
I 

91-60-10 

urUUEAS~TY 

Implementing Logic in Leda 

Wolfgang Pesch 
Department of Computer Science 

Oregon State University 
Corvallis, OR 97331 



n 
n 
1 

0 
fl 
. I 

. I 
j 

J 

Implementing Logic in Leda 

Wolfgang Pesch 
Department of Computer Science 

Oregon State University 
Corvallis, OR 

97331 
peschw@mist.cs .orst.edu 

September 30, 1991 

Abstract 
Leda is a newly evolving, strongly typed, compiled multi-paradigm programming 
language. This paper describes the integration of one of its supported paradigms, the 
logical (or relational) paradigm, into the language and the current implementation. It also 
describes implementational aspects of enumerated types and gives a variety of example 
programs that demonstrate the usefulness of the achieved blending between the logical and 
other existing programming paradigms in Leda. 

1 Introduction 

Leda is a strongly typed, compiled multi-paradigm language, which is currently under development at 
Oregon State University. A paradigm, by its very definition, offers a single-minded, cohesive view, which 
helps one to think clearly about a problem . A programming paradigm, which can be thought of as an 
abstraction based on features of existing programming languages, allows a programmer to use a restricted 
set of concepts. Each programming paradigm embodies a very specific approach to computation and thus 
affects the way one thinks about problem solving and algorithms in general. Hence the major goal in the 
research area of multi-paradigm programming languages is to investigate ways in which multiple paradigms 
can be beneficial to each other if they are made available to the programmer within a single linguistic 
framework. Leda was designed to be a vehicle for this undertaking, and it encompasses the imperative, 
functional, object-oriented and logical programming paradigms. 

Work on the implementation of the Leda compiler began as a research group project in January 1990 
and concluded in the fall of 1991. A general overview of the language as well as its raison d'etre may be 



found in [Bud89b] and [Bud89c], along with a language reference manual [ShP91], which describes the 
language as currently implemented. [Bud91c] envisions the use of multi-paradigm data structures. The 
functional paradigm and first class functions are covered in [Bud89a], [Bud89d], [Bud91b] and their actual 
implementation is found in [Che91]. The object-oriented paradigm and parameterized types are addressed in 
[Bud89d] and [Bud91b]. Their implementation as well as the overall structure and design of the Leda 
compiler are found in [Shu91]. 

This paper concentrates on the linguistic and implementational aspects of integrating the relational 
paradigm into the language. Original ideas of these aspects appear in [Bud91a]. Before getting to relational 
programming, section 2 is devoted to the implementation of enumerated types in the Leda compiler. This 
data structure had to be made available before serious work on relations could begin. Section 3 discusses 
syntactic and semantic aspects of embedding logical programming into the language and introduces the 
features present in the current system. Section 4 describes the implementation technique of these features 
along with necessary changes to other parts of the compiler. Section 5 presents a number of Leda 
programs, that demonstrate how the different paradigms (including the relational one) benefit each other. 

2 Enumerated Types 

This section describes the implementation of enumerated types in the Leda compiler. Its only connection 
with the main aspect of this paper (relational programming) is the fact, that enumerated types are most 
useful when used in relations. For the basic structure and design of the Leda compiler readers may be 
referred to [Shu91] and [ShP91]. 

A central aspect in the implementation of Leda is the fact that all entities are objects, which are 
instances of some class. Enumerated types are no exception. Furthermore, every data type in Leda is 
internally represented as an object of type CLASS. This class is not available to the programmer, but acts 
as a metaclass for defining new type objects [Shu91]. Because every Leda type is represented by a class 
object, the terms class and type will be used interchangeably throughout this paper. 

2.1 User Defined Enumerated Types 

An enumerated type in Leda is defined in the type section by assigning a parenthesized list of identifiers to 
an identifier, which is the name of the type. The list of identifiers is a set of enumerated constant values 
which variables declared to be of this type may take on. No enumerated constant may be declared twice, i.e. 
all enumerated constants must be unique. Figure 2.1.1 shows the definition of an enumerated type in Leda 
(for syntax and semantics of the language see [ShP91]): 

type 
names:=(helen, leda, zeus); 

Figure 2.1.1: Type declaration of an enumerated type 

The value of an enumerated type is an object of type CLASS and is internally defined to be a subclass of 
the predefined abstract class enum. This abstract class includes the basic operations on enumerated types. It 
is not available to the programmer, but is defined in an assembly module which has to be linked with Leda 
programs as part of the compilation process. All user defined enumerated types inherit their operations from 
this class. Figure 2.1.2 shows the class definition of the abstract class enum in pseudo Leda syntax. 

2 

l 

n 

J 

j 

J 

J 



7 
11 

l 
l 
n 
7 
l 
7 

j 

j 

I I 
J 

J 

j 

I 
J 

enum := class 
index: primitive; 

shared 
numEntries : primitive; 
entryTable : primitive; 
print : method{); 
succ method{)->enum; 
pred: method{)->enum; 
less : method(enum)->boolean; 
lessEqual : method(enum)->boolean; 
greater : method(enum)->boolean; 
greaterEqual : method(enum)->boolean; 
equal : method(enum)->boolean; 
notEqual : method(enum)->boolean; 

end; 

Figure 2.1.2: Pseudo Leda syntax defining the class enum 

C3: 

C3 inst: 

C3 numEntries: 
C3_entryTable: 

. long 

.word 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

C3_print: .long 
C3 succ: .long 
C3_pred: .long 
C3 less: .long 
C3_lessEqual: .long 
C3_greater: .long 
C3_greaterEqual: .long 
C3_equal: .long 
C3_notEqual: .long 

C3 shared: .long 
.long 
.long 
.long 
.long 
.long 
. long 
.long 
. long 
.long 
.long 

C3 inst pointer to instance table of 
of class C3 

1 
CO shared 
0 

reference count for class object 
pointer to class CLASS 
not used 

0 not used 
10 
C3 shared 

size of an object of type enum 
pointer to shared table 

0 
0 

number of enumerated constants 
table of literal strings 

C3_print_inst 
C3 succ inst 
C3yred=inst 
Cl less inst 
Cl_lessEqual inst 
Cl_greater_inst 
Cl_greaterEqual_inst 
Cl_equal_inst 
Cl_notEqual_inst 

C3 inst 
0 
C3_print 
C3 succ 
C3_pred 

repertoire of operations 
on enumerated types 

the shared table of C3: 
pointer to class itself 
pointer to superclass 
first shared variable 

C3 less 
C3_lessEqual 
C3_greater 
C3_greaterEqual 
C3_equal 
C3_notEqual I la s t shared variable 

Figure 2.1.3: Representation of class enum in memory 

3 



C3 succ code: 

C3_pred_code: 

enum ret: 

link a6,#-0 
movl a6@(12),al 
movl al@ ( 6), dS 
movl al@(2),al 
movl al@(8),a0 
movl a0@(0),d4 
addl #1,dS 
cmpl d4,d5 
bne enum ret 
clrl dS 
bra enum ret 

link a6,#-0 
movl a6@(12),al 
movl al@ ( 6), dS 
movl al@ (2), al 
movl a1@(8),a0 
movl a0@(0),d4 
subl #1, dS 
bpl enum ret 
movl d4,d5 
subl #1,dS 

movl al,sp@-
movl dS,sp@-
movl #10,sp@-
jsr malloc 
movl dO,aO 
addql #4,sp 
movl sp@+,dS 
movl sp@+,al 
movw #0,aO@(O) 
movl al,a0@(2) 
movl dS, aO@ ( 6) 
movl a6@(4),al 
lea a6@(16),sp 
movl a6@(0),a6 
jmp al@ (0) 

no local variables 
put object in al 
put index in dS 
al points to class table 
aO points to number of entries 
d4 contains number of entries 
dS contains successor index 
if index= num entries 
make it zero 
else return 
defined in C3_pred_code 

put object in al 
put index in dS 
al points to class table 
aO points to number of entries 
d4 contains number of entries 
dS contains successor index 
if index is negative 
make it (num entries - 1) 

save class pointer and new 
index before calling malloc 
push size on stack 

put index back in dS 
put class pointer back in al 
init ref cnt 
put class pointer in object 
put index into object 
load return address 
reset stack ptr, pop AR 
restore a6 
return to caller 

Figure 2.1.4: Assembly code for two methods of the class en um 

Note that en um is an abstract type and acts as a template here, i.e. it will be replaced with the actual type 
name specified by the user. The type primitive is not visible to the programmer, it merely represents 
some internal storage space [Shu91]. Every object of some enumerated type consists of an instance variable 
index, which is an index into the entryTable (a table of the string literals as specified in the list of 
identifiers) and a pointer to the shared table that contains the methods. Integer values starting from zero 
index the enumerated constants in the list. This allows for meaningful output, should an object of 
enumerated type receive a message to print itself (method print). The index is used to look up the 
appropriate string literal, which is printed out. It further allows for comparison between enumerated 
constants since their enumeration implicitly defines an order among them. Along with these logical 
operations (methods less, lessEqual, greater, greaterEqual, equal, notEqua[), the class defines two methods 
succ and pred, that return the successor and predecessor, respectively. 

4 

7 
l 
l 

n 

j 

l I 
} 

j 

J 

J 



l 

n 
n 

n 

J 

I 
J 

I 

j 

j 

1 

Cl2: 
.long 

C12 inst: .word 
.long 
.long 
.long 
.long 
. long 

Cl2 numEntries: .long 
Cl2_entryTable: .long 

.long 

.long 
Cl2 shared: .long 

.long 

.long 

.long 

.long 

.long 

. long 

.long 

.long 

.long 

.long 

.long 

.long 
Cl2 helen literal: 

.asciz 

.align 
Cl2 leda literal: 

Cl2 inst 
1 
CO shared 
0 
0 
10 
Cl2 shared 
3 
Cl2 helen literal 
C12 leda literal 
Cl2 zeus literal 
Cl2 inst 
C3 inst 
Cl2 numEntries 
Cl2_entryTable 
C3_print 
C3 succ 
C3_pred 
C3 less 
C3_lessEqual 
C3_greater 
C3_greaterEqual 
C3_equal 
C3_notEqual 

"helen" 
1 

.asciz "leda" 

.align 1 
C12 zeus literal: 

.asciz "zeus" 

.align 1 

new CLASS object, gets 
assigned a new class number 
reference count 
pointer to class CLASS 
not used 
not used 
size of a typical object 
of this type 
three entries 
entry table, contains 
pointers to literals 

pointer to its own class 
pointer to superclass 
repertoire of methods 

the string literals 
pointed to by the 
entry table 

Figure 2.1.5: Assembly code for type definition of figure 2.1.1 

Due to the uniform representation of Leda objects in memory, the actual code for the comparison methods 
of enumerated objects is the same as for objects of type integer. An enumerated type defined by the 
programmer inherits all the methods from the abstract class enum and overrides the fields numEntries and 
entryTable, since these are specific to each newly defined enumerated type. Figure 2.1.3 shows the 
predefined assembly code (68000) representing the abstract class enum, which could also be viewed as an 
instance of class CLASS. 

Every class is internally identified by a class number, in assembly code this number is preceded by the 
letter 'C'. While Cl-C6 are predefined classes, classes higher than ClO are user-defined classes [Shu91]. 
The fields numEntries and entryTable have zero entries , since they will be overridden by the actual 
enumerated type. Note how all comparison operators point to code used by the operators of the predefined 
class integer, which is referred to as Cl (for the representation of class objects in memory see [Shu91]). 
Figure 2.1.4 shows some more predefined assembly code for the methods pred and succ of class enum . 
The next figure (2.1.5) shows the assembly code that is created for the type definition in figure 2.1.1. The 
field numEntries now contains the number of enumerated constants and the field entryTable has a table of 
pointers to the literal strings. Figure 2.1.6 illustrates the run-time representation of objects of type names. 

5 



EC helen: 

EC helen inst: 

EC leda: 

EC leda inst: 

.long 

.word 

.long 

.long 

.long 

.word 

.long 

.long 

EC helen inst 

1 
Cl2 shared 
0 

EC leda inst 

1 
C12 shared 
1 

I leda uses pointer semantics 

reference count 
pointer to its defining class 
index is O for the first object 

I index is 1 for the second object 

Figure 2.1.6: Internal representation of the enumerated constants helen and leda. 

2.2 System Defined Enumerated Types 

The predefined class boolean can be thought of as an enumerated type with the definition in figure 2.2.1. 
It is the only predefined subclass of the class enum, and defines additional methods for the logical 
connectives and, or and not. The two predefined constants true and false are shown as Leda objects in 
figure 2.2.2. Figure 2.2.3 shows the memory representation of this class, which is internally named C4. 
Like every object in the language they consist of a reference count used for garbage collection, a pointer to 
its shared table and its instance fields (in this case an integer value, that serves as an index into the table of 
literals) [Shu91]. 

type 

EC 

EC 

EC 

EC 

boolean:=(false, true); 

Figure 2.2.1: An imaginary definition of the predefined type boolean 

false: 
.long 

false inst: 
.word 
.long 
.long 

true: 
.long 

true inst: 
.word 
.long 
. long 

EC 

1 
C4 
0 

EC 

1 
C4 
1 

false inst 

shared 

true inst 

shared 

pointer to its shared table 
'false' has index 0 

pointer to its shared table 
'true' has index 1 

Figure 2.2.2: Predefined enumerated constants true and false as Leda objects 

6 

n 
n 

D 

I 
J 

J 
J 

J 

J 



l 
n 

l 
0 

l 

1 

l 
J 

u 
j 

j 

C4: 

C4 inst: 

C4 numEntries: 

C4_entryTable: 

C4 and: 

C4 or: 

C4 not: 

C4 shared: 

.long 

.word 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

.long 

C4 inst 

1 
co shared 
0 
0 
10 
C4 shared 

2 

C4 false literal 
C4 true literal 

C4 and inst 

C4 or inst 

C4 not inst 

C4 inst 
C3 inst 
C4 numEntries 
C4_entryTable 
C3_print 
C3 succ -
C3 _pred 
C3 less 
C3 lessEqual -
C3 _greater 
C3_greaterEqual 
C3 _equal 
C3 _notEqual 
C4 and 
C4 or 
C4 not 

pointer to instance table 

reference count 
pointer to metaclass 

size of a typical object 
pointer to its shared table 

two entries 

points to code for the 
logical connectives 

shared table of this class 
pointer to its own class 
pointer to superclass 

three new methods for 
the logical connectives, 
that are unique to booleans 

Figure 2.2.3: Memory representation for the class boolean 

3 The Logical Paradigm 

A basic idea in logic programming is that an algorithm incorporates two parts: the logic and the control. 
The ideal of logic programming is that the programmer should only have to specify the logic component of 
an algorithm. The control should be exercised solely by the logic programming system. Unfortunately this 
ideal has not been achieved with current logic programming systems [Llo84]. This is probably due to the 
fact, that logic and control are never disjoint components of knowledge. A common-purpose programming 
language should support both the imperative and logic paradigms in a unified framework [Rad90]. 

This is certainly also one of the goals of Leda. Our belief is, that by providing the imperative (and 
other) paradigms in addition to the relational one the programmer's task will be significantly enhanced and 
allow him to more naturally formulate computations than in a single-paradigm language. 

7 



3.1 Prolog 

Pro log is by far the best known logic programming language and based upon the logic of Horn clauses. The 
programmer programs by writing assertions, and the Prolog interpreter attempts to validate these assertions, 
computing values in the process. These assertions can be either facts or rules. Prolog has a built-in facility 
for deductive retrieval through chronological backtracking and pattern matching via unification. Prolog's 
declarative style provides a natural way to represent rule-based knowledge. Figure 3.1.1 shows a database 
defining genealogical information along with an interactive session in Prolog (for a reference of the 
language see [StS86]). 

3.2 Integrating Logical Programming Into Leda 

The definition of the logical component in Leda is oriented towards the Prolog-style of programming using 
facts and rules of inference [Bud9la]. While Prolog allows for two undefined variables to be unified (i.e. if 
either one of the variables is subsequently assigned a value, this will be reflected in both variables), this 
level of unification is not supported in Leda because of the use of call-by-reference parameters, which do 
not allow for multiple levels of indirections. Var parameters are provided in Leda next to the usual call-by
value parameters [ShP91]. 

One of the major objectives in designing the language Leda was to keep the language as small as 
possible. Thus a solution formed out of existing elements of the language would be preferable to the 
introduction of a new feature [Bud91c]. The original line up of the language included functions and 
procedures as the only procedural abstractions, their difference being that a function could also return a value 
[Bud89c]. During the evolution of the language, the subprogram type procedure was abandoned in favor of 
permitting a/unction to optionally return a value. This decision was made in order to permit for yet another 
procedural abstraction, the method. Unlike a function, a method is only to be used as a class member 
(instance or shared) in a class definition and its distinctive feature lies in its ability to access the class 
members [Shu91]. 

The original idea of integrating logical programming into Leda consisted of the introduction of a third 
procedural abstraction, the relation. [Bud91a]. A relation would neither be a function, nor a procedure (or 
now method), although in imperative code it would act like a procedure and in relational code it could be 
thought of as a boolean function. Like a function or procedure, a relation would be defined with an 
argument list and most typically invoked using call-by-reference (or var) parameters. Its body would consist 
of Prolog-style rules either representing facts or rules of inference. A relation is implemented by using 
choice points which will be explained in section 4. 

Another idea was the idea of a generator, which is an expression that is capable of producing values one 
at a time on demand. This would allow for backtracking in imperative programming and be accomplished 
by creating choice points in purely imperative code using the suspend statement. Figure 3.2.2 shows an 
envisioned generator, which generates Fibonacci numbers. It takes one argument that limits the range of the 
generated Fibonacci numbers. These are passed via the return value of the function, i.e. a suspend 
statement acts like a return statement but in addition places a choice point on the activation record stack, so 
that the function can be resumed to continue evaluation from where it suspended. The concept of generators 
was popularized in the language Icon [GrG83]. 

8 

n 

l 

□ 
1 
I 

1 

j 

J 

J 

I 
J 



n 
l 
fl 

I 

l 

j 

l 
j 

I 
u 
J 

u 

child(helen, leda, zeus). 
child(hermione, helen, menelaus). 
child(castor, leda, tyndareus). 
child(pollux, leda, zeus). 
child(aeneas, aphrodite, anchises). 
child(telemachus, penelope, odysseus). 
child(hercules, alceme, zeus). 
mother(Mom, Kid) :- child(Kid, Mom, Dad). 

?- mother(Mom, aeneas). 
Mom= aphrodite. 

Continue (y/n) ? y 
NO 

?- mother(leda, Kid). 
Kid = helen. 

Continue (y/n) ? y 
Kid= castor. 

Continue (y/n) ? y 
Kid = pollux. 

Continue (y/n) ? y 
NO 

Figure 3.1.1: A genealogical database in Prolog. 

While sticking to the implementation proposed for this scheme, we have tried to come up with a 
solution that does not introduce a new procedural abstraction and yet gives as much flexibility as the 
original scheme, if not even more. Being inspired by the presence of the suspend statement, we have 
literally merged the above two schemes into one. We decided to use suspend statements exclusively for 
relational programming and allow them inside functions and methods (the only two subprogram types 
which are available), giving them meaning in connection with the newly added rel parameters. 

Generators can generally be expressed as relations, which significantly enhances their usefulness. A 
generator expressed as a relation can not only return more than one value at a time, but also has the ability 
to test incoming values for membership. Thus the original semantics of the suspend statement as 
described in [Bud91a] became superfluous, which also adds to the simplicity of the language. 

Figure 3.2.3 and 3.2.4 show the new syntax for the programs in figures 3.2.1 and 3.2.3 respectively. 
Note, that the generator in figure 3.2.4 passes its values now through the formal rel parameter b (while 
still maintaining a pass-by-value parameter n to limit the range of the produced numbers) and not via the 
return value to the calling subprogram. If the suspend statement is executed, the values of i, j and k are 
subsequently assigned to the formal rel parameter b. Also, the fail statement is absent, which will be 
explained shortly. 

9 



relation child(var name, mother, father names); 
begin 

child(helen, leda, zeus). 
child(hermione, helen, menelaus). 
child(castor, leda, tyndareus). 
child(pollux, leda, zeus). 
child(aeneas, aphrodite, anchises). 
child(telemachus, penelope, odysseus). 
child(hercules, alceme, zeus). 

end; 

relation female(var woman 
begin 

female(helen). 
female (leda) . 
female(hermione). 
female(aphrodite). 
female(penelope). 

end; 

relation mother(var mom, kid 
var 

dad: names; 
begin 

names); 

names); 

mother(mom, kid) child(kid, mom, dad). 
end; 

relation daughter(var lass, parent : names); 
begin 

daughter(lass, parent) 
daughter(lass, parent) 

end; 

female(lass), mother(parent, lass) 
female(lass), father(parent, lass) 

Figure 3.2.1: Relations as originally proposed [Bud91a] 

function fibseq(n : integer)->integer; 
var 

count, i, j, k : integer; 
begin 

i:=l; 
suspend(i); 
j :=l; 
suspend(j); 
for count:=3 ton do 

begin 
k:=i+j; 
suspend(k); 
i:=j; 
j :=k; 

end; 
fail; 

end; 

Figure 3.2.2: A generator producing the first n Fibonacci numbers [Bud91a] 

fl 
fl 
n 

7 
I 
I 

I 
u 
j 

J 
I 
J 



l 
l 
7 
1 

0 
7 

l 

j 

I 
I 

J 

J 

J 

function child(rel name, mother, father names)->boolean; 
begin 

suspend(helen, leda, zeus); 
suspend(hermione, helen, menelaus); 
suspend(castor, leda, tyndareus); 
suspend(pollux, leda, zeus); 
suspend(aeneas, aphrodite, anchises); 
suspend(telemachus, penelope, odysseus); 
suspend(hercules, alceme, zeus); 

end; 

function female(rel woman 
begin 

suspend(helen); 
suspend(leda); 
suspend(hermione); 
suspend(aphrodite); 
suspend(penelope); 

end; 

names)->boolean; 

function mother(rel mom, kid 
var 

names)->boolean; 

dad : names; 
begin 

suspend(mom, kid) 
end; 

child(kid, mom, dad); 

function daughter(rel lass, parent : names)->boolean; 
begin 

suspend(lass, parent) 
suspend(lass, parent) 

end; 

female(lass), mother(parent, lass); 
female(lass), father(parent, lass); 

Figure 3.2.3: Relations as currently implemented 

function fibseq(n : integer; rel b 
var 

count, i, j, k : integer; 
begin 

i:=l; 
suspend (i); 
j: =l; 
suspend(j); 
for count:=3 ton 

begin 
k:=i+j; 
suspend (k); 
i:=j; 
j:=k; 

end; 
end; 

integer)->boolean; 

Figure 3.2.4: A generator as currently implemented 

11 



3.2.1 Rel Parameters 

These newly introduced parameters in conjunction with the suspend statement are the primary tool of the 
logical component in Leda. These statements allow information to flow out of and into subprograms via 
unification and backtracking. The information has to be specified in the subprogram definition using the rel 
parameters. These parameters are not specifically defined as input or output parameters and can be used in 
both manners. They generally act like var parameters except that the actual parameter corresponding to a 
formal rel parameter is also allowed to take on an expression [ShP91]. 

3.2 .2 The Suspend Statement 

A suspend statement can have two forms, which are semantically equivalent to Prolog facts and rules. 
Both forms take arguments, which have to match the formal parameter list of the rel parameters in the 
subprogram definition . Exhibiting a close resemblance to Prolog, Leda subprograms carrying suspend 
statements can be very much thought of as relations (with the suspend statements themselves being the 
clauses) and are referred to as such below. Unlike Prolog, relations have to return a value of the predefined 
class boolean or some alias. However, arguments to relations can be of any type. Also, rel parameters 
can be mixed with var parameters and value parameters in any desired way. This allows for flexibility in 
blending the relational paradigm with the other paradigms, as we will shortly see. 

A suspend fact can be viewed as an assertion about a relation between its arguments. The relation 
child can be viewed as asserting that helen is a child of leda and zeus, all of which are declared to be of 
the enumerated type names (Figure 3.2.2 .1). A suspend rule describes how new relational information can 
be derived from existing relations. The subgoals on the right-hand side have to evaluate to a value of type 
boolean or some alias, i.e. they can be either other relations or boolean expressions (Figure 3.2.2.2). The 
order of the subgoals is important and can make a difference, if one is concerned about efficiency. Boolean 
predicates should generally be used at the end of the list of subgoals, since they are not able to generate new 
values, but merely can filter out previously generated values (an example will be given in section 5). 

From within imperative code a relation is invoked as if it were a boolean function (Figure 3.2.2.3). 
The returned value may be used or not. Unification causes information to flow in and out across the rel 
parameters. Since the relational paradigm is not manifested by its own procedural abstraction, but rather 
embedded in functions and methods, arbitrary imperative style code can appear between the clauses. A call 
on a relation, with some arguments potentially bound to values, is known as a query. If a query has 
multiple solutions one response will be returned. 

In order to handle unification, the types of rel parameters are required to have a method equal defined 
within their class object. This is already the case for the predefined types integer and real, as well as for 
boolean and any other enumerated type defined by the programmer. The variables specified as arguments to 
the suspend statements in the examples above don't have to be the formal parameters of the relation. The 
alternative definition of the relation mother in figure 3.2.2.4 is equivalent to the one in figure 3.2.3. 

suspend(helen, leda, zeus); 
suspend(k); 

suspend(rnorn, 
suspend(X,Y) 

Figure 3.2.2.1: Suspend/acts 

kid) :- child(kid, morn, dad); 
father(Z,X), father(Z,Y), rnale(X), X<>Y; 

Figure 3.2.2.2: Suspend rules 

12 

0 
n 
I 

I 

l 

j 

J 
I 



1 
n 
n 
I 
7 

j 

j 

J 

j 

J 

var 
pl, p2 : names; 
res : boolean; 

begin 
pl:=NIL; // set pl to 'undefined' 
mother(pl, aeneas); 
pl.print(); 

// 'aphrodite' is assigned to pl 
// prints 'aphrodite' 

p2:=NIL; 
mother(aphrodite, p2); // 'aeneas' is assigned to p2 
p2.print(); // prints 'aeneas' 

res:=mother(leda, hercules); 
res .print(); 

end; 

// arguments can be expressions 
// prints 'false' 

Figure 3.2.2.3: Invoking relations from imperative code 

relation mother(rel mom, kid 
var 

mommy, baby, dad: names; 
begin 

names); 

suspend(mommy, baby) child(baby, mommy, dad). 
end; 

Figure 3.2.2.4: Alternative definition of the relation mother 

3.2.3 The Fail Statement 

To understand failure and backtracking, a discussion of a small amount of the implementation technique is 
necessary here, although the full technique will be described in section 4. 

Whenever the system is faced with the possibility of multiple solutions to a query, a record called 
choice point is pushed on the activation record stack. A choice point has all the information necessary to 
restore the state of the program to the point where the choice was made. In case of a failure, the most recent 
choice point is used to reset the system and another alternative is tried. The example in figure 3.2.3.1 
demonstrates the use of the fail statement in imperative code. It simulates a simple catch/throw control 
flow. The invocation of the relation catch succeeds and unifies the actual parameter with the value true and 
leaves a choice point on the activation record stack. Execution resumes after the query. At some later point 
in the program (or in some other subprograms) a throw can be made back to the catch routine simply by 
failing. In imperative code this is accomplished by the fail statement. Control is transferred to the last 
point of choice, which in this case was after the first suspend statement in the relation catch. The next 
alternative is tried, which reassigns to the formal parameter X the value false. Control is then returned 
once more from the same invocation and a different execution path is followed, since the value of the actual 
parameter v has changed (the program prints out the values 1 and 3). 

13 



var 
V boolean; 
i integer; 

function catch(rel X 
begin 

boolean)->boolean; 

suspend(true); 
suspend(false); 

end; 

begin 
catch(v); 
if v then 

begin// normal execution 
i:=l; i.print(); 

I I ... some other code 

fail; 
i:=2; i.print(); // should never get here! 

end 
else 

end; 

begin// process caught execution 
i:=3; i.print(); 

end; 

Figure 3.2.3.1: Use of the fail statement in imperative code 

3.2.4 The Drive Statement 

The drive statement allows a block of statements to iterate over all solutions of a query. The formal 
parameter list of the invoked subprogram has to contain at least one rel parameter. The relation is invoked 
with the specified arguments and its most recent choice point (pointing to its next alternative) is saved. The 
statements specified in the block are executed and after restoring the saved choice point backtracking is 
invoked by failure. The next alternative will be tried. This scheme will be repeated until the relation finally 
returns false and control is transferred to after the drive statement. 

Assume the definition of a relation brother, that maintains the property that the first argument is a 
brother of the second argument. The example in figure 3.2.4.1 shows how this relation brother might be 
used with drive statements. In order to force the exploration of all pairs that maintain this property the 
actual parameters of brother have to be unbound (i.e. their value is undefined). It is only then that they 
subsequently get bound to all possible solutions. The second example that uses this relation demonstrates 
that any expression can be supplied as arguments to relations, thereby reducing the number of solutions. 

Nested drive statements and the invocation of other relations within the statement block are possible. 
The only way to break out of a drive statement is by returning from within the statement block (assuming 
that the drive statement is used in a subprogram). 

By using the fail statement control can then be transferred back into the drive statement and execution 
resumes there from the most recent choice point. This is demonstrated in the program in figure 3.2.4.2, 
which makes use of the generator fib, that generates all Fibonacci numbers less than 100. Control jumps 
back and forth between the main program and the subprogram generate . After control is transferred to 
generate for the last time, it will return the value false to the main program, thus terminating the while 
loop. 

14 

l 

l 

n 
7 
l 
l 

I 

l 
J 



l 

1 

n 
l 

1 

j 

] 

1 

j 

I 

drive brother(pl, p2) 
begin 

II assume that pl and p2 are undefined 
II prints all pairs of brothers 

pl .print(); 
p2 .print(); 

end; 

drive brother(pl, helen) print(pl); II prints all brothers of helen 

Figure 3.2.4.1 Use of the drive statement 

var 
t : boolean; 

function generate()->boolean; 
var 

k : integer; 
begin 

drive fib(k) 
begin 

k.print(); 
if (k=8) I (k=34) then return true; 

end; 
return false; 

end; 

begin 
t:=false; t.print(); 
while generate() 

begin 
t:=true; t.print(); 
fail; 

end; 
t:=false; t.print(); 

end; 

{ output: 
false 
1 
1 
2 
3 
5 
8 
true 
13 
21 
34 
true 
55 
89 
false 
} 

Figure 3.2.4.2: Returning from a drive statement 

15 



4 Implementing Relations 

Leda is implemented as an object-oriented compiler using GNU versions of C++, Lex and Yacc. It 
produces 68000 assembly language and runs currently on two departmental machines. The code generation 
part of the Leda compiler is described in general in [Shu9 l). The implementation of relations is inspired by 
the David H. D. Warren Abstract Prolog machine (W AM) [MaW88) and explained in [Bud9la). The 
following subsections describe the necessary data structures for this implementation technique along with 
the actual translation of the relational features, that had been introduced in the previous section. 

4.1 Choice Points 

Because relations are embedded into functions and methods by use of the suspend statement, their state is 
saved by simply leaving the activation record, which holds all the information about the subprogram, on 
the stack. The code generation for a suspend statement then consists of two parts: first a special record is 
created and pushed on the activation record stack. This record is called a choice point. It maintains enough 
information to restart the system should another alternative be tried. During the second part code is 
generated that unifies the arguments of the suspend statement with the formal rel parameters and/or 
invokes the subgoals on the right hand side (for suspend rules). This code is actual Leda code and will be 
created during parsing. 

A choice point consists of 5 pieces of information: the address of the previous choice point (register 
a3), an instruction address (represented by a label) where execution should resume in the case of 
backtracking, the current value of the activation record register (register a6), the current value of the 
environment pointer (register a4) (which is necessary to provide first class functions in Leda [Che91)), and 
register a2 which points to a separate data structure, the trail stack. 

The trail stack is a stack of addresses, that records the locations of variables that are being assigned 
during the process of unification. Each choice point records the current location of the trail pointer (register 
a2). As part of the backtracking process, all values marked above this location are set to the value 
"undefined". Since Leda uses pointer semantics, the 'undefinition' of a variable simply consists of clearing 
the variable location after decrementing the reference count of the object, that the variable points to, thus 
facilitating garbage collection. 

void suspendStatem::makeChoicePt(char *label) 
II makeChoicePt -- create a choice point on the stack 
II label of next address is passed 
comment("make choice point"); 
link(reg("a3"), 0, "save old choice pointer, set new one"); 
pushea(label, "save next location to branch to on stack"); 
push(reg("a6"), "save frame pointer"); 
push(reg("a4"), "save environment pointer"); 
push(reg("a2"), "save trail pointer"); 

Figure 4.1.1: Creating a choice point during code generation 

16 

l 
1 

l 
l 
n 
I 
I 
l 

l 
l 

I 

j 

I 

J 



l 
l 
n 

l 

l 
I 

l 
J 

J 

j 

I 

To create a choice point, these pieces of information are pushed on the stack, as illustrated in figure 4.1.1, 
which shows actual C++ code that is executed during the code generation phase. A pseudo assembly 
language is used in order to facilitate future portability to different 68000 assembly language dialects. 

· Because of the use of choice points to save and restore the state of relations, it is important that they 
are not removed from the activation record stack. This is implemented by a simple change of the 
subprogram epilogue for every subprogram in Leda: The stack pointer (register a6) is never decremented 
lower than the location pointed to by the current choice pointer (register a3). 

Note that this places the responsibility for removing the arguments on the called routine and not---as 
conventionally done---on the caller. The C++ code for generating a subprogram epilogue is shown in figure 
4.1.2. A return statement in the subprogram then simply translates to a jump to this epilogue label. After 
loading the return address into a register, the current choice pointer is compared to the activation record 
pointer. If there is a choice point on top of the current activation record, the activation record is not popped 
off and the jump to the calling routine is issued. In the other case, the frame pointer is restored before the 
jump is issued . The field uniqueScopeNum identifies the scope of a subprogram. 

void program::genCode() 

I I ... other code 

put(str("F", itoa(uniqueScopeNum), "_epi"), "epilogue"); 
move(regOff(reg("a6"),4),reg("al"), "load return address"); 
move(reg("a3"), reg("dl"), "move choice point into dl"); 
comp(reg("a6"), r e g("dl"), "compare frame and choice pointer"); 
blt(str("F", itoa(uniqueScopeNum), "_ret")); 
loadea(regOff(reg("a6"), 4*(3 + numParams + !!receiver)), reg("sp")); 
put(str("F", it o a(uniqueScopeNum), "_ret")); 
move(regOff(reg("a6"), 0), reg("a6"), "restore old frame pointer"); 
jump(regOff(reg("al"), 0), "jump back to calling procedure"); 

I I ... other code 

Figure 4.1.2: Epilogue of every Leda subprogram 

4.2 Backtracking And Fail 

If backtracking is invoked, several things have to be done: the values of the registers stored in the most 
recent choice point have to be restored, the effects of any assignments since the previous choice point have 
to be undone (by setting the variables, whose addresses had been recorded on the trail stack, to the value 
undefined), the stack has to be decremented and a branch to the code location given in the choice point record 
has to take place. This is all accomplished by the code in figure 4.2.1, which is included in the predefined 
assembly module . Code generation for backtracking then simply consists of a branch to this code. If no 
previous choice point is recorded, a run-time message will be issued. 

17 



fail : 

fail clear: 

fail_epi: 

fail error: 

4.3 Unification 

movl 
cmpl 
beq 
movl 

cmpl 
beq 
movl 
cmpl 
beq 
movl 
subqw 
clrl 
bra 

movl 
movl 
movl 
unlk 
jmp 

pea 
jsr 
addql 
movl 
jsr 

a3@(0),dl 
#0,dl 
fail error 
a3@(-16),d0 

a2,d0 
fail_epi 
a2@+, al 
#0,al@(O) 
fail clear 
al@(O),aO 
#1,aO@ (0) 
al@(O) 
fail clear 

a3@ (-4), al 
a3@ (-8), a6 
a3@(-12),a4 
a3 
al@(O) 

check if choice pointer points 
to a valid choice point 

load trail base from choice point 

compare tp to base 
branch if reached base 
load address 

in case object already undefined 

decrement refcount 
undefine object 

get backtrack address 
restore frame pointer 
restore env pointer 
restore choice pointer 
branch to alternate 

and sp 

fail error literal I error message 
strprint 

#4,sp 
#1,sp@-

exit 
return value for program 
program will halt 

Figure 4.2.1: Code used to restore the system after failure 

Unification is the basic mechanism, by which rel parameters are (repeatedly) assigned values . In general 
unification consists of matching up two expressions, both of which contain variables. The result is a 
substitution that, applied to the two expressions, makes them equal. 

A unification in Leda is slightly different, because a variable can only be unified with an expression. 
The unification between a variable var and an expression exp is illustrated by the Leda program in figure 
4.3.1. This code is actually created in Leda and executed during the code generation phase. 

If the variable is undefined, the value of the expression is assigned to it. The statement assign does the 
assignment and in addition pushes the address of the variable on the trail stack, enabling a future 
'undefinition' of the variable [ShP91). If the variable is defined, it is compared to the expression . If they are 
not equal, failure will invoke backtracking. In case they are equal, nothing happens. 

Note also that the use of binary operators in a Leda program is actually translated into a message, 
which is sent to the left child of the binary expression [ShP91]. This is why the types of rel parameters are 
required to have a method equal defined within their class object. It is used during the unification procedure. 

18 

l 

l 
l 

7 

I 

J 

J 

1 

I 
J 



n 

l 
l 

1 

j 

1 

LJ 

j 

j 

function unify(var : varType; exp expType); 
begin 

if defined(var) then 
if ~(var=exp) then fail//~ is the not operator 

else 
assign(var, exp); 

end; 

Figure 4.3.1: A Leda program illustrating unification 

4.4 Suspend Facts 

Suspend statements are implemented through the C++ class suspendStatem, whose definition is given in 
figure 4.4.1. The two constructors in the definition are used for suspend facts and rules respectively. The 
private field interna/Code consists of Leda code that accomplishes the unification. This code is created 
during parsing. 

Assume the relation in figure 4.4.2, which contains two suspend facts, is parsed. The first constructor 
of suspendStatem will get invoked. Type checking consists of checking the subprogram type (suspend 
statements can only occur within functions or methods), the return type of the subprogram (has to be of 
boolean or some alias) and the correspondence between actual suspend parameters and formal rel 
parameters defined in the subprogram head. 

class suspendStatem: public Statem { // relational statement 
private: 

Statem *internalCode; 
public: 

) i 

suspendStatem(actualParams*); //fora fact 
suspendStatem(actualParams*, actualParams*); //fora rule 
typeCheckRes checkClauses(actualParams*); 
typeCheckRes checkActualRelParams(typeArgsList*, actualParams*, 

errSuppress=NO_SUPPRESS); 
void makeChoicePt(char*); 
void genCode(); 

Figure 4.4.1: The C++ class definition for suspend statements 

function child(rel name, mother, father 
begin 

suspend(helen, leda, zeus); 
suspend(hermione, helen, menelaus); 

end; 

names)->boolean; 

Figure 4.4.2: The relation child 

19 



Rl: 

R2: 

rnakeChoicePt(Rl); 
unify(narne, h e l e n); 
unify(rn o th e r, leda); 
unify(father, ze u s ); 
return true; 

rnakeChoi c ePt( R2 ); 
unify(narne, h e rrnione); 
unify(rnother, helen); 
unify(father, rnenelaus); 
return true; 

return fal s e; 

Figure 4.4.3 : Translation of the relation child 

void susp e ndStatern: :genCode() 
{ 

c har s[COMSIZE); 
sprintf (s, "suspendStatern: :genC ode () "); 
cornrnent(s); 

int label; 
rnakeLabelsR(label,l); 
this- >rnakeCh o icePt(str("R", itoa(label))); 
internalCode- >genC o de(); // generate internal co d e fo r relati ons 
put( s tr("R", it oa (l a bel))); 

Figure 4.4.4 : C++ code for the method suspendStatem ::genCode() 

After type checking is performed, the actual unification code is created and assigned to the field 
internalCode. During the code generation phase the method suspendStatem ::genCode() is executed (figure 
4.4.4.). It first creates a choice point and then generates code for the unification by sending the message 
genCode() to its private field internalCode . 

A pseudo-code description of this code is shown for two suspend facts in figure 4.4.3, making use of 
the earlier defined function unify . After creating a choice point, the code tests the values of the associated 
variables, either assigning them or branching to the failure routine. If the unifications succeed the value 
true is returned to the calling program and the activation record is left on the stack, thus enabling future 
backtracking to this point. If none of the suspend statements of a subprogram can be satisfied, false is 
returned to the calling program after the last statement of the subprogram has been executed. In this case the 
activation record is popped off. 

4.5 Suspend Rules 

Suspend rules are a bit more complic ated. Their type checking consists of the type checking described above 
for facts and of an additional check, whether the subgoals evaluate to a boolean expression. After type 
checking is performed, the arguments of the suspend rule, if they are variables (and not constants), are 
unified with the incoming actual parameters . This ensures, that information flows to the subgoals on the 
right hand side. 

20 

l 

7 

l 

j 

f 

J 

J 

j 

J 



l 
l 
n 

n 

. I 

l 
j 

j 

j 

J 

function daughter(rel lass, parent 
var 

names)->boolean; 

kid, adult : names 
begin 

suspend(lass, parent) 
suspend(kid, adult) 

end; 

:- female(lass), mother(parent, lass); 
female(kid), father(adult, kid); 

Figure 4.5.1: The relation daughter 

Rl: 

R2: 

makeChoicePt(Rl); 
unify(lass, lass); 
unify(parent, parent); 
if ~female(lass) then fail; 
if ~mother(parent, lass) then fail; 
unify(lass, lass); 
unify(parent, parent); 
return true; 

makeChoicePt(R2); 
unify(kid, lass); 
unify(adult, parent); 
if ~female(kid) then fail; 
if ~father(adult, kid) then fail; 
unify(lass, kid); 
unify(parent, adult); 
return true; 

return false; 

Figure 4.5.2: Translation of the relation daughter 

In order to demonstrate the code generation for this particular case consider figure 4.5.1, which shows an 
equivalent definition of the relation daughter from figure 3.2.3. 

The subgoals are treated like invocations and the backtracking mechanism will take care of the control. 
The expressions, which must return a value of type boolean or some alias, are translated into a conditional 
statement, which invokes backtracking in case the expression evaluates to false. This also explains the 
fact, that a "return false" statement is implicitly appended to each subprogram, that carries suspend 
statements. Failure from a relation is signalled by returning the value false. Figure 4.5.2 shows the pseudo 
translation for the relation daughter. 

4.6 Drive 

A drive statement generates all possible solutions to a query as the example in figure 4.6 .1 shows. 
Intuitively one might get the same result from within a Leda program by executing the code shown in 
figure 4.6.2 (corresponding to figure 4.6.1). After the first solution has been generated, the fail statement 
transfers control to the most recent choice point, which in this case is the relation brother and thus 
execution resumes from there. A boolean value is again returned from the invocation and tested once more. 
This loops until all solutions are found and after yielding the last solution the invocation finally returns 
false. Execution then resumes after the if-then statement. If there are no solutions to the query, the 

21 



statement block of the then part will not be executed. 
In general however this scheme might not work, since the most recent choice point does not 

necessarily have to be the one that was created during the invocation of the relation brother, but e.g. a more 
recent choice point could have been created inside the compound statement by invoking yet another relation. 
In this case the choice pointer (register a3) might not point to the relation brother anymore and thus 
backtracking will not necessarily immediately return to it. 

In order to prevent this from happening, the choice point is saved before executing the compound 
statement and restored before backtracking is invoked (Figure 4.6.3). Because nested drive statements are 
allowed, it is not sufficient to store the most recent choice point in a global register. To facilitate proper 
storage of the current choice pointer, another special stack---next to the trail stack---had to be created, which 
is called the expression stack. Register a5 points to the expression stack; an overview of the register usage 
in the current Leda compiler is given in figure 4.6.6. Figure 4.6.4 shows the C++ class definition of the 
drive statement and figure 4.6.5 the code for its method genCode(). 

drive brother(pl, p2) 
begin 

print(pl); II prints all pairs of brothers 
print (p2); 

end; 

Figure 4.6.1: The drive statement 

if brother(pl, p2) then 
begin 

print (pl); 
print(p2); 
fail; 

end; 

Figure 4.6.2: An intuitive translation of the drive statement 

if brother(pl, p2) then 
begin 

II save current choice point 
print (pl); 
print(p2); 
II restore choice point 
fail; 

end; 

Figure 4.6.3: The actual translation of the drive statement 

22 

l 
n 

[] 

l 
l 
I 

u 

J 

J 



n 

n 

. I 
1 

I 
lJ 

l 

1 

J 
J 

J 

class driveStatem: public Statem { 
private: 

invocation 
Statem 

*inv; 
*s tats; 

public: 
driveStatem(invocation*, 
void genCode(); 

Statem*); 

} ; 

Figure 4.6.4: C++ class definition of the drive statement 

void driveStatem::genCode() 
{ 

char s[COMSIZE]; 
sprintf (s, "driveStatem: :genCode () "); 
cornrnent(s); 

int label; 

inv- >genCode(); 
II code generation of the clause leaves a choice point on the AR stack 
II the choice pointer a3 p o ints to it 

makeLabelsL(label, 1); II get a new label 
compint(l, regOff(reg("a0"), 6)); II compare result with 'true' 
bne(str("L", itoa(label))); 

pushOnSpecial(reg("a3")); II save choice pointer 

sta ts- >g enCode() ; 

popOfSpecial(reg("a3")); II restore c hoice pointer 
j ump ( " fail " ) ; 

put(str("L", itoa(label))); 

Figure 4.6.5: The C++ method driveStatem::genCode() 

a0 place for returned value from every code generation routine 
al auxiliary register 
a2 trail pointer 
a3 choice pointer 
a4 environment pointer 
aS expression stack p o int er 
a6 frame pointer 
a7 s tack pointer 

Figure 4.6.6: Register usage in the implemented compiler 

23 



4.7 Further Need For An Expression Stack 

Leaving the activation records on the stack along with choice points pointing to them can affect the 
invocation of subprograms, in the case that relations are invoked during the evaluation of the actual 
parameters. In conventional compilers , after the value of a parameter has been computed, it is immediately 
pushed on the activation record stack and the same scheme is applied to the other parameters. This is 
different in Leda. If a relation is invoked during the evaluation of a parameter, its activation record will be 
left on the stack possibly on top of previously pushed parameters . This can be disastrous, if the parameter 
values are later retrieved from the invoked subprogram (by using an offset from the static link). 

For this reason an intermediate place is needed to temporarily store the parameters. The expression 
stack, which was made necessary by the implementation of the drive statement can serve this purpose. If a 
subprogram is invoked, code for the parameters is executed and the computed values are pushed on the 
expression stack. After the last parameter has been processed, all parameters are copied to the activation 
record stack, the static link is pushed on the stack and the jump to the subroutine is issued (see the C++ 
code in figure 4.7.1). 

void invocation: :genCode() 
{ 

char s[COMSIZE]; 
sprintf {s, 11 inv ocation :: genCode () 11 ); 

comment {s ); 

if {parameters) 
parameters->pushOnSpecialStack(); 
parameters->copyToRealStack(); 

var->genCode{DEREF, INVOKE); 

Figure 4.7.1: Generating code for an invocation 

4.8 Rel Parameters 

In general, rel parameters behave like var parameters, i.e. internally their address is passed as actual 
parameters during an invocation. However, the actual parameters corresponding to rel parameters are 
allowed to take on expressions. The latter is accomplished by creating a dummy pointer to the object, 
whose address is passed. This prevents changes of the formal parameter from being propagated to the actual 
parameter, a disastrous feature e.g. if a constant is passed. The code, that pushes the parameters of a 
subprogram on the expression stack before invoking it, is illustrates in figure 4.8.1. 

24 

n 
n 

l 

I 

j 

I 
J 



l 
1 

l 

I 
l 

J 
j 

J 

void actualParams: :pushOnSpecialStack() 
{ 

char s[COMSIZE); 
sprintf(s, "actualParams: :pushOnSpecialStack()"); 
comment (s); 

if (mode == VAR I I mode == REL) 

if (node->isConstant()) { II actually, node is not a variable 

node->genCode(); II generate code for the node 
move(reg("a0"), reg("al")); II save object in al 
II create a dummy pointer to this object 
push(reg("al")); 
pushint(4); II allocate space for new pointer 
jsr("_malloc"); 
addquil(4, reg("sp")); 
pop ( reg ( "a 1" ) ) ; 
move(reg("d0"), reg("a0")); 
move(reg("al"), regOff(reg("a0"), 0)); 
II new dummy pointer is in al 

else 
node->genCode(NO_DEREF); II push address if call by reference 

else { II mode is VAL 
node->genCode(); 
incrRefCnt(reg("a0")); II reference count incremented 

pushOnSpecial(reg("a0")); 

if (next) next->pushOnSpecialStack(); 
II they are pushed on the special stack in reverse order than they 
II appear later on the AR stack. 

Figure 4.8.1: Generating code for parameters and pushing their values on the stack 

5 Multi-Paradigm Programs Using Relations 

The following examples illustrate how the relational paradigm and the specific implementation of relations 
are beneficial to the other paradigms available in Leda. Examples are given, that combine the relational 
with the imperative, functional and object-oriented programming paradigms. 

5.1 Blending Relational With Imperative Programming 

The program in figure 5.1.1 illustrates the flexibility of choice for formal parameters of a function. The 
suspend statement is only to be used in conjunction with the rel parameters . This allows for passing any 
other information (via either var or value parameters) into relations. 

25 



var 
i 
k 
n 

integer; 
integer; 
real; 

function f(a 
begin 

a:=1.2; 
b:=3; 
suspend(56); 
a:=2.56; 
b:=23; 
suspend(456); 

end; 

begin 
// main 
n:=1.5676; 
k:=3; 
i:=NIL; 

real; var b integer; rel c integer)->boolean; 

drive f(n, k, i) 
begin 

n.print(); 
k.print(); 
i.print (); 

end; 
end; // main 

{ output: 
1.5676 
3 
56 
1.5676 
23 
456 
} 

Figure 5.1.1: Mixing different types of formal parameters 

Any types are allowed for rel parameters, provided they carry a method equal in their class definition. The 
program in figure 5.1.2 shows how a genealogical database might be implemented and used in a Leda 
program. Some of the relations appeared in earlier examples. The relation brother makes use of the 
method notEqua/, which is predefined for enumerated types (note that in Leda the operator syntax X <> Y is 
equivalent Lo X.notEqual(Y) or notEqual(X, Y)). If the notEqual predicate evaluates to the boolean value 
false backtracking will be invoked, forcing the exploration of yet other alternatives . This effectively filters 
out equal pairs of brothers, that are not desired to be part of the solution. Different examples are given in 
the main program that show how the relation brother might be used in imperative code. 

26 

l 

l 
l 

n 

I 
J 
I 
J 



l 

l 
n 
n 

1 

J 

j 

J 

I 
J 

u 

type 
names:={helen, leda, zeus, hermione, menelaus, castor, tyndareus, 

pollux, aeneas, aphrodite, anchises, telemachus, penelope, 
odysseus, hercules, alceme); 

var 
pl, p2, p3 : names; 
res : boolean; 

function child(rel name, mother, father names)->boolean; 
begin 

suspend(helen, leda, zeus); 
suspend(hermione, helen, menelaus); 
suspend(castor, leda, tyndareus); 
suspend(pollux, leda, zeus); 
suspend(aeneas, aphrodite, anchises); 
suspend(telemachus, penelope, odysseus); 
suspend(hercules, alceme, zeus); 

end; 

function male(rel name 
begin 

names)->boolean; 

suspend(zeus); 
suspend(menelaus); 
suspend(castor); 
suspend(tyndareus); 
suspend(pollux); 
suspend(aeneas); 
suspend(anchises); 
suspend(telemachus); 
suspend(odysseus); 
suspend(hercules); 

end; 

function mother(rel mom, kid 
var 

dad: names; 
begin 

names)->boolean; 

suspend(mom, kid) child(kid, mom, dad); 
end; 

function father(rel dad, kid 
var 

mom: names; 
begin 

names)->boolean; 

suspend(dad, kid) child(kid, mom, dad); 
end; 

function brother(rel X,Y 
var 

names)->boolean; 

z : names; 
begin 

suspend(X,Y) 
suspend(X,Y) 

end; 

father(Z,X), father(Z,Y), male(X), notEqual(X,Y); 
mother(Z,X), mother(Z,Y), male(X), notEqual(X,Y); 

27 



begin// main 

pl:=NIL; 
p2:=NIL; 
drive brother(pl, p2) 

begin // prints all pairs of brothers 
pl. print () ; 
p2. print () ; 

end; 

pl:=NIL; 
drive brother(pl, helen) pl.print(); // prints all brothers of 'helen' 

output: 
pollux 
hercules 
castor 
pollux 
} 

p2:=NIL; 
drive brother(pollux, p2) print(p2); // all siblings of 'pollux' 

output: 
helen 
hercules 
helen 
castor 

res:=brother(pollux, hercules) 
print(res); // prints 'true' 

res:=brother(castor, hercules) 
print(res); // prints 'false' 

end; // main 

Figure 5.1.2: A genealogical database in Leda 

5.2 Blending Relational With Functional Programming 

The example program in figure 5.2.1 makes use of first class functions and shows how generators interact 
with each other. The functions fibseq and primeseq take an integer as an argument and return generators 
(expressed as relations), that generate all Fibonacci and prime numbers that are less than the specified 
argument, respectively. These generators can be used either to test numbers for membership, to generate 
their sequence of numbers or as part of other relations. The relationfibprime makes use of the generators.fib 
and prime, thus constructing a new generator, that produces all numbers less than 250 that are both prime 
and Fibonacci numbers (these are 2, 3, 5, 13, 89 and 233). 

28 

n 

0 
l 
l 

I 

J 



l 
0 
n 

l 

j 

l 

11 

IJ 
j 

j 

j 

j 

type 
generator:=function(rel integer)->boolean; 

var 
p : integer; 
fib, prime, fibprime : generator; 

function fibseq(max: integer)->generator; 
begin 

return function(rel n : integer)->boolean; 
var 

end; 

i, j, k, count : integer; 
begin 

i:=l; suspend(i); 
j:=l; suspend(j); 
k:=i+j; 
while k<=max 

end; 

begin 
suspend(k); 
i:=j; j:=k; k:=i+j; 

end; 

function primeseq(max : integer)->generator; 
begin 

return function (rel n : integer)->boolean; 
var 

i,k : integer; 
flag : boolean; 

begin 
suspend(2); 
suspend(3); 
flag:=true; k:=5; 
while k<=max 

begin 
for i:=3 to k/2 if k%i=0 then flag:=false; 
if flag then suspend(k); 
flag:=true; 
k:=k+2; 

end; 
end; 

end; 

begin 
fib:=fibseq(250); // generates all fib numbers less than 250 
prime:=primeseq(250); // generates all prime numbers less than 250 
fibprime:=function(rel n : integer)->boolean; 

begin 
suspend(n) :- fib(n), prime(n); 

end; 
drive fibprime(p) p.print(); 

end; 

Figure 5.2.1: The use of generators in Leda 

29 

r 



5.3 Blending Relational With Object-Oriented Programming 

The program in figure 5.3.1 demonstrates how classes may be used in interaction with relations. It models 
the classical eight queens problem: Eight queens are to be positioned on a chess board in a way that they 
cannot attack each other. 

The class square represents the squares, that queens can be positioned on. Next to the x- and y
coordinates (whose interpretation is obvious), the class has three more methods. The print method prints 
out the coordinates of the receiver queen, the method equal checks whether a queen given as argument is 
equal to the receiver queen, and the method slash returns false or true depending on whether the receiver 
queen and the argument queen can attack each other or not, respectively. Note that slash and equal are 
actually the names of operators(/ and=, respectively), that are overloaded for class objects here. These 
operators may be used in infix notation with instances of this class as operands. 

This is shown in the relation eightQueens. This relation takes eight queens as arguments and verifies, 
whether they can attack each other or not. It furthermore can generate a solution of the problem, if the 
queens specified as arguments are undefined (for simplicity the columns of the argument queens p 1 ... p8 are 
preset, so they can only be moved in their rows by changing they-coordinate). The relation valid checks the 
validity of its argument queen, i.e. whether it is positioned on the chess board. It will generate a valid 
square for an argument queen if it has undefined fields. The slash predicate will invoke backtracking if any 
two queens, that are generated so far, can attack each other. Backtracking will then return to the last point of 
choice, which is in the relation valid. Yet another alternative for the recently positioned queen is tried. With 
the use of the drive statement all 92 solutions can be generated. 

Note that the method equal is required to be defined in the class square, since this class is the type of 
the rel parameters of the function eightQueens. Omitting to do so will result in a compile-time error. 

type 
square:=class 

x : integer; 
y: integer; 

shared 
slash 
equal 
print 

end; 

method(square)->boolean; 
method(square)->boolean; 
method(); 

var 
pl, p2, p3, p4, pS, p6, p7, p8 
res : boolean; 

square; II represent the eight queens 

method square.slash(s : square)->boolean; 
begin 

return (x<>s.x) & (y<>s.y) & (((x-s.x)*(x-s.x))<>((y-s.y)*(y-s.y))); 
end; 

method square.equal(s : square)->boolean; 
begin 

return (x=s.x) & (y=s.y); 
end; 

method square.print(); 
begin 

x.print(); y.print(); 
end; 

30 

l 

n 

D 
l 

J 

J 

J 



n 
n 
n 
l 
0 
n 

n 

l 

J 

j 

u 
u 
I 
j 

J 

J 

function valid(rel s : square)->boolean; 
begin 

suspend(s) :-col(s.x), row(s.y); 
end; 

function row(rel n 
var 

i : integer; 
begin 

integer)->boolean; 

for i:=l to 8 suspend(i); 
end; 

function col(rel n 
var 

i : integer; 
begin 

integer)->boolean; 

for i:=l to 8 suspend(i); 
end; 

function eightQueens(rel ql, q2, q3, q4, q5, q6, q7, q8 
->boolean; 

begin 
suspend(ql, q2, q3, q4, q5, q6, q7, q8) :

valid (ql), 

end; 

begin 

valid(q2), q2lql, 
valid(q3), q3lq2, 
valid(q4), q4lq3, 
valid(q5), q5lq4, 
valid(q6), q6lq5, 
valid(q7), q7lq6, 
valid(q8), q8lq7, 

q3lql, 
q4lq2, 
q5lq3, 
q6lq4, 
q7 lq5, 
q8lq6, 

q4lql, 
q5lq2, q5lql, 
q6lq3, q6lq2, 
q7 lq4, q7lq3, 
q8lq5, q8lq4, 

q6lql, 
q7lq2, q7 lql, 
q8lq3, q8lq2, 

II main program, initialize queens, bind them to columns 
pl:=square(l, NIL); p2:=square(2, NIL); 
p3:=square(3, NIL); p4:=square(4, NIL); 
p5:=square(5, NIL); p6:=square(6, NIL); 
p7:=square(7, NIL); p8:=square(8, NIL); 

drive eightQueens(pl, p2, p3, p4, p5, p6, p7, p8) 
begin 

pl .print(); 
p2 .print(); 
p3.print(); 
p4.print(); 
p5.print(); 
p6. print () ; 
p7 .print(); 
p8.print(); 

end; 
end; II main 

Figure 5.3.1: The eight queens problem 

31 

I 
I 

I 

square) 

q8lql; 



6 Conclusions 

We have succeeded in writing a very usable compiler for the evolving multi-paradigm programming 
language Leda. 

Due to the uniform design of objects in the Leda compiler, enumerated types are very elegantly treated 
as a user defined class from inside the compiler. When an enumerated type receives a message to generate 
code for itself, its class structure is laid out in memory. Type checking of enumerated types is reduced to a 
match of their respective (unique) class numbers [Che91]. Leda objects defined to be of an enumerated type 
are similar to those of the predefined type integer. From an implementational point of view this leads to 
reuse of predefined methods for the type integer. Enumerated constants are gathered during parsing and 
their code is generated by loading the appropriate label (e.g. "EC_leda") into the address register and 
dereferencing it if necessary. 

The logical programming paradigm, through its declarative style takes on a completely different view 
of computation. The strength of it lies in its ability to express in a natural way statements that query large 
bodies of data, while e.g. the imperative paradigm is better suited for complex manipulation of small to 
moderate amounts of data [Kor86]. We feel that through the redefinition of the semantics of the suspend 
statement and the addition of the rel parameters we have come up with a natural blending, where features of 
both paradigms complement each other in a synergistic way. 

One of the deficiencies of Prolog is that the declarative style is clumsy for tasks that are implicitly 
procedural in nature, such as prompting a user for a series of pieces of information [EvK88]. This is not the 
case in Leda since clauses can be arbitrarily surrounded by imperative code, which is particularly useful for 
building generators. 

In addition to Hom-clauses, Prolog provides several extra logical features which extend its power but 
also conflict with the classical semantics of logic. These features allow control over the backtracking search 
strategy and allow clauses to be manipulated, added and deleted from the program during the course of 
execution. Its most prominent one, the cut, is not available in Leda, but the manipulation, addition and 
deletion of clauses can effectively be handled by using parameterized classes [Bud9lc], thus once more 
demonstrating the usefulness of the chosen blend. Negation, a difficult concept in Prolog, can be expressed 
easily in Leda, as the example programs have shown. 

The implementation technique (to introduce choice points and leave activation records on the stack) is 
very efficient and close to many actual Prolog implementations. One drawback is the global nature of 
choice points. Only the most recent choice point can be reactivated. While this may work well for our 
chosen example programs, a bigger system might envision the use of local choice points, that are to be 
defined as Leda variables and are manipulated by sending messages to these variables. This would allow for 
several choice points to coexist. 

The drive statement explores all alternatives of a query. If generators are involved, it allows to produce 
all their values by supplying an undefined variable as argument to the invoked relation. There is no elegant 
method yet to advance a generator, except for the controlled use of the fail statement. 

Note also that the chosen implementation of relations effectively extends the notion of a generator as 
proposed in [Bud9la]. A generator in the current implementation (expressed as a relation) can return more 
than one value at a time, and in addition has the ability to test incoming values for membership. 

Another enhancement over the original concept of relations is the fact that arguments to a suspend 
statement within a suspend rule (which are variables) can now be different from the formal rel parameters of 
the relation. This allows for constants to be used in the relation head, a feature that is also available in 
Prolog. The fact that var, rel and value parameters can be mixed in any desired way allows for more 
flexibility in the use of relations. 

The Leda compiler, as currently implemented, will facilitate further research in the area of multi
paradigm programming languages. The experiences during the implementation of the language Leda already 
led to the refinement of several parts of it. The undertaking of blending different programming parndigms to 
a linguistic whole in Leda is very promising. 

32 

l 
n 
n 
l 
0 
n 
-l 

l 

l 
l 
J 
J 
LI 



l 

n 
n 
n 
1 

l 

j 

l 

I 
J 
J 

References: 

[Bud89a] 

[Bud89b] 

[Bud89c] 

[Bud89d] 

[Bud9la] 

[Bud9lb] 

[Bud9lc] 

[Che91] 

[GrG83] 

[Kor86] 

[Llo84] 

[MaW88] 

[Rad90] 

[ShP91] 

[Shu91] 

[StS86] 

Budd, T.A., "Low Cost First Class Functions", Oregon State University, Technical 
Report 89-60-12, June 1989. submitted for publication. 

Budd, T.A., "Data Structures in LEDA" , Oregon State University, Technical Report 
89-60-17, August 1989. 

Budd, T.A., "The Multi-Paradigm Programming Language LEDA", Oregon State 
University, Working Document, September 1989. 

Budd, T.A., "Functional programming in an Object-Oriented Language", Oregon State 
University, Technical Report 89-60-16, October 1989. 

Budd, T.A., "LEDA: A Blending of Imperative and Relational Programming", IEEE 
Software, January 1991. 

Budd, T.A., "Sharing and First Class Functions in Object-Oriented Languages", Oregon 
State University, Working Document, March 1991. 

Budd, T.A., "Multi-Paradigm Data Structures in LEDA", Oregon State University, 
Working Document, April 1991. 

Cherian, V., "Implementation Of First Class Functions And Type Checking For A 
Multi-Paradigm Language", Research Paper for M.S. Degree, Oregon State University, 
May 1991. 

Griswold, R.E., and Griswold, M.T., "The Icon Programming Language", Prentice Hall, 
Englewood Cliffs, New Jersey, 1983. 

Korth, H.F., "Extending The Scope Of Relational Languages", IEEE Software, January 
1986. 

Lloid, J., "Foundations Of Logic Programming", Springer-Verlag, Berlin, 1984. 

Maier, D., and Warren, D.S., "Computing With Logic: Logic programming with 
Prolog", Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1988. 

Radensky, A., "Toward Integration Of The Imperative And Logic Programming 
Paradigms: Hom-Clause Programming In The Pascal Environment", S!GPLAN Notices 
Vol. 25(2) :25-34, February 1990. 

Shur, J., and Pesch, W., "A Leda Language Definition", Oregon State University, 
Technical Report 91-60-9, September 1991. 

Shur, J., "Implementing Leda: Objects and Classes", Oregon State University, Technical 
Report 91-60-11, September 1991. 

Sterling, L. and Shapiro , E., "The Art Of Prolog", MIT Press, Cambridge, Mass., 1986. 

33 


	Pesch_Wolfgang_91_60_10_A
	Pesch_Wolfgang_91_60_10_B



