
86-50-l

Lirl~UEAS~TY

5C~ErlCE

The Perfect k- Shuffle:
a broad purpose architecture for parallel computation

Alberto Negro
Dipartimento di Informatica ed Applicazioni

· Universita 1 di Salerno ·
Salerno, Italy

and
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

l
l
l

l
l

l

]

I
J

J

1

The Perfect k-Shuffle:
a broad purpose architecture for parallel

computation

Alberto Negro
Dipartimento di Informatica ed Applicazioni

Universita' di Salerno
Salerno - Italy -

and
Department of Computer Science

Oregon State University
Corvallis - Oregon

February 5, 1986

Introduction

The PERFECT SHUFFLE (PS) has been the first proposed broad purpose net ­
work for fast parallel processing . Defined in 1971 by Stone [lj as a substitute for
the hypercube machine, it effectively supports a class of algorithms with poly­
logarithmic time complexity exhibiting an optimal layout for several of them.

Natural competitor of the perfect shuffle is the CUBE-CONNECTED CY­
CLES (CCC) . It was defined in 1979 by Preparata and Vuillemin in order to
efficiently implement algorithms in two highly parallel classes: the ASCEND and
the DESCEND [3J. Though presenting the same computational properties of the
PS, the CCC shows a very regular layout and the optimal area time 2 (or AT2)

measure for problems like permutation, odd-even merge, fast fourier transform,
etc. for the entire range of T [O(log n), O(vn)j. Furthermore the DESCEND
class has the property to efficiently emulate the computational paradigms of
different architectures like the perfect-shuffle, the perfect-unshuffle, and the n­
cube . [3J

The MESH of TREES (also Orthogonal 'frees [151) well fits in the fast par­
allel processing for the interesting properties it exhibits. Not a cube emulator it
specifies a paradigm based on the multiplex-demultiplex characteristics rather
than on the data adjacencies . It has been defined several times by different
authors [15,17], a complete analysis is present in [15j on different VLSI models

1

of computations. Using this interconnection scheme problems like sorting, FFT,
matrix multiplication, connected components are effectively solved.

The PS, the CCC, and the MOT are known as broad p,1,rpose parallel archi­
tectures because of their capability to efficiently run classes of algorithms. On
the other side several special purpose architectures have been proposed to opti­
mally solve specific problems. The shape of this ad hoc architectures is almost
always very complex and is the result of the composition of basic network like
PS, CCC, Mesh etc. For this reason they are sometimes called hybrid.

The aim of this paper is to propose two parametrized architectures and to
study their computation models. Based on the SHUFFLE network [1] and on its
generalized version, the k-SHUFFLE [11,4), they join the characteristics of the
Hybrid Architectures, of the cube emulators (PS and CCC) and of the pipeline
exhibiting high performances and an acceptable VLSI realization. In particular
the Shuffle-Connected Arrays (SCA) and the Perfect k-Shuffle (PkS) will be
defined. ·

The SCA is composed by a fast architecture (the PS) and a slow architecture
(the Linear Array (LA)). Even though the overall organization of the network
depends on the size of the LA~ the computation paradigm is always the same.
It exhibits optimal AT 2 complexity for the Ascend-Descend algorithm in a wide
range of time complexities.

The PkS is composed by the generalized PS and the Binary Tree. Shown
to be the hardware realization of an highly parallel scheme of computation: the
Generalized Recursive Combination, it spans the emulation capabilities from the
Binary Tree to the Perfect Shuffle passing throught the Mesh Of Trees (MOT).

Shuffle-like architectures AT 2 optimal in a wide range of T are already known
from the previous literature. The mesh of CCC and the mesh of PS are shown
to be AT 2 optimal for the merging in the range of T (O(log n), O(vn)] in [13),
also Bilardi (21] in his thesis use the cycles and meshes to achieve the optimal
AT 2 tradeoff for sorting in the range of T (O(log n), O(vn)].

Proposed as a permutation network, the k-SHUFFLE was used by D. Lawrie
[4) for problems of efficient access to memory, Wu in (10) discusses carefully the
full set of permutation it is possible to perform with the shuffle network. In (11]
the generalized shuffle is introduced and discussed as an efficient interconnection
network for SIMD ma.chines.

Our main results are:

1. The SCA in the pipelined version is the CCC if the size of the arrays is
log n or more and is the PS for s=l. H s < log n but s = O(log n) the
SCA is still an AT2 optimal architecture for function like odd-even merge,
FFT etc. Furthermore the SCA seems to be the only architecture that is
the PS and the CCC.

2. the PkS can emulate the MOT fork= yn without significant degradation
of time complexity, is the PS for k = 2, and is the binary tree for k = n.

2

7
7
l
n
l
l
l

I
J

u

J

1

1
l
l

l

l

J
J

J

Hence the paradigm naturally running on the PkS, that is the Generalized
Recursive Combination (GRC), efficiently support the paradigms of all the
above mentioned network .

3. all the algorithms can be easily described with an algol-like high level
language.

In the following we will call PS or SEN the architecture defined in [1]. The
binary tree will have two kind of processors : the Leaves and the Internal Nodes
with different purposes. In fact while the internal nodes can perform only very
simple operations like masking and logic operations, we consider the Leaves to
have the same computational capabilities as a microprocessor. All the wires
allow data exchange and the transmission time is not dependent on the wire
length (constant delay model of computation). (for a complete discussion about
the computation models see [6,7,8,9,20]}.

2 The Shuffle-Connected Arrays

In this section n = 2d, s = 2r and N = n/s. IfV[i],i = 0,1, ... ,N-1 are
N processors, the the Transfer Edges (TE) and the Shuffle Edges (SE) of the
Shuffle Exchange Network are defined as follows:

TE= {(V[l], V[2l mod(N - 1)]), l = O, 1, ... , N - 2}

u{(v[N - 1], v[N - 1]}}

EE= { (V[2l], V[2l + 1]), l = o, 1, ... , ~ - 1}

If we replace each V(i], i = O, 1, ... , N - 1 with a linear array of s = 2r elemen-
tary processors v(i, .i], :i = O, 1, ... , s - 1, the Shuffle-Connected Array (SCA) is
defined as follows:

TE= {(v[l, o], v(2l mod(N - 1), O]}, l = O, 1, ... , N - 1}

u{(v(l, m], v[l, m+ 1]}, m = O, 1, ... , s - 2; l = O, 1, ... ,N - 1}

EE= {(v[2l, O], v[2l + 1, O]}, l = O, 1, ... N - 1}

The network for N=32 and s=4 is shown in fig. 2. The SCA computation
paradigm is a sequence of log N (OPER; SHUFFLE) steps and s input steps.
An (OPER; SHUFFLE) step is:

procedure OP ER(N, .i)
begin

3

f oreach l: (o ~ l ~ !f - 1)
pardo

oper (v[2l, o], v[2l + 1, o), l, .i)
odpar

end
procedure SHUFFLE(N)
begin

for each l : (0 ~ l ~ N - 1)
pardo

v[l, O] -+ v[2lmod(N - 1), O]
odpar

end

where the operation-+ is a:simple content transfer and the oper(A, B, l, .i) is the
function computed by the couple of processors A and B; it may also depend on l
and on the computation step J·. The parallel Algol-like statement: f oreach var:
P(var) pardo "body" odpar means that "body" must be performed in parallel
on all the values of var such that P(var) is true. The final paradigm, shown
in table 1, needs the input procedure that is a ·sequence of transfer operation
through the size s arrays.

Each step of the MAIN loop has time complexity O(log N), the SHIFT
step has time complexity O(s). The resulting time complexity is O(log N + s)
for problems that need only a constant number of complete steps (i.e. FFT,
odd-even merge, etc.) assuming that oper(A, B, l, .i) can be performed in time
0(1). It is possible to prove that the layout area of the circuit is A= 0 (N2 / s2)

starting from the optimal layout for the PS with N processors, hence the network
achieves an optimal AT 2 complexity for that class of problems.

Before introducing other architectures we would like to mention a natural
composition of SCAs. If we consider s SCAs whose i - th arrays i = O, 1, ... , N
are composed as a square mesh of side s, we obtain an architecture we call
Shuffle-Connected Meshes (SCM). It has similar properties of the SCA and
exhibits AT 2 = O(n2) for Tin the range [O(logn), O(vn)] ands in the range
[1,0(fo)).

An other important measure that particularly fits with pipelined architec­
tures is the period P [8). In fact the use of the SCA in a pipelined mode is
strongly affected by the period P = O(p(log n)) where p(log n) is a generic
polynomial in log n. As well as the first data wave enters the last processors
column, i.e. the column operated by the PS, new data cannot be accepted before
the processing is fin.ished. Assuming that the processing time for each wave is
O(log nL the above defined SCA will process O(log n) data waves in O (log2 n)
time when running in pipelined mode.

A known alternative presentation of the PS [5) is shown in fig.1. It has log n
stages and is suitable for pipelined processing. Its period is 0(1) and as well as

4

7
l

I

1

r

J

I
J

I
l

l

l
I

I

J

l

j

J
l

s ?:: log n this network can be embedded on the last log n columns of the SCA
substituting the one stage PS.

Let us define also the Partial Perfect Shuffle (PPS[f]) as a 1·-stage (i <
log N) Perfect Shuffle (fig.3). If a data pattern straightly ran on the circuit
only the first f steps of the perfect shuffle would be performed. If we connect
by means of a PS the (i - l)st and the first stages and let the data cycle in the
network, all the steps of the SEN can be computed in O(log N). The period
is 0(1) for sets off waves, i.e. the first set off waves enter the network with
period 1, the second set of f waves must wait O (log N Ji) steps to assure a
perfect behaviour.

The pipelined Shuffle Connected Arrays is then defined as follows:

TE= {(v[l, p], v[2l mod(N-1),p - 1 mod(s)) : 0 ~ p <sand O ~ p < logn}

U {(v!l,p], v[l,p-11): logn < p < s}

EE= { (v[2l, p], v[2l + 1, pl) : 0 ~ l ~ : and O ~ p <sand O ~ p < log n}
The (OPER; SHUFFLE) step for this network will be:

procedure OPER(n,s,1·)
begin

f oreachl: (0 ~ l < i - 1)
f oreachp: (0 ~ p < log N) and (p < s)
pardo

oper (v[2l, p], v[2l + 1, p], l, f)
odpar

end
procedure SHUFFLE(n,s)
begin

enc

f oreach l: (0 ~ l < N - 1)
pardo

odpar

f oreach p: (0 < p < log N) and (p < s)
pardo

v[l,p]-+ v[2l mod(N -1) ,p-1 mod(s)]
odpar
foreach p: (log N ~ p < s)
pardo

v[l, p] -+ v[l, p - 1]
odpar

5

Indeed it is possible to prove the following

Claim 1
The pipelined SCA with n = 2d processors and array size s = 2r has opti­

mal layout for s = n/h for a constant h > 1, AT 2 = O(n 2) for s in the range
[O(logn), v'n] and AT= O(nvn) whens= vn-

Proof:
Ifs= n/h then the SCA is composed of 0(1) arrays of size O(n). Each array

can be laid out on area O(n) and the PS on a constant number of processors
only needs an area O (1).

If logn :5 s :5 O(vn) than the SCA is composed by O(n/s) arrays of sizes.
The area to laid out the arrays is O(n) and the PS on the last log (n/s) columns
of the O(n/s) arrays is laid out on area O(n 2 /s 2) in a direct way. In fact since
the wires' paths for the TE are O(n/s) and are all distinct, we can organize
them as shown in fig.8. The total area will be O (n2 / s2). The time will be O (s)
so that AT 2 = O(n 2). In the case of s = ,Jn AT= O(nvn) that is optimal
[6,8] for functions like odd-even merge, FFT, etc.

The last case is when s < log n. We cannot directly embed a PS on the
SCA because we do not have a sufficient number of columns, but it is possible
to use the PPS[s]. If s = O(log n) the total area will be O(n) for the arrays
and O{n 2 /s 2) for the PS between the last and the first column. Since the time
complexity is O(s) also in this case the circuit has an AT 2 = O(n 2). l:,.

It is interesting to note that when s is in the range [log n, O(vn)] the SCA
has the identical topology of the CCC. If we assume (as we stated in the in­
troduction) that all the wires can support data exchange also the computation
paradigm is the same. The obvious implication is the complete equivalence
between the Ascend-Descend and the pipelined (OPER;SHUFFLE) classes.

3 The Generalized Recursive Combination

The Recursive Combination (RC) played a very important role in the VLSI
design of broad and general purpose architectures. Directly obtained by the
well known divide and conquer sequential technique, it presents the following
attractive properties:

1. The problems that can be solved with a divide and conquer technique are
of interest and in a great number,[12]

2. The natural parallel architecture supporting it is the n-cube, a clear and
symmetric architecture. [1,3]

6

1

7
1

I

l
J

l

j

j

J

l

l

l
l

l

1

I l

u
J.

3. The description of the algorithms can be easily done by the means of an
alqol-like high level language.[3,14j

Let the problem with the input in an array T[0:n-lj and the output in the
same array be solved by means of a call to the procedure RC(0,n - 1) where RC is:

procedure RC (l, r - 1)
begin

end

RC(l,l+ r-t - 1)
RC (l + r;~ r)
foreachj: (o ~ j ~ r;l - 1)
pardo

oper(l + j, l + r;I + j)
odpar

Problems like FFT, bitonic merge and convolution admit algorithms that
have the form of RC. More complex combinations of it can be used for problems
like sorting, calculation of symmetric functions, graphs problems etc.

In this section the Generalized Recursive Combination paradigm (GRC) is
discussed. If T[0:n-lj is the I/O array the GRC can be described by the follow­
ing procedure:

procedure GRC(l, r - 1)
begin

GRC(l, l + r;t - 1)
GRC(l + rkl' l + 2(rk-l) - 1)

GRC(l + {k-ll{r-l), r - 1)
f oreachj = O, rkl - 1
pardo

(l · l r-1 • l (k-l)(r-1) ') oper + 3, + ,.- + 3, .. . , + k + 3
odpar

end

the oper statement represents the parallel operation on k elements. The
natural architecture which support this paradigm is the recursive network shown

7

in fig.5. The graph connecting the horizontal nodes in the figure is called the
k - edge and it is used for the oper statement. It is easy to verify that GRC has
time complexity O(Tklogk n) on such a network where Tk is the time to perform
a single oper statement.

Suppose that the n node indexes are represented in radix k. Let us define the
k- edge as the graph involving the k nodes satisfying the property that one and
only one p: 0 ~ p ~ (logkn)-1 exists such that the node indexes representation
differs only in position p. Thus the topology of the multidimensional k-ary cube
can be recognized. In fig.5 the graph for n = 9 and k = 3 is shown. Anyway also
if the k-cube has these important computational properties it cannot be directly
used for a VLSI implementation mainly because the number of links for each
node is proportional to logkn. The emulation of the k-cube will be discussed in
the next section.

4 The Perfect k-Shuflle

In the following n = kd, s = kr, N = n/s. Let V(.i] denote the vertex where
T[i) is at the starting time (0 ~ .i ~ n = kd). The Transfer and the Exchange
edges of the Pk S are:

TE= { (V[.i], V[k.i mod(kd - 11) ,j = O, 1, .. , kd - 1}

EE= {" kd-l Binary Trees with the k leaves
(k(i-1),ki '- l)"i = 1,2, ... ,kd- 1}

In fig.6 the PkS is shown for n = 16 and k = 4.

Claim 2
The PkS on n = kd processors supports GRC in O(Tklogkn) where Tk is the

computation time of the oper statement on a binary tree.
Let us prove the following

Lemma 1:
At step i (0 ~ i ~ d - 1) the k leaves of each tree in a PkS will contain data
whose distance in the starting position is Kd-i.

Proof of the lemma
If all indexes i(i = O, 1, ... , kd-l) are expressed in radix k notation, they can be
considered of the form j = Ul where U = tLd-1tLa-2 .. ,u1 and l is a k-ary digit.
A tree w.ill be called the tree U (U = O, 1, ... , kd-l) if its leaves have indices Ul
for each l. It is easy to verify [11] that the data in position Ji= Ud-1tLd-2 .. ,u1l

at step i will be transferred to position Ji+l = tLd-2 .. ,u1lud-1 at step i+l. But
if at step i the data is in position Ji = Ul, at step i - 1 it was in position
Ji-1 = lU and at step O in position Jo = u,tLi-1• .. ullud-1• .. tLi+i• Since at step

8

l

7
n

l
I
j

I

J

l
l

l
l

I

l

1

d
j

J
j

i data in position Ul (l = O, I, ... , k-1) are in the same tree, the lemma is proved.

Proof of the claim
As it is possible to see by simple inspection the recursive calls of GRC are per­
formed on data whose distance depends on the steps in the same way as in the
lemma. If the tree can perform the OPER statement in time Tk than GRC can
run in O(Tkd) steps on the PkS.6

The Claim 3 suggests how the GRC can be implemented on the PkS, The al­
. gorithm to emulate the GRC on the PkS is:

procedure PkS(k, d)
begin

end

for i = 0 to d - 1
do

od

k-SHUFFLE
OPER

Where the procedure OPER and k- SHUFFLE are:

procedure OP ER(k, d, j)
begin

f oreach l: (o $ l $ kd-l - 1)
pardo

oper (v[klj, v[kl + 1], ... , v[kl + k - 1], l,j)
odpar

end
procedure k - SHUFF LE(k, d)
begin

f oreach l : (0 $ l $ kd - 1)
pardo

v[l]--+ v[klmod(kd - 1)]
odpar

end

In this way the PkS is a k-cube emulator in O(d) steps.

9

The value of k directly affects the PkS performances and changes its global
behaviour. In fact it is possible to state a correspondence between k and the kind
of architecture . the PkS can emulate. The most relevant cases are enumerated
in the following:

5

1. when k = 2 the procedure k-SHUFFLE and the procedure OPER have
the same behaviour of the SHUFFLE and OPER of the PS without any
change in the time complexity.

2. when k = vn, d = 2 and the PkS procedure run in O(Tk) time. From the
lemma 1 at step O in the tree U there are data whose distance is 1 and at
step 1 in the same tree there will be data whose distance is k. In two steps
the procedure PkS emulates the adjacences of the mesh of trees. In fig.7
all the process is shown. H Oper is a generic operation on the binary tree,
the MOT can perfoi:m it in parallel on the row trees and on the column
trees with time complexity O(Tk), On the PkS the same processing can
be performed with the same time performances by PkS(../n, 2).

3. when k = y'n, d = m and the procedure PkS runs with O(Tkm) time
complexity. In the significant case of m=3 the PkS can emulate in 3 steps
the three dimensional orthogonal trees in a way completely equivalent to
the case of m=2.

4. when k = n, d = 1 and the procedure PkS will perform the only OPER
statement on the binary tree with n leaves.

'

The layout for the PkS

Attempts in laying out the PS have interested computer scientists for a long
time. Thompson in his thesis showed that any layout for an n-nodes PS re­
quires A= O(n 2 /log 2 n) and proposed an A= O(n 2 /,J[oin) layout. Hoey and
Leiserson found a A = O(n 2 /log n) layout using an interesting technique 118].
Rodeh and Steinberg 119] lowered this upper bound to A= O(n 2 /log3l 2 n) and
finally Kleitman, Leigthon, Lepley and Miller discovered the layout achieving
the lower bound 12]. In this section we show how to layout the PkS in area
A = 0(n2 log k/ k logkn).

Let us recall some notations:
In a PkS the nodes are represented as numbers in k-ary notation. The shuffle
operation is defined as the left rotation of the digits and the necklace is an equiv­
alence class defined on the set of indexes [O, kd-l] where the equivalence relation
is: two indexes are equivalent if it is possible to transform the first in the second
by repeated application of the shuffle operation on its k-ary representation. The
length af a necklace is the cardinality of the class of equivalence.

It is intuitive that the m~imum length is logkn, The following theorem,
(known as the Fermat little theorem), holds:

1

7

l
l

J

I

t

j

j

J

J

l

.l

l

j

u
J

j

J

u

Theorem 2
If n = kd and d prime, kdik is an integer.

A corollary of the theorem 2 is that if n = kd and d is prime the number of
necklaces is O(n/log n). In [18] it is shown that the corollary holds also if d is
not prime.

If we organize the necklaces as vertical cycles of length logkn than we need
at least a dimension O(n/log n), i.e. the number of the cycles, and O(n 17c!Zkn)
horizontal lines to embed the n/k trees, then the needed area is:

A = 0 (n2 log k)
k logkn

The time complexity for algorithms requiring only a constant number of com­
plete loops is T = O(Tklogkn) than

AT2 = 0 (n2l:gn Tf)

If k = Tf than the Hoey Leiserson bound is reached; for Tk = O(log k) the
equation k = log2 k has two solutions for k=4 and k=16.

When k = yn the area bound is not satisfactory. In fact it is possible to
layout the PkS for k = yn in A= O(nlog 2n}. In this case the TE perform
a matrix transposition. Whence each processor is connected with its symmet­
ric respect to the principal diagonal. If we simply fold the processors matrix
joining the elements in symmetric positions the obtained layout will have area
O(n log2 n).

Also for the PkS it is possible to define a pipelined version. It exhibits a time
complexity O(Tklogk~) where n is the processors number, sis the number of
stages and Tk the processing time on the binary trees. With the same technique
used for the SCA the PkS embedding has A= O(tTklogk).

6 Conclusion

Two architectures based on the shuffle network have been introduced. They
span the performances in a wide range of time complexities and over different
computational paradigms. The AT 2 complexity is optimal for the SCA and
near optimal for the PkS. The related computational paradigms can be eas­
ily adapted to emulate the most relevant broad purpose architectures as the
CCC, the PS, the Mesh Of Trees. Parametrized architectures, i.e. architectures
changing performances depending on a parameter, are important in defining a
unified form for wider algorithms classes. In our case the algorithms running
on the CCC, on the PS and on the MOT are shown to be instances of the same
algorithm form: The PkS paradigm.

11

Acknowledgements
The author would like to greatfully acknowledge the referees suggestions

and comments that permitted a substantially improved version af this work. A
thanks also to Prof. Paul Cull for his helpful comments and technical assistence.

REFERENCES

.1. Stone H.S.,Parallel Processing with the Perfect Shuffle, IEEE trans. on
Comp.,C-20,2, febr.1971 pp.153-161.

2. Kleitman D., Leighton F.T., Lepley M., Miller, New layouts for the Shuffie­
exchange graph", Proceedings of the 13th Ann. Symp. on Th. of Comp.,
Milwaukee, Wisconsin 1981.

3. Preparata F.P. and Vuillemin J., The cube-connected-cycles: a versatile
network for parallel computation. Comm. of ACM, vol.24, pp.300-309,
May 1981.

4. D. Lawrie, "Access and Alignment of Data in an Array Processor," IEEE
Trans on Comp., C-24, 12, 1145-1155 (1975)

5. Batcher J .L., Sorting network and their applications, Proc. AFIPS SJCC,
vol 32-,Apr.1968, pp. 307-314.

6. Thompson, C.D. Area,. Time complexity for VLSI. Proc. 11th Annual
Symp. on Theory of Computing, Atlanta, GA, May 1979, 81-88.

7. Bilardi G., Pracchi M., Preparata F.P., A critique and appraisal of VLSI
models of computation, in Proc. CMU . conf. VLSI Syst. Comp., Oct.
1981. pp. 81-88

8. Vuillemin, J., A combinatorial limit to the computing power of VLSI cir­
cuits. Proc. 21st Symp. on Foundations of Computer Science, Syracuse,
NY, Oct. 1980 294 300.

9. Preparata F.P. and Vuillemin J.E., Area-Time Optimal VLSI Network For
Multiplying Matrices, Inf. Proc. Lett., vol 11, pp. 77-80, Oct. 1980.

10. Wu C., The Universality of the Shuffle Exchange Network, IEEE Trans
on Comp., C-30, 5, 325-332 (1981).

11. Keutzer K. and Robertson E., the M-shuffie as an interconnection net­
work for SIMD, Proc of 20th Annual Allerton Conference, Control and
Computing, Monticello, · IL, pp 264-271; Oct. 1982.

12

7
l

l

I

1
I

j

J

·1

l
~l

l
1

l
n
l

j

l
J

1

J
j

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Knuth D., The art of computer programming, Vol. 1,2,3, Addison-Wesley,
Reading, MA, 1973.

Aggarwal, On I/O placement in VLSI Circuits, Proc. 21st Annual Allerton
Conference, pp 236-243, Oct. 1983.

Preparata F.P., Algorithm Design and VLSI Architecture, Proc. Symp.
on Vector Processors and Scientific computation, Rome, March 1982.

Nath et al., Parallel Processing Based On Orthogonal Trees, IEEE trans.
on comp. vol. c-32 no. 6, june 1983.

Muller D.E. and Preparata F.P., Bounds to complexities of networks for
sorting and switching, J. ACM , vol 22, pp.195-201, Apr. 1975.

Leigthon F.T., New \ower bound techniques for VLSI, Proc. 22nd Ann.
IEEE Symp. Found. Comp. Sci., Oct. 1981, pp. 1-12.

Hoey D., Leiserson C.F., A layout for the Shuffle-Exchange Network, Proc.
1980 Int. Conf. on Parallel Processing.

Rodeh M. and Steinberg D., A layout for the Shuffle-Exchange Network
with O (n 2 / log3l 2 n) area. IEEE trans. on comp. vol. c-30 no.12 p. 977.

Brent R.P., Kung H.T., The chip complexity of binary arithmetic, Proc.
12th Annu. ACM Symp. on Th. of Comp., May 1980, pp. 190-200.

Bilardi G., The Area-Time Complexity of Sorting, Ph.D. Dissertation,
Dep. of Computer Science, University of Illinois at Urbana.

13

{SHIFT}
for f := 0 to s - 2
do

f oreach p : 0 < p 5 s - 1
pardo

for each q : 0 5 q < N - 1
pardo

u(q, p - 1) +- u[q, p)
odpar

odpar
od

{MAIN}
for ever
loop

pool

for i := 0 to (logN - 1) step 1
do

od

for each l: (0 s l < ~ - 1)
_pardo

oper(v[2l, 0), u(2l + 1, 0), l, i)
odpar
f oreach l : (0 5 l < N - 1)
pardo

u[l, 0)- > v[2lmod(N - 1), O]
odpar .

table 1

{MAIN}
for ever .
loop

for each p: 0 < p s s - 1
pardo

for each q : 0 s q < N - 1
pardo

v(q, p - 1] +- u(q, p)
odpar

odpar
for i := 0 to (log N - 1) step 1
do

f oreach l : (0 5 l < 'f - 1)

.l

1

l
l
1

J

I
I

1

LI

J

1

1

l
l
l
l
l

~ l

l

I
I

l

I

I

I j

l
J
l

J

od
pool

pardo
aper(v[2l, O], v[2l + 1, O], l, .i)

odpar
f oreach l: (0::; l < N -1)
pardo

v[l, O] +- v[2lmod(N - 1), O]
odpar

{TRANSFER EDGES COMPUTATION}
table 2

2

0 .,___----ti O t--------tll 0

1 1

2 2

3 3

4

5 5

6

7 --7 --7

l
7
l
l
l
l
I
7
\

I

I
J

!
l
J

j

I
J

1

l
l
l

l I
7
l

~ l
1

I
l
I
j

l J

11

J (\

(., .L. ; _1

/ ' / f (~--

j
r; .

1

J

Oo
I)

~
a.,_{
~

-~
-~

r··-··-,
('\)

1-- -J
if\
Q_
Q__

J_
~

0(, ') .

-~\)

LC

l
l
l

l

J

I
J

j

l
·7

l
1
l
l

I
, l

I

I
J

I j

l l
f

u
I
J

recursive recursive recursive
box box box

F '-.i · 4 ;; l~uu--v;_,(_ v~ ~Jw~/{ -f-00- t ~

{1-fr c;. I o/4V"t,,Q,,c/4 r W~ /-{ = 3

l
7
l

. I
I
l
l
l
I

F'-J • :) , 1$_ 1-< _ c. l(be. r M ::::: _s ~ I{ =:. 3 I

I
j

j

I
j

j

j

J1

l
I

l 1

d
j r l · 9 0 6 ~

u d

u
J

step step

©)

t --f (?_ ~LL_o±;._ 'o,._._ 01 J-j!_Z

HD I : ~ ,,,__f __,_
1
'=> o tJ _.__

\ _..J_ fl f>?<-O~r-L,.__2' ~ //4[!_ ,~<)V1/3

-Lo p&fv~_,;;,,((b,....e.J Ji,;_~);

~ 'l,,T~p l .:H.z. p-"O ~ ;, J- o--""

+--B_ ~vv""'~ (d~lo-& ~) -

l
l
I
:l
. I

_I

I
~ I

l
I
I
I
J

l
u

j

l
1

l
l

' J

l

l
~ I

l
I
l

l
J

l J

l f
1

J

J
J

~

b=I]

.

~

~

~

~

~

~

0

1

2

3

4

5

6

7

r 0 -

r 4 -

.. 1 -

r 5 -

r 2 -
..

~ 6 -

.,. 3 -

- 7 ...

,

r 0 == -- -

,,,. 2 I== -- -

r 4 I:= --
r 6 I:= --

-

.,. 1 ~ -- -

.,. 3 == -- -

r 5 ~ --
.,. 7 ~ -

~

	Negro_Alberto_86_50_01_A
	Negro_Alberto_86_50_01_B

