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Abstract 

Leda is a strongly typed, compiled, multiparadigm programming language. This paper de­
scribes various implementation concerns which arose from the experience of writing a Leda 
compiler as part of the Leda research team. These include aspects of run-time representation, 
symbol-table information, and code generation. The paper concentrates on objects and classes. 
An overview of the object-oriented features of the language is given, including our semantic view 
of parameterized classes. 

1 Introduction 

Leda is a multi-paradigm, strongly typed, compiled programming language. The paradigms sup­
ported are procedural, functional, relational, and object-oriented. The primary purpose of the 
language, according to its designer, "is to provide a vehicle for experiments in multi-paradigm pro­
gramming" [Bud89b]. Using relational programming techniques in Leda was originally described in 
[Bud89a]. Further ideas on that topic-the language definition is still evolving-can be found in 
[Bud91b]. First class functions and functional programming are discussed in [Bud89b]. The object­
oriented paradigm along with the data structures that support its use are presented in [Bud89c]. 
A more recent paper, [Bud91c], describes a style of programming which combines the different 
paradigms. 

In January of 1990, the Leda research team began the project of implementing a Leda compiler. 
At the time of this writing, the compiler is generating 68000 assembly language object programs 
for two different computers. More information on the actual compiler is given in Appendix A. 
This paper reports on the experience of that implementation, specifically those parts relating to the 
object-oriented features. First we discuss Leda in the light of past and current research relating to 
multiparadigm languages. Section 3 gives a brief introduction to the language with some examples. 
Section 4 explains the run-time representation of objects, an issue which had to be resolved before 

1 



a compiler could be built. The system for gathering symbol information is presented in Section 5. 
Finally, Section 6 addresses code generation. 

2 Related Work 

"Which programming language am I going to use?" asks E. W. Dijkstra in the preface of A Disci­
pline of Programming[Dij76]. A recent list names approximately 1300 programming languages from 
which the eminent computer scientist might choose [Lan91]. Dijkstra's belief that a programming 
language-whether we like it or not-influences our thinking habits, elevates the importance of the 
choice beyond aesthetic considerations. It se~ms that our approach to a given problem is born out of 
our intellect, associations, and the tools we find ourself faced with. It is not surprising that the old 
adage, the right tool for the right job, applies to programming languages. Unfortunately program­
mers are faced with many and varied jobs over time. Worse yet, even a single job may be quickly 
decomposed into disparate sub-tasks. Provided with a monistic approach to problem-solving, a pro­
grammer can be expected to feel no less frustration than a carpenter forced to make do with only 
a screwdriver. An area of research is born: What is the best way to make sure that a programmer 
has a rich set of tools so that diverse problems can each be met in a natural, straightforward way? 

Each of the three major first-generation programming languages were well suited for particular 
tasks. Around 1966, the second-generation language PL/1 was developed as a synthesis of these­
Fortran, Cobol, and Algol 60 [Weg76]-in hopes that the language would be a good tool for scientific, 
business, systems, and combined applications. This shows one way to attack the problem-a single 
language providing multiple tools. Whether that approach is preferable to providing several spe­
cialized languages within some integrated environment is an open question. The latter solution is 
called mixed language programming in [E&G84], and the authors suggest that "in many applications, 
various parts of a complete program are best written in assorted languages." The paper cites the 
difficulties of providing a suitable interface between modules written in the different languages. An 
advantage of this approach is that one can still make use of existing code, e.g. numerical subroutines 
written in Fortran. Current research in mixed language programming is discussed in [H&S90]. This 
paper gives evidence that "it is often possible to find more common ground between disparate pro­
gramming languages and models than might be expected." This is the attitude of the Leda research 
team, though we apply it to the single-language approach. That is, we believe that we can exploit 
the commonality of different languages to create a single one which allows the programmer to apply 
one of several models of computation to a given problem. 

In the 25 years or so since the advent of PL/1, researches have made significant progress in finding 
unique problem-solving approaches, or computational models. Because some of these are so distinct 
and single-focused, forcing one to make a near radical shift in thinking to move from one approach 
to another, they have come to be known as paradigms. Recognized paradigms we will consider here 
include procedural, functional, logical, and object-oriented. Whereas PL/1 undertook to combine 
different linguistic features, they were all within the context of the procedural paradigm. At this 
point in history the problem of providing a state-of-the-art toolbox to the programmer becomes 
more difficult as different paradigms must be made available. Thus recent research in this area has 
come to use the terms multiparadigm systems, which may include multiparadigm languages, and/or 
multiparadigm environments. 
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The importance of this research is argued in [Bob84]. The author criticizes the sole use of the 
logical paradigm (in the form of Prolog) as the basis for fifth-generation programming. He admits 
its power but asserts that "no single paradigm is appropriate to all problems, and powerful systems 
must allow multiple styles." The same author with some colleagues discuss the multiparadigm 
programming language Loops in [S&B86]. This language takes a lesser known paradigm called 
access-oriented and combines it with the better known paradigms mentioned above. A high priority 
in the development of Leda is the study of the interaction between different paradigms. Our research 
should be made easier by keeping with those paradigms which are well studied and worked out, at 
least individually. 

Multiparadigm systems are treated apart from any particular paradigm in [Hai86a], which intro ­
duces two criteria the author believes are necessary for a multiparadigm system: 

• A multiparadigm system should allow language elements from different paradigms to co-exist 
within one program or module 

• Each paradigm of such a system should be able to refer to and depend upon services provided 
by the other paradigms 

Our philosophy coincides with these points; Leda meets these guidelines. 
Some researchers have worked to reap the benefits of combining paradigms not by studying 

multiparadigm systems as such, but by extending an established language of one paradigm with 
features of another. Following the example of adding classes to Algol 60 to create Simula [B&D73], 
Bjarne Stroustrup created c++ by adding.object-oriented features to C [E&S90]. Both of these 
extensions allow a mixture of procedural and object-oriented programming. Object-oriented pro­
gramming and functional programming are combined in the Common Lisp Object System (CLOS), 
an object-oriented extension to Common Lisp [Ste90]. Yet another combination, functional and logic 
programming, are combined in a system described in [K&E88]. The authors ask how to combine the 
two paradigms so that the best features of each are preserved. Our research with Leda concerns an 
abstraction of that same question . The [K&E88] solution, unlike the extended languages above, is 
to leave versions of Prolog and Lisp basically intact and construct an interface bridge between them. 
The authors state an advantage to this approach is that there is no degradation of performance due 
to one language being implemented on top of another. They admit however, that the programmer 
would be living in "two separate worlds, each with its own name spaces and syntactical rules." Our 
decision with Leda has been to concentrate on the human side first-ease of programming, comfort in 
moving between the different paradigms-relegating efficiency concerns to important-but-secondary 
status. 

It is interesting that some multiparadigm langauges have at their heart some simple unifying 
model that belie their many-sided exteriors. The language Nial, with roots in APL, has the nested 
array as its sole data structuring capability [J &G86]. The development of Nial was motivated by the 
"desire to provide a multiparadigm programming language suitable for teaching the various styles." 
Although Leda was conceived as a general purpose language, its potential use in the classroom en­
courages us. In fact, Leda syntax has already been used in an upper-division course on programming 
languages to explain higher-order functions without having to stray too far from the familiar Pascal­
like program structure. The language G, described in [Pla91], is a multiparadigm language which 
utilizes the stream as its fundamental data type. In addition to discussing multiparadigm research 
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qs .- func(s)[local[x], x:=©s, if(x)[self(s[<x]), x, self([>=x])JJ. 

Figure 1: The quicksort algorithm in the multiparadigm language G 

in general, the author gives an example of a quicksort algorithm coded in G, shown in figure 1. The 
© operator causes its argument to enumerate the initial value in its value sequence and then to move 
on to the next value in that sequence. self refers to the function being defined and is used here to 
make recursive calls. Although two languages may support the same basic paradigms, choices of 
data structures and syntax can make the languages quite distinct. 

The language Orient84/K unifies the paradigms it supports in the object framework [Hai86b]. As 
explained in later sections, Leda too uses objects as a unified low-level representation. Orient84/K 
is still different in that objects consist of not only a behavior part, but also a knowledge-base part 
which can include Prolog-like rules and facts. Thus the object-oriented and logical paradigms are 
more finely integrated than in Leda. 

By now the extensive range of research in multiparadigm systems should be apparent, and still 
much has gone unmentioned. Even the specialized-domain language for the M athmatica software 
package supports functional, object-oriented, and rule-based programming [Wol88]. In his overview 
of the subject, Brent Hailpern speculates "that many more iterations of the experiment/theory cycle 
will come before this area is mature [Hai86a]." Our goal is for Leda to be one more iteration toward 
that end. 

3 The Language 

This section begins with a brief introduction to programming in Leda, especially the use of classes 
and their objects, in an attempt to impart some of the flavor of the language. It concludes with a 
more detailed discussion of the use and semantics of parameterized types. For more information, 
especially in regard to mixing the various paradigms, we refer the reader to the papers mentioned 
in the introduction. Figure 2 gives a skeleton of a Leda program. The strong resemblance to Pascal 
is not accidental. A likely pitfall in designing a multiparadigm language is assumed to be the 
creation of an overly complex affair suscep~ible to such appellations as "kitchen sink," [Bud9lc] 
"swiss army knife," or worse yet- "fatal disease." 1 . Hence a high priority design goal of Leda is to 
retain simplicity, while still providing a tool of many dimensions. A legal Leda program need only 
consist of a single compound-statement containing at least 1 (possibly empty) statement. Figure 3 (a) 
shows the smallest valid Leda program. Part (b) of that figure shows a simple counting program 
which makes use of one of the standard control structures provided. While, repeat, and for loops 
may be used for iteration; if-then along with if-then-else constructs are available for selection. 

The program in part (c) of Figure 3 defines a new class Point with data variables x and y. A 
method distance gives objects of the class the ability to compute their distance from some other point 
passed as an argument. Class definitions consist of two sections of variable declarations. First come 
the instance variables which are unique for every object which is an instance of the class. Next, 

1 Dijkstra's epithet for the programming language PL/1 (:0ij72] 
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const 
// constant declarations (the"//" marks the rest of a line as a comment) 

type 
// type declarations, class definitions 

var 
// variable declarations 

// function and method definitions 
begin 

// program statements 
end; 

Figure 2: Skeleton of a Leda program 

following the keyword shared, are shared variables, existing in singular form, independent of any 
particular object-shared by all instances of the class. Shared variables may be accessed through an 
object or through the class itself. For example pl.distance and Point.distance are aliases, both refer­
ring to the method distance in class Point. They are not interchangeable within any Leda expression 
however. Invoking the method by accessing it through the class name, as in Point.distance(), is ille­
gal since to actually invoke the method an object is needed to act as receiver. The first assignment 
below is illegal as well. 

pi.distance := function(q1, q2 
begin 

II 
end; 

Point)->real; // WRONG! 

Point.distance:= function ... // Correct 

When assigning to a shared variable the class name must be used to access the member. We hope 
that this rule will keep the programmer and readers of the program aware that such an assignment 
will affect all instances of the class. The incorrect example above may lead one to mistakenly assume 
that only the state of object pl is being altered. 

All classes understand the message new and respond to it by dynamically creating a new instance 
of themselves. This is how objects are born. Although not fully implemented, the intent of Leda is 
to automatically discard objects in those cases where it can be determined that they are no longer 
referenced by any variables, guaranteed to remain thenceforth unused. Variables begin their lives in a 
formal state of being undefined. They can be released from that condition by assigning to them either 
a constant (certain pre-defined classes only), a defined variable, or a newly created object. A special 
built-in polymorphic predicate defined will take any object as an argument and return a boolean 
indicating its circumstance. If during the course of a running Leda program, an expression attempts 
to access an instance member via an undefined variable, a run-time error occurs. Unfortunately it is 
impossible to check for this situation at compile time in the general case. Shared members are more 
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(a) begin 
// an empty statement 

end; 

(b) var 
i integer; 

begin 
for i := 1 to 10 

print(i); 
end; 

(c) type 
Point:= class 

x: real; 
y: real; 

shared 
distance method(Point)->real; 

end; 
var 

p1 Point; 
r real; 

method Point.distance(P: Point)->real; 
begin 

return sqrt(((P.x - x) * (P.x - x)) + ((P.y - y) * (P.y - y))) 
end; 

begin 
p1 := Point.new(); 
p1.x := O; 
p1.y := 4; 
r := p1.distance(Point(3,0)); 

r.print(); 
end; 

// create the Point (0,4) 
// using the message 'new' 

// ask p1 how far it is from (3,0) 
using the constructor for Point 

// prints 5 

Figure 3: (a) The smallest valid Leda program; (b) A program that counts to 10; (c) Defining a 
class, creating new objects, sending a message 
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robust and can be accessed through undefined variables. This may seem surprising. Normally shared 
members are accessed through a class pointer which is part of the object at run-time. This allows for 
dynamic binding, the use of the shared member associated with the class of the actual object being 
held by the variable at run-time, not necessarily the staticly defined class of the variable. When a 
variable is undefined, the shared member can not be accessed in this way. The compiler generates 
code to check for this situation. If the variable is found to be undefined, the shared member is taken 
directly from the statically defined class. This includes messages which are implemented by shared 
methods. They may be sent to an undefined variable which is the receiver. Control is passed to the 
method and it is the method's responsibility to manage the possibility of an undefined receiver or 
not. Possible actions could be to substitute a default value, or print out or return an error condition. 
Note that the receiver is always passed by value so defining it within the method is not an option; 
the receiver will remain undefined when control returns from the method. 

All classes have the ability to be invoked as a subprogram which is the constructor for the class. 
The constructor must be given an argument for each instance member inherited by, or explicitly 
defined within the class. The order of the parameters must be the same as the order defined, 
starting with the inherited members. The constructor sends the new message to the class to create 
a new object, and then assigns each parameter to its respective instance variable. The new object 
is returned. The keyword NIL may be used as a parameter where the programmer wishes the 
corresponding instance member of the new object to remain undefined. Use of the constructor for 
class Point can be seen in Figure 3 (c). 

Leda supports the basic tools of object-oriented programming-subclassing, inheritance, virtual 
methods, overriding, and dynamic binding. Not only methods can be virtual, all declarations in the 
shared portion of a class are automatically treated as virtual and can be overridden in a descendant 
class. Objects may be assigned to variables declared to be of the same or any ancestor class. 
The actual shared member accessed by the dot operator depends on the class of the actual object 
referenced by the variable at run-time, not on the declared class of the variable (unless, as explained 
above, the variable is undefined). 

3.1 Parameterized Classes 

Besides instance and shared variables, a class definition may introduce new types which are local 
to the scope of the class definition. These we call type parameters and are declared immediately 
following the class keyword enclosed in parenthesis. Classes with one or more type parameters are 
called parameterized classes. The definition of these types is severely restricted so that they may be 
used to implement genericity as discussed below. There are two ways to declare a local class within 
a class. The first, exemplified by the type parameter T of the class Pair shown in Figure 4 (a), 
creates the most minimal class possible- one with neither instance nor shared variables. Though 
slight, such a type is far from useless, at least when taking a view from inside the class within 
which it is locally defined. As the swap method shows, some computations only require that an 
object of some type be assigned an object of the same type; the particular properties of the type are 
irrelevant. Similarly, variables of a type parameter can be passed as parameters to a subprogram 
expecting that same type, or returned from a function declared to return the type. The second 
sort of in-class local type declaration is one which defines a superclass for the type. Although 
no additional instance nor shared variables may be declared, the inheritance mechanism works as 
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usual so that variables declared to be of the type parameter can safely access any of the inherited 
members. Figure 4 (b} gives an example. Type parameters declared to have a superclass are called 
constrained type parameters; the superclass is the constraining type. Otherwise, the type parameter 
is unconstrained. 

The motivation for allowing these local type declarations within a class is as a means to implement 
genericity. On their own, the type parameters don't add power or expressiveness to the language 
since they are local to some class and therefore incompatible with any types defined outside the 
class . The significance of a parameterized class from outside the class is completely different from 
the inside view described above, giving type parameters a sort of dual semantics. A parameterized 
class is actually an implicit definition of 1 or more (possibly infinite) classes which take the place 
of the literal parameterized definition written by the Leda programmer. The programmer is then 
free to make use of these classes in type and variable declarations. The classes that are created 
implicitly are those that can be constructed by substituting some class from within the current 
class hierarchy for each occurrence of the type parameter within the parameterized class. If the type 
parameter is unconstrained, there is no restriction on which classes may be substituted. Constrained 
type parameters may only be substituted by the constraining class itself or one of its descendants. 
The implicitly defined types are denoted by the name of the parameterized class followed by the 
substitution classes in parenthesis as arguments. When a programmer refers to an implicitly defined 
class in this manner we say that the parameterized class is being instantiated. Instantiated types 
may also be used as substitution types as long there is no constraining type to prevent it. This is 
how a parameterized class definition can give rise to an infinite number of implicitly defined classes. 
For example a class List defined to have an unconstrained type parameter T, defines the class 
List(integer), List(List(integer)), List(List(List(integer))), and so on. Figures 5 and 6 give examples of 
complete programs which use parameterized classes. 

The implicitly defined classes are themselves arranged hierarchically. If foo is a parameterized 
class, then foo(p1, P2, ... , Pn) is a descendant of foo( q1, q2, ... , qn) if and only if each of the p pa­
rameters is identical to or a descendant of its corresponding q parameter. This notion makes sense 
intuitively if one ponders assigning a List(Dog) to a List{Animal) where Dog has been defined as 
a subclass of Animal. But examination uncovers a very different sort of class hierarchy than the 
one we are familiar with when parameterized classes and genericity are not involved. Consider the 
List class from Figure 6 in conjunction with an Animal class that has a subclass Dog. The class 
List(Animal) defines an instance variable first to be of class Animal. The class List(Dog) defines that 
same instance variable first to be of class Dog. This is a case of strengthening, or restricting, the type 
of an inherited instance variable to a more specific class, something that would never be allowed 
when defining a subclass in a traditional class system. Fortunately the type restriction is what we 
want. It is this feature that makes genericity useful and expressive by allowing us to abstract out the 
common attributes of the family of List. classes, making use of polymorphic code while still exerting 
control over the sorts of objects that may be referred to by class members. We can guarantee a 
List(Dog) will only contain Dogs. Had we relied solely on the inheritance mechanism, we would have 
been forced to explicitly define each List class separately, duplicating members and methods along 
the way. 

The cost of allowing type strengthening within the implicitly defined class hierarchy is the extra 
care that must be taken to insure type safety with regard to Leda's strong typing. One consequence 
is that shared variables may not be declared with . a type parameter as its class. Another is the 
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(a) type 
Pair:= class (T) 

first T; 
second: T; 

shared 
swap : method(); 

end; 

method Pair.swap(); 
var 

temp: T; 
begin 

temp:= first; 
first := second; 
second:= temp; 

end; 

(b) type 
hasFirst := class 

first : integer; 
shared 

getFirst method()->integer; // returns member first (not shown) 
end; 

foo := class (T < hasFirst) // local type Tis subclass of hasFirst 
bar: T; 

shared 
firstBar method()->integer; 

end; 

method hasFirst.getFirst()->integer; 
begin 

return first; 
end; 

method foo.firstBar()->integer; 
begin 

return bar.getFirst(); // getFirst is inherited from hasFirst 
end; 

Figure 4: (a) Declaring a class within a class and its use in a method; (b) A constrained type 
parameter 
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type 
// In class curry, the do method is a curry of binary function f, fixing the 
// second parameter toy. The class may be used with any function by 
// instantiating the type parameters T, U, t V to the respective argument 
I I and return types. 
curry : = class (T, U, V) 

y : U; 
f : function(T, U)->V; 

shared 
do : method(T)->V; 

end; 

point := class 
x, y: real; 

shared 
distance: method(point)->real; 

end; 
intCurry 
mixed Curry 

:= curry(integer, integer, integer); 
:= curry(point, point, real); 

var 
plus3: intCurry; 
from□rigin: mixedCurry; 
i integer; 
r: real; 

method curry.do(x T)->V; 
begin 

return f(x, y); 
end; 

method point.distance(P point)->real; 
var 

r: real; 
begin 

r := ((P.x - x) * (P.x - x)) + ((P.y - y) * (P.y - y)); 
return r. sqrt () ; 

end; 
begin 

plus3 := intCurry(3, integer.plus); 
i := plus3.do(7); i.print(); // pr~nts 10 
i := plus3.do(12); i.print(); // prints 15 
from□rigin := mixedCurry.nev(point(O,O), point.distance); 
r := from□rigin.do(point(3,4)); r.print(); // prints 5 
r := from□rigin.do(point(S,12)); r.print(); // prints 13 

end; 

Figure 5: Using parameterized · classes-the curry example 

10 

n 
I 
l 

J 

j 

u 



1 

n 
n 
l 
n 
l 

l 

l 

j 

J 

1 

j 

J 
J 

type 
list := class (T) 

first 
rest 

shared 

T· J 

list(T); 

append: method(T); 
end; 

intList := list(integer); 
realList := list(real); 

var 
i intList; 
r realList; 

method list.append(next T); 
type 

Tlist := list(T); 
begin 

if (defined(rest)) then 
rest.append(next) 

else 

end; 

begin 
rest := Tlist.new(next, NIL); 

end; 

begin 
i := intList.new(10, NIL); 
i.append(9); 
i.append(8); 
i.append(7); 

r := realList.new(0.1, NIL); 
r.append(0.01); 
r.append(0.001); 
r.append(0.0001); 

end; 

Figure 6: Using parameterized classes-the list example 
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inability for a class, defined to be a subclass of an instantiated type, to override any of the methods 
originally defined in the parameterized class. [Bud91a] explains the inability to ensure type-safe 
behavior in these situations. 

4 Objects and Run-Time Representation 

The underlying model of Leda centers on objects, classes, and messages. The language represents 
entities as objects which are in turn, instances of classes, in the sense introduced by the language 
Simula 67. An early decision in our implementation was to generalize this representation to all 
data types, including basic types such as integers, boolean values, functions, and even classes. 
Accordingly, operations on these basic types are actually methods defined within their respective 
classes, so that an expression such as 3 + 4 is a message to the integer object 3 to add itself to 
the integer 4 and return the result. The decision was motivated by the wish to generate truly 
polymorphic code for the methods of parameterized classes. That is, one block of code that will 
work correctly for any instance of any class defined by instantiating the same parameterized class. 
This of course requires generating code for .objects of unknown type, making it necessary that all 
objects have the same size. Our particular solution to the uniformity problem was inspired by the 
experience of the Smalltalk implementors who write in [G&R89] that: 

The contention that even the addition of two integers should be interpreted as message sending 
met with a certain amount of resistance in the early days of Smalltalk. Experience has demon­
strated that the benefits of this extreme uniformity in the programming language outweigh 
any inconvenience in its implementation. Over several versions of Smalltalk, implementation 
techniques have been developed to reduce the message-sending overhead for the most common 
arithmetic operations so that there is now almost no cost for the benefits of uniformity. 2 

The following sections show how objects are represented internally at run-time. Section 4.1 gives 
the basic structure of a generic object. Section 4.2 shows how some of the traditional data types 
provided by Leda are implemented as classes, and what their objects look like. Finally, Section 4.3 
explains how classes are implemented as objects, and their run-time connection with those objects 
that are instances of them. 

4.1 Internal structure of an object 

All objects in Leda are pointers. An object points to an instance table. The instance table is a 
data structure which contains the instance variables of the object, that is, the variables defined in 
the class of the object to be unique to each object. Each object has its own personal copy of the 
instance variables. The instance table also contains a pointer to the object's shared table. This 
data structure contains the shared variables-those variables defined in the class of the object to 
be shared among, or common to, all instances of the class. Finally, the instance table contains a 
reference count. As ~ result of Leda's pointer semantics, more than one variable may denote the 
same object. The reference count keeps track of how many such variables there are. If the reference 
count is zero, the space taken up by the instance table can be returned to free storage. 

2 [G&R89], page 119 
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The shared table also contains some fields other than the shared variables th emselves. These 
include the object which is the class in which the shared variables are defined, and the object which 
is the superclass of that class. These fields can be used at run-time to access information about the 
dynamic class of an object and its place within the class hierarchy. (Presently only one such function 
is available to the Leda programmer. By sending the message filter to a class with one argument, 
the class will either return the argument itself if it is an instance of the class or one of its subclasses, 
or otherwise return undefined. Future research may utilize these fields for other purposes, such as 
to give objects the ability to"clone" themselves for example.) To be precise, the shared table does 
not contain the shared variable objects, but pointers to them. The necessity for this is explained in 
[Bud91a]. Figure 7 shows the run-time representation of an object in Leda. 

4.2 Representing traditional data types as objects 

Leda provides programmers with the predefined types integer, real, function, method, and boolean. 
The implementation treats methods as a special kind of function. At run-time, the two types are 
indistinguishable; they are represented the same way, and methods are considered to be objects 
of the class function. Thus methods will not be discussed further in this section. Details on the 
implementation of methods vs. functions can be found in [Che91]. The classes corresponding to 
the predefined types are on an equal footing with any classes the Leda programmer may define. 
What makes them different is that they may contain instance or shared variables of type primitive. 
Variables of this type may not presently be manipulated within the language. Thus the methods 
for these predefined classes are written directly in assembly language, in a separate module which is 
linked with a Leda source program at compile time. Figure 8 shows the integer class in pseudo-Leda 
syntax, the integer 7 as respresented in assembly code, and the code for the plus method. Note that 
all the operations on integers-arithmetic and relational-are defined as methods within the class. 
Since the variable value is a primitive, we can't actually define the class and its methods within 
Leda, so they are included in the special assembly language module . The class real is implemented 
similarly. 

Functions in Leda are objects with two instance variables-a pointer to the code, and a pointer 
to the environment of definition. The environment pointer actually points to the activation record 
of the subprogram in which it is defined. Access to non-local variables in Leda is implemented using 
static chains. When a function is invoked, the environment variable from the instance table is used 
for the static link. The class function, along with the code generated for a function definition is 
shown in Figure 9. 

Enumerated types, of which the predefined type boolean is one example, are also implemented 
as classes. Enumerated types are central to the use of the relational paradigm within Leda. Unlike 
languages such as Pascal and C, it is necessary, for the sake of meaningful output, to maintain at 
run-time the literal strings corresponding to the different enumerated constants. This is achieved by 
creating a class for each enumerated type that is defined in a Leda program. The instance variable 
for the class is a primitive integer value, which can be efficiently manipulated in functions such as 
successor and predecessor. The shared variables for the class include the number of constants defined 
for the type, and a table of strings. The value field of an instance of an enumerated type can by used 
as an index into the table of strings by any methods ( such as print) defined for the class. Furth er 
details on implementing enumerated types in Leda can be found in [Pes91]. 
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Figure 7: An object in Leda 
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integer:= class 
value: primitive; 

shared 

end; 

plus : method(integer)->integer; 
minus method(integer)->integer; 
times: method(integer)->integer; 
slash: method(integer)->integer; 
mod: method(integer)->integer; 
unaryPlus: method()->integer; 
unaryMinus: method()->integer; 
print: method(integer); 
less, lessEqual: method(integer)->boolean; 
greater, greaterEqual: method(integer)->boolean; 
equal, notEqual: method(integer)->boolean; 

IC_7: The object 7 
.long 

IC_7_inst: 
.vord 
.long 
.long 

IC_7_inst 

i 
Ci _shared 
7 

Pointer to instance table 

reference count 
Pointer to shared table 
value 

Ci_plus_code: I Code for method integer.plus 
1---------------------------------------------------------------------------

link a6,#-0 no locals 
movl a6111(i2) ,ai receiver object in ai 
movl ailll(6),di receiver integer value in di 
movl a6111(i6),ai argument object in ai 
movl ailll(6) ,d2 argument integer value in d2 
addl d2,di computer sum 
movl di,splll- save sum value on stack 
movl #iO,splll- push size on stack 
jsr _malloc create space for nev integer 
movl dO,aO put nev object in aO 
addql #4,sp pop size off stack 
movl splll+,di restore saved value 
movv #0,aOlll(O) initialize reference count 
pea Ci_shared 
movl spill+, aOIII (2) load pointer to shared table 
movl di, aOIII (6) load nev value 
bra epilog2 clean-up 

Figure 8: The integer class, the object 7, and the method integer.plus 
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function:= class 
code_pointer: primitive; 
envirorunent_pointer: primitive; 

end; 

var 
f : function(); 

begin 
f := function(); 

begin 

end; 

FO: 

F_endO: 
F_objO: 

// function statements 
end; 

(code for the function statements) 
.data I lay out the function object 

I the function object itself 
.long F_instO I pointer to instance table 

F_instO: .word O I ref. count (will be 1 after assignment) 
.long C2_shared I pointer to class function's shared table 
.long FO I pointer to the code 

F_envO: .long O I pointer to the envirorunent 
.text I resume executable statements 
movl a4,F_env0 I place frame pointer (a4) in environment 

I ... (complete assignment to f) 

Figure 9: The function class, a Leda function definition, and the corresponding generated code 
including the function object 
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4.3 Classes are objects too 

Classes are objects, each of which is an instance of a corresponding metaclass. A class object for 
each class defined in a Leda source program is laid out in the object program. Individual metaclasses 
do not need a physical manifestation however, their existence is more for the sake of semantics. All 
instances of metaclasses are linked to a single common shared table, which contains the new method. 
This method allows classes to dynamically create new instances of themselves. The instance variables 
for a class object include the information necessary for the new method-the size of an instance of 
the class, and the location of the shared table for the class. Like function objects, class objects have 
a pointer to their code, which is the class constructor, and a pointer to the environment for the 
constructor. The other instance variables are exactly those objects which are shared variables from 
the point of view of instances of the class. This bears repeating: The shared variables for an instance 
of some class A, are the instance variables for the object which is class A. This relationship can be 
implemented very neatly. Recall that the shared table contains pointers to the shared variables. In 
fact, the pointers in the shared table point right back to the instance variables in the corresponding 
class object. Figure 10 shows a class defined in Leda with a picture of the class object and its 
relationship to an instance of the class. Figure 11 shows the code for the new method which will 
dynamically create a new instance of any class. 

Besides the aesthetic appeal of a unified model, implementing classes as objects have a practical 
and simplifying value. To avoid confusing Leda programmers and readers of Leda programs, it 
was decided that when assigning a value to a shared variable of a class, the class name must be 
used. An assignment to a shared variable accessed through an instance variable might not make it 
apparent enough that the change will affect all instances of the class. With the class as an object, 
an assignment such as 

Circle.area:= function(x : circle)->real; begin ... end; 

requires no special code generation techniques. Circle.area can be treated as any object and its 
member variable-used as the target of an assignment statement, or in an expression. 

Intuitively one might correctly assume that when altering a shared variable of a class, not only 
all instances of that class are affected, but all instances of any class which inherits the particular 
shared variable are affected as well. It is much less intuitive that a change in a shared variable of 
a class would affect instances of ancestor classes from which the shared variable is inherited. For 
this reason Leda only allows referencing shared variables using the class of definition. This refers 
to the class in which the shared variable is originally defined or a class in which the variable is 
explicitly overridden. Since a class object only includes as instance variables the shared variables 
originally defined or overridden in the class definition, the rule is enforced through the natural means 
of checking membership. Figure 12 shows the class layouts for a class and its subclass. The reader 
will note that many labels in the assembly code begin with a capital C followed by a number. Every 
class defined in a Leda program is given a unique number by the compiler. This number can then 
be employed to generate unique labels, so that a print method defined in a class foo will not clash 
with a print method defined in some class bar for example. 
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type 
Circle := class 

center Point; 
radius: real; 

shared 
area: method()->real; 
circumference: method()->real; 
distance: method(Circle)->real; 

end; 
var 

c: circle; 
begin 

c := circle.new(); 
end; 

-
The Object C 

Instance Table for C 

Reference Count 

Shared Table Ptr 

center 

radius 

-
The Object Circle 

-
Class Object 

Supc:rcla.n Object 

(NULL) 

-

Figure 10: A class definition, the class, and an instanc e 
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I=========================================================================== 
CO_new_code: link a6,#-0 I create new instance of receiver 
1------------------------------------------------------ ---------------------
movl a6©(12),a1 I receiver in a1 
movl a1©(14),sp©- I push obj size on stack 
jsr _malloc I get space for new object 
movl dO,aO I put new obj in aO 
addql #4,sp I 
movl O,aO©(O) I init reference count 
movl a6©(12),a1 I return receiver in a1 
movl a1©(18),a0©(2) I init shared table 
bra epilog1 I clean-up 

Figure 11: The new method in class metaclass 

5 Symbol Information 

Having decided on the run-time representation of objects and the idea that all types would be 
implemented as classes, all entities would be objects, and all operators message-sends, the compiler 
could be built. This section discusses our method of collecting the information from the type and 
variable declarations that is necessary for type checking and code generation. After showing where 
the symbol information is kept in relation to the overall structure of the compiler, we present a 
major component of Leda's symbol information system, the classlD. Then we discuss one particualr 
feature of the classlD-the class offset table-in more detail. 

We developed the Leda compiler using the compiler construction tools fl.ex and bison, ( compatible 
with the lex and yacc programs from the unix operating system), in conjunction with the program­
ming language c++. We approached the problem of compilation from an object-oriented point of 
view. The compiler works in two stages . The first phase reads through the Leda source program 
and constructs a heterogeneous tree structure ( an abstract syntax tree of sorts) where each node is 
an object representing a declaration , statement, expression, or some other component. At this time 
the compiler collects symbol information, and performs type checking and closure analysis. The 
latter two tasks, along with the necessity to perform closure analysis in a separate phase than one 
which performs code generation, are described in [Che91]. The second phase consists of a message 
to the tree to generate code. The message is received and passed on to child nodes who deal with 
the message as they see fit. Figure 13 shows the main classes in the implementation that deal with 
symbol information . 

Symbols are those entities which occur on the left hand side of some declaration. These may 
be type, variable, constant, argument, or type parameter declarations. Argument and type decla­
rations are always in the context of some subprogram definition. Type parameters always relate to 
the definition of a class in a subprogram's Type section. Variable declarations may occur in either 
of th ese two plac es. Thu s another look at Figure _ 13 shows how all the information is originally 
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Point:= class 
x, y: integer; 

shared 
distance: method(Point)->real; 

end; 

Circle:= class of Point 
radius real; 

shared 
area 
circum 

end; 

C12: 

C12_inst: 

C12_distance: 
C12_shared: 

C13: 

C13_inst: 

C13_area: 
C13_circum: 
C13_shared: 

method()->real; 
method()->real; 

.long C12_inst 

.word 1 

.long CO_shared 

.long C12_constr_code 

.long 0 

.long 14 

.long C12_shared 

.long 0 

.long C12_ inst 

.long 0 

.long C12_distance 

.long C13_inst 

.word 1 

.long co shared 

.long C13_constr_code 

.long 0 

.long 18 

.long C13_shared 

.long 0 

.long 0 

.long C13 inst 

.long C12_inst 

.long C12_distance 

.long C13_area 

.long C13_circum 

the class Point 
pointer to inst table 
instance table for Point 
reference count 
ptr to metaclass shared table 
ptr to constructor 
environment for constructor 
size of an instance of class Point 
location of Point' shared table 
the shared variable - distance 
Point's shared table 
the class Point 
no superclass 
pointer to first shared variable 

the class Circle 
pointer to inst table 
instance table for Circle 
reference count 
ptr to metaclass shared table 
ptr to constructor 
environment for constructor 
size of an instance of class Circle 
location of Circle's shared table 
the shared variable - area 
the shared variable - circum 
Circle's shared table 
the class Circle 
the class Point 
ptr to inherited var - distance 
ptr to shared var - area 
ptr to shared var - circum 

Figure 12: A superclass and its ·subclass laid out in memory 
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class programASTnode 
protected: 

public scope { II Head node for a subprogram 

DTnode *args; 
DTnode *constantdefs; 
DTnode *Variabledefs; 
DTnode *typedefs; 
II other state variables 

public: 
II methods 

}; 

II formal arguments 
II 
II 
II 

'const' declarations 
'var' declarations 
'type' declarations 

class classType: public scope {predefined+ user defined classes 
offsetTableNode *offsets; 

public: 
II methods 

}; 

class userclassType: public classType { II classes created by the programmer 
protected: 

declTypeID *paramTypes; 
typeVarNode 
declVarID 

*superclass; 
*instanceVars; 
*sharedVars; declVarID 

public: 
II methods 

}; 

class DTnode { II base class for type, variable, and arg. declarations 
protected: 

char 
ASTnode 
classID 
bool 
DTnode 

public: 
II methods 

}; 

*name; 
*type; 
*classID; 
constind; 
*next; 

II Left hand side of declaration 
II Right hand side of declaration 
II class name, structure, and args for type-checking 
II indicator for constant 
II pointer to next declaration 

Figure 13: Major c++ classes in symbol information system 
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collected within the objects corresponding to the above-mentioned scopes. The class programAST n­
ode represents the root node of a subprogram. Objects of that class contain lists of constant, type, 
variable, and argument declarations, along with a list of statements that make up the code of the 
subprogram. Of course one of the expressions within the statement list may itself be a subprogram 
and so the nesting of subprograms in Leda is captured by the recursive structure of the syntax tree. 
An object of class userclassType is built for each class defined within the Leda source program. These 
objects contain the instance and shared variable declarations, the superclass linking the class to its 
inherited variables, and a list of type parameters. The type parameters are stored as a list of type 
declarations, reflecting the idea that they are classes defined within the scope of a class. The type 
field of a type declaration for a type parameter is itself an instance of class userclass Type with null 
pointers for the instance and shared variables, and a superclass which is the constraining type, if 
present. 

After this information is collected in raw form it is distilled into a form to facilitate type checking 
and code generation. On the subprogram level, classlDs are built for each type and variable decla­
ration. For each pre- and user-defined class, a classlD is built for each type parameter, and an offset 
table is built which contains the important information about the instance and shared variables, 
including those inherited from parent and ancestor classes. 

5.1 The classlD 

The classlD is a structure used in the implementation of Leda. Its purpose is to hold enough infor­
mation about the type of a variable to be able to perform both type checking and code generation. 
This section describes the structure of the classID itself, and how a classlD is provided for each 
type declaration of the Leda source program (including the types local to class definitions which are 
declared via type parameters). The assignment of a classlD for each built-in and user-defined type is 
complicated by the fact that types can be interdependent, as well as directly or mutually recursive. 
Also note that Leda does not require forward declarations and types may be declared in any order 
as long as all names used in the type on the right-hand side of the declaration lie within the current 
name space. classlDs are assigned to each declaration "up front," as soon as each type section is 
parsed. Since the types associated with variable declarations can only be made up of class names 
that may be found as the left hand side of type declarations, by providing the classlDs for each such 
declaration, all necessary type information can be retrieved for any variable with minimum effort. 
How the classlD is actually utilized for type checking and code generation is explained in (Che91). 
The relevant c++ classes from the Leda compiler are given in Figure 14. As can be seen, the classlD 
consists of a class name, a class structure, and a list of classlDs representing the arguments. Each 
component is discussed in the following sub~ections. 

5.1.1 The class name 

The class name always comes from the left hand side of the type declaration. Its purpose is to enable 
the type checker to compare type names along with the structural information. This allows the 
compiler to issue a warning if the names don't match for two types which are otherwise compatible. 
It is an open question exactly when the Leda compiler will give such warnings. Take for example, 

type 
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class classIDlist { 
protected: 

classID *first; 
classIDlist *next; 

public: 
// methods 

}; 

class classID { 

*className; 
*classStructure; 

protected: 
char 
classType 
classIDlist *classArgs; // args used to instantiate parameterized classes 

public: 
// methods 

}; 

Figure 14: c++ class definitions relating to the classlD 

yards := integer; // className field of classID is "yards" 
meters := integer; // className field of classID is "meters" 

As will be seen below, the classlD contains enough information to let the type checker know that 
yards and meters are both aliases for the class integer. Consequently they are compatible in the sense 
that there is no danger of a run-time type error due to a difference in protocol. Including the names 
in the classlD allows the type checker to give what appears to be, in this case, a pertinent warning 
when the types are mixed. 

5.1.2 The class structure 

The class structure contains much information about the type being declared. In all cases the class 
structure contains a unique class number which is assigned to all predefined classes as well as any 
user-defined classes. Also present is an offset table for code generation. The offset tables contain all 
the class member names including those that are inherited. Other information depends on the type 
of class structure. Functions and methods contain lists of argument types, a return type, and, for 
methods only, a receiver type. User defined classes include type parameters, instance and shared 
variables, and the immediate superclass. The classes from the Leda compiler which may be used as 
class structures include userclassType shown in Figure 13, and those shown in Figure 15. 

If the type field (the right-hand side) of a declaration is itself a class structure, then that object 
is assigned to the classStructure field of the type's classlD. The only other class of object that could 
be held in the type field of a declaration is a type variable. Type variables are used to create an alias 
for some other type which must be found in the name field of some declaration in the current name 
space. 
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class intType public classType { 
public: 

// methods 
}; 

class realType public classType { 
public: 

// methods 
}; 

class funcType: public classType { 
private: 

typeArgsNode *params; 
ASTnode *returnType; 

public: 
// methods 

}; 

class methType: public classType { 
private: 

ASTnode *receiverType; 
typeArgsNode *params; 
ASTnode *returnType; 

public: 
// methods 

}; 

Figure 15: Some class structures from the Leda compiler 
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type 
intFun := function(integer)->integer; 
xFun := intFun; // xFun is an alias for intFun 

In this case, the class structure for xFun is obtained by looking up the class structure of intFun. Thus 
the classlDs for intFun and xFun will have different names but identical class structures. Likewise, 
the declaration 

moreFun := xFun; 

will have still a different class name but the same class structure. 
When a type variable names a parameterized class, it must contains arguments in order to 

instantiate that class. 

type 
pclass := class(T, U) 

l end; 
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foo := pclass(integer, real); 

In the example above, the process of obtaining the class structure for foo's classlD involves the extra 
step of instantiation. Instantiation is simply a textual substitution of the actual for the formal 
arguments in the class structure from the pclass declaration. In addition, the instantiated structure 
no longer has any type parameters. 

5.1.3 The class arguments 

Two type variables are compatible if their names and corresponding arguments are all compatible. 
Thus it is important not to lose the information about the arguments of a type variable when it 
is aliased. For this reason the classlD contains within it a list of classlDs corresponding to these 
arguments if present. For instance, the classlD for the type foo above will contain classlDs for the 
integer and real classes in its argument list. 

5.2 Building the offset tables 

Every time a classID is obtained its structure is checked for the presence of an offset table. If 
necessary, the offset table is built. To build the offset table, the compiler first gets the offset table 
from the structure's superclass. The superclass must be a type variable but it is important to note 
that it is not necessary to obtain the classlD of the superclass including the arguments in order 
to get the offset table. What is done is to get the classlD from the generic class represented by 
the superclass name (not including the arguments), and then instantiating the offset table with the 
arguments. The offset table is completed by adding any additional class members to the inherited 
ones. By not requiring the classlDs for the superclass arguments the system is significantly more 
flexible as seen below. 
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5 .3 Filling the type section with class IDs 

The methods given above for putting the classlD into a given type declaration show the limits of 
recursion in type declarations, as well as the necessity to obtain the classlDs in a particular order. 
These points are discussed below. 

5.3.l Recursion 

If the right-hand side of the declaration is a type variable, the name and all of the arguments 
must already have classlDs in order to build the classlD for the declaration. This excludes recursive 
definitions ( either direct or indirect) involving type variables. 

type 
bar := list(bar); II illegal, could never build a classID 

foo := gak(integer); II mutual recursion, also illegal 
gak .- list(foo); 

Another dependency occurs when the right-hand side is a user-defined class containing a superclass. 
In order to build the offset table, the class ID of the superclass name ( not including the arguments 
as explained above) must be available. Thus no combination of type variables and superclass names 
can be directly or indirectly recursive. 

type 
foo := class(T) of bar II Illegal, foo depends on bar, 

II bar on gak, gak on foo 
end; 

bar .- class of gak 

end; 
gak := foo(integer); 

foo := class(T) of bar II This is OK because bar depends only 
II on list, not its argument, gak 

end; 
bar := class of list(gak) 

end; 
gak .- foo(integer); 

5.3.2 Getting things in order 

After a declaration section is recognized by the parser, a message is sent to the Leda subprogram 
which "owns" those declarations, requesting that the type declarations be filled with classlDs. The 
method is shown in Figure 16 below. Upon receiving the message to fill the classlDs, the subprogram 
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void programASTnode::fillClassDefs() 
{ 

} 

II get class!Ds for the type declarations 

int IDsObtained; 

if (typedefs) { 

} 

II fill the classIDs until unable to obtain any more 
do { 

IDsObtained = 0; 
IDsObtained = typedefs->fillClassDefs(); 

} while (IDsObtained > O); 

II fill the class IDs for type parameters within the classID structures 
typedefs->fillTypeParamDefs(); 

II report on names with no defs 
typedefs->checkClassDefs(); 

int DTnode::fillClassDefs(int count= 0) 
{ 

} 

if (!classID && type->hasClassID()) { 
classID = type->getClassID(); 
classID->setClassName(name); 
++count; 

} 

if (next) 
return next->fillClassDefs(count); 

else 
return count; 

Figure 16: Getting classlDs for type declarations 
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sends the message on to the list of type declarations. Each type declaration decides in turn whether 
or not it can obtain its classlD by checking if all the types that it depends on have already obtained 
their classlDs. If so, the classlD is filled and the message is sent down the line. The number of new 
classIDs successfully obtained is returned to the subprogram. If the return value is positive, the 
subprogram repeats the message to the list of type declarations in the hope that those declarations 
which were unable to obtain classlDs during the previous pass will have better luck with the now­
larger set of types that have acquired their classlDs. As soon as the list of type declarations reports 
that no new classlDs were obtained, the subprogram knows that it is fruitless to continue; all classIDs 
that can be gotten have been gotten. 

5.3.3 classlDs for type parameters 

At this point a message is sent to the type declarations to look into the class structure within their 
classlD, and give classlDs to the type parameters if any. Type parameters are stored as local-to­
the-class type declarations. Parameterized type constraints are implemented as superclasses of the 
corresponding type parameters. Given that, the procedure for filling the classlDs is exactly the same 
as for the type declarations on the subprogram level. 

Note that because classlDs for type parameters are obtained only after the classlDs for the user­
defined classes, it is not possible to use a type parameter as a superclass name (shown below). 

type 
foo := class(T) of T // illegal, classID of foo depends on T 

end; 

Finally, a message to check the classlDs is given to the type declarations and error messages are 
issued for any declaration with an empty classlD. 

5.3.4 Class scope 

The definition of a class introduces a new scope beneath the scope of the subprogram in which the 
class is being declared. The scope includes the type parameters, which from the point of view of 
the class members and methods are viable types, and the instance and shared variable declarations. 
A subtle issue is determining at exactly what point in the definition of a class is the new scope 
activated. The answer is at the point after the type parameters and before the superclass. Thus 
the superclass, as well as of course the class member declarations, can refer to the type parameters, 
while a parameterized type restriction could not. (Recall from above that the superclass name itself 
may not be a type parameter however). 

type 
U := boolean; 

foo := class(T) 

end; 
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class offsetTableNode { 
private: 

char 
rnernberType 
int 
ASTnode 

*name; 
instORshared; 
classNum; 
*type; 

int count; 
int rnetacount; 
offsetTableNode *next; 

public: 
\\ methods 

}; 

Figure 17: Implementation of offset tables in the Leda compiler 

bar := class(U) of foo(U) // argument U of foo is type pararn U 

end; 
gak := class(U < foo(U)) // argument U of foo is alias for boolean 

end; 

5.4 More on Offset Tables 

Every object in the compiler representing a class definition from a Leda source program contains 
an offset table. This data structure contains information about each field that may be accessed 
with the membership (dot) operator by an instance of the class. This includes all instance and 
shared variables defined in or inherited by_ the class, as well as updated information for shared 
variables which are overridden by the class definition. Offset tables are implemented by the class 
offsetTableNode which is shown in Figure 17. 

The name field contains the name of the class member and the type field its type. instORshared 
marks whether the variable is defined in the instance or shared portion of the class. The classNum 

is a field which keeps track of the member's class of definition. This allows the code generator to 
construct the proper label in the class's shared table. The label must point to the appropriate shared 
object which, as explained above, is located in the class object where it was originally defined or last 
overridden. The count field determines the member's relative position within its relevant-instance 
or shared-run-time table. 

5.4.1 The metaclass offsets 

Before explaining the metacount field, we must note the dual existence of an offset table. Because the 
userclassType class contains all the information needed for the defined class as well as its metaclass, 
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we chose not to use a seperate object to implement the metaclass. Thus a class's offset table must be 
prepared to respond to messages meant for the class as well as messages destined for the metaclass. 
The metacount is all that is necessary. This field gives the relative position of the member from the 
point of view of the metaclass. Specifically it is the location of the member within the instance table 
of the class object. For class members which aren't relevant to the metaclass, namely all instance 
variables and shared variables not defined nor overridden in the class, the metacount contains the 
special flag value -1 which makes the field "invisible" to offset table methods which act on behalf 
of the metaclass. A pair of Leda class definitions with their offset tables can be seen in Figure 18. 
Recall that all objects in Leda are the same size ( the size of a pointer) so that the size of objects 
need not be stored, only their order. 

The offset table is one of the key pieces of information included within the classStructure of the 
classlD. The connection between the two go further, in that the offset tables are built for a userType, 
if necessary, whenever a classlD is requested. To build an offset table, the object representing the 
Leda class must first obtain the offset table from the superclass if there is one. Recall that the 
classlD, hence the offset table, of the superclass is guaranteed to be obtainable because of the careful 
order in which the classlDs are filled. If the superclass has any type arguments, the superclass's offset 
table is instantiated. Now the object is ready to add its own member variables to the offset table. 
A message is sent to the lists of instance an9- shared declarations telling them to add themselves to 
the offset table. Each declaration sends a message to the offset table with the pertinent information 
to add. The offset table then checks to see if the member name already exists. If it does, and it is 
an instance variable, then an error is reported since they may not be overridden. If it is a shared 
variable, and the class of definition is different, then the offset table entry is changed to admit the 
new class of definition. This ensures that both overridden and inherited class members maintain the 
same offset within the shared variable table as in their parent and ancestor classes. This feature is 
critical to allowing dynamic binding in particular, hence the object-oriented style of programming 
in general. 

For those members which are newly defined in the class, a count is maintained as they get passed 
down the line of offset-table nodes so that when they get appended to the end they will have the 
proper counts and metacounts. Figure 19 shows the class Type method which builds the offset table. 
Figure 20 contains the other methods related to that task. 

5.5 Scoping 

Although Leda is not a fully block-structured language in the sense of Algol-60, ( declarations cannot 
be made on the compound-statement level), functions and methods may be nested to any practical 
degree. Thus it is not enough to merely store information about a symbol, retrieving it upon 
encountering the symbol in the code section of some Leda subprogram. Each scope may have 
its own declaration for a given symbol and the compiler must always match symbols with the 
corresponding information from the appropriate scope. The problem reduces to one of searching 
the various deposits of symbol information in the correct order, so that the first declaration found 
for a symbol is the right one. The Leda compiler tries to find the declaration for a symbol first in 
the local subprogram in which the symbol occurs. If not found, and the subprogram is a method, 
the compiler next searches the declarations of the class in which the method is defined. The next 
step is to check for the symbol within the outer s1,1bprogram in which the original subprogram is 
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type 
Part := class 

controlNum: integer; 
price: real; 
quantity: integer; 

shared 
print: method();// print part information 
cost: method(integer)->real; // calc cost 0£ n parts 
£ill0rder: method(integer)->integer; // adjust quantity 

end; 

tipType := (phillips, slot); 

Screwdriver:= class 0£ Part 
style: tipType; 
length: real; 
gauge : real; 

shared 
compatible: method(Screw)->boolean; // Can screwdriver be used with screw? 
print: method();// override the print method 

end; 

class Part: meta-
Name IorS classNum count count type 

----------- -------- -------------
controlNum inst 12 0 -1 integer 
price inst 12 1 -1 real 
quantity inst 12 2 -1 integer 
print shar 12 0 0 method() 
cost shar 12 1 1 method(integer)->real 
£ill0rder shar 12 2 2 method(integer)->integer 

class Screwdriver: 11\eta-
Name IorS classNum count count type 

----------- -------- -------------
ControlNum inst 12 0 -1 integer 
price inst 12 1 -1 real 
quantity inst 12 2 -1 integer 
print shar 13 0 0 method() 
cost shar 12 1 -1 method(integer)->real 
fillOrder shar 12 2 -1 method(integer)->integer 
style inst 13 3 -1 tipType 
length inst 13 4 -1 real 
gauge inst 13 5 -1 real 
compatible shar 13 3 1 method(Screw)->boolean 

Figure 18: Two Classes and their offset tables 
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classID *userclassType::getClassID() 
{ 

} 

offsetTableNode *classOffsets = NULL; 
typeArgsNode *tArgs; 
classType *ct; 

// build offset table if it hasn't been built yet 
if (!offsets) { 

} 

setParentLevelDeepest(); // Have this scope point to the outer 
staticNesting->append(this); // and put it on the scope chain 
if (superclass) { 

} 

ct= superClass->getClassDef(); // Get offset table of superclass 
classOffsets = ct->getOffsetTable(); 
if (tArgs = superClass->getTypeArgs()) 

// if the superclass has arguments instantiate it 
classOffsets = classOffsets->instantiate(tArgs, ct->getParamTypes()); 

else 
// otherwise just copy it as is 
classOffsets = classOffsets->copy(); 

if (instanceVars) 
classOffsets = 

// add the variables of this class to 
// the offset table 

instanceVars->addTOinstOffsets(classOffsets, uniqueScopeNum); 
if (sharedVars) 

classOffsets = 
sharedVars->addTOsharedOffsets(classOffsets, uniqueScopeNum); 

// If there is no superclass, instance, or shared vars, then need to create 
// a dummy offset table node so that offsets isn't NULL. 
offsets= (classOffsets)? classOffsets: new offsetTableNode(); 
staticNesting->remove(); // return scope chain to previous state 

// more code 

Figure 19: Building the offset table 
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offsetTableNode * 
DTnode::addT□inst□ffsets(offsetTableNode *offTab, int classNum) 

{ 

if (offTab) 
offTab->append(name, INST, classNum, type, 0, 0); 

else 
offTab = nev offsetTableNode(name, INST, classNum, type, 0, -1); 

return ((next)? next->addT□inst□ffsets(offTab, classNum) : offTab); 
} 

offsetTableNode * 
DTnode::addT□shared□ffsets(offsetTableNode *offTab, int classNum) 

{ 

} 

if (offTab) 
offTab->append(name, SHAR, classNum, type, 0, 0); 

else 
offTab = nev offsetTableNode(name, SHAR, classNum, type, 0, 0); 

return ((next)? next->addT□shared□ffsets(offTab, classNum) : offTab); 

void offsetTableNode::append(char *n, memberType i□Rs, 
inti, ASTnode *t, int c, int me) 

{ 

} 

if (i□Rs == inst□Rshared) c++; 
if (i == classNum tt inst□Rshared == SHAR) me++; 

if (!(strcmp(n, name))) { 

} 

if (i□Rs == INST I I inst□Rshared == INST) { 
yyerror("redefinition of instance variable ", name); 

} 

if (i == classNum) { 
yyerror("Error: redefinition of s.hared variable ", name, 

"in same class"); 
} 

classNum = i; 
metacount = me; 

else { 

} 

if (next) 
next->append(n, i□Rs, i, t, c, (i□Rs == SHAR? me: -1)); 

else 
next= nev offsetTableNode(n, i□Rs, i, t, c, (i□Rs == SHAR? me -1)); 

Figure 20: Auxiliary methods for building the offset tables 
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class scope : public ASTnode { 
protected: 

int uniqueScopeNum; 
scope *parentLevel; 

II allows unique reference to subprograms and classes 
II points to next outer scope 

public: 

}; 

static int scopeNumCounter; 
static scope *deepest; 
static void removeDeepestLevel() { 

deepest= deepest->parentLevel; 
} 

void addToScope() { 
parentLevel = deepest; 
deepest= this; 

} 

II other methods 

II keeps track of last unique number used 
II stores current local scope 
II removes (pops) local scope 

II adds (pushes) new local scope 

Figure 21: Implementing scoping with the abstract superclass scope 

defined. This process continues, searching outer-nested subprograms followed by class definitions 
when methods are involved, until finally the highest (global) level scope is reached. If the symbol 
remains unfound then an error is reported. 

The scoping system in the Leda compiler is implemented with the class scope (shown in Figure 21) 
which acts as a stack of naming environments. scope is an abstract superclass whose two children are 
the classes class Type and programASTnode, corresponding to classes and subprograms respectively, 
previously shown in Figure 13. scope makes use of a static data member deepest to keep track of 
the current local scope (the most deeply nested) which of course changes as the compiler works 
its way through a Leda source program. As the methods for class scope show, subprograms and 
classes have the ability to make themselves the current scope. The scope class itself uses the static 
method removeDeepestLevel to discard the most deeply nested scope in favor of its parent level. 
Figure 22 shows part of the method which implements the message to subprograms requesting them 
to generate code for themselves, demonstrating the adding and removal of scopes. Note that every 
scope contains a pointer to its parent environment which is set automatically when it becomes the 
new local scope. When a scope is unable to satisfy a message to return information for a given 
symbol, it checks to see if it has a parent level and if so, passes the message to it. 

It is not always the case that the search for symbol information should begin at the most deeply 
nested level in the local context. Let's look at the example in Figure 23. To check the legality of 
the assignment in line 15, the compiler must get information for the symbol f which, by beginning 
at the local scope, it finds to be of class fo9. From there it is determined that f.a is of class bar. 
Now the compiler needs to get information about the symbol bar-but wait! If the search were to 
begin at the local scope, it would determine that bar was an alias for boolean and the assignment 
would be disallowed. This is incorrect since at the t_ime (and scope) that a was declared to be a bar, 
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ASTnode *programASTnode::genCode() // Note: brief outline of actual method 
{ 

} 

// if the subprogram has a receiver add a scope 
// for the class 
if (receiver) { 

classType *receiverType = 
receiver->getType()->getClassID()->getClassStructure(); 

receiverType->addToScope(); 
} 

// now add the scope for the subprogram itself 
this->addToScope(); 

// if types are defined, lay out the class objects etc. 
// if there are statements, have them generate code 

if (typedefs) typedefs->genCode(); 
if (statements) statements->genCode(); 

// remove the scope (or scopes) that were added 
if (receiver) scope::removeDeepestLevel(); 
scope::removeDeepestLevel(); 

Figure 22: Adding and removing scopes 
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type 
bar:= integer; 
foo .- class 

a: bar; 
end; 

function fun(x: integer); 
type 

bar:= boolean; 
var 

f : foo; 
b : boolean; 

begin 
f : = f oo .neY(); 
f.a := 7; 
f .a.print(); 

end; 

begin 
II 

end; 

II line 15 

Figure 23: Symbol searches cannot always begin at the local scope 

that symbol was an alias for the integer class. The solution is to return the scope of the declaration 
along with the other information about the symbol a, and to start searching only at that scope for 
information about bar. So each object representing a type variable has a field to store this scope of 
declaration, and the method to retrieve symbol information searches accordingly. 

6 Code Generation 

Code generation is the second phase of the Leda compiler. It begins by sending the message gen Code 
to the heterogeneous tree of objects-the syntax tree-created during the compiler's first phase. 
The top node of the tree is an object of the class programASTroot which is a subclass of the previ­
ously mentioned programAST node, the class representing a Leda subprogram. By subclassing we can 
override the genCode method (recall Figure 22) to include operations unique to the main procedure 
of the source program, such as the creation of the constant pools discussed in Section 6.1. Following 
this, a genCode message is sent to the type section, and here class objects are laid out and type 
assignments are made as described in Section 6.2. Section 6.3 discusses code generation for the 
variables, expressions, and assignments found in the statements of a Leda subprogram. Finally, Sec­
tion 6.4 addresses code generation for generic methods, and contrasts our direction with templates, 
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another means of implementing parameterized types. 

6.1 Integer constants 

Integer, real, and enumerated constants are a bit more complicated to manage in Leda than in more 
conventional languages. This is due to the extension of the object model to even these basic types. 
Although the small experimental Leda programs written to date have performed satisfactorily, literal 
implementation of these semantics have potential to work against creating efficient object programs. 
It is expected that as the language definition is reworked and refined through experimentation, 
techniques will be employed which enhance the generated code while maintaining the semantics. 
Meanwhile, we will explain our system for generating code for integer constants. The explanation 
applies in concept to the real and enumerated constants as well. 

During the first phase of the compiler, when the parser encounters an integer constant, an object 
of class intExpNode is created and placed in the syntax tree. Upon creation of the object, the class's 
constructor sends a message to the globally defined object intValueRoot which is the first node in 
a list of unique integers. In response to the message, this instance of class intValueNode responds 
by adding the new value if it does not already occur in the list. At code generation time, the root 
node of the syntax tree sends the genCode message to intValueRoot which generates code mapping 
out an object for each integer in the list. A naming convention is used consisting of the literal 
JC_n (for Integer Constant) where n is the integer being represented. When an intExpNode receives 
the genCode message, it composes a label corresponding to the value it contains, and generates the 
assembly language statement which moves the object into an address register. Another convention 
employed by the compiler is to use a particular address register (aO in our case), where the evaluated 
result of an expression is to be stored. Thus when a message is sent to an expression to generate 
code, the sender may have no idea what sort of expression is generating code for itself, yet it can 
be sure that the generated code will leave the result in aO. Figures 24 and 25 show the various 
components discussed in this section. 

6.2 Type Section 

The type section consists of a series of assignment statements. The lvalue of one of these assignments 
must be a variable of type metaclass which we call a type variable. We do not require programmers 
to explicitly declare these variables in the var section, the compiler does that for them. The right 
hand side must be a valid Leda type-a class or function definition, an enumerated type, or type 
variable, which must be instantiated if it refers to a parameterized class. Class, function, and 
enumerated type definitions may be thought of as constants of type metaclass. These assignments 
are semantically equivalent to the standard assignment statements from the code section. In fact, 
run-time code is generated at the start of each subprogram to carry them out. None of this is to 
imply that classes are first class objects in Leda. They are objects as noted in Section 4; they can 
be used for member access, but type variables may not be assigned-to outside of the type section. 
That is, the class associated with a type variable cannot change during run-time as it might in a 
more flexible language like Smalltalk. The compiler depends on this fact and it would take a major 
revision to add the feature to Leda. 
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class intExpNode public ASTnode { 
private: 

int value; 
ASTnode *type; 

public: 
intExpNode(int val) 
{ value=val; type= intTypeObj; // type integer 

if (intValueRoot) intValueRoot->addValue(val); 
else intValueRoot = new intValueNode(val); 

}; 

} 

ASTnode *genCode(); 
// other methods 

ASTnode *intExpNode::genCode() 
{ 

rnove(cornpLabel("IC_", itoa(value)), "aO"); // put the int object in reg aO 
return intTypeObj; 

} 

IC_28: 
.long 

IC_28_inst: 
.word 
.long 
.long 

IC_28_inst 

1 
C1 shared 
28 

the object '28' 
points to instance table 

ref count 
shared table for class integer 
the value of '28' 

Figure 24: An integer expression node, its code generator, and the perfect number 28 in memory 
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class valueNode { 
protected: 

valueNode *next; 
public: 

// virtual methods 
}; 

class intValueNode public valueNode{ 
private: 

int value; 
public: 

intValueNode(int v) {value= v; next= NULL;} 
void addValue(int); 
ASTnode *genCode(); 

}; 

ASTnode *intValueNode::genCode() 
{ 

} 

comment("---> intValueNode: :genCode()"); 

putLabel(compLabel("IC_", itoa(value))); //layout the object 
resLong(compLabel("IC_", itoa(value), "_inst")); 
putLabel(compLabel("IC_", itoa(value), "_inst")); 
resWord("1"); 
resLong("C1_shared"); 
resLong(itoa(value)); 

if (next) next->genCode(); 
return(NULL); 

Figure 25: Maintaining a list of unique integer constants and laying them out in memory 
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void declTypeID::genCode(int count= 0) 
{ 

} 

int offset, classNum; 

type->genCode(); // lays out class :for type, and its type parameters 

// generate code to carry out the assignment 
classNum = classID->getClassStructure()->getClassNum(); 
offset= -4 *(count+ 1); 
move(compLabel("C", itoa(classNum)), reg0:f:fset("a4", o:f:fset)); 
i:f (next) next->genCode(count + 1); 

Figure 26: Generating code for a type declaration 

Figure 26 shows the method which implements the genCode message sent to a subprogram's list 
of type declarations. A type declaration responds to the message by sending the same message to 
the type ( right hand side) of the declaration. Figure 27 shows the implementation of that message 
for a user-defined class. The method lays out the class object and its shared table, and passes the 
message on to any type parameters the clas_s might have. Predefined classes such as integer ignore 
the genCode message since their class objects are already laid out in the special assembly module. 
Type variables also ignore the message, since they are merely aliases for other classes which will take 
care of themselves when they receive the message personally. In any case, control is returned to the 
type declaration object, which next generates code to carry out the assignment, and finally sends 
the gen Code message to the next type declaration in the list. The method exhibits an unfortunate 
degree of coupling as it depends on the fact that the type variables are added to the list of variable 
declarations before any other variables, and in the same order that they occur in the type section. 
A count is maintained by the gen Code method so that the type declarations know where in the 
activation record to effect the assignment. 

6.3 Statements 

To generate code for the statements within a subprogram, the subprogram node sends the genCode 
message to the list of statements. Each statement generates the appropriate code for itself- usually 
by sending the genCode message to its component expressions-and then sends the message on to the 
next statement in the list. Much of this work is accomplished using straightforward code-generation 
techniques. The following subsections describe various types of statements and expressions and their 
code generation, particularly those aspects unique to the Leda compiler. 

6.3.l Variables and Member Access 

A variable in Leda is recursively defined to be an identifier which may be followed by the membership 
operator and another variable. Each variabl _e in the chain must be a member of the declared class, 
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ASTnode *userclassType::genCode() 
{ 

} 

data_seg(); 
put (str("C", itoa(uniqueScopeNum))); // label the class 
rlong(str("C", itoa(uniqueScopeNum), "_inst")); // Point to inst table 
put(str("C", itoa(uniqueScopeNum), "_inst")); // Begin inst table 
rword("1"); // Ref count 
rlong("C0_shared"); // Ptr to shared table 
rlong(str("C", itoa(uniqueScopeNum), "-:constr_code")); // Ptr to constructor 
rlong("0"); // constructor's environment - 0 for now 
rlong(itoa(6 + 4 *((offsets)? offsets->countinst() : 0))); // size of instance 
rlong(str("C", itoa(uniqueScopeNum), "_shared")); // location of shared table 

if (sharedVars) sharedVars->genSharedVar(uniqueScopeNum); I I rest of instance vars 

put (str("C", itoa(uniqueScopeNum), "_shared")); // begin class's shared table 
rlong(str("C", itoa(uniqueScopeNum), "_inst")); // Ptr back to class 

if (superClass) { // Ptr to superclass 
rlong(str("C", itoa(scope::deepest 

->getClassDef (superClass->getNameO)->getClassNum()), "_inst")); } 
else 

rlong("0"); 

offsets->genSharedTable(); // Rest of shared table 

text_seg(); //layout constructor 
bra(str("C", itoa(uniqueScopeNum), "_constr_end")); 
put(str("C", itoa(uniqueScopeNum), "_constr_code")); 
link(reg("a6"), 0); 
push(str("C", itoa(uniqueScopeNum))); // new expects class on stack 
pushint(0, "static link for new"); 
jsr("C0_new_code"); 
offsets->genConstructorAssignments(); // gen code for assignments 

move (reg□ff (reg("a6") ,4), reg("a1 ")); // callee pops args off 
loadea(reg□ff(reg("a6"), 12 + 4*offsets->countinstO), reg("sp")); 
move(reg□ff(reg("a6") ,0), reg("a6"), "restore frame ptr"); 
jump(reg□ff(reg("a1"),0)); 

put(str("C", itoa(uniqueScopeNum), "_constr_end")); 

//layout the class for any type parameters 
if (paramTypes) paramTypes->genCode(); 

Figure 27: Generating code for a user-defined class 
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or static type, of the variable which precedes it. Variables are represented in the syntax tree by 
objects of class IDnode which include the name of the identifier and a pointer to the next variable. 
Generating code for a variable in a Leda source program consists of putting the object or !value 
referred to by the variable into register aO, as per the convention mentioned above. Normally, the 
object that requests a variable to generate code expects the object itself to be placed in aO, but in 
some cases, the left-hand side of an assignment for example, require the address of the object to be 
generated instead. For this reason, the gen Code method for a variable contains a boolean argument 
which signals the method to either dereference the variable or not. In either case, the variable 
sends a message to the local scope to generate an address, and then adds a step for dereferencing if 
required. 

Two pieces of information are necessary to achieve this-the scope of definition of the variable, 
and its relative position within the activation record associated with that scope. When a variable 
receives a message to generate code for itself it sends a genCodelD message to the current local 
scope to generate the code, which takes the name of the variable as an argument. If the scope is 
a subprogram (as opposed to a class), it sends the genCodelD message to its argument, constant, 
and variable declarations to generate the code. If none of these lists find the name for which code 
is to be generated, the scope passes the message up to the next higher level. When a class receives 
the genCodelD message, it checks its instance and shared variables for the name. If found, the class 
generates code for the receiver, which it knows is in the position of the first parameter within the 
local scope. It then generates code for the variable as if it were coded as a class member accessed via 
the reserved word self. The difference between the current scope and the level in which the variable 
declaration is found is maintained so that code can be generated to travel down the static chain 
the right number of links to reach the appropriate activation record. The genCodelD methods for 
subprogram nodes and variable declarations are shown in Figure 28. 

When a variable of the form a.b.c is encountered, code for the variable a is generated as described 
above. Before exiting, the method checks to see if there is some member being accessed, which in 
this case there is, namely b. The variable then sends itself the message genCodeMember to generate 
code for b. The reason that this message is sent to a and not b is that the code has to generated 
in the context of the class of a, something which b doesn't know anything about. The methods for 
genCode and genCodelD for the class IDnode are shown in Figure 29. To generate code for a class 
member, the method gets the necessary information from the offset table associated with the class 
of the variable through which the member is being accessed. One of two different messages is sent, 
offset or metaOffset, depending on whether the offset table should think of itself as representing 
a class or a metaclass. The information obtained is sent to the non-method function genMember 
shown in Figure 30. This function generates the code that puts the member variable ( or its address, 
depending again on a boolean argument) in register aO. For shared members the generated code 
checks to see if the variable is undefined in which case there is no shared table pointer through which 
to access the member. In this situation, the shared table associated with the variable's static type 
is used. 

6.3.2 Assignments 

Assignment statements respond to the genCode message by having the left-hand side generate code 
for itself without dereferencing. That value, ·the address of the object being assigned to, is then put 
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// The genCodeID method for a subprogram 
ASTnode *programASTnode::genCodeID(char *name, int level_diff, invind invk) 
{ ASTnode *1t; 

// look for ID in constants, locals, then parameters. If not found, 
// increase level difference and try again in parent level unless 
// already at top in which case return NULL. 

if (receiver 1:1: !strcmp(name, "self")) // special case for "self" 
return receiver->genCodeID("self", 0, O); 

else { 

} 

if (!constantdefs I I !(lt = constantdefs->genCodeID(name))) 
if (!variabledefs I I !(lt = variabledefs->genCodeID(name,level_diff, 0))) 

if (!typedefs I I !(lt= typedefs->genCodeEnumID(name))) 
// relative position of args depends on if there is a receiver 
if ( !receiver) 

lt = args? args->genCodeID(name, level_diff, 0) : NULL; 
else lt = args? args->genCodeID(name, level_diff, 1) : NULL; 

if (!lt 1:1: parentLevel) 
return parentLevel->genCodeID(name, ++level_diff, invk); 

return lt; 

} 

// The genCodeID method for a variable declaration 
ASTnode *declVarID::genCodeID(char *IDname, int level_diff, int location) 
{ int k; 

} 

// if name matches this declaration, put address of variable in aO 
if (!(strcmp(name, IDname))) { 

} 

move("a4", "aO", "move frame pointer to aO"); 
comment ("follow static chain back for each level"); 
if (level_diff >= 1) 

for (k=1; k <= level_diff; k++) 
move(regOffset("aO", 8), "aO"); 

sub((location+1)*4, "aO"); 
return type; 

// otherwise, increase relative location and try next declaration 
else if (next) 

return next->genCodeID(IDname, level_diff, ++location); 
else return NULL; 

Figure 28: Generating code for a variable 
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ASTnode *IDnode::genCode(bool deref) 
{ 

ASTnode *type; 

type= scope::deepest->genCodeID(name, O, NOINVOKE); 
if (deref) move(regOffset("aO", 0), "aO"); 

if (next) // is a class member being accessed via this variable? 
return this->genCodeMember(type, deref); 

else 
return type; 

} 

ASTnode *IDnode::genCodeMember(ASTnode *varType, bool deref) 
{ 

} 

int 
memberType 
ASTnode 

offset; 
instORshrd; 
*varTypeNext; 

// Should the class see itself as a metaclass in this case? 
if (varType->getLedaType() == METACLASS) 

varTypeNext = this->metaOffset(next->name, &offset, &instORshrd); 
else 

varTypeNext = varType->offset(next->name, &offset, &instORshrd); 

genMember(instORshrd, offset, varType, deref); 

if (next->next) // is there yet another class member being accessed? 
return next->genCodeMember(varTypeNext, deref); 

else 
return varTypeNext; 

Figure 29: Generating code for a variable and its members 
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void genMember(char inst0Rshrd, int offset, ASTnode *objType, bool deref=TRUE) 
{ int label; 

// for instance variables pull object out of instance table, which reg a0 
// happens to be pointing to: 
if (inst0Rshrd == INST) 

if (deref) 
move(reg0ffset("a0", offset), "a0"); 

else 
{ 

} 

move(reg0ffset("a0", 0), "a0"); 
add(offset, "a0"); 

else 
// For shared variables, use pointer to shared table, or shared table 
// associated with class of definition if variable is undefined. 
if (deref) 
{ 

} 

makeLabelsL(label, 2); 
compare("0", "a0"); // if undefined, use class of definition 
bne(compLabel("L", itoa(label))); 
loadea(compLabel("C", itoa(objType->getClassIDO->getClassStructure() 

->getClassNum()), "_shared"), "a0"); 
braLabel(compLabel("L", itoa(label+1))); 
putLabel(compLabel("L", itoa(label))); 
move(reg0ffset("a0", 2),"a0", "put address of shared table in a0"); 
putLabel(compLabel("L", itoa(label + 1))); 
move(reg0ffset("a0", offset), "a0", "ptr to object in a0"); 
move(reg0ffset("a0", 0), "a0", "put object in a0"); 

else 
{ 

} 

} 

makeLabelsL(label, 2); 
compare("0", reg0ffset("a0", 0)); 
bne(compLabel("L", itoa(label))); 
loadea(compLabel ("C", itoa(objType->getClassIDO->getClassStructure () 

->getClassNum()), "_shared"), "a0"); 
braLabel (compLabel ("L", itoa(label+1))); 
putLabel(compLabel("L", itoa(label))); 
move(reg0ffset("a0", 0), "a0"); 
move(reg0ffset("a0", 2), "a0"); 
putLabel(compLabel("L", itoa(label + 1))); 
move(reg0ffset("a0", offset), "a0"); 

Figure 30: The genMember function 
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on the stack for safe keeping, and a message is sent to the expression on the right-hand side for it 
to generate code leaving its value in register aO. The variable of the left-hand side is made to refer 
to this new value and the assignment is complete. 

Although garbage collection is not fully implemented, the reference count is being maintained by 
the code generated by the assignment statement. The reference count of the old object referred to 
by the lvalue of the assignment is decremented; that of the new one is incremented. Care must be 
taken to check that these objects are defined before erroneously attempting to follow a null pointer 
toward an illusive reference count. The genCode method for the assignment statement is shown in 
Figure 31. 

6.3.3 Binary expressions and operator overloading 

Binary operators in Leda are treated as messages sent to the object which results from evaluating 
the left-hand expression. The value of the right-hand express ion is an argument to the method. For 
example, the expression x * 7 is interpreted as sending the message times to the receiver x with the 
argument 7. In fact, the expression x.times(7) is wholly equivalent. Every binary operator has a 
corresponding name, some of which are shown in the following table. 

Binary operators: Name 

+ plus 
minus 

* times 

I slash 
% mod 

equal 

<> notEqual 

> greater 

< less 

>= greaterEqual 

<= less Equal 
& and 

I or 

When the compiler encounters a binary expression it generates code for the right-hand side and 
pushes it on the stack as an argument. It then generates code for the left-hand expression and pushes 
it on the stack as the receiver. Next it finds the offset for the method with the name corresponding 
to the operator within either the instance or shared tables of the class of the object returned by 
the left-hand side, and generates code which places the method-object in register aO. Finally code 
is generated to invoke the method. Figure 32 shows the method in the class representing a binary 
expression which generates this code. 

By implementing these semantics of binary expressions we have given the Leda programmer the 
ability to overload any of the binary operators for use with any programmer-defined classes. This 
is done by declaring a method with one argument ( other than the receiver), which uses the name 
associated with the operator to be overloaded. Figure 33 shows how the plus sign can be overloaded 
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ASTnode *assignStatem::genCode() 
{ 

} 

ASTnode *lvalType, *rvalType; 

// put the lvalue in aO, and save it on the stack 
lvalType = variable->genCode(NO_DEREF); 
push("aO", "push address on stack"); 

// evaluate right hand side and put resulting obj in aO 
rvalType = expression->genCode(); 

//carryout the assignment and adjust the reference counts 
incrRefCnt("aO"); 
pop("a1"); 
move(reg0ffset("a1", 0), "a6"); 
decrRefCnt("a6"); 
move("aO", reg0ffset("a1", O)); 

return(NULL); 

// increment/decrement reference count for object in address register *An 
void incrRefCnt(char *An) 
{ 

} 

int label; 

makeLabelsL(label,1); 
compare("O", An); // don't bother if object is undefined 
beq(compLabel("L", itoa(label))); 
addquiv(1, regOffset(An, O)); 
putLabel(compLabel("L", itoa(label))); 

void decrRefCnt(char *An) 
{ 

} 

int label; 

makeLabelsL(label,1); 
compare("O", An); // don't bother if object is undefined 
beq(compLabel("L", itoa(label))); 
subquiv(1, reg□ffset(An, O)); 
putLabel(compLabel("L", itoa(label))); 

// code here to deallocate memory if refcnt hits 0 

Figure 31: Generating code for an assignment statement 
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ASTnode *binaryExpNode::genCode() 
{ int offset; II offset of the method within ... 

} 

memberType inst0Rshrd; II ... shared or instance table 
ASTnode *lcType; II Where to look for the method 
ASTnode *opType; II Return type of the method 

rightChild->genCode(); 
push("a0"); 
incrRefCnt("a0"); 

II eval right child and push on stack 

lcType = leftChild->genCode(); II eval receiver and push on stack 
push("a0"); 
incrRefCnt("a0"); 

II search for the operation name in the class table of 
II the receiver type, error if not found: 
if (lcType->getLedaType() == METACLASS) 

opType leftChild->meta0ffset(op, &offset, tinst0Rshrd); 
else 

opType lcType->offset(op, &offset, tinst □Rshrd); 

II put the method-object in a0 
genMember(inst0Rshrd, offset, lcType, DEREF); 
genJsr(); // generate code to jump-subroutine to the code (shown below) 
pop("a1", "pop receiver off stack"); 
decrRefCnt("a1"); 
pop("a1", "pop parameter off stack"); 
decrRefCnt("a1"); 
return opType->getReturnType(); 

void genJsrO 
{ escind cind; 

} 

move(reg0ffset("a0", 6), "a1", "put pointer to code in a0"); 
push(reg0:f:fset ("a0", 10), "push static link on stack"); 
jsr(reg0:f:fset("a1", 0)); 
comment ("pop static link o:f:f stack 11

); 

addquil (4, "sp"); 

// I:f there is an escaping closure, must treat di:f:ferently 
if ((cind = scope::deepest->getClosureind()) == ESC) { 

move(reg0:f:fset("a6", 8), "a4 11
, "restore a4"); // gets ruined in proc call 

} else 
move ( 11a6 11

, "a4"); 

Figure 32: Generating code for a binary expression 
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type 
class := Point 

x: integer; 
y: integer; 

shared 

end; 

var 

plus : method(Point)->Point; 
II other methods 

p1, p2, p3 : Point; 

method Point.plus(p: Point)->Point; 
begin 

return Point(x + p.x, y + p.y); 
end; 

begin 
p1 := Point(3,7); 
p2 .- Point(S,11); 

p3 := p1 + p2; II equivalent to p3 := p1.plus(p2) 
II p3 is now the point (8, 18) 

end; 

Figure 33: Overloading the binary operator + in class Point 

for use with objects of class Point. 

6.4 Generic Methods 

Generating a single block of code for a generic method may at first seem difficult. Some entities 
within the method are not bound to concrete types at compile time. We anticipated this problem in 
two ways. First, the uniform object representation assures that all values take up the same amount 
of space (the size of a pointer) inside the activation record or offset table in which they reside. Thus 
the compiler need never be concerned with types of variables in order to "find" them at run-time. 
Second , we put restrictions on the use of variables declared to be an instance of a type parameter. 
We never put the compiler in a position of needing any more information with regard to how an 
object should respond to a message beyond that which may be guaranteed by a constraint on the 
typ e parameter. When we add to this structure the fact that type parameters are treat ed as locally 
defined types from within their class (which includes the member methods), one finds that no special 
code-generation techniques are necessary. Truly polymorphic code, identical stat ements correctly 
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and safely computing over multiple types, is generated with no special attention from the compiler. 
In choosing this direction we have gained simpler code generation, smaller object programs, and what 
we perceive as semantic elegance; but there is a cost. Increased complexity of type checking, and less 
flexibility for the programmer must be considered. The tradeoffs are not well understood. The area 
of parameterized-type research is relatively young, especially with regard to practical experience. 

Most implementations of parameterized types can be put into one of two categories. Some, like 
Leda, arrange things so that a single block of polymorphic code can be generated without concern 
as to how the class will eventually be instantiated. The languae Eiffel takes this approach [Mey88]. 
Eiffel goes even further than Leda in that it restrics programmers additionally by not allowing them 
to constrain type parameters. Eiffel gains by simplifying the implementation still more. The other 
category generally lifts restrictions on the programmer by providing parameterized types in the 
form of templates. An implementation of this sort is described in [E&S90) as a proposal for adding 
the facility to c++. Templates can be thought of more as a macro. In Leda instantiation is a 
passive act in which a programmer makes use of an implicitly created class which shares singular 
generic methods with other members of its sub-hierarchy. Instantiating a template is an active, 
constructive act, creating a new class where none had existed. The new class's connection to other 
classes instantiated from the same template is superficial-a common look, a structure. Methods 
declared within a class template must eventually exist in multiplicity to serve the various classes 
instantiated from the template. The other side of the tradeoff is stated eloquently in [E&S90]: 

Speecifying no restrictions on what types can match a type argument gives the program­
mer the maximum flexibility. The cost is that errors-such as attempting to sort objects 
of a type that does not have comparison operators-will not in general be detected un­
til link time. Only then are both the template and the type of elements to be sorted 
available. 

7 Conclusions 

We have written and implemented a compiler for Leda, a new language designed with the goal of 
furthering research in the area of multi-paradigm languages and algorithms. Our version of the 
compiler was written to enable the first practical experimentation with the language, expected to 
result in an evolution of both the language and its compiler. As such we concentrated on refining 
Leda's syntax and semantics, implementing them more or less directly without regard to a high level 
of optimization. We feel we have succeeded with a useable compiler which has already served to 
generate ideas about the future of the language. 

We saw as our challenge the creation of a language which is simple and elegant, while providing 
the ability to solve problems utilizing various points of view or paradigms. In addition to some of 
the more standard features found in popular modern high-level languages, parameterized classes 
are included to enable a high-level of abstraction without sacrificing the safety of strong typing. 
Continued research will determine the usefulness of this feature, particularly how it may serve as a 
vehicle for combining the different paradigms. Type parameters are given a dual semantics. From 
inside a class they act as a locally defined type whose scope is the class itself and its member 
subprograms. From outside the class they serve as a shorthand for introducing a set of classes-a 
sub-hierarchy-any of which the programmer may utilize through instantiation. 
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The desire to generate truly generic code for member subprograms of parameterized classes 
pointed to the need for a uniform representation of all entities regardless of their type. It was 
decided that everything would be an object and all types classes. As much as the decision smoothed 
the implementation, it caused concern for the efficiency of Leda object programs. We also noted the 
competing notion of templates as a different means of implementing parameterized types. Our hope 
is that Leda will help us gain insight into the tradeoffs involved with these differing approaches. 

Although we are satisfied with the performance of small programs we have written, more and 
larger programs need to be tested. Inspired by the experience of the Smalltalk implementors, we sus­
pect that more sophisticated implementation techniques, if necessary, will keep the present semantics 
viable. · 

Symbol information is collected for type checking and code generation. The information is kept 
within the syntax tree created during the first phase of compilation from the Leda source program. A 
pivotal structure used to maintain type information is the classlD. This structure makes for a clean 
and maintainable implementation, but no doubt more efficient techniques could be used. Some, 
including a flat string representation combined with a hashing scheme, are being considered. 

The Leda compiler is written in an object-oriented style. Code generation is sparked by a message 
to the root of the syntax tree. The source-program components that make up the nodes of the 
tree take responsibility for generating code for themselves, and sending the message on to their 
constituents. Presently, some work done while collecting symbol information is being duplicated 
during code generation. This allowed concurrent developement of, and experimentation with, the 
two compiler phases by different implementors. Future versions of the compiler should eliminate 
this redundancy. 

Some work remains for Leda to become the general purpose programming language to which it 
aspires. Presently, output is rudimentary, serving mainly to test the currently implemented features 
of the language. The problem of input/output needs to be solved. It also must be decided what other 
built-in classes should be provided, such as strings, arrays, streams, and perhaps others. Along with 
these come the question of how much should be implemented with primitive data types, unavailable 
to the Leda programmer, versus what should be implemented using the language itself. Large 
programs using significant memory resources will require the garbage collection system to be fully 
implemented. The code-generation phase needs to be augmented to output information enabling 
source-level debugging. Research already underway aims to make Leda part of a comprehensive 
multi-paradigm programming environment [Pan91]. 

A The Compiler 

Besides knowledge and experience, the efforts described by this paper led to a working Leda compiler. 
It is currently able to generate running code for two different computers, both based on Motorola 
68000 series processors. Porting the compiler to other machines based on the same style processor 
is straightforward, and should only involve changes to a single module to adjust for the particular 
assembly-language dialect. Different architectures will complicate the porting process. 

A language definition corresponding to this version of the compiler is given in [S&P91]. The rest 
of this appendix gives some statistics about the compiler and the programs it generates. 
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(a) #include <stdio.h> 
#define N 20 

int nthFib(int n) 
{ 

if (n <= 2) return 1; 
return nthFib(n-2) + nthFib(n-1); 

} 

main() 
{ 

inti, fib; 
for (i=O; i<20; i++) 

fib= nthFib(N); 
printf("¼d\n", fib); 

} 

(b) const 
N := 20 

var 
i, fib 
nthFib 

integer; 
function(integer)->integer; 

begin 
nthFib := function(n: integer)->integer; 

begin 
if n <= 2 then return 1; 
return nthFib(n - 2) + nthFib(n - 1); 

end; 

for i := 1 to 20 
fib:= nthFib(N); 

fib.print(); 
end; 

Figure 34: Doubly recursive functions to compute the 20th fibinacci number in (a) C and (b) Leda 
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Target Machines: 

1. HP 9000/375; HP-UX Operating System 

2. Tektronix Tek4315; UTek Operating System 

Compiler Size: 
Source: App. 7600 lines in 9 seperate files 
Executable: App . 750K bytes 

The following table pertains to the two programs shown in Figure 34. One is written in Leda, 
the other in C. The C program was compiled under the GNU gee compiler. Each computes the Nth 
fibinacci number for some constant N. The computation is repeated 20 times (for more meaningful 
timings) before the result is printed. The algorithm is purposely naive, using double recursion to 
test the compilers' function calling facilities and stack limits. Times are given in seconds. Object 
size is in bytes. 

Fibinacci Leda C 
Compilation Time 9 11 
Object Size 28672 16876 
Running Times: 
N = 15 3 .13 
N = 20 41 1.4 
N = 22 122 4 
N = 25 <stack full> 16 

The next table refers to two programs which find all 92 solutions to the 8-queens problem . The 
approach is object-oriented, adapted from a Smalltalk program given and explained in [Bud87). For 
contrast we wrote the program in c++ as well, compiling it under the GNU g++ compiler. The 
text of each program is given in a subsection below. 

8 Queens Leda 
Compilation Time 17 
Object Size 34558 
Running Time 

A.1 8 queens in Leda 

type 
Queen:= class 

row: integer; 
column: integer; 
neighbor: Queen; 

shared 
print 
first 

method(); 
method(); 

17 

c++ 
28 

32768 
1 
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next : method()->Queen; 
testPosition method()->Queen; 
checkRowCol : method(integer, integer)->boolean; 

end; 

var 
lastQueen: Queen; 
i: integer; 

method Queen.print(); 
begin 

if defined(neighbor) then neighbor.print(); 
column.print(); row.print(); 

end; 

method Queen.first(); 
begin 

if defined(neighbor) then 
neighbor.first(); 

row:= 1; 
self.testPosition(); 

end; 

method Queen.next()->Queen; 
var 

nilQueen 
begin 

Queen; 

if row= 8 then 
if defined(neighbor) & defined(neighbor.next()) then 

row:= 0 
else 

return nilQueen; 
row:= row+ 1; 
return self.testPosition(); 

end; 

method Queen.testPosition()->Queen; 
begin 

if defined(neighbor) then 
if neighbor.checkRowCol(row, column) then 

return self.next(); 
return self; 

end; 

54 

l 

l 
l 
n 

l 
l 



l 

1 

j 

J 

J 

J 

J 

method Queen.checkRowCol(testRow, testCol 
var 

columnDifference: integer; 
begin 

columnDifference := testCol - column; 
if (row= testRow) 

I ((row+ columnDifference) = testRow) 
I ((row - columnDifference) = testRow) 

then 
return true; 

if defined(neighbor) then 

integer)->boolean; 

return neighbor.checkRowCol(testRow, testCol) 
else 

return false; 
end; 

II MA IN II 
begin 

II initialize queens 
for i := 1 to 8 

lastQueen := Queen(NIL, i, lastQueen); 

II first solution 
lastQueen.first(); 
lastQueen.print(); 

i := 1; 

while defined(lastQueen.next()) 
i := i + 1; 

i.print(); 
end; 

A.2 8 Queens in c++ 
#include <stream.h> 
#define FALSE 0 
#define TRUE 1 

typedef int BOOL; 

class Queen { 
public: 
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int row; 
int column; 
Queen* neighbor; 

// methods 
virtual void print(); 
virtual void first(); 
virtual Queen *next(); 
virtual Queen *testPosition(); 
virtual BOOL checkRowCol(int, int); 
Queen(int r, int c, Queen *q) 

{ row=r; column=c; neighbor=q;} 
}; 

void Queen::print() 
{ 

} 

if (neighbor) neighbor->print(); 
printf("1/.d, 1/.d\n", column, row); 

void Queen::first() 
{ 

if (neighbor) 
neighbor->first(); 

row= 1; 
this->testPosition(); 

} 

Queen *Queen::next() 
{ 

} 

if (row== 8) 
if (neighbor && neighbor->next()) 

row= O; 
else 

return NULL; 
++row; 
return this->testPosition(); 

Queen *Queen::testPosition() 
{ 

if (neighbor) 
if (neighbor->checkRowCol(row, c~lumn)) 

return this->next(); 
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return this; 
} 

BOOL Queen::checkRowCol(int testRow, int testCol) 
{ 

} 

int colurnnDifference; 

colurnnDifference = testCol - column; 
if ((row== testRow) 

I I ((row+ colurnnDifference) -- testRow) 
I I ((row - colurnnDifference) -- testRow)) 

// then: 
return TRUE; 

if (neighbor) 
return neighbor->checkRowCol(testRow, testCol); 

else 
return FALSE; 

main() 
{ 

} 

Queen *lastQueen = NULL; 
inti, j; 

lastQueen = NULL; 
// initialize queens 
for (i=1; i<=8; i++) 

lastQueen = new Queen(O, i, lastQueen); 

// first solution 
lastQueen->first(); 
lastQueen->print(); 

i = 1; 

while (lastQueen->next()) 
i = i + 1; 

printf("¾d\n", i); 
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