
91-60-11

urnUEASlT'r

5ClErlCE

Implementing Leda: Objects and Classes

Jim Shur
Department of Computer Science

Oregon State University
Corvallis, OR 97331-3202

n
l

fl
n

1

j

j

l

j

1

J

Implementing Leda: Objects and Classes

Jim Shur
Department of Computer Science

Oregon State University
Corvallis, OR

97331
shurj@mist.cs.orst.edu

November 22, 1991

Abstract

Leda is a strongly typed, compiled, multiparadigm programming language. This paper de­
scribes various implementation concerns which arose from the experience of writing a Leda
compiler as part of the Leda research team. These include aspects of run-time representation,
symbol-table information, and code generation. The paper concentrates on objects and classes.
An overview of the object-oriented features of the language is given, including our semantic view
of parameterized classes.

1 Introduction

Leda is a multi-paradigm, strongly typed, compiled programming language. The paradigms sup­
ported are procedural, functional, relational, and object-oriented. The primary purpose of the
language, according to its designer, "is to provide a vehicle for experiments in multi-paradigm pro­
gramming" [Bud89b]. Using relational programming techniques in Leda was originally described in
[Bud89a]. Further ideas on that topic-the language definition is still evolving-can be found in
[Bud91b]. First class functions and functional programming are discussed in [Bud89b]. The object­
oriented paradigm along with the data structures that support its use are presented in [Bud89c].
A more recent paper, [Bud91c], describes a style of programming which combines the different
paradigms.

In January of 1990, the Leda research team began the project of implementing a Leda compiler.
At the time of this writing, the compiler is generating 68000 assembly language object programs
for two different computers. More information on the actual compiler is given in Appendix A.
This paper reports on the experience of that implementation, specifically those parts relating to the
object-oriented features. First we discuss Leda in the light of past and current research relating to
multiparadigm languages. Section 3 gives a brief introduction to the language with some examples.
Section 4 explains the run-time representation of objects, an issue which had to be resolved before

1

a compiler could be built. The system for gathering symbol information is presented in Section 5.
Finally, Section 6 addresses code generation.

2 Related Work

"Which programming language am I going to use?" asks E. W. Dijkstra in the preface of A Disci­
pline of Programming[Dij76]. A recent list names approximately 1300 programming languages from
which the eminent computer scientist might choose [Lan91]. Dijkstra's belief that a programming
language-whether we like it or not-influences our thinking habits, elevates the importance of the
choice beyond aesthetic considerations. It se~ms that our approach to a given problem is born out of
our intellect, associations, and the tools we find ourself faced with. It is not surprising that the old
adage, the right tool for the right job, applies to programming languages. Unfortunately program­
mers are faced with many and varied jobs over time. Worse yet, even a single job may be quickly
decomposed into disparate sub-tasks. Provided with a monistic approach to problem-solving, a pro­
grammer can be expected to feel no less frustration than a carpenter forced to make do with only
a screwdriver. An area of research is born: What is the best way to make sure that a programmer
has a rich set of tools so that diverse problems can each be met in a natural, straightforward way?

Each of the three major first-generation programming languages were well suited for particular
tasks. Around 1966, the second-generation language PL/1 was developed as a synthesis of these­
Fortran, Cobol, and Algol 60 [Weg76]-in hopes that the language would be a good tool for scientific,
business, systems, and combined applications. This shows one way to attack the problem-a single
language providing multiple tools. Whether that approach is preferable to providing several spe­
cialized languages within some integrated environment is an open question. The latter solution is
called mixed language programming in [E&G84], and the authors suggest that "in many applications,
various parts of a complete program are best written in assorted languages." The paper cites the
difficulties of providing a suitable interface between modules written in the different languages. An
advantage of this approach is that one can still make use of existing code, e.g. numerical subroutines
written in Fortran. Current research in mixed language programming is discussed in [H&S90]. This
paper gives evidence that "it is often possible to find more common ground between disparate pro­
gramming languages and models than might be expected." This is the attitude of the Leda research
team, though we apply it to the single-language approach. That is, we believe that we can exploit
the commonality of different languages to create a single one which allows the programmer to apply
one of several models of computation to a given problem.

In the 25 years or so since the advent of PL/1, researches have made significant progress in finding
unique problem-solving approaches, or computational models. Because some of these are so distinct
and single-focused, forcing one to make a near radical shift in thinking to move from one approach
to another, they have come to be known as paradigms. Recognized paradigms we will consider here
include procedural, functional, logical, and object-oriented. Whereas PL/1 undertook to combine
different linguistic features, they were all within the context of the procedural paradigm. At this
point in history the problem of providing a state-of-the-art toolbox to the programmer becomes
more difficult as different paradigms must be made available. Thus recent research in this area has
come to use the terms multiparadigm systems, which may include multiparadigm languages, and/or
multiparadigm environments.

2

l

l
l

n

I
I

I
J

l

l

n
l
I

I
J

J

J

J

The importance of this research is argued in [Bob84]. The author criticizes the sole use of the
logical paradigm (in the form of Prolog) as the basis for fifth-generation programming. He admits
its power but asserts that "no single paradigm is appropriate to all problems, and powerful systems
must allow multiple styles." The same author with some colleagues discuss the multiparadigm
programming language Loops in [S&B86]. This language takes a lesser known paradigm called
access-oriented and combines it with the better known paradigms mentioned above. A high priority
in the development of Leda is the study of the interaction between different paradigms. Our research
should be made easier by keeping with those paradigms which are well studied and worked out, at
least individually.

Multiparadigm systems are treated apart from any particular paradigm in [Hai86a], which intro ­
duces two criteria the author believes are necessary for a multiparadigm system:

• A multiparadigm system should allow language elements from different paradigms to co-exist
within one program or module

• Each paradigm of such a system should be able to refer to and depend upon services provided
by the other paradigms

Our philosophy coincides with these points; Leda meets these guidelines.
Some researchers have worked to reap the benefits of combining paradigms not by studying

multiparadigm systems as such, but by extending an established language of one paradigm with
features of another. Following the example of adding classes to Algol 60 to create Simula [B&D73],
Bjarne Stroustrup created c++ by adding.object-oriented features to C [E&S90]. Both of these
extensions allow a mixture of procedural and object-oriented programming. Object-oriented pro­
gramming and functional programming are combined in the Common Lisp Object System (CLOS),
an object-oriented extension to Common Lisp [Ste90]. Yet another combination, functional and logic
programming, are combined in a system described in [K&E88]. The authors ask how to combine the
two paradigms so that the best features of each are preserved. Our research with Leda concerns an
abstraction of that same question . The [K&E88] solution, unlike the extended languages above, is
to leave versions of Prolog and Lisp basically intact and construct an interface bridge between them.
The authors state an advantage to this approach is that there is no degradation of performance due
to one language being implemented on top of another. They admit however, that the programmer
would be living in "two separate worlds, each with its own name spaces and syntactical rules." Our
decision with Leda has been to concentrate on the human side first-ease of programming, comfort in
moving between the different paradigms-relegating efficiency concerns to important-but-secondary
status.

It is interesting that some multiparadigm langauges have at their heart some simple unifying
model that belie their many-sided exteriors. The language Nial, with roots in APL, has the nested
array as its sole data structuring capability [J &G86]. The development of Nial was motivated by the
"desire to provide a multiparadigm programming language suitable for teaching the various styles."
Although Leda was conceived as a general purpose language, its potential use in the classroom en­
courages us. In fact, Leda syntax has already been used in an upper-division course on programming
languages to explain higher-order functions without having to stray too far from the familiar Pascal­
like program structure. The language G, described in [Pla91], is a multiparadigm language which
utilizes the stream as its fundamental data type. In addition to discussing multiparadigm research

3

qs .- func(s)[local[x], x:=©s, if(x)[self(s[<x]), x, self([>=x])JJ.

Figure 1: The quicksort algorithm in the multiparadigm language G

in general, the author gives an example of a quicksort algorithm coded in G, shown in figure 1. The
© operator causes its argument to enumerate the initial value in its value sequence and then to move
on to the next value in that sequence. self refers to the function being defined and is used here to
make recursive calls. Although two languages may support the same basic paradigms, choices of
data structures and syntax can make the languages quite distinct.

The language Orient84/K unifies the paradigms it supports in the object framework [Hai86b]. As
explained in later sections, Leda too uses objects as a unified low-level representation. Orient84/K
is still different in that objects consist of not only a behavior part, but also a knowledge-base part
which can include Prolog-like rules and facts. Thus the object-oriented and logical paradigms are
more finely integrated than in Leda.

By now the extensive range of research in multiparadigm systems should be apparent, and still
much has gone unmentioned. Even the specialized-domain language for the M athmatica software
package supports functional, object-oriented, and rule-based programming [Wol88]. In his overview
of the subject, Brent Hailpern speculates "that many more iterations of the experiment/theory cycle
will come before this area is mature [Hai86a]." Our goal is for Leda to be one more iteration toward
that end.

3 The Language

This section begins with a brief introduction to programming in Leda, especially the use of classes
and their objects, in an attempt to impart some of the flavor of the language. It concludes with a
more detailed discussion of the use and semantics of parameterized types. For more information,
especially in regard to mixing the various paradigms, we refer the reader to the papers mentioned
in the introduction. Figure 2 gives a skeleton of a Leda program. The strong resemblance to Pascal
is not accidental. A likely pitfall in designing a multiparadigm language is assumed to be the
creation of an overly complex affair suscep~ible to such appellations as "kitchen sink," [Bud9lc]
"swiss army knife," or worse yet- "fatal disease." 1 . Hence a high priority design goal of Leda is to
retain simplicity, while still providing a tool of many dimensions. A legal Leda program need only
consist of a single compound-statement containing at least 1 (possibly empty) statement. Figure 3 (a)
shows the smallest valid Leda program. Part (b) of that figure shows a simple counting program
which makes use of one of the standard control structures provided. While, repeat, and for loops
may be used for iteration; if-then along with if-then-else constructs are available for selection.

The program in part (c) of Figure 3 defines a new class Point with data variables x and y. A
method distance gives objects of the class the ability to compute their distance from some other point
passed as an argument. Class definitions consist of two sections of variable declarations. First come
the instance variables which are unique for every object which is an instance of the class. Next,

1 Dijkstra's epithet for the programming language PL/1 (:0ij72]

4

l
. I

n

n
]

l

l

l

n

7
J

l
J

J

J

u

const
// constant declarations (the"//" marks the rest of a line as a comment)

type
// type declarations, class definitions

var
// variable declarations

// function and method definitions
begin

// program statements
end;

Figure 2: Skeleton of a Leda program

following the keyword shared, are shared variables, existing in singular form, independent of any
particular object-shared by all instances of the class. Shared variables may be accessed through an
object or through the class itself. For example pl.distance and Point.distance are aliases, both refer­
ring to the method distance in class Point. They are not interchangeable within any Leda expression
however. Invoking the method by accessing it through the class name, as in Point.distance(), is ille­
gal since to actually invoke the method an object is needed to act as receiver. The first assignment
below is illegal as well.

pi.distance := function(q1, q2
begin

II
end;

Point)->real; // WRONG!

Point.distance:= function ... // Correct

When assigning to a shared variable the class name must be used to access the member. We hope
that this rule will keep the programmer and readers of the program aware that such an assignment
will affect all instances of the class. The incorrect example above may lead one to mistakenly assume
that only the state of object pl is being altered.

All classes understand the message new and respond to it by dynamically creating a new instance
of themselves. This is how objects are born. Although not fully implemented, the intent of Leda is
to automatically discard objects in those cases where it can be determined that they are no longer
referenced by any variables, guaranteed to remain thenceforth unused. Variables begin their lives in a
formal state of being undefined. They can be released from that condition by assigning to them either
a constant (certain pre-defined classes only), a defined variable, or a newly created object. A special
built-in polymorphic predicate defined will take any object as an argument and return a boolean
indicating its circumstance. If during the course of a running Leda program, an expression attempts
to access an instance member via an undefined variable, a run-time error occurs. Unfortunately it is
impossible to check for this situation at compile time in the general case. Shared members are more

5

(a) begin
// an empty statement

end;

(b) var
i integer;

begin
for i := 1 to 10

print(i);
end;

(c) type
Point:= class

x: real;
y: real;

shared
distance method(Point)->real;

end;
var

p1 Point;
r real;

method Point.distance(P: Point)->real;
begin

return sqrt(((P.x - x) * (P.x - x)) + ((P.y - y) * (P.y - y)))
end;

begin
p1 := Point.new();
p1.x := O;
p1.y := 4;
r := p1.distance(Point(3,0));

r.print();
end;

// create the Point (0,4)
// using the message 'new'

// ask p1 how far it is from (3,0)
using the constructor for Point

// prints 5

Figure 3: (a) The smallest valid Leda program; (b) A program that counts to 10; (c) Defining a
class, creating new objects, sending a message

6

)

)

n
n

l

)

j

J

J

J
J
J

l

l
l

11

J

l

l
J

u

robust and can be accessed through undefined variables. This may seem surprising. Normally shared
members are accessed through a class pointer which is part of the object at run-time. This allows for
dynamic binding, the use of the shared member associated with the class of the actual object being
held by the variable at run-time, not necessarily the staticly defined class of the variable. When a
variable is undefined, the shared member can not be accessed in this way. The compiler generates
code to check for this situation. If the variable is found to be undefined, the shared member is taken
directly from the statically defined class. This includes messages which are implemented by shared
methods. They may be sent to an undefined variable which is the receiver. Control is passed to the
method and it is the method's responsibility to manage the possibility of an undefined receiver or
not. Possible actions could be to substitute a default value, or print out or return an error condition.
Note that the receiver is always passed by value so defining it within the method is not an option;
the receiver will remain undefined when control returns from the method.

All classes have the ability to be invoked as a subprogram which is the constructor for the class.
The constructor must be given an argument for each instance member inherited by, or explicitly
defined within the class. The order of the parameters must be the same as the order defined,
starting with the inherited members. The constructor sends the new message to the class to create
a new object, and then assigns each parameter to its respective instance variable. The new object
is returned. The keyword NIL may be used as a parameter where the programmer wishes the
corresponding instance member of the new object to remain undefined. Use of the constructor for
class Point can be seen in Figure 3 (c).

Leda supports the basic tools of object-oriented programming-subclassing, inheritance, virtual
methods, overriding, and dynamic binding. Not only methods can be virtual, all declarations in the
shared portion of a class are automatically treated as virtual and can be overridden in a descendant
class. Objects may be assigned to variables declared to be of the same or any ancestor class.
The actual shared member accessed by the dot operator depends on the class of the actual object
referenced by the variable at run-time, not on the declared class of the variable (unless, as explained
above, the variable is undefined).

3.1 Parameterized Classes

Besides instance and shared variables, a class definition may introduce new types which are local
to the scope of the class definition. These we call type parameters and are declared immediately
following the class keyword enclosed in parenthesis. Classes with one or more type parameters are
called parameterized classes. The definition of these types is severely restricted so that they may be
used to implement genericity as discussed below. There are two ways to declare a local class within
a class. The first, exemplified by the type parameter T of the class Pair shown in Figure 4 (a),
creates the most minimal class possible- one with neither instance nor shared variables. Though
slight, such a type is far from useless, at least when taking a view from inside the class within
which it is locally defined. As the swap method shows, some computations only require that an
object of some type be assigned an object of the same type; the particular properties of the type are
irrelevant. Similarly, variables of a type parameter can be passed as parameters to a subprogram
expecting that same type, or returned from a function declared to return the type. The second
sort of in-class local type declaration is one which defines a superclass for the type. Although
no additional instance nor shared variables may be declared, the inheritance mechanism works as

7

usual so that variables declared to be of the type parameter can safely access any of the inherited
members. Figure 4 (b} gives an example. Type parameters declared to have a superclass are called
constrained type parameters; the superclass is the constraining type. Otherwise, the type parameter
is unconstrained.

The motivation for allowing these local type declarations within a class is as a means to implement
genericity. On their own, the type parameters don't add power or expressiveness to the language
since they are local to some class and therefore incompatible with any types defined outside the
class . The significance of a parameterized class from outside the class is completely different from
the inside view described above, giving type parameters a sort of dual semantics. A parameterized
class is actually an implicit definition of 1 or more (possibly infinite) classes which take the place
of the literal parameterized definition written by the Leda programmer. The programmer is then
free to make use of these classes in type and variable declarations. The classes that are created
implicitly are those that can be constructed by substituting some class from within the current
class hierarchy for each occurrence of the type parameter within the parameterized class. If the type
parameter is unconstrained, there is no restriction on which classes may be substituted. Constrained
type parameters may only be substituted by the constraining class itself or one of its descendants.
The implicitly defined types are denoted by the name of the parameterized class followed by the
substitution classes in parenthesis as arguments. When a programmer refers to an implicitly defined
class in this manner we say that the parameterized class is being instantiated. Instantiated types
may also be used as substitution types as long there is no constraining type to prevent it. This is
how a parameterized class definition can give rise to an infinite number of implicitly defined classes.
For example a class List defined to have an unconstrained type parameter T, defines the class
List(integer), List(List(integer)), List(List(List(integer))), and so on. Figures 5 and 6 give examples of
complete programs which use parameterized classes.

The implicitly defined classes are themselves arranged hierarchically. If foo is a parameterized
class, then foo(p1, P2, ... , Pn) is a descendant of foo(q1, q2, ... , qn) if and only if each of the p pa­
rameters is identical to or a descendant of its corresponding q parameter. This notion makes sense
intuitively if one ponders assigning a List(Dog) to a List{Animal) where Dog has been defined as
a subclass of Animal. But examination uncovers a very different sort of class hierarchy than the
one we are familiar with when parameterized classes and genericity are not involved. Consider the
List class from Figure 6 in conjunction with an Animal class that has a subclass Dog. The class
List(Animal) defines an instance variable first to be of class Animal. The class List(Dog) defines that
same instance variable first to be of class Dog. This is a case of strengthening, or restricting, the type
of an inherited instance variable to a more specific class, something that would never be allowed
when defining a subclass in a traditional class system. Fortunately the type restriction is what we
want. It is this feature that makes genericity useful and expressive by allowing us to abstract out the
common attributes of the family of List. classes, making use of polymorphic code while still exerting
control over the sorts of objects that may be referred to by class members. We can guarantee a
List(Dog) will only contain Dogs. Had we relied solely on the inheritance mechanism, we would have
been forced to explicitly define each List class separately, duplicating members and methods along
the way.

The cost of allowing type strengthening within the implicitly defined class hierarchy is the extra
care that must be taken to insure type safety with regard to Leda's strong typing. One consequence
is that shared variables may not be declared with . a type parameter as its class. Another is the

8

l
. 1

l
I
n

l

I
I

J

J

l

fl

l
l
n

I
I j

1

J

J

J

(a) type
Pair:= class (T)

first T;
second: T;

shared
swap : method();

end;

method Pair.swap();
var

temp: T;
begin

temp:= first;
first := second;
second:= temp;

end;

(b) type
hasFirst := class

first : integer;
shared

getFirst method()->integer; // returns member first (not shown)
end;

foo := class (T < hasFirst) // local type Tis subclass of hasFirst
bar: T;

shared
firstBar method()->integer;

end;

method hasFirst.getFirst()->integer;
begin

return first;
end;

method foo.firstBar()->integer;
begin

return bar.getFirst(); // getFirst is inherited from hasFirst
end;

Figure 4: (a) Declaring a class within a class and its use in a method; (b) A constrained type
parameter

9

type
// In class curry, the do method is a curry of binary function f, fixing the
// second parameter toy. The class may be used with any function by
// instantiating the type parameters T, U, t V to the respective argument
I I and return types.
curry : = class (T, U, V)

y : U;
f : function(T, U)->V;

shared
do : method(T)->V;

end;

point := class
x, y: real;

shared
distance: method(point)->real;

end;
intCurry
mixed Curry

:= curry(integer, integer, integer);
:= curry(point, point, real);

var
plus3: intCurry;
from□rigin: mixedCurry;
i integer;
r: real;

method curry.do(x T)->V;
begin

return f(x, y);
end;

method point.distance(P point)->real;
var

r: real;
begin

r := ((P.x - x) * (P.x - x)) + ((P.y - y) * (P.y - y));
return r. sqrt () ;

end;
begin

plus3 := intCurry(3, integer.plus);
i := plus3.do(7); i.print(); // pr~nts 10
i := plus3.do(12); i.print(); // prints 15
from□rigin := mixedCurry.nev(point(O,O), point.distance);
r := from□rigin.do(point(3,4)); r.print(); // prints 5
r := from□rigin.do(point(S,12)); r.print(); // prints 13

end;

Figure 5: Using parameterized · classes-the curry example

10

n
I
l

J

j

u

1

n
n
l
n
l

l

l

j

J

1

j

J
J

type
list := class (T)

first
rest

shared

T· J

list(T);

append: method(T);
end;

intList := list(integer);
realList := list(real);

var
i intList;
r realList;

method list.append(next T);
type

Tlist := list(T);
begin

if (defined(rest)) then
rest.append(next)

else

end;

begin
rest := Tlist.new(next, NIL);

end;

begin
i := intList.new(10, NIL);
i.append(9);
i.append(8);
i.append(7);

r := realList.new(0.1, NIL);
r.append(0.01);
r.append(0.001);
r.append(0.0001);

end;

Figure 6: Using parameterized classes-the list example

11

inability for a class, defined to be a subclass of an instantiated type, to override any of the methods
originally defined in the parameterized class. [Bud91a] explains the inability to ensure type-safe
behavior in these situations.

4 Objects and Run-Time Representation

The underlying model of Leda centers on objects, classes, and messages. The language represents
entities as objects which are in turn, instances of classes, in the sense introduced by the language
Simula 67. An early decision in our implementation was to generalize this representation to all
data types, including basic types such as integers, boolean values, functions, and even classes.
Accordingly, operations on these basic types are actually methods defined within their respective
classes, so that an expression such as 3 + 4 is a message to the integer object 3 to add itself to
the integer 4 and return the result. The decision was motivated by the wish to generate truly
polymorphic code for the methods of parameterized classes. That is, one block of code that will
work correctly for any instance of any class defined by instantiating the same parameterized class.
This of course requires generating code for .objects of unknown type, making it necessary that all
objects have the same size. Our particular solution to the uniformity problem was inspired by the
experience of the Smalltalk implementors who write in [G&R89] that:

The contention that even the addition of two integers should be interpreted as message sending
met with a certain amount of resistance in the early days of Smalltalk. Experience has demon­
strated that the benefits of this extreme uniformity in the programming language outweigh
any inconvenience in its implementation. Over several versions of Smalltalk, implementation
techniques have been developed to reduce the message-sending overhead for the most common
arithmetic operations so that there is now almost no cost for the benefits of uniformity. 2

The following sections show how objects are represented internally at run-time. Section 4.1 gives
the basic structure of a generic object. Section 4.2 shows how some of the traditional data types
provided by Leda are implemented as classes, and what their objects look like. Finally, Section 4.3
explains how classes are implemented as objects, and their run-time connection with those objects
that are instances of them.

4.1 Internal structure of an object

All objects in Leda are pointers. An object points to an instance table. The instance table is a
data structure which contains the instance variables of the object, that is, the variables defined in
the class of the object to be unique to each object. Each object has its own personal copy of the
instance variables. The instance table also contains a pointer to the object's shared table. This
data structure contains the shared variables-those variables defined in the class of the object to
be shared among, or common to, all instances of the class. Finally, the instance table contains a
reference count. As ~ result of Leda's pointer semantics, more than one variable may denote the
same object. The reference count keeps track of how many such variables there are. If the reference
count is zero, the space taken up by the instance table can be returned to free storage.

2 [G&R89], page 119

12

n
l
l

l
I

J

J

l
n
n

n
l
l
l

I

u
J

J

J

J
J

The shared table also contains some fields other than the shared variables th emselves. These
include the object which is the class in which the shared variables are defined, and the object which
is the superclass of that class. These fields can be used at run-time to access information about the
dynamic class of an object and its place within the class hierarchy. (Presently only one such function
is available to the Leda programmer. By sending the message filter to a class with one argument,
the class will either return the argument itself if it is an instance of the class or one of its subclasses,
or otherwise return undefined. Future research may utilize these fields for other purposes, such as
to give objects the ability to"clone" themselves for example.) To be precise, the shared table does
not contain the shared variable objects, but pointers to them. The necessity for this is explained in
[Bud91a]. Figure 7 shows the run-time representation of an object in Leda.

4.2 Representing traditional data types as objects

Leda provides programmers with the predefined types integer, real, function, method, and boolean.
The implementation treats methods as a special kind of function. At run-time, the two types are
indistinguishable; they are represented the same way, and methods are considered to be objects
of the class function. Thus methods will not be discussed further in this section. Details on the
implementation of methods vs. functions can be found in [Che91]. The classes corresponding to
the predefined types are on an equal footing with any classes the Leda programmer may define.
What makes them different is that they may contain instance or shared variables of type primitive.
Variables of this type may not presently be manipulated within the language. Thus the methods
for these predefined classes are written directly in assembly language, in a separate module which is
linked with a Leda source program at compile time. Figure 8 shows the integer class in pseudo-Leda
syntax, the integer 7 as respresented in assembly code, and the code for the plus method. Note that
all the operations on integers-arithmetic and relational-are defined as methods within the class.
Since the variable value is a primitive, we can't actually define the class and its methods within
Leda, so they are included in the special assembly language module . The class real is implemented
similarly.

Functions in Leda are objects with two instance variables-a pointer to the code, and a pointer
to the environment of definition. The environment pointer actually points to the activation record
of the subprogram in which it is defined. Access to non-local variables in Leda is implemented using
static chains. When a function is invoked, the environment variable from the instance table is used
for the static link. The class function, along with the code generated for a function definition is
shown in Figure 9.

Enumerated types, of which the predefined type boolean is one example, are also implemented
as classes. Enumerated types are central to the use of the relational paradigm within Leda. Unlike
languages such as Pascal and C, it is necessary, for the sake of meaningful output, to maintain at
run-time the literal strings corresponding to the different enumerated constants. This is achieved by
creating a class for each enumerated type that is defined in a Leda program. The instance variable
for the class is a primitive integer value, which can be efficiently manipulated in functions such as
successor and predecessor. The shared variables for the class include the number of constants defined
for the type, and a table of strings. The value field of an instance of an enumerated type can by used
as an index into the table of strings by any methods (such as print) defined for the class. Furth er
details on implementing enumerated types in Leda can be found in [Pes91].

13

7
7
7
l

Instance Table
-

An Object Reference Count
Shared Table

-
Shared Table Ptr

Class Object

First Instance I
Superclass Object
~ Seccond Instance ---- First Shared . . . =

I Last Instance
. Second Shared

I

Last Shared

l
Figure 7: An object in Leda

J

14

J

J

J

n
I
fl
7

I

j

I

J

l
J

integer:= class
value: primitive;

shared

end;

plus : method(integer)->integer;
minus method(integer)->integer;
times: method(integer)->integer;
slash: method(integer)->integer;
mod: method(integer)->integer;
unaryPlus: method()->integer;
unaryMinus: method()->integer;
print: method(integer);
less, lessEqual: method(integer)->boolean;
greater, greaterEqual: method(integer)->boolean;
equal, notEqual: method(integer)->boolean;

IC_7: The object 7
.long

IC_7_inst:
.vord
.long
.long

IC_7_inst

i
Ci _shared
7

Pointer to instance table

reference count
Pointer to shared table
value

Ci_plus_code: I Code for method integer.plus
1---

link a6,#-0 no locals
movl a6111(i2) ,ai receiver object in ai
movl ailll(6),di receiver integer value in di
movl a6111(i6),ai argument object in ai
movl ailll(6) ,d2 argument integer value in d2
addl d2,di computer sum
movl di,splll- save sum value on stack
movl #iO,splll- push size on stack
jsr _malloc create space for nev integer
movl dO,aO put nev object in aO
addql #4,sp pop size off stack
movl splll+,di restore saved value
movv #0,aOlll(O) initialize reference count
pea Ci_shared
movl spill+, aOIII (2) load pointer to shared table
movl di, aOIII (6) load nev value
bra epilog2 clean-up

Figure 8: The integer class, the object 7, and the method integer.plus

15

t

function:= class
code_pointer: primitive;
envirorunent_pointer: primitive;

end;

var
f : function();

begin
f := function();

begin

end;

FO:

F_endO:
F_objO:

// function statements
end;

(code for the function statements)
.data I lay out the function object

I the function object itself
.long F_instO I pointer to instance table

F_instO: .word O I ref. count (will be 1 after assignment)
.long C2_shared I pointer to class function's shared table
.long FO I pointer to the code

F_envO: .long O I pointer to the envirorunent
.text I resume executable statements
movl a4,F_env0 I place frame pointer (a4) in environment

I ... (complete assignment to f)

Figure 9: The function class, a Leda function definition, and the corresponding generated code
including the function object

16

l
I
l]

n

f

I
I

J

l

l

fl
n

l

J

Li
lI

1

J

4.3 Classes are objects too

Classes are objects, each of which is an instance of a corresponding metaclass. A class object for
each class defined in a Leda source program is laid out in the object program. Individual metaclasses
do not need a physical manifestation however, their existence is more for the sake of semantics. All
instances of metaclasses are linked to a single common shared table, which contains the new method.
This method allows classes to dynamically create new instances of themselves. The instance variables
for a class object include the information necessary for the new method-the size of an instance of
the class, and the location of the shared table for the class. Like function objects, class objects have
a pointer to their code, which is the class constructor, and a pointer to the environment for the
constructor. The other instance variables are exactly those objects which are shared variables from
the point of view of instances of the class. This bears repeating: The shared variables for an instance
of some class A, are the instance variables for the object which is class A. This relationship can be
implemented very neatly. Recall that the shared table contains pointers to the shared variables. In
fact, the pointers in the shared table point right back to the instance variables in the corresponding
class object. Figure 10 shows a class defined in Leda with a picture of the class object and its
relationship to an instance of the class. Figure 11 shows the code for the new method which will
dynamically create a new instance of any class.

Besides the aesthetic appeal of a unified model, implementing classes as objects have a practical
and simplifying value. To avoid confusing Leda programmers and readers of Leda programs, it
was decided that when assigning a value to a shared variable of a class, the class name must be
used. An assignment to a shared variable accessed through an instance variable might not make it
apparent enough that the change will affect all instances of the class. With the class as an object,
an assignment such as

Circle.area:= function(x : circle)->real; begin ... end;

requires no special code generation techniques. Circle.area can be treated as any object and its
member variable-used as the target of an assignment statement, or in an expression.

Intuitively one might correctly assume that when altering a shared variable of a class, not only
all instances of that class are affected, but all instances of any class which inherits the particular
shared variable are affected as well. It is much less intuitive that a change in a shared variable of
a class would affect instances of ancestor classes from which the shared variable is inherited. For
this reason Leda only allows referencing shared variables using the class of definition. This refers
to the class in which the shared variable is originally defined or a class in which the variable is
explicitly overridden. Since a class object only includes as instance variables the shared variables
originally defined or overridden in the class definition, the rule is enforced through the natural means
of checking membership. Figure 12 shows the class layouts for a class and its subclass. The reader
will note that many labels in the assembly code begin with a capital C followed by a number. Every
class defined in a Leda program is given a unique number by the compiler. This number can then
be employed to generate unique labels, so that a print method defined in a class foo will not clash
with a print method defined in some class bar for example.

17

type
Circle := class

center Point;
radius: real;

shared
area: method()->real;
circumference: method()->real;
distance: method(Circle)->real;

end;
var

c: circle;
begin

c := circle.new();
end;

-
The Object C

Instance Table for C

Reference Count

Shared Table Ptr

center

radius

-
The Object Circle

-
Class Object

Supc:rcla.n Object

(NULL)

-

Figure 10: A class definition, the class, and an instanc e

18

l
l

l
l

Instance Table for Ci rcle I
Reference Count

l
Shared Table Ptr

Pointer to

Constructor Code

Pointer to

Contructor'•

Environm.ent l
Instance Size (14)

Pointer to

- f
Circle's Sha.red Table

area

circumference I
distance

I
I
l

I
J

J

n
n

n
l
I

I
If

t

LI
j

I===
CO_new_code: link a6,#-0 I create new instance of receiver
1-- ---------------------
movl a6©(12),a1 I receiver in a1
movl a1©(14),sp©- I push obj size on stack
jsr _malloc I get space for new object
movl dO,aO I put new obj in aO
addql #4,sp I
movl O,aO©(O) I init reference count
movl a6©(12),a1 I return receiver in a1
movl a1©(18),a0©(2) I init shared table
bra epilog1 I clean-up

Figure 11: The new method in class metaclass

5 Symbol Information

Having decided on the run-time representation of objects and the idea that all types would be
implemented as classes, all entities would be objects, and all operators message-sends, the compiler
could be built. This section discusses our method of collecting the information from the type and
variable declarations that is necessary for type checking and code generation. After showing where
the symbol information is kept in relation to the overall structure of the compiler, we present a
major component of Leda's symbol information system, the classlD. Then we discuss one particualr
feature of the classlD-the class offset table-in more detail.

We developed the Leda compiler using the compiler construction tools fl.ex and bison, (compatible
with the lex and yacc programs from the unix operating system), in conjunction with the program­
ming language c++. We approached the problem of compilation from an object-oriented point of
view. The compiler works in two stages . The first phase reads through the Leda source program
and constructs a heterogeneous tree structure (an abstract syntax tree of sorts) where each node is
an object representing a declaration , statement, expression, or some other component. At this time
the compiler collects symbol information, and performs type checking and closure analysis. The
latter two tasks, along with the necessity to perform closure analysis in a separate phase than one
which performs code generation, are described in [Che91]. The second phase consists of a message
to the tree to generate code. The message is received and passed on to child nodes who deal with
the message as they see fit. Figure 13 shows the main classes in the implementation that deal with
symbol information .

Symbols are those entities which occur on the left hand side of some declaration. These may
be type, variable, constant, argument, or type parameter declarations. Argument and type decla­
rations are always in the context of some subprogram definition. Type parameters always relate to
the definition of a class in a subprogram's Type section. Variable declarations may occur in either
of th ese two plac es. Thu s another look at Figure _ 13 shows how all the information is originally

19

Point:= class
x, y: integer;

shared
distance: method(Point)->real;

end;

Circle:= class of Point
radius real;

shared
area
circum

end;

C12:

C12_inst:

C12_distance:
C12_shared:

C13:

C13_inst:

C13_area:
C13_circum:
C13_shared:

method()->real;
method()->real;

.long C12_inst

.word 1

.long CO_shared

.long C12_constr_code

.long 0

.long 14

.long C12_shared

.long 0

.long C12_ inst

.long 0

.long C12_distance

.long C13_inst

.word 1

.long co shared

.long C13_constr_code

.long 0

.long 18

.long C13_shared

.long 0

.long 0

.long C13 inst

.long C12_inst

.long C12_distance

.long C13_area

.long C13_circum

the class Point
pointer to inst table
instance table for Point
reference count
ptr to metaclass shared table
ptr to constructor
environment for constructor
size of an instance of class Point
location of Point' shared table
the shared variable - distance
Point's shared table
the class Point
no superclass
pointer to first shared variable

the class Circle
pointer to inst table
instance table for Circle
reference count
ptr to metaclass shared table
ptr to constructor
environment for constructor
size of an instance of class Circle
location of Circle's shared table
the shared variable - area
the shared variable - circum
Circle's shared table
the class Circle
the class Point
ptr to inherited var - distance
ptr to shared var - area
ptr to shared var - circum

Figure 12: A superclass and its ·subclass laid out in memory

20

7

1

1

I

I

l

I
I

I

l

l

l

I
I

J

d

j

I
J

class programASTnode
protected:

public scope { II Head node for a subprogram

DTnode *args;
DTnode *constantdefs;
DTnode *Variabledefs;
DTnode *typedefs;
II other state variables

public:
II methods

};

II formal arguments
II
II
II

'const' declarations
'var' declarations
'type' declarations

class classType: public scope {predefined+ user defined classes
offsetTableNode *offsets;

public:
II methods

};

class userclassType: public classType { II classes created by the programmer
protected:

declTypeID *paramTypes;
typeVarNode
declVarID

*superclass;
*instanceVars;
*sharedVars; declVarID

public:
II methods

};

class DTnode { II base class for type, variable, and arg. declarations
protected:

char
ASTnode
classID
bool
DTnode

public:
II methods

};

*name;
*type;
*classID;
constind;
*next;

II Left hand side of declaration
II Right hand side of declaration
II class name, structure, and args for type-checking
II indicator for constant
II pointer to next declaration

Figure 13: Major c++ classes in symbol information system

21

collected within the objects corresponding to the above-mentioned scopes. The class programAST n­
ode represents the root node of a subprogram. Objects of that class contain lists of constant, type,
variable, and argument declarations, along with a list of statements that make up the code of the
subprogram. Of course one of the expressions within the statement list may itself be a subprogram
and so the nesting of subprograms in Leda is captured by the recursive structure of the syntax tree.
An object of class userclassType is built for each class defined within the Leda source program. These
objects contain the instance and shared variable declarations, the superclass linking the class to its
inherited variables, and a list of type parameters. The type parameters are stored as a list of type
declarations, reflecting the idea that they are classes defined within the scope of a class. The type
field of a type declaration for a type parameter is itself an instance of class userclass Type with null
pointers for the instance and shared variables, and a superclass which is the constraining type, if
present.

After this information is collected in raw form it is distilled into a form to facilitate type checking
and code generation. On the subprogram level, classlDs are built for each type and variable decla­
ration. For each pre- and user-defined class, a classlD is built for each type parameter, and an offset
table is built which contains the important information about the instance and shared variables,
including those inherited from parent and ancestor classes.

5.1 The classlD

The classlD is a structure used in the implementation of Leda. Its purpose is to hold enough infor­
mation about the type of a variable to be able to perform both type checking and code generation.
This section describes the structure of the classID itself, and how a classlD is provided for each
type declaration of the Leda source program (including the types local to class definitions which are
declared via type parameters). The assignment of a classlD for each built-in and user-defined type is
complicated by the fact that types can be interdependent, as well as directly or mutually recursive.
Also note that Leda does not require forward declarations and types may be declared in any order
as long as all names used in the type on the right-hand side of the declaration lie within the current
name space. classlDs are assigned to each declaration "up front," as soon as each type section is
parsed. Since the types associated with variable declarations can only be made up of class names
that may be found as the left hand side of type declarations, by providing the classlDs for each such
declaration, all necessary type information can be retrieved for any variable with minimum effort.
How the classlD is actually utilized for type checking and code generation is explained in (Che91).
The relevant c++ classes from the Leda compiler are given in Figure 14. As can be seen, the classlD
consists of a class name, a class structure, and a list of classlDs representing the arguments. Each
component is discussed in the following sub~ections.

5.1.1 The class name

The class name always comes from the left hand side of the type declaration. Its purpose is to enable
the type checker to compare type names along with the structural information. This allows the
compiler to issue a warning if the names don't match for two types which are otherwise compatible.
It is an open question exactly when the Leda compiler will give such warnings. Take for example,

type

22

l
u
n

n

I

I
I
J
J

J

J

l
l

l

l

I I
u

J

u

class classIDlist {
protected:

classID *first;
classIDlist *next;

public:
// methods

};

class classID {

*className;
*classStructure;

protected:
char
classType
classIDlist *classArgs; // args used to instantiate parameterized classes

public:
// methods

};

Figure 14: c++ class definitions relating to the classlD

yards := integer; // className field of classID is "yards"
meters := integer; // className field of classID is "meters"

As will be seen below, the classlD contains enough information to let the type checker know that
yards and meters are both aliases for the class integer. Consequently they are compatible in the sense
that there is no danger of a run-time type error due to a difference in protocol. Including the names
in the classlD allows the type checker to give what appears to be, in this case, a pertinent warning
when the types are mixed.

5.1.2 The class structure

The class structure contains much information about the type being declared. In all cases the class
structure contains a unique class number which is assigned to all predefined classes as well as any
user-defined classes. Also present is an offset table for code generation. The offset tables contain all
the class member names including those that are inherited. Other information depends on the type
of class structure. Functions and methods contain lists of argument types, a return type, and, for
methods only, a receiver type. User defined classes include type parameters, instance and shared
variables, and the immediate superclass. The classes from the Leda compiler which may be used as
class structures include userclassType shown in Figure 13, and those shown in Figure 15.

If the type field (the right-hand side) of a declaration is itself a class structure, then that object
is assigned to the classStructure field of the type's classlD. The only other class of object that could
be held in the type field of a declaration is a type variable. Type variables are used to create an alias
for some other type which must be found in the name field of some declaration in the current name
space.

23

class intType public classType {
public:

// methods
};

class realType public classType {
public:

// methods
};

class funcType: public classType {
private:

typeArgsNode *params;
ASTnode *returnType;

public:
// methods

};

class methType: public classType {
private:

ASTnode *receiverType;
typeArgsNode *params;
ASTnode *returnType;

public:
// methods

};

Figure 15: Some class structures from the Leda compiler

24

I

l
l
l

l

I

J

J

1

n

l
n
n

type
intFun := function(integer)->integer;
xFun := intFun; // xFun is an alias for intFun

In this case, the class structure for xFun is obtained by looking up the class structure of intFun. Thus
the classlDs for intFun and xFun will have different names but identical class structures. Likewise,
the declaration

moreFun := xFun;

will have still a different class name but the same class structure.
When a type variable names a parameterized class, it must contains arguments in order to

instantiate that class.

type
pclass := class(T, U)

l end;

1

u
J

j

I
J
lJ

foo := pclass(integer, real);

In the example above, the process of obtaining the class structure for foo's classlD involves the extra
step of instantiation. Instantiation is simply a textual substitution of the actual for the formal
arguments in the class structure from the pclass declaration. In addition, the instantiated structure
no longer has any type parameters.

5.1.3 The class arguments

Two type variables are compatible if their names and corresponding arguments are all compatible.
Thus it is important not to lose the information about the arguments of a type variable when it
is aliased. For this reason the classlD contains within it a list of classlDs corresponding to these
arguments if present. For instance, the classlD for the type foo above will contain classlDs for the
integer and real classes in its argument list.

5.2 Building the offset tables

Every time a classID is obtained its structure is checked for the presence of an offset table. If
necessary, the offset table is built. To build the offset table, the compiler first gets the offset table
from the structure's superclass. The superclass must be a type variable but it is important to note
that it is not necessary to obtain the classlD of the superclass including the arguments in order
to get the offset table. What is done is to get the classlD from the generic class represented by
the superclass name (not including the arguments), and then instantiating the offset table with the
arguments. The offset table is completed by adding any additional class members to the inherited
ones. By not requiring the classlDs for the superclass arguments the system is significantly more
flexible as seen below.

25

5 .3 Filling the type section with class IDs

The methods given above for putting the classlD into a given type declaration show the limits of
recursion in type declarations, as well as the necessity to obtain the classlDs in a particular order.
These points are discussed below.

5.3.l Recursion

If the right-hand side of the declaration is a type variable, the name and all of the arguments
must already have classlDs in order to build the classlD for the declaration. This excludes recursive
definitions (either direct or indirect) involving type variables.

type
bar := list(bar); II illegal, could never build a classID

foo := gak(integer); II mutual recursion, also illegal
gak .- list(foo);

Another dependency occurs when the right-hand side is a user-defined class containing a superclass.
In order to build the offset table, the class ID of the superclass name (not including the arguments
as explained above) must be available. Thus no combination of type variables and superclass names
can be directly or indirectly recursive.

type
foo := class(T) of bar II Illegal, foo depends on bar,

II bar on gak, gak on foo
end;

bar .- class of gak

end;
gak := foo(integer);

foo := class(T) of bar II This is OK because bar depends only
II on list, not its argument, gak

end;
bar := class of list(gak)

end;
gak .- foo(integer);

5.3.2 Getting things in order

After a declaration section is recognized by the parser, a message is sent to the Leda subprogram
which "owns" those declarations, requesting that the type declarations be filled with classlDs. The
method is shown in Figure 16 below. Upon receiving the message to fill the classlDs, the subprogram

26

1

l
l
1

l
1

I

l
n

1

J

I J

j

J

void programASTnode::fillClassDefs()
{

}

II get class!Ds for the type declarations

int IDsObtained;

if (typedefs) {

}

II fill the classIDs until unable to obtain any more
do {

IDsObtained = 0;
IDsObtained = typedefs->fillClassDefs();

} while (IDsObtained > O);

II fill the class IDs for type parameters within the classID structures
typedefs->fillTypeParamDefs();

II report on names with no defs
typedefs->checkClassDefs();

int DTnode::fillClassDefs(int count= 0)
{

}

if (!classID && type->hasClassID()) {
classID = type->getClassID();
classID->setClassName(name);
++count;

}

if (next)
return next->fillClassDefs(count);

else
return count;

Figure 16: Getting classlDs for type declarations

27

sends the message on to the list of type declarations. Each type declaration decides in turn whether
or not it can obtain its classlD by checking if all the types that it depends on have already obtained
their classlDs. If so, the classlD is filled and the message is sent down the line. The number of new
classIDs successfully obtained is returned to the subprogram. If the return value is positive, the
subprogram repeats the message to the list of type declarations in the hope that those declarations
which were unable to obtain classlDs during the previous pass will have better luck with the now­
larger set of types that have acquired their classlDs. As soon as the list of type declarations reports
that no new classlDs were obtained, the subprogram knows that it is fruitless to continue; all classIDs
that can be gotten have been gotten.

5.3.3 classlDs for type parameters

At this point a message is sent to the type declarations to look into the class structure within their
classlD, and give classlDs to the type parameters if any. Type parameters are stored as local-to­
the-class type declarations. Parameterized type constraints are implemented as superclasses of the
corresponding type parameters. Given that, the procedure for filling the classlDs is exactly the same
as for the type declarations on the subprogram level.

Note that because classlDs for type parameters are obtained only after the classlDs for the user­
defined classes, it is not possible to use a type parameter as a superclass name (shown below).

type
foo := class(T) of T // illegal, classID of foo depends on T

end;

Finally, a message to check the classlDs is given to the type declarations and error messages are
issued for any declaration with an empty classlD.

5.3.4 Class scope

The definition of a class introduces a new scope beneath the scope of the subprogram in which the
class is being declared. The scope includes the type parameters, which from the point of view of
the class members and methods are viable types, and the instance and shared variable declarations.
A subtle issue is determining at exactly what point in the definition of a class is the new scope
activated. The answer is at the point after the type parameters and before the superclass. Thus
the superclass, as well as of course the class member declarations, can refer to the type parameters,
while a parameterized type restriction could not. (Recall from above that the superclass name itself
may not be a type parameter however).

type
U := boolean;

foo := class(T)

end;

28

l
l

l
D

n
l
1

I
J
j

J

J

Ll

1

l
l

n

l
1

[J

11

l J

l J

J

class offsetTableNode {
private:

char
rnernberType
int
ASTnode

*name;
instORshared;
classNum;
*type;

int count;
int rnetacount;
offsetTableNode *next;

public:
\\ methods

};

Figure 17: Implementation of offset tables in the Leda compiler

bar := class(U) of foo(U) // argument U of foo is type pararn U

end;
gak := class(U < foo(U)) // argument U of foo is alias for boolean

end;

5.4 More on Offset Tables

Every object in the compiler representing a class definition from a Leda source program contains
an offset table. This data structure contains information about each field that may be accessed
with the membership (dot) operator by an instance of the class. This includes all instance and
shared variables defined in or inherited by_ the class, as well as updated information for shared
variables which are overridden by the class definition. Offset tables are implemented by the class
offsetTableNode which is shown in Figure 17.

The name field contains the name of the class member and the type field its type. instORshared
marks whether the variable is defined in the instance or shared portion of the class. The classNum

is a field which keeps track of the member's class of definition. This allows the code generator to
construct the proper label in the class's shared table. The label must point to the appropriate shared
object which, as explained above, is located in the class object where it was originally defined or last
overridden. The count field determines the member's relative position within its relevant-instance
or shared-run-time table.

5.4.1 The metaclass offsets

Before explaining the metacount field, we must note the dual existence of an offset table. Because the
userclassType class contains all the information needed for the defined class as well as its metaclass,

29

we chose not to use a seperate object to implement the metaclass. Thus a class's offset table must be
prepared to respond to messages meant for the class as well as messages destined for the metaclass.
The metacount is all that is necessary. This field gives the relative position of the member from the
point of view of the metaclass. Specifically it is the location of the member within the instance table
of the class object. For class members which aren't relevant to the metaclass, namely all instance
variables and shared variables not defined nor overridden in the class, the metacount contains the
special flag value -1 which makes the field "invisible" to offset table methods which act on behalf
of the metaclass. A pair of Leda class definitions with their offset tables can be seen in Figure 18.
Recall that all objects in Leda are the same size (the size of a pointer) so that the size of objects
need not be stored, only their order.

The offset table is one of the key pieces of information included within the classStructure of the
classlD. The connection between the two go further, in that the offset tables are built for a userType,
if necessary, whenever a classlD is requested. To build an offset table, the object representing the
Leda class must first obtain the offset table from the superclass if there is one. Recall that the
classlD, hence the offset table, of the superclass is guaranteed to be obtainable because of the careful
order in which the classlDs are filled. If the superclass has any type arguments, the superclass's offset
table is instantiated. Now the object is ready to add its own member variables to the offset table.
A message is sent to the lists of instance an9- shared declarations telling them to add themselves to
the offset table. Each declaration sends a message to the offset table with the pertinent information
to add. The offset table then checks to see if the member name already exists. If it does, and it is
an instance variable, then an error is reported since they may not be overridden. If it is a shared
variable, and the class of definition is different, then the offset table entry is changed to admit the
new class of definition. This ensures that both overridden and inherited class members maintain the
same offset within the shared variable table as in their parent and ancestor classes. This feature is
critical to allowing dynamic binding in particular, hence the object-oriented style of programming
in general.

For those members which are newly defined in the class, a count is maintained as they get passed
down the line of offset-table nodes so that when they get appended to the end they will have the
proper counts and metacounts. Figure 19 shows the class Type method which builds the offset table.
Figure 20 contains the other methods related to that task.

5.5 Scoping

Although Leda is not a fully block-structured language in the sense of Algol-60, (declarations cannot
be made on the compound-statement level), functions and methods may be nested to any practical
degree. Thus it is not enough to merely store information about a symbol, retrieving it upon
encountering the symbol in the code section of some Leda subprogram. Each scope may have
its own declaration for a given symbol and the compiler must always match symbols with the
corresponding information from the appropriate scope. The problem reduces to one of searching
the various deposits of symbol information in the correct order, so that the first declaration found
for a symbol is the right one. The Leda compiler tries to find the declaration for a symbol first in
the local subprogram in which the symbol occurs. If not found, and the subprogram is a method,
the compiler next searches the declarations of the class in which the method is defined. The next
step is to check for the symbol within the outer s1,1bprogram in which the original subprogram is

30

7
l
l

7

1

]

J
J
J

n

[1

l

I
j

j

j

J

type
Part := class

controlNum: integer;
price: real;
quantity: integer;

shared
print: method();// print part information
cost: method(integer)->real; // calc cost 0£ n parts
£ill0rder: method(integer)->integer; // adjust quantity

end;

tipType := (phillips, slot);

Screwdriver:= class 0£ Part
style: tipType;
length: real;
gauge : real;

shared
compatible: method(Screw)->boolean; // Can screwdriver be used with screw?
print: method();// override the print method

end;

class Part: meta-
Name IorS classNum count count type

----------- -------- -------------
controlNum inst 12 0 -1 integer
price inst 12 1 -1 real
quantity inst 12 2 -1 integer
print shar 12 0 0 method()
cost shar 12 1 1 method(integer)->real
£ill0rder shar 12 2 2 method(integer)->integer

class Screwdriver: 11\eta-
Name IorS classNum count count type

----------- -------- -------------
ControlNum inst 12 0 -1 integer
price inst 12 1 -1 real
quantity inst 12 2 -1 integer
print shar 13 0 0 method()
cost shar 12 1 -1 method(integer)->real
fillOrder shar 12 2 -1 method(integer)->integer
style inst 13 3 -1 tipType
length inst 13 4 -1 real
gauge inst 13 5 -1 real
compatible shar 13 3 1 method(Screw)->boolean

Figure 18: Two Classes and their offset tables

31

classID *userclassType::getClassID()
{

}

offsetTableNode *classOffsets = NULL;
typeArgsNode *tArgs;
classType *ct;

// build offset table if it hasn't been built yet
if (!offsets) {

}

setParentLevelDeepest(); // Have this scope point to the outer
staticNesting->append(this); // and put it on the scope chain
if (superclass) {

}

ct= superClass->getClassDef(); // Get offset table of superclass
classOffsets = ct->getOffsetTable();
if (tArgs = superClass->getTypeArgs())

// if the superclass has arguments instantiate it
classOffsets = classOffsets->instantiate(tArgs, ct->getParamTypes());

else
// otherwise just copy it as is
classOffsets = classOffsets->copy();

if (instanceVars)
classOffsets =

// add the variables of this class to
// the offset table

instanceVars->addTOinstOffsets(classOffsets, uniqueScopeNum);
if (sharedVars)

classOffsets =
sharedVars->addTOsharedOffsets(classOffsets, uniqueScopeNum);

// If there is no superclass, instance, or shared vars, then need to create
// a dummy offset table node so that offsets isn't NULL.
offsets= (classOffsets)? classOffsets: new offsetTableNode();
staticNesting->remove(); // return scope chain to previous state

// more code

Figure 19: Building the offset table

32

n
l

D

I

I

J

n
n
n
I l

u
j

j

lJ

u

offsetTableNode *
DTnode::addT□inst□ffsets(offsetTableNode *offTab, int classNum)

{

if (offTab)
offTab->append(name, INST, classNum, type, 0, 0);

else
offTab = nev offsetTableNode(name, INST, classNum, type, 0, -1);

return ((next)? next->addT□inst□ffsets(offTab, classNum) : offTab);
}

offsetTableNode *
DTnode::addT□shared□ffsets(offsetTableNode *offTab, int classNum)

{

}

if (offTab)
offTab->append(name, SHAR, classNum, type, 0, 0);

else
offTab = nev offsetTableNode(name, SHAR, classNum, type, 0, 0);

return ((next)? next->addT□shared□ffsets(offTab, classNum) : offTab);

void offsetTableNode::append(char *n, memberType i□Rs,
inti, ASTnode *t, int c, int me)

{

}

if (i□Rs == inst□Rshared) c++;
if (i == classNum tt inst□Rshared == SHAR) me++;

if (!(strcmp(n, name))) {

}

if (i□Rs == INST I I inst□Rshared == INST) {
yyerror("redefinition of instance variable ", name);

}

if (i == classNum) {
yyerror("Error: redefinition of s.hared variable ", name,

"in same class");
}

classNum = i;
metacount = me;

else {

}

if (next)
next->append(n, i□Rs, i, t, c, (i□Rs == SHAR? me: -1));

else
next= nev offsetTableNode(n, i□Rs, i, t, c, (i□Rs == SHAR? me -1));

Figure 20: Auxiliary methods for building the offset tables

33

class scope : public ASTnode {
protected:

int uniqueScopeNum;
scope *parentLevel;

II allows unique reference to subprograms and classes
II points to next outer scope

public:

};

static int scopeNumCounter;
static scope *deepest;
static void removeDeepestLevel() {

deepest= deepest->parentLevel;
}

void addToScope() {
parentLevel = deepest;
deepest= this;

}

II other methods

II keeps track of last unique number used
II stores current local scope
II removes (pops) local scope

II adds (pushes) new local scope

Figure 21: Implementing scoping with the abstract superclass scope

defined. This process continues, searching outer-nested subprograms followed by class definitions
when methods are involved, until finally the highest (global) level scope is reached. If the symbol
remains unfound then an error is reported.

The scoping system in the Leda compiler is implemented with the class scope (shown in Figure 21)
which acts as a stack of naming environments. scope is an abstract superclass whose two children are
the classes class Type and programASTnode, corresponding to classes and subprograms respectively,
previously shown in Figure 13. scope makes use of a static data member deepest to keep track of
the current local scope (the most deeply nested) which of course changes as the compiler works
its way through a Leda source program. As the methods for class scope show, subprograms and
classes have the ability to make themselves the current scope. The scope class itself uses the static
method removeDeepestLevel to discard the most deeply nested scope in favor of its parent level.
Figure 22 shows part of the method which implements the message to subprograms requesting them
to generate code for themselves, demonstrating the adding and removal of scopes. Note that every
scope contains a pointer to its parent environment which is set automatically when it becomes the
new local scope. When a scope is unable to satisfy a message to return information for a given
symbol, it checks to see if it has a parent level and if so, passes the message to it.

It is not always the case that the search for symbol information should begin at the most deeply
nested level in the local context. Let's look at the example in Figure 23. To check the legality of
the assignment in line 15, the compiler must get information for the symbol f which, by beginning
at the local scope, it finds to be of class fo9. From there it is determined that f.a is of class bar.
Now the compiler needs to get information about the symbol bar-but wait! If the search were to
begin at the local scope, it would determine that bar was an alias for boolean and the assignment
would be disallowed. This is incorrect since at the t_ime (and scope) that a was declared to be a bar,

34

l
n
l

n
n

j

J

n
l
l
n
7

I I

J

J

j

u

ASTnode *programASTnode::genCode() // Note: brief outline of actual method
{

}

// if the subprogram has a receiver add a scope
// for the class
if (receiver) {

classType *receiverType =
receiver->getType()->getClassID()->getClassStructure();

receiverType->addToScope();
}

// now add the scope for the subprogram itself
this->addToScope();

// if types are defined, lay out the class objects etc.
// if there are statements, have them generate code

if (typedefs) typedefs->genCode();
if (statements) statements->genCode();

// remove the scope (or scopes) that were added
if (receiver) scope::removeDeepestLevel();
scope::removeDeepestLevel();

Figure 22: Adding and removing scopes

35

type
bar:= integer;
foo .- class

a: bar;
end;

function fun(x: integer);
type

bar:= boolean;
var

f : foo;
b : boolean;

begin
f : = f oo .neY();
f.a := 7;
f .a.print();

end;

begin
II

end;

II line 15

Figure 23: Symbol searches cannot always begin at the local scope

that symbol was an alias for the integer class. The solution is to return the scope of the declaration
along with the other information about the symbol a, and to start searching only at that scope for
information about bar. So each object representing a type variable has a field to store this scope of
declaration, and the method to retrieve symbol information searches accordingly.

6 Code Generation

Code generation is the second phase of the Leda compiler. It begins by sending the message gen Code
to the heterogeneous tree of objects-the syntax tree-created during the compiler's first phase.
The top node of the tree is an object of the class programASTroot which is a subclass of the previ­
ously mentioned programAST node, the class representing a Leda subprogram. By subclassing we can
override the genCode method (recall Figure 22) to include operations unique to the main procedure
of the source program, such as the creation of the constant pools discussed in Section 6.1. Following
this, a genCode message is sent to the type section, and here class objects are laid out and type
assignments are made as described in Section 6.2. Section 6.3 discusses code generation for the
variables, expressions, and assignments found in the statements of a Leda subprogram. Finally, Sec­
tion 6.4 addresses code generation for generic methods, and contrasts our direction with templates,

36

]

l
n
n
l
'.l

I

LI

]

u
J
u

1

I
l
n

I
l
J

j

j

j

J

u

another means of implementing parameterized types.

6.1 Integer constants

Integer, real, and enumerated constants are a bit more complicated to manage in Leda than in more
conventional languages. This is due to the extension of the object model to even these basic types.
Although the small experimental Leda programs written to date have performed satisfactorily, literal
implementation of these semantics have potential to work against creating efficient object programs.
It is expected that as the language definition is reworked and refined through experimentation,
techniques will be employed which enhance the generated code while maintaining the semantics.
Meanwhile, we will explain our system for generating code for integer constants. The explanation
applies in concept to the real and enumerated constants as well.

During the first phase of the compiler, when the parser encounters an integer constant, an object
of class intExpNode is created and placed in the syntax tree. Upon creation of the object, the class's
constructor sends a message to the globally defined object intValueRoot which is the first node in
a list of unique integers. In response to the message, this instance of class intValueNode responds
by adding the new value if it does not already occur in the list. At code generation time, the root
node of the syntax tree sends the genCode message to intValueRoot which generates code mapping
out an object for each integer in the list. A naming convention is used consisting of the literal
JC_n (for Integer Constant) where n is the integer being represented. When an intExpNode receives
the genCode message, it composes a label corresponding to the value it contains, and generates the
assembly language statement which moves the object into an address register. Another convention
employed by the compiler is to use a particular address register (aO in our case), where the evaluated
result of an expression is to be stored. Thus when a message is sent to an expression to generate
code, the sender may have no idea what sort of expression is generating code for itself, yet it can
be sure that the generated code will leave the result in aO. Figures 24 and 25 show the various
components discussed in this section.

6.2 Type Section

The type section consists of a series of assignment statements. The lvalue of one of these assignments
must be a variable of type metaclass which we call a type variable. We do not require programmers
to explicitly declare these variables in the var section, the compiler does that for them. The right
hand side must be a valid Leda type-a class or function definition, an enumerated type, or type
variable, which must be instantiated if it refers to a parameterized class. Class, function, and
enumerated type definitions may be thought of as constants of type metaclass. These assignments
are semantically equivalent to the standard assignment statements from the code section. In fact,
run-time code is generated at the start of each subprogram to carry them out. None of this is to
imply that classes are first class objects in Leda. They are objects as noted in Section 4; they can
be used for member access, but type variables may not be assigned-to outside of the type section.
That is, the class associated with a type variable cannot change during run-time as it might in a
more flexible language like Smalltalk. The compiler depends on this fact and it would take a major
revision to add the feature to Leda.

37

r

class intExpNode public ASTnode {
private:

int value;
ASTnode *type;

public:
intExpNode(int val)
{ value=val; type= intTypeObj; // type integer

if (intValueRoot) intValueRoot->addValue(val);
else intValueRoot = new intValueNode(val);

};

}

ASTnode *genCode();
// other methods

ASTnode *intExpNode::genCode()
{

rnove(cornpLabel("IC_", itoa(value)), "aO"); // put the int object in reg aO
return intTypeObj;

}

IC_28:
.long

IC_28_inst:
.word
.long
.long

IC_28_inst

1
C1 shared
28

the object '28'
points to instance table

ref count
shared table for class integer
the value of '28'

Figure 24: An integer expression node, its code generator, and the perfect number 28 in memory

38

l

0.
n

1

l
J

I
J

J
J

n
l
l
n
fl

J
J
J

j

J

J

J

class valueNode {
protected:

valueNode *next;
public:

// virtual methods
};

class intValueNode public valueNode{
private:

int value;
public:

intValueNode(int v) {value= v; next= NULL;}
void addValue(int);
ASTnode *genCode();

};

ASTnode *intValueNode::genCode()
{

}

comment("---> intValueNode: :genCode()");

putLabel(compLabel("IC_", itoa(value))); //layout the object
resLong(compLabel("IC_", itoa(value), "_inst"));
putLabel(compLabel("IC_", itoa(value), "_inst"));
resWord("1");
resLong("C1_shared");
resLong(itoa(value));

if (next) next->genCode();
return(NULL);

Figure 25: Maintaining a list of unique integer constants and laying them out in memory

39

void declTypeID::genCode(int count= 0)
{

}

int offset, classNum;

type->genCode(); // lays out class :for type, and its type parameters

// generate code to carry out the assignment
classNum = classID->getClassStructure()->getClassNum();
offset= -4 *(count+ 1);
move(compLabel("C", itoa(classNum)), reg0:f:fset("a4", o:f:fset));
i:f (next) next->genCode(count + 1);

Figure 26: Generating code for a type declaration

Figure 26 shows the method which implements the genCode message sent to a subprogram's list
of type declarations. A type declaration responds to the message by sending the same message to
the type (right hand side) of the declaration. Figure 27 shows the implementation of that message
for a user-defined class. The method lays out the class object and its shared table, and passes the
message on to any type parameters the clas_s might have. Predefined classes such as integer ignore
the genCode message since their class objects are already laid out in the special assembly module.
Type variables also ignore the message, since they are merely aliases for other classes which will take
care of themselves when they receive the message personally. In any case, control is returned to the
type declaration object, which next generates code to carry out the assignment, and finally sends
the gen Code message to the next type declaration in the list. The method exhibits an unfortunate
degree of coupling as it depends on the fact that the type variables are added to the list of variable
declarations before any other variables, and in the same order that they occur in the type section.
A count is maintained by the gen Code method so that the type declarations know where in the
activation record to effect the assignment.

6.3 Statements

To generate code for the statements within a subprogram, the subprogram node sends the genCode
message to the list of statements. Each statement generates the appropriate code for itself- usually
by sending the genCode message to its component expressions-and then sends the message on to the
next statement in the list. Much of this work is accomplished using straightforward code-generation
techniques. The following subsections describe various types of statements and expressions and their
code generation, particularly those aspects unique to the Leda compiler.

6.3.l Variables and Member Access

A variable in Leda is recursively defined to be an identifier which may be followed by the membership
operator and another variable. Each variabl _e in the chain must be a member of the declared class,

40

n
l
l
n
l

1

I
1

1

J

1
l
l
l

. I
lJ
j

j

j

l

J

ASTnode *userclassType::genCode()
{

}

data_seg();
put (str("C", itoa(uniqueScopeNum))); // label the class
rlong(str("C", itoa(uniqueScopeNum), "_inst")); // Point to inst table
put(str("C", itoa(uniqueScopeNum), "_inst")); // Begin inst table
rword("1"); // Ref count
rlong("C0_shared"); // Ptr to shared table
rlong(str("C", itoa(uniqueScopeNum), "-:constr_code")); // Ptr to constructor
rlong("0"); // constructor's environment - 0 for now
rlong(itoa(6 + 4 *((offsets)? offsets->countinst() : 0))); // size of instance
rlong(str("C", itoa(uniqueScopeNum), "_shared")); // location of shared table

if (sharedVars) sharedVars->genSharedVar(uniqueScopeNum); I I rest of instance vars

put (str("C", itoa(uniqueScopeNum), "_shared")); // begin class's shared table
rlong(str("C", itoa(uniqueScopeNum), "_inst")); // Ptr back to class

if (superClass) { // Ptr to superclass
rlong(str("C", itoa(scope::deepest

->getClassDef (superClass->getNameO)->getClassNum()), "_inst")); }
else

rlong("0");

offsets->genSharedTable(); // Rest of shared table

text_seg(); //layout constructor
bra(str("C", itoa(uniqueScopeNum), "_constr_end"));
put(str("C", itoa(uniqueScopeNum), "_constr_code"));
link(reg("a6"), 0);
push(str("C", itoa(uniqueScopeNum))); // new expects class on stack
pushint(0, "static link for new");
jsr("C0_new_code");
offsets->genConstructorAssignments(); // gen code for assignments

move (reg□ff (reg("a6") ,4), reg("a1 ")); // callee pops args off
loadea(reg□ff(reg("a6"), 12 + 4*offsets->countinstO), reg("sp"));
move(reg□ff(reg("a6") ,0), reg("a6"), "restore frame ptr");
jump(reg□ff(reg("a1"),0));

put(str("C", itoa(uniqueScopeNum), "_constr_end"));

//layout the class for any type parameters
if (paramTypes) paramTypes->genCode();

Figure 27: Generating code for a user-defined class

41

r

or static type, of the variable which precedes it. Variables are represented in the syntax tree by
objects of class IDnode which include the name of the identifier and a pointer to the next variable.
Generating code for a variable in a Leda source program consists of putting the object or !value
referred to by the variable into register aO, as per the convention mentioned above. Normally, the
object that requests a variable to generate code expects the object itself to be placed in aO, but in
some cases, the left-hand side of an assignment for example, require the address of the object to be
generated instead. For this reason, the gen Code method for a variable contains a boolean argument
which signals the method to either dereference the variable or not. In either case, the variable
sends a message to the local scope to generate an address, and then adds a step for dereferencing if
required.

Two pieces of information are necessary to achieve this-the scope of definition of the variable,
and its relative position within the activation record associated with that scope. When a variable
receives a message to generate code for itself it sends a genCodelD message to the current local
scope to generate the code, which takes the name of the variable as an argument. If the scope is
a subprogram (as opposed to a class), it sends the genCodelD message to its argument, constant,
and variable declarations to generate the code. If none of these lists find the name for which code
is to be generated, the scope passes the message up to the next higher level. When a class receives
the genCodelD message, it checks its instance and shared variables for the name. If found, the class
generates code for the receiver, which it knows is in the position of the first parameter within the
local scope. It then generates code for the variable as if it were coded as a class member accessed via
the reserved word self. The difference between the current scope and the level in which the variable
declaration is found is maintained so that code can be generated to travel down the static chain
the right number of links to reach the appropriate activation record. The genCodelD methods for
subprogram nodes and variable declarations are shown in Figure 28.

When a variable of the form a.b.c is encountered, code for the variable a is generated as described
above. Before exiting, the method checks to see if there is some member being accessed, which in
this case there is, namely b. The variable then sends itself the message genCodeMember to generate
code for b. The reason that this message is sent to a and not b is that the code has to generated
in the context of the class of a, something which b doesn't know anything about. The methods for
genCode and genCodelD for the class IDnode are shown in Figure 29. To generate code for a class
member, the method gets the necessary information from the offset table associated with the class
of the variable through which the member is being accessed. One of two different messages is sent,
offset or metaOffset, depending on whether the offset table should think of itself as representing
a class or a metaclass. The information obtained is sent to the non-method function genMember
shown in Figure 30. This function generates the code that puts the member variable (or its address,
depending again on a boolean argument) in register aO. For shared members the generated code
checks to see if the variable is undefined in which case there is no shared table pointer through which
to access the member. In this situation, the shared table associated with the variable's static type
is used.

6.3.2 Assignments

Assignment statements respond to the genCode message by having the left-hand side generate code
for itself without dereferencing. That value, ·the address of the object being assigned to, is then put

42

l
l
l
1

l
I

I

J

J

l
l
l
fl

l

I

j

J

J

j

// The genCodeID method for a subprogram
ASTnode *programASTnode::genCodeID(char *name, int level_diff, invind invk)
{ ASTnode *1t;

// look for ID in constants, locals, then parameters. If not found,
// increase level difference and try again in parent level unless
// already at top in which case return NULL.

if (receiver 1:1: !strcmp(name, "self")) // special case for "self"
return receiver->genCodeID("self", 0, O);

else {

}

if (!constantdefs I I !(lt = constantdefs->genCodeID(name)))
if (!variabledefs I I !(lt = variabledefs->genCodeID(name,level_diff, 0)))

if (!typedefs I I !(lt= typedefs->genCodeEnumID(name)))
// relative position of args depends on if there is a receiver
if (!receiver)

lt = args? args->genCodeID(name, level_diff, 0) : NULL;
else lt = args? args->genCodeID(name, level_diff, 1) : NULL;

if (!lt 1:1: parentLevel)
return parentLevel->genCodeID(name, ++level_diff, invk);

return lt;

}

// The genCodeID method for a variable declaration
ASTnode *declVarID::genCodeID(char *IDname, int level_diff, int location)
{ int k;

}

// if name matches this declaration, put address of variable in aO
if (!(strcmp(name, IDname))) {

}

move("a4", "aO", "move frame pointer to aO");
comment ("follow static chain back for each level");
if (level_diff >= 1)

for (k=1; k <= level_diff; k++)
move(regOffset("aO", 8), "aO");

sub((location+1)*4, "aO");
return type;

// otherwise, increase relative location and try next declaration
else if (next)

return next->genCodeID(IDname, level_diff, ++location);
else return NULL;

Figure 28: Generating code for a variable

43

ASTnode *IDnode::genCode(bool deref)
{

ASTnode *type;

type= scope::deepest->genCodeID(name, O, NOINVOKE);
if (deref) move(regOffset("aO", 0), "aO");

if (next) // is a class member being accessed via this variable?
return this->genCodeMember(type, deref);

else
return type;

}

ASTnode *IDnode::genCodeMember(ASTnode *varType, bool deref)
{

}

int
memberType
ASTnode

offset;
instORshrd;
*varTypeNext;

// Should the class see itself as a metaclass in this case?
if (varType->getLedaType() == METACLASS)

varTypeNext = this->metaOffset(next->name, &offset, &instORshrd);
else

varTypeNext = varType->offset(next->name, &offset, &instORshrd);

genMember(instORshrd, offset, varType, deref);

if (next->next) // is there yet another class member being accessed?
return next->genCodeMember(varTypeNext, deref);

else
return varTypeNext;

Figure 29: Generating code for a variable and its members

44

l

l
.l
l
I
1

. I

j

j

l
l
n
l

1

lj

j

J
J

J

void genMember(char inst0Rshrd, int offset, ASTnode *objType, bool deref=TRUE)
{ int label;

// for instance variables pull object out of instance table, which reg a0
// happens to be pointing to:
if (inst0Rshrd == INST)

if (deref)
move(reg0ffset("a0", offset), "a0");

else
{

}

move(reg0ffset("a0", 0), "a0");
add(offset, "a0");

else
// For shared variables, use pointer to shared table, or shared table
// associated with class of definition if variable is undefined.
if (deref)
{

}

makeLabelsL(label, 2);
compare("0", "a0"); // if undefined, use class of definition
bne(compLabel("L", itoa(label)));
loadea(compLabel("C", itoa(objType->getClassIDO->getClassStructure()

->getClassNum()), "_shared"), "a0");
braLabel(compLabel("L", itoa(label+1)));
putLabel(compLabel("L", itoa(label)));
move(reg0ffset("a0", 2),"a0", "put address of shared table in a0");
putLabel(compLabel("L", itoa(label + 1)));
move(reg0ffset("a0", offset), "a0", "ptr to object in a0");
move(reg0ffset("a0", 0), "a0", "put object in a0");

else
{

}

}

makeLabelsL(label, 2);
compare("0", reg0ffset("a0", 0));
bne(compLabel("L", itoa(label)));
loadea(compLabel ("C", itoa(objType->getClassIDO->getClassStructure ()

->getClassNum()), "_shared"), "a0");
braLabel (compLabel ("L", itoa(label+1)));
putLabel(compLabel("L", itoa(label)));
move(reg0ffset("a0", 0), "a0");
move(reg0ffset("a0", 2), "a0");
putLabel(compLabel("L", itoa(label + 1)));
move(reg0ffset("a0", offset), "a0");

Figure 30: The genMember function

45

on the stack for safe keeping, and a message is sent to the expression on the right-hand side for it
to generate code leaving its value in register aO. The variable of the left-hand side is made to refer
to this new value and the assignment is complete.

Although garbage collection is not fully implemented, the reference count is being maintained by
the code generated by the assignment statement. The reference count of the old object referred to
by the lvalue of the assignment is decremented; that of the new one is incremented. Care must be
taken to check that these objects are defined before erroneously attempting to follow a null pointer
toward an illusive reference count. The genCode method for the assignment statement is shown in
Figure 31.

6.3.3 Binary expressions and operator overloading

Binary operators in Leda are treated as messages sent to the object which results from evaluating
the left-hand expression. The value of the right-hand express ion is an argument to the method. For
example, the expression x * 7 is interpreted as sending the message times to the receiver x with the
argument 7. In fact, the expression x.times(7) is wholly equivalent. Every binary operator has a
corresponding name, some of which are shown in the following table.

Binary operators: Name

+ plus
minus

* times

I slash
% mod

equal

<> notEqual

> greater

< less

>= greaterEqual

<= less Equal
& and

I or

When the compiler encounters a binary expression it generates code for the right-hand side and
pushes it on the stack as an argument. It then generates code for the left-hand expression and pushes
it on the stack as the receiver. Next it finds the offset for the method with the name corresponding
to the operator within either the instance or shared tables of the class of the object returned by
the left-hand side, and generates code which places the method-object in register aO. Finally code
is generated to invoke the method. Figure 32 shows the method in the class representing a binary
expression which generates this code.

By implementing these semantics of binary expressions we have given the Leda programmer the
ability to overload any of the binary operators for use with any programmer-defined classes. This
is done by declaring a method with one argument (other than the receiver), which uses the name
associated with the operator to be overloaded. Figure 33 shows how the plus sign can be overloaded

46

l
l
l
l

1
l
I

1

I
j

I
I
j

J

J

l
l
l
l
n
l

f

lJ

u
l

J

LI

ASTnode *assignStatem::genCode()
{

}

ASTnode *lvalType, *rvalType;

// put the lvalue in aO, and save it on the stack
lvalType = variable->genCode(NO_DEREF);
push("aO", "push address on stack");

// evaluate right hand side and put resulting obj in aO
rvalType = expression->genCode();

//carryout the assignment and adjust the reference counts
incrRefCnt("aO");
pop("a1");
move(reg0ffset("a1", 0), "a6");
decrRefCnt("a6");
move("aO", reg0ffset("a1", O));

return(NULL);

// increment/decrement reference count for object in address register *An
void incrRefCnt(char *An)
{

}

int label;

makeLabelsL(label,1);
compare("O", An); // don't bother if object is undefined
beq(compLabel("L", itoa(label)));
addquiv(1, regOffset(An, O));
putLabel(compLabel("L", itoa(label)));

void decrRefCnt(char *An)
{

}

int label;

makeLabelsL(label,1);
compare("O", An); // don't bother if object is undefined
beq(compLabel("L", itoa(label)));
subquiv(1, reg□ffset(An, O));
putLabel(compLabel("L", itoa(label)));

// code here to deallocate memory if refcnt hits 0

Figure 31: Generating code for an assignment statement

47

ASTnode *binaryExpNode::genCode()
{ int offset; II offset of the method within ...

}

memberType inst0Rshrd; II ... shared or instance table
ASTnode *lcType; II Where to look for the method
ASTnode *opType; II Return type of the method

rightChild->genCode();
push("a0");
incrRefCnt("a0");

II eval right child and push on stack

lcType = leftChild->genCode(); II eval receiver and push on stack
push("a0");
incrRefCnt("a0");

II search for the operation name in the class table of
II the receiver type, error if not found:
if (lcType->getLedaType() == METACLASS)

opType leftChild->meta0ffset(op, &offset, tinst0Rshrd);
else

opType lcType->offset(op, &offset, tinst □Rshrd);

II put the method-object in a0
genMember(inst0Rshrd, offset, lcType, DEREF);
genJsr(); // generate code to jump-subroutine to the code (shown below)
pop("a1", "pop receiver off stack");
decrRefCnt("a1");
pop("a1", "pop parameter off stack");
decrRefCnt("a1");
return opType->getReturnType();

void genJsrO
{ escind cind;

}

move(reg0ffset("a0", 6), "a1", "put pointer to code in a0");
push(reg0:f:fset ("a0", 10), "push static link on stack");
jsr(reg0:f:fset("a1", 0));
comment ("pop static link o:f:f stack 11

);

addquil (4, "sp");

// I:f there is an escaping closure, must treat di:f:ferently
if ((cind = scope::deepest->getClosureind()) == ESC) {

move(reg0:f:fset("a6", 8), "a4 11
, "restore a4"); // gets ruined in proc call

} else
move (11a6 11

, "a4");

Figure 32: Generating code for a binary expression

48

I
I
n
l

I

j

J

J
J

1

n
n
n

t

I
J

J

J

J

type
class := Point

x: integer;
y: integer;

shared

end;

var

plus : method(Point)->Point;
II other methods

p1, p2, p3 : Point;

method Point.plus(p: Point)->Point;
begin

return Point(x + p.x, y + p.y);
end;

begin
p1 := Point(3,7);
p2 .- Point(S,11);

p3 := p1 + p2; II equivalent to p3 := p1.plus(p2)
II p3 is now the point (8, 18)

end;

Figure 33: Overloading the binary operator + in class Point

for use with objects of class Point.

6.4 Generic Methods

Generating a single block of code for a generic method may at first seem difficult. Some entities
within the method are not bound to concrete types at compile time. We anticipated this problem in
two ways. First, the uniform object representation assures that all values take up the same amount
of space (the size of a pointer) inside the activation record or offset table in which they reside. Thus
the compiler need never be concerned with types of variables in order to "find" them at run-time.
Second , we put restrictions on the use of variables declared to be an instance of a type parameter.
We never put the compiler in a position of needing any more information with regard to how an
object should respond to a message beyond that which may be guaranteed by a constraint on the
typ e parameter. When we add to this structure the fact that type parameters are treat ed as locally
defined types from within their class (which includes the member methods), one finds that no special
code-generation techniques are necessary. Truly polymorphic code, identical stat ements correctly

49

and safely computing over multiple types, is generated with no special attention from the compiler.
In choosing this direction we have gained simpler code generation, smaller object programs, and what
we perceive as semantic elegance; but there is a cost. Increased complexity of type checking, and less
flexibility for the programmer must be considered. The tradeoffs are not well understood. The area
of parameterized-type research is relatively young, especially with regard to practical experience.

Most implementations of parameterized types can be put into one of two categories. Some, like
Leda, arrange things so that a single block of polymorphic code can be generated without concern
as to how the class will eventually be instantiated. The languae Eiffel takes this approach [Mey88].
Eiffel goes even further than Leda in that it restrics programmers additionally by not allowing them
to constrain type parameters. Eiffel gains by simplifying the implementation still more. The other
category generally lifts restrictions on the programmer by providing parameterized types in the
form of templates. An implementation of this sort is described in [E&S90) as a proposal for adding
the facility to c++. Templates can be thought of more as a macro. In Leda instantiation is a
passive act in which a programmer makes use of an implicitly created class which shares singular
generic methods with other members of its sub-hierarchy. Instantiating a template is an active,
constructive act, creating a new class where none had existed. The new class's connection to other
classes instantiated from the same template is superficial-a common look, a structure. Methods
declared within a class template must eventually exist in multiplicity to serve the various classes
instantiated from the template. The other side of the tradeoff is stated eloquently in [E&S90]:

Speecifying no restrictions on what types can match a type argument gives the program­
mer the maximum flexibility. The cost is that errors-such as attempting to sort objects
of a type that does not have comparison operators-will not in general be detected un­
til link time. Only then are both the template and the type of elements to be sorted
available.

7 Conclusions

We have written and implemented a compiler for Leda, a new language designed with the goal of
furthering research in the area of multi-paradigm languages and algorithms. Our version of the
compiler was written to enable the first practical experimentation with the language, expected to
result in an evolution of both the language and its compiler. As such we concentrated on refining
Leda's syntax and semantics, implementing them more or less directly without regard to a high level
of optimization. We feel we have succeeded with a useable compiler which has already served to
generate ideas about the future of the language.

We saw as our challenge the creation of a language which is simple and elegant, while providing
the ability to solve problems utilizing various points of view or paradigms. In addition to some of
the more standard features found in popular modern high-level languages, parameterized classes
are included to enable a high-level of abstraction without sacrificing the safety of strong typing.
Continued research will determine the usefulness of this feature, particularly how it may serve as a
vehicle for combining the different paradigms. Type parameters are given a dual semantics. From
inside a class they act as a locally defined type whose scope is the class itself and its member
subprograms. From outside the class they serve as a shorthand for introducing a set of classes-a
sub-hierarchy-any of which the programmer may utilize through instantiation.

50

l

l
n
n

l

I
u
u
I
j

J
j

n
l
l
n
l

j

l

J

1

LJ

The desire to generate truly generic code for member subprograms of parameterized classes
pointed to the need for a uniform representation of all entities regardless of their type. It was
decided that everything would be an object and all types classes. As much as the decision smoothed
the implementation, it caused concern for the efficiency of Leda object programs. We also noted the
competing notion of templates as a different means of implementing parameterized types. Our hope
is that Leda will help us gain insight into the tradeoffs involved with these differing approaches.

Although we are satisfied with the performance of small programs we have written, more and
larger programs need to be tested. Inspired by the experience of the Smalltalk implementors, we sus­
pect that more sophisticated implementation techniques, if necessary, will keep the present semantics
viable. ·

Symbol information is collected for type checking and code generation. The information is kept
within the syntax tree created during the first phase of compilation from the Leda source program. A
pivotal structure used to maintain type information is the classlD. This structure makes for a clean
and maintainable implementation, but no doubt more efficient techniques could be used. Some,
including a flat string representation combined with a hashing scheme, are being considered.

The Leda compiler is written in an object-oriented style. Code generation is sparked by a message
to the root of the syntax tree. The source-program components that make up the nodes of the
tree take responsibility for generating code for themselves, and sending the message on to their
constituents. Presently, some work done while collecting symbol information is being duplicated
during code generation. This allowed concurrent developement of, and experimentation with, the
two compiler phases by different implementors. Future versions of the compiler should eliminate
this redundancy.

Some work remains for Leda to become the general purpose programming language to which it
aspires. Presently, output is rudimentary, serving mainly to test the currently implemented features
of the language. The problem of input/output needs to be solved. It also must be decided what other
built-in classes should be provided, such as strings, arrays, streams, and perhaps others. Along with
these come the question of how much should be implemented with primitive data types, unavailable
to the Leda programmer, versus what should be implemented using the language itself. Large
programs using significant memory resources will require the garbage collection system to be fully
implemented. The code-generation phase needs to be augmented to output information enabling
source-level debugging. Research already underway aims to make Leda part of a comprehensive
multi-paradigm programming environment [Pan91].

A The Compiler

Besides knowledge and experience, the efforts described by this paper led to a working Leda compiler.
It is currently able to generate running code for two different computers, both based on Motorola
68000 series processors. Porting the compiler to other machines based on the same style processor
is straightforward, and should only involve changes to a single module to adjust for the particular
assembly-language dialect. Different architectures will complicate the porting process.

A language definition corresponding to this version of the compiler is given in [S&P91]. The rest
of this appendix gives some statistics about the compiler and the programs it generates.

51

(a) #include <stdio.h>
#define N 20

int nthFib(int n)
{

if (n <= 2) return 1;
return nthFib(n-2) + nthFib(n-1);

}

main()
{

inti, fib;
for (i=O; i<20; i++)

fib= nthFib(N);
printf("¼d\n", fib);

}

(b) const
N := 20

var
i, fib
nthFib

integer;
function(integer)->integer;

begin
nthFib := function(n: integer)->integer;

begin
if n <= 2 then return 1;
return nthFib(n - 2) + nthFib(n - 1);

end;

for i := 1 to 20
fib:= nthFib(N);

fib.print();
end;

Figure 34: Doubly recursive functions to compute the 20th fibinacci number in (a) C and (b) Leda

52

l
l
l

l

I
J

l

l
1

n
n

1

j

j

u
J

Target Machines:

1. HP 9000/375; HP-UX Operating System

2. Tektronix Tek4315; UTek Operating System

Compiler Size:
Source: App. 7600 lines in 9 seperate files
Executable: App . 750K bytes

The following table pertains to the two programs shown in Figure 34. One is written in Leda,
the other in C. The C program was compiled under the GNU gee compiler. Each computes the Nth
fibinacci number for some constant N. The computation is repeated 20 times (for more meaningful
timings) before the result is printed. The algorithm is purposely naive, using double recursion to
test the compilers' function calling facilities and stack limits. Times are given in seconds. Object
size is in bytes.

Fibinacci Leda C
Compilation Time 9 11
Object Size 28672 16876
Running Times:
N = 15 3 .13
N = 20 41 1.4
N = 22 122 4
N = 25 <stack full> 16

The next table refers to two programs which find all 92 solutions to the 8-queens problem . The
approach is object-oriented, adapted from a Smalltalk program given and explained in [Bud87). For
contrast we wrote the program in c++ as well, compiling it under the GNU g++ compiler. The
text of each program is given in a subsection below.

8 Queens Leda
Compilation Time 17
Object Size 34558
Running Time

A.1 8 queens in Leda

type
Queen:= class

row: integer;
column: integer;
neighbor: Queen;

shared
print
first

method();
method();

17

c++
28

32768
1

53

next : method()->Queen;
testPosition method()->Queen;
checkRowCol : method(integer, integer)->boolean;

end;

var
lastQueen: Queen;
i: integer;

method Queen.print();
begin

if defined(neighbor) then neighbor.print();
column.print(); row.print();

end;

method Queen.first();
begin

if defined(neighbor) then
neighbor.first();

row:= 1;
self.testPosition();

end;

method Queen.next()->Queen;
var

nilQueen
begin

Queen;

if row= 8 then
if defined(neighbor) & defined(neighbor.next()) then

row:= 0
else

return nilQueen;
row:= row+ 1;
return self.testPosition();

end;

method Queen.testPosition()->Queen;
begin

if defined(neighbor) then
if neighbor.checkRowCol(row, column) then

return self.next();
return self;

end;

54

l

l
l
n

l
l

l

1

j

J

J

J

J

method Queen.checkRowCol(testRow, testCol
var

columnDifference: integer;
begin

columnDifference := testCol - column;
if (row= testRow)

I ((row+ columnDifference) = testRow)
I ((row - columnDifference) = testRow)

then
return true;

if defined(neighbor) then

integer)->boolean;

return neighbor.checkRowCol(testRow, testCol)
else

return false;
end;

II MA IN II
begin

II initialize queens
for i := 1 to 8

lastQueen := Queen(NIL, i, lastQueen);

II first solution
lastQueen.first();
lastQueen.print();

i := 1;

while defined(lastQueen.next())
i := i + 1;

i.print();
end;

A.2 8 Queens in c++
#include <stream.h>
#define FALSE 0
#define TRUE 1

typedef int BOOL;

class Queen {
public:

55

int row;
int column;
Queen* neighbor;

// methods
virtual void print();
virtual void first();
virtual Queen *next();
virtual Queen *testPosition();
virtual BOOL checkRowCol(int, int);
Queen(int r, int c, Queen *q)

{ row=r; column=c; neighbor=q;}
};

void Queen::print()
{

}

if (neighbor) neighbor->print();
printf("1/.d, 1/.d\n", column, row);

void Queen::first()
{

if (neighbor)
neighbor->first();

row= 1;
this->testPosition();

}

Queen *Queen::next()
{

}

if (row== 8)
if (neighbor && neighbor->next())

row= O;
else

return NULL;
++row;
return this->testPosition();

Queen *Queen::testPosition()
{

if (neighbor)
if (neighbor->checkRowCol(row, c~lumn))

return this->next();

56

n
l
l

l

J

JI
I

l
l
l
n

l

j

J

j

j

u
J

return this;
}

BOOL Queen::checkRowCol(int testRow, int testCol)
{

}

int colurnnDifference;

colurnnDifference = testCol - column;
if ((row== testRow)

I I ((row+ colurnnDifference) -- testRow)
I I ((row - colurnnDifference) -- testRow))

// then:
return TRUE;

if (neighbor)
return neighbor->checkRowCol(testRow, testCol);

else
return FALSE;

main()
{

}

Queen *lastQueen = NULL;
inti, j;

lastQueen = NULL;
// initialize queens
for (i=1; i<=8; i++)

lastQueen = new Queen(O, i, lastQueen);

// first solution
lastQueen->first();
lastQueen->print();

i = 1;

while (lastQueen->next())
i = i + 1;

printf("¾d\n", i);

57

r

References

[B&D73] Birtwistle, G. and 0. Dahl and B. Myrhaug and K. Nygaard, Simula Begin, Auerbach
Pub., New York, NY (1973)

[Bob84] Bobrow, D. G., "If Prolog is the Answer, What is the Question?" Proc. International
Conference on Fifth Generation Computer Systems 1984

[Bud87] Budd, T., A Little Smalltalk, Addison-Wesley, Menlo Park, CA (1987)

[Bud89a] Budd, T. A., "Leda: A Blending of Imperative and Relational Programming," IEEE
Software, January 1991

[Bud89b] Budd, T. A., "Low Cost First Class Functions," Oregon State University, Technical
Report 89-60-12, June 1989. submitted for publication.

[Bud89c] Budd, T. A., "Data Structures in Leda," Oregon State University, Technical Report
89-60-17, August 1989.

[Bud91a] Budd, T. A., "Sharing and First Class Functions in Object-Oriented Languages," Work­
ing document, Oregon State University, February 1991]

[Bud9lb] Budd, T. A., "Avoiding Backtracking by Capturing the Future," Working Document,
Oregon State University, 1991

[Bud91c] Budd, T. A., "Multiparadigm Data Structures in Leda," Working document, Oregon
State University, April 1991

[Che91]

[Dij72]

[Dij76]

Cherian, V., "Implementation of First Class Functions and Type Checking for a Mul­
tiparadigm Language," Research Paper for M.S. Degree, Oregon State University, May
1991

Dijkstra, E. W., "The Humble Programmer," Communications of the ACM, October
1972

Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ
(1976)

[E&G84] Einarsson, B. and W. M. Gentleman, "Mixed Language Programming," Software Prac­
tice and Experience, April 1984

[E&S90] Ellis, M. and B. Stroustrup, The Annotated c++ Reference Manual, Addison-Wesley,
Menlo Park, CA (1990)

[G&R89] Goldberg, A., and D. Robson., Smalltalk-BO: The Language, Addison-Wesley, Menlo
Park, CA (1989)

[Hai86a] Hailpern, B., "Multiparadigm Languages and Environments," IEEE Software, January
1986

58

l

l

n
n
]

l

]

J
)

n
n

l

l

j

j

J
j

J

J
u

[Hai86b) Hailpern, B., "Multiparadigm Research: A Survey of Nine Projects," IEEE Software,
January 1986

[H&S90) Hayes, R. and N. C. Hutchinson and R. D. Schlichting, "Integrating Emerald into a
System for Mixed-Language Programming," Computer Languages, Vol.15 No.2 (1990)

[J&G86] Jenkins, M. A. and J. I. Glasgow and C. D. McCrosky, "Programming Styles in Nial,"
IEEE Software, July 1986

[K&E88] Koschmann, T. and M. W. Evens, "Bridging the Gap between Object-Oriented and
Logic Programming," IEEE Software, July 1988

[Lan91] "The Language List-version 1.4 9/8/91: Information on Aprroximately 1300 computer
languages, past and present." Maintained by Bill Kinnersley, Computer Science Depart­
ment, University of Kansas (billk@hawk.cs.ukans.edu)

[Mey88) Meyer, B., "Object-Oriented Software Construction," Prentice Hall, New York, NY
(1988)

[Pan91] Pandey, Rajeev K., "Sparta: A Programming Environment for the Multiparadigm Lan­
guage Leda," Research Proposal, Oregon State University, Work in Progress

[Pes91]

[Pla91]

[S&P91]

(Ste90]

[S&B86]

[Weg76]

[Wol88]

[Wu91)

Pesch, W., "Implementing Logic in Leda," Oregon State University, Technical Report
91-60-10, September 1991

Placer, J., "Multiparadigm Research: A New Direction in Language Design," Sigplan
Notices, March 1991

Shur, J. and W. Pesch, "A Leda Language Definition," Oregon State University, Tech­
nical Report 91-60-9, August 1991

Steele, G. L, Common Lisp-The Language (second edition), Digital Press, Bedford,
MA (1990)

Stefik, M. J. and D. B. Bobrow, and K. M. Kahn, "Integrating Access-Oriented Pro­
gramming into a Multiparadigm Environment," IEEE Software, January 1986

Wegner, P., "Programming Languages, the First 25 Years (1976)," Programming Lan­
guages: A Grand Tour, edited by Ellis Horowitz, Computer Science Press, Rockville,
MD (1987)

Wolfram, S. Mathematica, Addison-Wesley, Menlo Park, CA (1988)

Wu, S., "Integrating Logic and Object-Oriented Programming," Oops Messenger, Jan­
uary 1991

59

	Shur_Jim_91_60_11_A
	Shur_Jim_91_60_11_B

