
85-1-1

LifllUEASIT'r

5CIEflCE

Type Checking and Parameterized Types

David Sandberg
Department of Computer Science

Oregon State University
Corvallis , Oregon 97331

7
n
l
l
l

n

I

u
lJ
J

u

Type Checking and Parameterized Types
David Sandberg

Oregon State University

A method for implementing parameterized types is given. Two simplifying restrictions are as

sumed : types are only parameterized with other types, and assignment is like that of SNOBOL,

CLU, and Smalltalk. An algorithm for type checking that handles parameterized types and over

loading is presented .

1. Introduction

The idea of parameterized types or "generics" is more than a decade old, but has been used

in only a few expermental languages. Although Ada[3] includes generics, Ada does not have true

parameterized types. One reason for this is that the implementation of parameterized types is

not well understood. This paper shows how parameterized types can be restricted so_that they

have a straightforward implementation. The majority of this paper describes an algorithm for

type checking that handles parameterized types and overloading.

Two simplifying restrictions are assumed . The first is that types are parameterized only

with other types. This does not allow the size of an array to be a parameter, which requires

arrays to be defined differently than they are in the Algol family of languages. Removing the size

of an array from the type can be considered an advantage since the proper size for an array is

usually not known at compile time anyway . The author's experience with parameterized types

has not shown much need for types l?arameterized with anything but another type. Experience

with CLU seems to indicate the same thing[2].

The second simplifying restriction is that every object can be represented in one word. If

the object is bigger than one word, a pointer to the object is stored. Also, an assignment state

ment will just copy the pointer to the object and not the whole object. This is the kind of assign

ment that is used in SNOBOL[6], CLU[8], and Smalltalk[4]. Treating assignment this way makes

the implementation of assignment and parameter passing independent of the types of the objects.

This makes code generation a great deal simpler. Rosenberg[lO] has looked at implementing gen

erics without this second restriction.

After making these restrictions the most complex part of dealing with parameterized types

is the type checking. The next sections describe the type checking process .

2. Informal Description of Type Checking.

To illustrate how the type check works let us look at the follow simple statment : X :=

Y +J. By removing the infix notation the following equivalent statement is formed:

assign(X,add(Y,J)). This in turn is a linear representation of a tree. The function name is the

root of the tree and its arguments are the subtrees of the root.

1

l

7
. l

j

iJ
I J

Li

J

u

f
assign
I \

X add ,,
y J

Standard compiler technology allows the program text to be easily turned into such a tree. An

arc into the root of the tree is add for use in the following description.

The symbol table is a finite set of symbols. Each symbol is a pair consisting of a name and a

type. The type may be simple like int or be parameterized like proc (int ,int ,int). The type

proc will be the type of a procedure. The last parameter of proc will be the result type of the

procedure. If the result type is Btatement , then no value is returned. The other parameters of

proc will be the types of the arguments. A parameterized type name is used to distinguish

between I-values and r-values. The I-value of a variable of type T will be represented by

name (T). The r-value will be represented by T . The symbols used in the above exampie are:

(aBBign ,proc (name (int),int ,Btatement))
(add ,proc (int ,int ,int)))
(X ,proc (name (int)))
(Y ,proc (name (int)))
(J ,proc (name (int)))

The variables are typed as procedures. This makes the following description more uniform. In

practice the type of X would be name (int) and the algorithm modified slightly to handle this.

The process of type checking will label each node of the tree with a symbol and label each

arc of the tree with a type. The label on the arc entering the root is labeled with the expected ·

type for the whole tree. A nodt: can be labeled with a element of the symbol table,

(k ,proc (t 1,t 2,t 3, ••• , tn)), if k is the name of the tree node, the number of sons of the node is

n -1, the label on the arc of the i'th sub tree is t;, and the label on the father arc / 0 is such that

I 0=tn or name (I 0)=tn. Permitting tn to equal either Io or name (I 0) makes one level of dere-

ferencing implicit. I statement

assign

name(inti/~•t

X add

int /\int

y J

Overloading is done by having more than one symbol in the symbol table with the same name.

For example:

(assign ,proc (name (int),int ,Btatement))
(assign ,proc (name (real),real ,statement))

IT more than one labeling of the tree exists, there is an ambiguity in the semantics. U no labelings

exist then there is a type conflict or an identifier is not declared .

2

1

l
n

l

j

l J

J

J

J

u

Instead of overloading the assignment operator, it would be better to have one rule to han

dle all cases. This can be done by introducing free types. Let a 1 represent a free type in the fol

lowing symbol:

(assign ,proc (name (a 1),a 11statement))

When this symbol is used to label a node of the tree, a type is first chosen and substituted for a 1

in the type of the symbol. A different type may be chosen for each node of the tree. The rest of

the matching talces place as without free types.

3. Formal Description

This section gives a more formal description of the type checking process. Let I be a set of sym

bols that represent identifiers. We will assume proc and name are in I. Let a0,a 1,a 2, • • • be a

set of symbols, not in I, used to represents free types. Let the set of types T be the ·smallest set

such that JCT and if t;ET and cE/ then c(t 1,t 2,t 3, ••• , t,.)ET. Let T' be the smallest

set such that IcT', a;ET', and if t;ET 1 and cEJ then c(t 11t 2 ,t 3, • •• , t,.)ET 1 • The

difference between T and T I is that T I allows free types in the types whereas T does not. A

symbol table will be a finite subset of E where E is the set of ordered pairs whose first component

is a member of I and the second component a member of T' of the form proc (t 1,t 2, ••• , t,.)

where n 2:: 1. We denote a 8ubstitution by a finite sequence /3= t 0, t 1, ••• , t,. where t; ET 1 . For

any q ET 1 , q I f3 will denote the element of T I formed by simultaneously replacing each

occurrence of a; by t; ,0:5 i :5 n in q . A substitution f3 is a unifier for q and q I if

q I f3=q I I {3. f3 is a most general .unifier for q and q I if for every unifier f3' of q and q 1

there exists a substitution "'f such that (q I /3) I 7=q I /3' . The term unifier comes from theorem

proving where algorithms for finding most general unifiers can be found[9].

The type checking problem is: given a set of symbols S CE, the expected type r ET, and

an ordered tree whose ·nodes are labeled with elements of I, produce a labeling of the nodes and

arcs of the tree such that the node labels are elements of S, the arc labels are elements of T, the

arc into the root is labeled with r and for each node of the tree

~
/ 1 / 2 / 3 ... '"

where / 0 ,/ 11/ 2, ••• , /,. are arc labels,

exist a substitution d

t I d=proc(/ 1112, ••• , l11 ,namc(lo)),

labels and node labels to be unique.)

4. The Algorithm

k must be the original label of the node, and there must

such that t I d =proc (I 1,/ 2, .•• , I,. ,I 0) or

(In practice we also require that the choice of the arc

We now give an algorithm for finding such a labeling. Two passes over the tree will be

made. In the first pass we work from the leaves to the root of the tree labeling each arc with a

3

l
l
l

I

lJ
ll
J

subset of T' . This set encodes all potential labelings. Suppose we have already labeled all arcs

with the sets L 1, ••• , L,. to the sons of a tree node originally labeled k. Furthermore we will

assume the sets of free symbols used in describing, S ,L 1, ••• , L,. are all disjoint. If they are not

disjoint, a renaming of the free symbols will make them disjoint. We will construct a set L O to

label the arc entering this node. Let D be a subset of S containing all the elements of S of the

form (k ,proc (t 1, t 2, ••• , t,. +1)). D contains all the symbols in S with the correct name and right

number of sons for labeling the current node. For each element of D and for each possible choice

of I 1,l 2, ••• , I,. such that /i ELi , if there exists a most general unifier d for

proc (/1,l2,. · .. , I,. ,t,.+1) and proc (t 1,t 2, ••. , t,.+1), then add t,.+1 Id to L 0• If t,.+ 1 Id is of

the form name (t'), then also add t ' .

After the first pass over the tree is complete there should exist a substitution d such that

for some t in the set labeling the arc into the root t I d =r where r is the expected type. If

there is no such d , then no labeling is possible.

The second pass will label each node with an element of S and reduce each set of labels on

the arcs to a single label. First the arc into the root is labeled with the expected type r . If the

arc into a node already has been labeled in the second pass with / 0 then, in the set D constructed

in the first pass, find an element (k ,proc (t 1, ••• , t,.)) and / 1, ••• , I,. +1 such that 1) I.-ET, and

2) there is a unifier for I.- and an element of Li, and 3) there is a unifier for

proc (t 1, ... , t,._11t.) and proc (11, ... , /,._1,/ 0) or proc (/ 1, ... , l,._1,name (/ 0)). If there is

more than one way to choose the element of D and the /i , then there is more than one labeling of

the tree. Label the node with (k ,proc (t 11 • • • t,. +1)) and the arc to the i'th son with /i.

In this algorithm the sets that label the arcs can grow to size 21- 1 where / is the number of

nodes in the tree. If S is {(a ,proc (z)),(b ,proc (a11x (a 1))),(b ,proc (a 1,y (a 1)))} and the trees that

have only one leaf label with a and / -1 internal nodes labeled with b are used, then such

behavior will be achieved.

The type matching problem is NP-complete[l]. Any arbitrary labeling can be checked to

see whether it is a solution in polynominal time. Thus the problem is in NP. To show that it is

NP-complete we will transform satisfiability of CNF boolean expressions. Give each disjunctive

clause in the expression a name, say, a 1, ••• , a,. . Let k be the number of distinct variables used

in the whole expression. Let x 1, •.• , x,. be their names. For each clause a; add a set of ele

ments to S. If x; appears in the clause add

If 'x; appears in the clause add

(a; ,proc (z (ai, .. . , a;_ 1,f ,a;+i, ... , a,.),z (a1, ... , a;-1,/ ,a;+i, ... , a,.)))

Also add (b ,proc (z (a 1, ••• , a,.))) and (c ,proc (z (ai, ... , a,.),t)). Now if we use t as the

expected symbol and a tree with one leaf that has the root label c , the leaf labeled b , and the

other nodes label with a 1, • • • , a,. then there will be a labeling for this tree if and only if the

boolean expression is satisfiable.

4

l
n
7

I

j

lJ
l J

u
j

J

5. Code Generation

After the type checking is done, code generation is fairly straightforward . If no operations

besides assignment are required on the free types in a procedure, then the code generation is no

different than in a conventional compiler. In OLU any addition operations on the free types must

be specified in a where clause. For example,

equal=proc(lstl,lst2:list[t]) returns (bool)
where t has equal: proctype(t,t) returns (bool)

(To obtain the strict OLU text replace "list[t]" by "cvt" .) This specifies that a equality procedure

is needed on type parameter "t". Alphard has an assumes clause that serves the same purpose.

The operations required on the free types should be specified and not left for the compiler to

determine. These specifications are needed for verification, for maintenance, and for reuse of the

procedure.

The simplest way to generate code for procedures with other operations specified is to have

the compiler pass the operations as additional parameters to the procedure. An optimizing com

piler could generate separate procedures for each distinction set of required operations in some

cases, but not in all cases because the number of distinct sets could be infinite[5].

6. Conclusion

The techniques for implementing parameterized types described above have successfully

been used in a compiler for an experimental language, X2. In practice, the NP-completeness of the

algorithm has not been a problem because the size of the sets used to label the arc is one or two

elements 99% of the time. The algorith ·m was modified to label the nodes with other types beside

proc. For example, a type atar(aontype,fathertype) was defined that will match a node with any

number of sons that all have the type a on type and return a type f athertype.

It seems unlikely that either of the simplifying restrictions can be removed without greatly

complicating the implementation of parameterized types. If this is so, then it is unlikely that

parameterized types will come into widespread use in the near future, as this would imply a shift

from languages like Fortan, Pascal[7], Modula-2[13], and Ada to languages more like OLU, SNO

BOL, and Smalltalk.

7. REFERENCES

[1] A. Aho, J. Hopcroft, and J. Ullman. The Deaign and Analysis of Computer Algorithms.

[2]

Addison-Wesley, 197 4.

R. Atkinson, B. Liskov, and R. Scheifler. Aspects of Implementing OLU. Proc. 1978 ACM

Annual Conference, Washington, D.O.,123-129.

5

l
l
l
n
J
1

l

1

]

l
J

j

u
J

[3] Ada Programming Language. Department of Defense, Military Standard MIL-STD-1815A,

January, 1983.

[4] A. Goldberg and D. Robson. Sma//talk-80: The Language and Its Implementation . Addison

Wesley, 1983.

[5] D. Gries and N. Gehani. Some Ideas on Data Types in High-Level Languages. CACM

20(6), June 1977, 414-420.

[6] R. E. Griswold, J. F. Poage, and I. P. Polonsky. The SNOBOL4 Programming Language,

2nd ed. Prentice-Hall, Englewood Cliffs, 1971.

[7] K. Jensen, and N. Wirth. Pascal User Manual and Report, 2nd ed. Springer-Verlag, New

York, 1974.

[8] B. Liskov, A. Snyder, R. Atkinson, and 0. Schaffert. Abstraction Mechanisms in OLU.

CACM20(8), August 1977, 564-576.

(9] Z. Manna. Mathematical Theor11 of Computation. McGraw-Hill, New York, 1974.

(10] J. Rosenberg. Generating Compact Code for Generic Subprograms. Thesis, Carnegie-Mellon

University, August 1983. Published as OMU Tech. Rep. OMU-CS-83-150.

[11] M. Shaw, ed. ALPHARD: Form and Content. Springer-Verlag, New York, 1981.

[12] B. Wegbreit. The Treatment of Data Types in ELI. CACM 17(5), May 1974, 251-264.

[13] N. Wirth. Programming in Modula-2, Springer-Verlag, New York, 1983.

6

	Sandberg_David_85_01_01_A
	Sandberg_David_85_01_01_B

