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Introduction 

The PERFECT SHUFFLE (PS) has been the first proposed broad purpose net ­
work for fast parallel processing . Defined in 1971 by Stone [lj as a substitute for 
the hypercube machine, it effectively supports a class of algorithms with poly­
logarithmic time complexity exhibiting an optimal layout for several of them. 

Natural competitor of the perfect shuffle is the CUBE-CONNECTED CY­
CLES (CCC) . It was defined in 1979 by Preparata and Vuillemin in order to 
efficiently implement algorithms in two highly parallel classes: the ASCEND and 
the DESCEND [3J. Though presenting the same computational properties of the 
PS, the CCC shows a very regular layout and the optimal area time 2 ( or AT2 ) 

measure for problems like permutation, odd-even merge, fast fourier transform, 
etc. for the entire range of T [O(log n), O(vn)j. Furthermore the DESCEND 
class has the property to efficiently emulate the computational paradigms of 
different architectures like the perfect-shuffle, the perfect-unshuffle, and the n­
cube . [3J 

The MESH of TREES (also Orthogonal 'frees [151) well fits in the fast par­
allel processing for the interesting properties it exhibits. Not a cube emulator it 
specifies a paradigm based on the multiplex-demultiplex characteristics rather 
than on the data adjacencies . It has been defined several times by different 
authors [15,17], a complete analysis is present in [15j on different VLSI models 
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of computations. Using this interconnection scheme problems like sorting, FFT, 
matrix multiplication, connected components are effectively solved. 

The PS, the CCC, and the MOT are known as broad p,1,rpose parallel archi­
tectures because of their capability to efficiently run classes of algorithms. On 
the other side several special purpose architectures have been proposed to opti­
mally solve specific problems. The shape of this ad hoc architectures is almost 
always very complex and is the result of the composition of basic network like 
PS, CCC, Mesh etc. For this reason they are sometimes called hybrid. 

The aim of this paper is to propose two parametrized architectures and to 
study their computation models. Based on the SHUFFLE network [1] and on its 
generalized version, the k-SHUFFLE [11,4), they join the characteristics of the 
Hybrid Architectures, of the cube emulators (PS and CCC) and of the pipeline 
exhibiting high performances and an acceptable VLSI realization. In particular 
the Shuffle-Connected Arrays (SCA) and the Perfect k-Shuffle (PkS) will be 
defined. · 

The SCA is composed by a fast architecture (the PS) and a slow architecture 
(the Linear Array (LA)). Even though the overall organization of the network 
depends on the size of the LA~ the computation paradigm is always the same. 
It exhibits optimal AT 2 complexity for the Ascend-Descend algorithm in a wide 
range of time complexities. 

The PkS is composed by the generalized PS and the Binary Tree. Shown 
to be the hardware realization of an highly parallel scheme of computation: the 
Generalized Recursive Combination, it spans the emulation capabilities from the 
Binary Tree to the Perfect Shuffle passing throught the Mesh Of Trees (MOT). 

Shuffle-like architectures AT 2 optimal in a wide range of T are already known 
from the previous literature. The mesh of CCC and the mesh of PS are shown 
to be AT 2 optimal for the merging in the range of T (O(log n), O(vn)] in [13), 
also Bilardi (21] in his thesis use the cycles and meshes to achieve the optimal 
AT 2 tradeoff for sorting in the range of T (O(log n), O(vn)]. 

Proposed as a permutation network, the k-SHUFFLE was used by D. Lawrie 
[4) for problems of efficient access to memory, Wu in (10) discusses carefully the 
full set of permutation it is possible to perform with the shuffle network. In (11] 
the generalized shuffle is introduced and discussed as an efficient interconnection 
network for SIMD ma.chines. 

Our main results are: 

1. The SCA in the pipelined version is the CCC if the size of the arrays is 
log n or more and is the PS for s=l. H s < log n but s = O(log n) the 
SCA is still an AT2 optimal architecture for function like odd-even merge, 
FFT etc. Furthermore the SCA seems to be the only architecture that is 
the PS and the CCC. 

2. the PkS can emulate the MOT fork= yn without significant degradation 
of time complexity, is the PS for k = 2, and is the binary tree for k = n. 

2 

7 
7 
l 
n 
l 
l 
l 

I 
J 

u 

J 



1 

1 
l 
l 

l 

l 

J 
J 

J 

Hence the paradigm naturally running on the PkS, that is the Generalized 
Recursive Combination (GRC), efficiently support the paradigms of all the 
above mentioned network . 

3. all the algorithms can be easily described with an algol-like high level 
language. 

In the following we will call PS or SEN the architecture defined in [1]. The 
binary tree will have two kind of processors : the Leaves and the Internal Nodes 
with different purposes. In fact while the internal nodes can perform only very 
simple operations like masking and logic operations, we consider the Leaves to 
have the same computational capabilities as a microprocessor. All the wires 
allow data exchange and the transmission time is not dependent on the wire 
length (constant delay model of computation). (for a complete discussion about 
the computation models see [6,7,8,9,20]}. 

2 The Shuffle-Connected Arrays 

In this section n = 2d, s = 2r and N = n/s. IfV[i],i = 0,1, ... ,N-1 are 
N processors, the the Transfer Edges (TE) and the Shuffle Edges (SE) of the 
Shuffle Exchange Network are defined as follows: 

TE= {(V[l], V[2l mod(N - 1)]), l = O, 1, ... , N - 2} 

u{(v[N - 1], v[N - 1]}} 

EE= { (V[2l], V[2l + 1]), l = o, 1, ... , ~ - 1} 

If we replace each V(i], i = O, 1, ... , N - 1 with a linear array of s = 2r elemen-
tary processors v(i, .i], :i = O, 1, ... , s - 1, the Shuffle-Connected Array (SCA) is 
defined as follows: 

TE= {( v[l, o], v(2l mod(N - 1), O]}, l = O, 1, ... , N - 1} 

u{(v(l, m], v[l, m+ 1]}, m = O, 1, ... , s - 2; l = O, 1, ... ,N - 1} 

EE= {(v[2l, O], v[2l + 1, O]}, l = O, 1, ... N - 1} 

The network for N=32 and s=4 is shown in fig. 2. The SCA computation 
paradigm is a sequence of log N (OPER; SHUFFLE) steps and s input steps. 
An (OPER; SHUFFLE) step is: 

procedure OP ER( N, .i) 
begin 
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f oreach l: (o ~ l ~ !f - 1) 
pardo 

oper ( v[2l, o], v[2l + 1, o), l, .i) 
odpar 

end 
procedure SHUFFLE(N) 
begin 

for each l : ( 0 ~ l ~ N - 1) 
pardo 

v[l, O] -+ v[2lmod(N - 1), O] 
odpar 

end 

where the operation-+ is a:simple content transfer and the oper(A, B, l, .i) is the 
function computed by the couple of processors A and B; it may also depend on l 
and on the computation step J·. The parallel Algol-like statement: f oreach var: 
P( var) pardo "body" odpar means that "body" must be performed in parallel 
on all the values of var such that P( var) is true. The final paradigm, shown 
in table 1, needs the input procedure that is a ·sequence of transfer operation 
through the size s arrays. 

Each step of the MAIN loop has time complexity O(log N), the SHIFT 
step has time complexity O(s). The resulting time complexity is O(log N + s) 
for problems that need only a constant number of complete steps (i.e. FFT, 
odd-even merge, etc.) assuming that oper(A, B, l, .i) can be performed in time 
0(1). It is possible to prove that the layout area of the circuit is A= 0 (N2 / s2 ) 

starting from the optimal layout for the PS with N processors, hence the network 
achieves an optimal AT 2 complexity for that class of problems. 

Before introducing other architectures we would like to mention a natural 
composition of SCAs. If we consider s SCAs whose i - th arrays i = O, 1, ... , N 
are composed as a square mesh of side s, we obtain an architecture we call 
Shuffle-Connected Meshes (SCM). It has similar properties of the SCA and 
exhibits AT 2 = O(n2 ) for Tin the range [O(logn), O(vn)] ands in the range 
[1,0(fo)). 

An other important measure that particularly fits with pipelined architec­
tures is the period P [8). In fact the use of the SCA in a pipelined mode is 
strongly affected by the period P = O(p(log n)) where p(log n) is a generic 
polynomial in log n. As well as the first data wave enters the last processors 
column, i.e. the column operated by the PS, new data cannot be accepted before 
the processing is fin.ished. Assuming that the processing time for each wave is 
O(log nL the above defined SCA will process O(log n) data waves in O (log2 n) 
time when running in pipelined mode. 

A known alternative presentation of the PS [5) is shown in fig.1. It has log n 
stages and is suitable for pipelined processing. Its period is 0(1) and as well as 
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s ?:: log n this network can be embedded on the last log n columns of the SCA 
substituting the one stage PS. 

Let us define also the Partial Perfect Shuffle (PPS[f]) as a 1·-stage (i < 
log N) Perfect Shuffle (fig.3). If a data pattern straightly ran on the circuit 
only the first f steps of the perfect shuffle would be performed. If we connect 
by means of a PS the (i - l)st and the first stages and let the data cycle in the 
network, all the steps of the SEN can be computed in O(log N). The period 
is 0(1) for sets off waves, i.e. the first set off waves enter the network with 
period 1, the second set of f waves must wait O ( log N Ji) steps to assure a 
perfect behaviour. 

The pipelined Shuffle Connected Arrays is then defined as follows: 

TE= {(v[l, p], v[2l mod(N-1),p - 1 mod(s)) : 0 ~ p <sand O ~ p < logn} 

U {(v!l,p], v[l,p-11): logn < p < s} 

EE= { (v[2l, p], v[2l + 1, pl) : 0 ~ l ~ : and O ~ p <sand O ~ p < log n} 
The (OPER; SHUFFLE) step for this network will be: 

procedure OPER(n,s,1·) 
begin 

f oreachl: (0 ~ l < i - 1) 
f oreachp: (0 ~ p < log N) and (p < s) 
pardo 

oper ( v[2l, p], v[2l + 1, p], l, f) 
odpar 

end 
procedure SHUFFLE(n,s) 
begin 

enc 

f oreach l: (0 ~ l < N - 1) 
pardo 

odpar 

f oreach p: (0 < p < log N) and (p < s) 
pardo 

v[l,p]-+ v[2l mod(N -1) ,p-1 mod(s)] 
odpar 
foreach p: (log N ~ p < s) 
pardo 

v[l, p] -+ v[l, p - 1] 
odpar 
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Indeed it is possible to prove the following 

Claim 1 
The pipelined SCA with n = 2d processors and array size s = 2r has opti­

mal layout for s = n/h for a constant h > 1, AT 2 = O(n 2 ) for s in the range 
[O(logn), v'n] and AT= O(nvn) whens= vn-

Proof: 
Ifs= n/h then the SCA is composed of 0(1) arrays of size O(n). Each array 

can be laid out on area O(n) and the PS on a constant number of processors 
only needs an area O ( 1). 

If logn :5 s :5 O(vn) than the SCA is composed by O(n/s) arrays of sizes. 
The area to laid out the arrays is O(n) and the PS on the last log (n/s) columns 
of the O(n/s) arrays is laid out on area O(n 2 /s 2 ) in a direct way. In fact since 
the wires' paths for the TE are O(n/s) and are all distinct, we can organize 
them as shown in fig.8. The total area will be O ( n2 / s2 ). The time will be O ( s) 
so that AT 2 = O(n 2 ). In the case of s = ,Jn AT= O(nvn) that is optimal 
[6,8] for functions like odd-even merge, FFT, etc. 

The last case is when s < log n. We cannot directly embed a PS on the 
SCA because we do not have a sufficient number of columns, but it is possible 
to use the PPS[s]. If s = O(log n) the total area will be O(n) for the arrays 
and O{n 2 /s 2 ) for the PS between the last and the first column. Since the time 
complexity is O(s) also in this case the circuit has an AT 2 = O(n 2 ). l:,. 

It is interesting to note that when s is in the range [log n, O(vn)] the SCA 
has the identical topology of the CCC. If we assume (as we stated in the in­
troduction) that all the wires can support data exchange also the computation 
paradigm is the same. The obvious implication is the complete equivalence 
between the Ascend-Descend and the pipelined (OPER;SHUFFLE) classes. 

3 The Generalized Recursive Combination 

The Recursive Combination (RC) played a very important role in the VLSI 
design of broad and general purpose architectures. Directly obtained by the 
well known divide and conquer sequential technique, it presents the following 
attractive properties: 

1. The problems that can be solved with a divide and conquer technique are 
of interest and in a great number,[12] 

2. The natural parallel architecture supporting it is the n-cube, a clear and 
symmetric architecture. [1,3] 
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3. The description of the algorithms can be easily done by the means of an 
alqol-like high level language.[3,14j 

Let the problem with the input in an array T[0:n-lj and the output in the 
same array be solved by means of a call to the procedure RC(0,n - 1) where RC is: 

procedure RC (l, r - 1) 
begin 

end 

RC(l,l+ r-t - 1) 
RC (l + r;~ r) 
foreachj: (o ~ j ~ r;l - 1) 
pardo 

oper(l + j, l + r;I + j) 
odpar 

Problems like FFT, bitonic merge and convolution admit algorithms that 
have the form of RC. More complex combinations of it can be used for problems 
like sorting, calculation of symmetric functions, graphs problems etc. 

In this section the Generalized Recursive Combination paradigm (GRC) is 
discussed. If T[0:n-lj is the I/O array the GRC can be described by the follow­
ing procedure: 

procedure GRC(l, r - 1) 
begin 

GRC(l, l + r;t - 1) 
GRC(l + rkl' l + 2(rk-l) - 1) 

GRC(l + {k-ll{r-l), r - 1) 
f oreachj = O, rkl - 1 
pardo 

(l · l r-1 • l (k-l)(r-1) ') oper + 3, + ,.- + 3, .. . , + k + 3 
odpar 

end 

the oper statement represents the parallel operation on k elements. The 
natural architecture which support this paradigm is the recursive network shown 
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in fig.5. The graph connecting the horizontal nodes in the figure is called the 
k - edge and it is used for the oper statement. It is easy to verify that GRC has 
time complexity O(Tklogk n) on such a network where Tk is the time to perform 
a single oper statement. 

Suppose that the n node indexes are represented in radix k. Let us define the 
k- edge as the graph involving the k nodes satisfying the property that one and 
only one p: 0 ~ p ~ (logkn)-1 exists such that the node indexes representation 
differs only in position p. Thus the topology of the multidimensional k-ary cube 
can be recognized. In fig.5 the graph for n = 9 and k = 3 is shown. Anyway also 
if the k-cube has these important computational properties it cannot be directly 
used for a VLSI implementation mainly because the number of links for each 
node is proportional to logkn. The emulation of the k-cube will be discussed in 
the next section. 

4 The Perfect k-Shuflle 

In the following n = kd, s = kr, N = n/s. Let V(.i] denote the vertex where 
T[i) is at the starting time (0 ~ .i ~ n = kd). The Transfer and the Exchange 
edges of the Pk S are: 

TE= { (V[.i], V[k.i mod(kd - 11) ,j = O, 1, .. , kd - 1} 

EE= {" kd-l Binary Trees with the k leaves 
(k(i-1),ki '- l)"i = 1,2, ... ,kd- 1} 

In fig.6 the PkS is shown for n = 16 and k = 4. 

Claim 2 
The PkS on n = kd processors supports GRC in O(Tklogkn) where Tk is the 

computation time of the oper statement on a binary tree. 
Let us prove the following 

Lemma 1: 
At step i (0 ~ i ~ d - 1) the k leaves of each tree in a PkS will contain data 
whose distance in the starting position is Kd-i. 

Proof of the lemma 
If all indexes i(i = O, 1, ... , kd-l) are expressed in radix k notation, they can be 
considered of the form j = Ul where U = tLd-1tLa-2 .. ,u1 and l is a k-ary digit. 
A tree w.ill be called the tree U (U = O, 1, ... , kd-l) if its leaves have indices Ul 
for each l. It is easy to verify [11] that the data in position Ji= Ud-1tLd-2 .. ,u1l 

at step i will be transferred to position Ji+l = tLd-2 .. ,u1lud-1 at step i+l. But 
if at step i the data is in position Ji = Ul, at step i - 1 it was in position 
Ji-1 = lU and at step O in position Jo = u,tLi-1• .. ullud-1• .. tLi+i• Since at step 
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i data in position Ul ( l = O, I, ... , k-1) are in the same tree, the lemma is proved. 

Proof of the claim 
As it is possible to see by simple inspection the recursive calls of GRC are per­
formed on data whose distance depends on the steps in the same way as in the 
lemma. If the tree can perform the OPER statement in time Tk than GRC can 
run in O(Tkd) steps on the PkS.6 

The Claim 3 suggests how the GRC can be implemented on the PkS, The al­
. gorithm to emulate the GRC on the PkS is: 

procedure PkS(k, d) 
begin 

end 

for i = 0 to d - 1 
do 

od 

k-SHUFFLE 
OPER 

Where the procedure OPER and k- SHUFFLE are: 

procedure OP ER(k, d, j) 
begin 

f oreach l: (o $ l $ kd-l - 1) 
pardo 

oper (v[klj, v[kl + 1], ... , v[kl + k - 1], l,j) 
odpar 

end 
procedure k - SHUFF LE( k, d) 
begin 

f oreach l : ( 0 $ l $ kd - 1) 
pardo 

v[l]--+ v[klmod(kd - 1)] 
odpar 

end 

In this way the PkS is a k-cube emulator in O(d) steps. 
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The value of k directly affects the PkS performances and changes its global 
behaviour. In fact it is possible to state a correspondence between k and the kind 
of architecture . the PkS can emulate. The most relevant cases are enumerated 
in the following: 

5 

1. when k = 2 the procedure k-SHUFFLE and the procedure OPER have 
the same behaviour of the SHUFFLE and OPER of the PS without any 
change in the time complexity. 

2. when k = vn, d = 2 and the PkS procedure run in O(Tk) time. From the 
lemma 1 at step O in the tree U there are data whose distance is 1 and at 
step 1 in the same tree there will be data whose distance is k. In two steps 
the procedure PkS emulates the adjacences of the mesh of trees. In fig.7 
all the process is shown. H Oper is a generic operation on the binary tree, 
the MOT can perfoi:m it in parallel on the row trees and on the column 
trees with time complexity O(Tk), On the PkS the same processing can 
be performed with the same time performances by PkS(../n, 2). 

3. when k = y'n, d = m and the procedure PkS runs with O(Tkm) time 
complexity. In the significant case of m=3 the PkS can emulate in 3 steps 
the three dimensional orthogonal trees in a way completely equivalent to 
the case of m=2. 

4. when k = n, d = 1 and the procedure PkS will perform the only OPER 
statement on the binary tree with n leaves. 

' 

The layout for the PkS 

Attempts in laying out the PS have interested computer scientists for a long 
time. Thompson in his thesis showed that any layout for an n-nodes PS re­
quires A= O(n 2 /log 2 n) and proposed an A= O(n 2 /,J[oin) layout. Hoey and 
Leiserson found a A = O(n 2 /log n) layout using an interesting technique 118]. 
Rodeh and Steinberg 119] lowered this upper bound to A= O(n 2 /log3l 2 n) and 
finally Kleitman, Leigthon, Lepley and Miller discovered the layout achieving 
the lower bound 12]. In this section we show how to layout the PkS in area 
A = 0( n2 log k/ k logkn). 

Let us recall some notations: 
In a PkS the nodes are represented as numbers in k-ary notation. The shuffle 
operation is defined as the left rotation of the digits and the necklace is an equiv­
alence class defined on the set of indexes [O, kd-l] where the equivalence relation 
is: two indexes are equivalent if it is possible to transform the first in the second 
by repeated application of the shuffle operation on its k-ary representation. The 
length af a necklace is the cardinality of the class of equivalence. 

It is intuitive that the m~imum length is logkn, The following theorem, 
(known as the Fermat little theorem), holds: 
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Theorem 2 
If n = kd and d prime, kdik is an integer. 

A corollary of the theorem 2 is that if n = kd and d is prime the number of 
necklaces is O(n/log n). In [18] it is shown that the corollary holds also if d is 
not prime. 

If we organize the necklaces as vertical cycles of length logkn than we need 
at least a dimension O(n/log n), i.e. the number of the cycles, and O(n 17c!Zkn) 
horizontal lines to embed the n/k trees, then the needed area is: 

A = 0 (n2 log k ) 
k logkn 

The time complexity for algorithms requiring only a constant number of com­
plete loops is T = O(Tklogkn) than 

AT2 = 0 (n2l:gn Tf) 

If k = Tf than the Hoey Leiserson bound is reached; for Tk = O(log k) the 
equation k = log2 k has two solutions for k=4 and k=16. 

When k = yn the area bound is not satisfactory. In fact it is possible to 
layout the PkS for k = yn in A= O(nlog 2n}. In this case the TE perform 
a matrix transposition. Whence each processor is connected with its symmet­
ric respect to the principal diagonal. If we simply fold the processors matrix 
joining the elements in symmetric positions the obtained layout will have area 
O(n log2 n). 

Also for the PkS it is possible to define a pipelined version. It exhibits a time 
complexity O(Tklogk~) where n is the processors number, sis the number of 
stages and Tk the processing time on the binary trees. With the same technique 
used for the SCA the PkS embedding has A= O(tTklogk). 

6 Conclusion 

Two architectures based on the shuffle network have been introduced. They 
span the performances in a wide range of time complexities and over different 
computational paradigms. The AT 2 complexity is optimal for the SCA and 
near optimal for the PkS. The related computational paradigms can be eas­
ily adapted to emulate the most relevant broad purpose architectures as the 
CCC, the PS, the Mesh Of Trees. Parametrized architectures, i.e. architectures 
changing performances depending on a parameter, are important in defining a 
unified form for wider algorithms classes. In our case the algorithms running 
on the CCC, on the PS and on the MOT are shown to be instances of the same 
algorithm form: The PkS paradigm. 
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{SHIFT} 
for f := 0 to s - 2 
do 

f oreach p : 0 < p 5 s - 1 
pardo 

for each q : 0 5 q < N - 1 
pardo 

u(q, p - 1) +- u[q, p) 
odpar 

odpar 
od 

{MAIN} 
for ever 
loop 

pool 

for i := 0 to (logN - 1) step 1 
do 

od 

for each l: (0 s l < ~ - 1) 
_pardo 

oper( v[2l, 0), u(2l + 1, 0), l, i) 
odpar 
f oreach l : (0 5 l < N - 1) 
pardo 

u[l, 0)- > v[2lmod(N - 1), O] 
odpar . 

table 1 

{MAIN} 
for ever . 
loop 

for each p: 0 < p s s - 1 
pardo 

for each q : 0 s q < N - 1 
pardo 

v(q, p - 1] +- u(q, p) 
odpar 

odpar 
for i := 0 to (log N - 1) step 1 
do 

f oreach l : (0 5 l < 'f - 1) 

.l 

1 

l 
l 
1 

J 

I 
I 

1 

LI 

J 



1 
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l 
l 
l 
l 
l 

~ l 

l 

I 
I 

l 

I 

I 

I j 

l 
J 
l 

J 

od 
pool 

pardo 
aper( v[2l, O], v[2l + 1, O], l, .i) 

odpar 
f oreach l: (0::; l < N -1) 
pardo 

v[l, O] +- v[2lmod(N - 1), O] 
odpar 

{TRANSFER EDGES COMPUTATION} 
table 2 

2 



0 .,___----ti O t--------tll 0 

1 1 
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7 --7 --7 
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I 
7 
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I 
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l 
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I 
J 



1 

l 
l 
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l 
·7 

l 
1 
l 
l 

I 
, l 

I 

I 
J 

I j 

l l 
f 

u 
I 
J 

recursive recursive recursive 
box box box 

F '-.i · 4 ;; l~uu--v;_,(_ v~ ~Jw~/{ -f-00- t ~ 

{1-fr c;. I o/4V"t,,Q,,c/4 r W~ /-{ = 3 
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step step 
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t --f (?_ ~LL_o±;._ 'o,._._ 01 J-j!_Z 

HD I : ~ ,,,__f __,_
1
'=> o tJ _.__ 

\ _..J_ fl f>?<-O~r-L,.__2' ~ //4[!_ ,~<)V1/3 
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5 

6 

7 

r 0 -

r 4 -

.. 1 -

r 5 -

r 2 -
.. 

~ 6 -

.,. 3 -

- 7 ... 

, 

r 0 == -- -

,,,. 2 I== -- -

r 4 I:= --
r 6 I:= --

-

.,. 1 ~ -- -

.,. 3 == -- -

r 5 ~ --
.,. 7 ~ -

~ 
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