
Generator g with {output= q1;}; 
Queue q1; 
Processor p1 with {input= q1; output= q2;}; 
Queue q2; 
Processor p2 with {input= q2; output= q3;}; 
Queue q3; 

Public 
boolean systemRunning = true; 

Figure 4: Main program of a queuing system. 

In order to construct the above system according to the AOS approach, we first define the four 

classes used by the system: class Generator, class Queue, class Processor, and class Job. Second, 

we create one instance g of Generator, three instances q1, q2 and q3 of Queue and, two instances pl 

and p2 of Processor and provide the static interconnections among them as specified in Fig. 4. The 

interconnections between Job instances and the other system components cannot be defined statically, 

since Job instances are created dynamically by g and are moved to the processors and the queues during 

the execution of the system. 

We now show the definitions of the classes used by the system. 

Class Timer { 
Instance Variables 

enum {reset, running, complete} status; 
Behavior Description 

} 
} 

void startTimer(int delay) { 
I* Sets status to running. 

When the delay time passes, 
status automatically changes to complete. *I 

Figure 5: Timer. 

Class Timer. Class Timer is a system-defined class. A Timer is used by a Generator or Processor 

to measure a time interval. Initially its status is reset . After it starts running, its status changes 

to complete when the specified delay time expires. 

Class Job. Class Job has instance variables ID and next. The next field is used to point to the next 

Job when Jobs form a queue. It has no behavior description. 
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Class Job{ 
Instance Variables 

Int ID; 
Job *next; 

I* other information *I 
} 

Class Generator { 
Interface 

Figure 6: Job. 

Queue output; I* imported reference *I 
Instance Variables 

Timer tm with status= reset; 
Job newJob; 
int jobID = O; 

Behavior Description 
I* Transition Rule Start *I 
when (system_running and (tm.status -- reset)) 

tm.startTimer(random()); 
I* Transition rule Stop *I 
when (tm.status == complete) { 

} 
} 

newJob = new Job; 
newJob->ID = jobID++; 
newJob->next = nil; 
output->enqueue(newJob); 
tm.status = reset; 

Figure 7: Generator. 
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Class Queue { 
Interface 

} 

I* none *I 
Instance Variables 

int njobs; 
Job *head= nil, *tail= nil, *temp; 

Behavior Description 
void enqueue (Job* job) { 

} 

I* put the job at the end of the queue *I 
if (tail== nil) { 

tail= job; head= job; 
} 

else { 
tail-> next= job; tail= tail->next; 

} 

njobs++; 

Job* dequeue() { 
I* get the job in front of the queue •I 
if (head) { 

njobs--; 
temp= head; head= head->next; temp->next = nil; 

} 

return (temp); 
} 

Figure 8: Queue . 
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Class Processor { 
Interface 

Queue input, output; I* imported reference *I 
Instance Variables 

boolean avail= true; 
Timer tm with status= reset; 
Job *job= nil; 

Behavior Description 
I* Transition Start *I 
when ((input.njobs > 0) and (avail -- true)) { 

job= input->dequeue(); 
avail= false; 
tm.startTime(random()); 

} 

I* Transition Stop *I 
when (tm.status == complete) { 

tm.status = reset; 

} 

} 

avail= true; 
output->enqueue(job); 

Figure 9: Processor. 

Class Generator. Class Generator generates a stream of jobs whose inter-arrival times are randomly 

distributed. Interface variable output of class Queue designates the queue to which this generator 

feeds jobs. Transition rule Start initiates the timer tm, whose expiration time designates the 

next job's generation time. When the timer expires, transition rule Stop that generates a job and 

resets the timer is activated . 

Class Queue. Class Queue has two methods, enqueue and dequeue. Instance variable nj obs is directly 

accessed by Processors. 

Class Processor. A Processor processes jobs found in the Queue designated by interface variable 

input one at a time. When the processing of each job is complete, the job is placed in the Queue 

designated by interface variable output. The Timer tm is used to measure the processing time, 

which is randomly generated. Instance variable avail indicates if the processor is free or busy. 

Transition rule Start is activated when the processor is free and when there is at least one job in 

the input queue. Once activated, the processor removes one job from the input queue and starts 

the timer . When the timer expires, transition rule Stop, which resets the timer and moves the 

job to the output queue, is activated. 

We now summarize the behavior description mechanism of an AOS. The details can be found in 
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[CHOl9la]. 

Objects in Smalltalk or c++ are passive in the sense that they only respond to the messages sent 

to them. On the other hand, the behaviors of AOS objects can be specified by three kinds of transition 

statements: transition rules (when statements), equational assignment statements (always statements), 

and event routines ( on statements). 

Each transition rule is a condition-action pair, and its action part is executed when its condition 

part is satisfied. An execution of a transition rule should be atomic. 

An equational assignment statement maintains an invariant relationship among the states of objects. 

For example, the output of an AND-Gate can be defined from its input1 and input2 as 

always output= input1 and input2; 

The activations of transition rules are, at least conceptually, state-driven. Active objects can com

municate with each other by directly accessing the states of other objects rather than sending messages 

to them. Although this mechanism often eliminates the necessity of explicit message passing, some 

events are more efficiently handled by messages. An AOS supports event-driven activations of proce

dures. We consider messages as extended events that include some data as parameters. An AOS allows 

one-to-many message-passing as well as many-to-one message-passing. 

3 Flow-Line Manufacturing 

Monitoring and control software for both flow-line manufacturing and flexible manufacturing can be 

implemented as an AOS. In this section, we show an AOS description of monitoring and control software 

for a flow-line manufacturing system by using a simple example shown in Fig. 10. 

When a job ( or workpiece) goes through this manufacturing line, it is first entered at stage s1 • Then, 

the job is moved by mover mA1 to stage s2, where it is inspected by vision system v. Vision system 

v gathers information required for ~he later processing by the other robots and machines . After the 

inspection of the job is complete, it is moved by mover mA 2 from stage s2 to stage s3 , where it is worked 

on by robot rA. Then the job is sent to stage s4 by mover mA3 . 

The same type of robots, rB1 and rB2, are installed at stages s4 and s5 , and one of them must 

process each job. When an incoming job is placed in stage s4, mover mB 1 moves it immediately to 
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Figure 10: A manufacturing line. 

stage s5 if s5 is empty. Otherwise, it is processed at stage S4 by rB1. Robot rG loads the job from stage 

s6 onto machine mch 1 or mch2, whichever is available. After the machine processing by mch1 or mch2 

is complete, it returns the job back at stage s6. Finally, mover mAs moves the job to stage s7. 

There is a possibility of a deadlock involving ss, mch1, and mch2. A job must not be moved from 

s5 to s6 when both mch 1 and mch2 are occupied. Otherwise, none of the jobs loaded on ss, mch1, and 

mch 2 can be moved. 

Object 

Robot Stage Machine Mover 

Vision RobotA RobotB RobotC MoverA MoverB 

Figure 11: Classes for flow-line manufacturing. 

The controller for this manufacturing line can be implemented as an AOS with the following objects: 

seven instances s1 -s7 of class Stage, five instances mA1 -mA5 of class Mover A, one instance mB1 of class 

MoverB, one instance v of class Vision, one instance rA of class RobotA, two instances rB 1 and rB2 

of RobotB, one instance rG of class RobotC, and two instances of class Machine. These classes can be 

organized into the class hierarchy as shown in Fig . 11. 

Fig. 12 is the main program of the AOS. It can be easily seen that the code corresponds exactly to 

th e diagram shown as Fig . 10. The main program of an AOS shows only the structural relationships 
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MFMain { 
public: 

} 

boolean systemRunning = true; 
private: 

Stage s1("s1", "initial stage"); 
Stage s2("s2", "visual inspection"); 
Stage s3("s3", "assembly1"); 
Stage s4("s4", "assembly2"); 
Stage s5("s5", "assembly2"); 
Stage s6("s6", "packaging"); 
Stage s7("s7", "final stage"); 

MoverA mA1("mA1", 1000) with {inStage 
MoverA mA2("mA2", 1010) with {inStage 
MoverA mA3("mA3", 1020) with {inStage 
MoverB mB1("mB1", 1030) with {inStage 
MoverA mA4("mA4", 1040) with {inStage 
MoverA mA6("mA6", 1060) with {inStage 

= s1; outStage = s2}; 
= s2; outStage = s3}; 
= s3; outStage = s4}; 
= s4; outStage = s6}; 
= s6; outStage = s6}; 
= s6; outStage = s7}; 

Vision 
RobotA 

v("v", "visual inspection") with {stage= s2; rqsBlock = ... }; 
rA("rB", "assembly1") with {stage= s3; rqsBlock = .•. }; 

RobotB rB1("rC1", "assembly2") with {stage= s4; rqsBlock = ... }; 
RobotB rB2("rC2", "assembly2") with {stage= s6; rqsBlock = ... }; 
RobotC rC("rD", "distributer") with {stage= s6; mi= mch1; m2 = mch2}; 

Machine mch1("m1", "packaging"); 
Machine mch2("m2", "packaging"); 

Figure 12: Main program for flow-type manufacturing . 
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among its components which are connected by interface variables. Movers and robots directly move 

and manipulate jobs in the stages connected to them through their interface variables. 

class Job { 
public: 

char *name; 
char *description; 
Job(char *n, char *dsc) {strcpy(n, name); strcpy(dsc, description);}; 

} 

Figure 13: Class Job. 

Fig. 13 shows the definition of class Job . It only contains its name and description. In a real system, 

it may have more detailed information. 

enum StageState {empty, moving, arrived, ready, processing, processDone, wait}; 
class Stage { 

public: 
char *name, *description; 
StageState state= empty; 
Job *job= nil; 
Stage(char *n, char •dsc) {strcpy(n, name); strcpy(dsc, description);}; 

} 

Figure 14: Class Stage. 

Class Stage is defined in Fig . 14. It contains four instance variables and does not contain any 

behavior descriptions. Instance variables name and description contain the name and description, 

respectively, of a Stage. Instance variable job points to a job that is currently at that stage, and state 

represents the current state of the stage. 

A robot or machine processes a job based on the state of the stage to which it is connected. A stage 

can be in six different states. The initial state of a stage without a job is empty. While a mover is using 

a stage to move a job from or to it, the value of state is set to moving. When a job has arrived, state 

is set to arrived, and when the job is ready for processing, state is set to ready. When a job is being 

processed by a robot, state becomes processing, and when the robot finishes the processing, state 

becomes processDone. The state w~i t is a state which blocks any movement of a job for some special 

reason, e.g ., prevention of a deadlock. 

There are two different kinds of movers in Fig. 10. The common class of these movers is class Mover 

defined in Fig. 15, and it has two subclasses MoverA and MoverB. The mover state is either reset, 

moving, or moveDone. A job pointer is also defined in Mover. 
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enurn MoverState {reset, moving, moveDone}; 
class Mover { 

interface: 
Stage inStage, outStage; 

public: 
char *name; 
MoverState state= reset; 
IOddress ioAddress; 
Job *job= nil; 
Mover(char *n, IOAddress ioAdd) {strcpy(n, name); ioAddress = siAdd}; 

} 

Figure 15: Class Mover. 

class MoverA: public Mover { 
public: 

} 

MoverA(char •n, IOAddress ioAdd) : (n, ioAdd) {}; 
private: 

when ((inStage->state == processDone) tt (outStage->state -- empty)) { 
state= moving; 
outStage->state = moving; 
job= inStage->job; 
inStage - >job = nil; 
inStage->state = empty; 
I• activate external process to move a job •I 
activate(moveProgram, inStage, outStage, job); 

} 

when (state== moveDone) { 
outStage->job = job; 
outStage->state = arrived; 
job = nil; 
state= reset; 

} 

when (inStage->state == arrived) 
inStage->state = ready; 

Figur e 16: Class MoverA. 
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Fig. 16 shows a simple mover which just moves job from inStage to outStage . It consists of three 

transition rules. 

First transition rule is activated when a job is processed by a robot in the previous stage and when 

the next stage is empty. It sets the states of itself and the next stage to moving, moves the job object 

to itself, sets the state of the previous stage to empty, and activates an external process to move the 

job. 

When the real job is moved to the next stage, the external process changes the state of the mover 

to moveDone. Then the mover moves the job object to the next stage and changes the state of the next 

stage to arrived. The mover finally sets its job to nil and state to reset. 

The last transition rule sets state of the previous stage to ready as soon as a job arrives there. 

Then processing of the job can be started at that stage. 

class MoverB : public Mover { 

} 

public: 
MoverA(char *n, IOAddress ioAdd) 

private: 
StageState inStageState; 
when ((outStage->state == empty) 

(n, ioAdd) {}; 

&& ((inStage->state == processDone) I I (outStage->state == arrived))) { 
state= moving; 

} 

outStage->state = moving; 
job= inStage->job; 
inStage->job = nil; 
inStageState = inStage->state; 
inStage->state = empty; 
I• activate external process to move a job *I 
activate(movePrograrn, inStage, outStage, job); 

when (state== moveDone) { 
outStage->job = job; 
outStage->state = inStageState; 
job = nil; 
state= reset; 

} 

when ((inStage->state == arrived) && (outStage->state != empty)) 
inStage->state = ready; 

Figure 17: Class MoverB . 

An instance of class MoverB defined in Fig . 17 is a special mover. It schedules jobs for the two 

stages indicated by inStage and outStage. Each job need be processed at only one of them. The first 
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transition rule is activated even when the job is not processed in the first stage if the second stage is 

empty . The last rule changes the state of inStage to ready only if the outStage is occupied . The 

other transition rules are similar to those of Mover A. 

Classes for robots and machines can be similarly defined. 

4 Flexible Manufacturing 

In this section, we show an AOS description of monitoring and control software for a flexible manufac

turing system (FMS). One key difference of an FMS from a flow-line manufacturing system is that the 

jobstep scheduling must be global. The AOS approach is less suitable to an FMS than to a flow-line 

manufacturing system, where control is localized. Nonetheless, the AOS approach can be applied to an 

FMS. 

♦ 
Storage 

l=f 
Loader/ 
Unloader 

I 
Load/Unload Area 

~ 
Ml(milling) .. 
~ 

M2(boring) 

t1JI3\ 
M3(1athe) 

'3LlJI .. 
Figure 18: A flexible manufacturing system. 

The FMS shown in Fig. 18 consists of three machines, two automatic guided vehicles (AGVs), and 

an automated storage/retrieval system. 

Associated with each job is a sequence of jobsteps as shown in Fig . 19. After being retrieved from 

the storage by a loader, a job, which is embodied as a workpiece, is transferred by an AGV from a 

machine to anoth er machine. Each machine performs a jobstep for the job. 

Fig . 20 shows the timelines for the sequences of the AGV moves along with the machines' usage. 

A black area represents a period when a resource (machine, AGV, or loader) is actually processing or 
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M2 

M3 

~Ml(6) -M3(7)-M2(10) 

.jobSteps ► M2(6) - Ml(8) - M3(7) 

e jobSteps ► M2(8)- Ml(8) - M3(7) 

Figure 19: Jobsteps . 

AGVl 

AGV2 

Figure 20: Timelines. 
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carrying a job, and a clear area represents a period when the resource is free. A grey area for an AGV 

represents a period when the AGV is moving but is not carrying a job. 

Figure 21: Jobstep schedule. 

The sequences of the moves of the AGVs are maintained in the jobstep schedule for them. An 

example of a jobstep schedule is shown in Fig. 21. A jobstep record for an AGV designates the origin 

and destination of the job to be moved. The AG V jobstep schedule is produced by the jobstep scheduler. 

The jobstep scheduler uses an Al-based heuristic algorithm, which is beyond the scope of this paper, 

to schedule the moves of the AG Vs so that machines and AGVs are utilized efficiently. After all the 

jobsteps of a job is completed, an AGV returns the job to the storage. 

Object 

Resource Job JobStep 

~ 
AGV Machine Storage 

M3JobStep 

Figure 22: FMS Classes. 

Fig . 22 shows the class hierarchy of the AOS classes for our flexible manufacturing system. 

The declarative nature of an AOS is illustrated in Figure 23. All that are declared are the top-level 

components of the system. Three storage objects, three machines, two AGVs, and two loaders are 

created. Since all the active agents perform their operations according to the global schedule provided 

by the scheduler. No interconnections are provided among the top-level components. 

The definition of class Job is given in Fig. 24. Each Job contains a pointer jobsteps, which points 

to the list of the Jobsteps constituting that job. A Jobstep, defined in Figure 25, contains a pointer 

next to the next jobstep and a pointer variable resource that identifies the resource (machine) required 

for that jobstep. 
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MFMain { 
Storage s1("S1", "storage", 100); 
Storage s2("S2", "storage", 100); 
Storage s3("S3", "storage", 100); 
Machine m1("M1", "milling"); 
Machine m2("M2", "boring"); 
Machine m3("M3", "turning"); 

AGV agv1("AGV1", "automatic guided vehicle 1 "); 
AGV agv2("AGV2", "automatic guided vehicle 2"); 
LDR ldr1("LDR1", "loader/unloader 1"); 
LDR ldr2("LDR2", "loader/unloader 2"); 

} 

Figure 23: FMS main program . 

class Job { 
public: 

char *name, *description; 
Jobstep *jobsteps, *currentJobstep; 
Job(char *n, char *desc, Jobstep *head) { 

strcpy(n, name); 
strcpy(dsc, description); 
jobsteps = head; 
currentJobstep = head; 

}; 
} 

class Jobstep { 
public: 

Jobstep *next; 
Resource *resource; 

Figure 24: Class Job. 

Jobstep (Resource *r) {resource= r;}; 
} 

Figur e 25: Class Jobstep . 
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A subclass of Jobstep should be created to represent the unique data requirements of the jobsteps 

of each type of machines. For example, a drill needs :z: and y positions, a radius, and a depth to make 

a hole. 

A Machine performs an action on a workpiece. Its behavior is defined by two transitions: Start 

and Stop. A Storage consists of a fixed-number of slots where workpieces are stored. A Loader carries 

a job between a storage slot and a load/unload area. 

AG Vs move all the jobs between the load/ unload areas and the machines and between the machines. 

The class AGV is defined in Fig. 26. An AGV has three primary components: jobsteps, job (defined in 

Resource), and agvState. The sequence of the moves of each AGV is determined by jobsteps, which 

is the list of the jobsteps to be performed by the AGV. 

An AGVJobstep contains source and destination for the AGV move. An AGVJobstep can be 

initiated only when its refCnt is 0, which indicates that all the AGVJobsteps that must precede it are 

complete . See Fig . 27 for the definition of AGVJobstep. 

The class LOR is similar to AGV. 

Fig. 28 shows the state of the system at time ti indicated in Fig. 20. 

5 Conclusions 

An actionbase system was proposed as a framework for manufacturing control software. Three major 

components of an actionbase system are the database, actions control, and user interface subsystems. 

The actions control and user interface subsystems are implented as active object systems. An active 

object system is constructed by structural composition of active objects whose behaviors are defined by 

the transition statements provided in their class definitions. 

We showed how manufacturing control systems can be described as active object systems, by using 

as examples a flow-line manufacturing system and a flexible manufacturing system . Even these simple 

examples indicated the following aqvantages of the AOS approach. Active objects, with three kinds 

of transition statements, show better encapsulation and achieve more flexible inter-object communica

tion than ordinary objects. Support of views makes easy the implementation of a user interface of a 

manufacturing control system. 

Prototypes of manufacturing control systems based on the AOS approach are being implemented. 
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enurn AGVState {reset, moving, moveDone}; 
Class AGV: public Resource { 

} 

public: 
AGVJobstep *jobsteps; 
MoverState state= reset; 
AGV (char *n, char *d, Resource *cStage) (n, d) {}; 
I* init move without a job *I 
when ((state== reset) tt jobsteps 

tt (jobsteps->state == ready) tt (jobsteps->mType -- empty)) { 
state= moving; 

}; 

I* if the move is done without a job *I 
when ((state== moveDone) tt (jobsteps->mType == empty)) { 

jobsteps - >state = done; 

}; 

state= reset; 
I* get new jobstep and remove old jobstep *I 
jobsteps *tmpJobstep = jobsteps; 
jobsteps = jobsteps->next; 
delete tmpJobstep; 

I* unload a job from the machine to agv *I 
when ((state== reset) tt jobsteps tt (jobsteps->state == ready) 

}; 

tt (jobsteps->mType == loaded) tt (jobsteps->source->state == processDone)) { 
I* let the source know that the agv is arrived and init unloading *I 
jobsteps->source->agv = this; 
jobsteps->source->state = unloading; 

I* if the job is unloaded from the source, init moving *I 
when (jobsteps->source->state == unloadDone) { 

}; 

I* move to the destination *I 
jobsteps->source->agv = nil; 
state= moving; 

I* if move is done *I 
when ((state== moveDone) tt (jobsteps->mType == loaded) 

}; 

tt (jobsteps->destination->state == reset)) { 
I* let the source know that the agv is arrived and init loading *I 
jobsteps->destination->agv = this; 
jobsteps->destination->state = loading; 

I* if the job is loaded to the destination *I 
when (jobsteps->destination->state == loadDone) { 

}; 

I* reset the states *I 
jobsteps->state = done; 
state= reset; 
jobsteps->destination->agv = nil; 
I* get new jobstep and remove old jobstep *I 
jobsteps *tmpJobstep = jobsteps; 
jobsteps = jobsteps->next; 
delete tmpJobstep; 

Figure 26: Class AGV. 
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enum AGVJobstepState {notReady, ready, done}; 
struct JobstepRefNode { 

AGVJobstep *jobstep; 
JobstepRefNode *next; 

}; 
class AGVJobstep: public Jobstep { 

} 

public : 
Resource *source= nil, *destination= nil; 
MoveType mType; 
AGVJobstepState state= notReady; 
JobstepRefNode *refNodes; 
int refCnt; 
AGVJobstep (Resource *s, Resource *d, MoveType t, int re, JobstepRefNode rn) 

source= s; destination= d; 
mType = t; refCnt = re; 
refNodes = rn; 

}; 

I* decrement the reference counter of the jobsteps dependent on this *I 
on complete() from self do { 

for (JobstepRefNode *tmp=refNodes; tmp; tmp=tmp->next) 
tmp->refCnt--; 

} 

I* if refence counter is O, then it becomes ready *I 
when (refCnt == 0 and state!= ready) { 

state= ready; 
} 

Figure 27: Class AGVJobstep. 
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jobSteps 
·············~Ml·····~M3 ·····~M2 

a, job"" nil 

J1 J1 ... 
Ml->M3 ___.. M3->M2 ___.. ······ 

currentJobSte ....__ __ ;.;..........;...,....,__nil 

J2 ___.. Empty ___..B ___.. J2 
S->M2 M2->S S->M3 M3->Ml ---1►~······ 

currentJobStep 

Figure 28: System state . 

The major portions of these implementations are user interfaces, for which active-object user interface 

system (AOUIS) [CH0l91b) is being used . 

22 



l 
l 
7 
D 
l 

l 

J 

J 

j 

J 

References 

[AGHA86] Agha, G. A. Actors : A model of concurrent computation in distributed Systems. The MIT 
Press, 1986. 

[BIRT73] Birtwistle, G., Dahl, 0. J., Byhrhang, B., and Nygard, K. SIMULA BEGIN, Auerbach, 
1973. 

[BLAC86] Black, A., Hutchinson, N., Jul, E., and Levy, H. Object structure in the Emerald System. 
In Proc . OOPSLA'86 Conf. on Object-Oriented programming, 1986, pp. 78-86. 

[CHOl9la] Choi, S. and Minoura, T. Active object system. Tr. 91-40-1, Dept. of Computer Science, 
Oregon State Univ., 1991. 

[CHOI91b] Choi, S. and Minoura, T. User interface system based on active objects. Tr. 91-60-5, Dept. 
of Computer Science, Oregon State Univ., 1991. 

[COOT88] Coote, S., et al. Graphical and iconic programming languages for distributed process con
trol: An object oriented approach. In Proc. 1988 IEEE WORKSHOP on Visual Languages, 
1988, pp. 183-190. 

[DAVI76] Davis, R., and King, J . An overview of production systems. Machine Intelligence, 8, 1976, 
300-332. 

[INFO88] Informix-4GL User's Guide, Version 1.10, Informix part number 200-501-0004, Informix 
Corporation, 1988. 

[KEHL84] Kehler, T. P., and Clemenson, G. D. An Application development system for expert
systems. Systems and Software, 94, 1984, 212-224. 

[KUNZ84] Kunz, J. C., Kehler, T. P., and Williams, M. D. Applications development using a hybrid 
AI development system. The AI Magazine, 5, 3, 1984, 41-54. 

[NAYL87] Naylor, A. W., and Volz, R. A. Design of integrated manufacturing system control software. 
IEEE Trans. on Systems, Man, and Cybernetics, SMC-17, 6, 1987, 881-897. 

[ORAC87] Oracle SQL* Forms Designer's Tutorial, Oracle Reference Manual Number 3302-V2.0, Or- . 
acle Corporation, 1987. 

[ORAC88] Oracle For MacIntosh Manual, Version 1.0, Part No. 5117-Vl.0, Oracle Corporation, 1988. 

[STRO86] 

[TSIC87] 

[UNIF87] 

Stroustrup, B. The C++ Programming Language, Addison-Wesly, 1986. 

Tsichritzis, D., Flume, E., Gibbs, S., and Nierstrasz, 0. KNOs: Knowledge acquisition, 
disemination, and manipulation objects. ACM Trans. on Office Information Systems, 5, 1, 
1987, 96-112. 

Acee/I Integrated Application Development System, Unify Reference Manual Number 254A, 
Release 1.3, Unify Corporation, 1987. 

[YONE87] Yonezawa, A., Shibayama, E., Takada, T., and Honda, Y. Modelling and programming in an 
object oriented concurrent language ABCL/I. In Object-Oriented Concurrent Programming, 
A. Yonezawa and M. Tokoro (Eds), The MIT press, 1987, pp. 55-90. 

[ZISM78] Zisman, M. D. Use of production systems for modelling asynchronous, concurrent pro
cesses. In Pattern-Directed Inference Systems, D. A. Waterman and F . Hayes-Roth (Eds), 
Academic Press, 1978, pp. 53-69. 

23 

l 


	Minoura_Choi_Robinson_91_40_02_A
	Minoura_Choi_Robinson_91_40_02_B

