
85-60-1

UfUUEAS~TY

5C~Ei7CE

The Design of the Programming Language X-2

David W. Sandberg
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

l
l
. l
1
1

1

n
I
I

i I
l I

11

u

The Design of the Programming Language X-2

David w. Sandberg
Oregon State University

The design of an expermental object-based programming
language is discussed. The language is intented for inves
tigating techniques for organization of programs.

i. Introduction

The complexity of most current programming languages
and their compilers makes it impossible to easily test new
programming language concepts. It takes many years to
design and implement a programming language. This paper
describes the design of the programming language X-2 that is
intended for testing new language concepts in object based
programming. X-2 has few concepts to reduce its complexity
but contains support for static strong typing, information
hiding, parameterized types, and a programming environment.
This support allows new ideas to be tested against current
programming concepts. Other languages are either too com
plex like Ada[S] or omit some feature as Smalltalk[?] omits
strong typing.

X-2 was designed primarily for testing concepts for organi
zation of programs that will facilitate the reuse of their
parts. Other goals were to gain experience with a Smalltalk
like user interface and to investigate the feasibility of
using a byte-code interpreter that treats activation records
the same as other objects for the purpose of storage manage
ment. Obtaining activation records from the heap makes han
dling multiple stacks for multiple process easy. Smalltalk
interpreters treat activation records as objects, but many
tricks are needed to obtain reasonable speed on most proces
sors[l0].

In this paper the design requirements and philosophical!
underpinnings of X-2 are given first followed by a brief
description of the syntax and semantics of the language.
The paper concludes with a discussion of specific constructs
which were included in or omitted from ~-2.

2. DESIGN REQUIREMENTS

To add a new concept to a language, one must understand
its interaction with the rest of the language. The fewer
concepts in a language, the easier the interaction will be

1

l
l

l

I
r 1

I
J

lJ
lJ
j

j

J

J

to understand. Hence, one design requirement of X-2 is that
it be as small as possible. (There are also other reasons
for desiring small languages[ll].) A construct was not added
to X-2 unless the absence of that construct became annoying.
Two examples are enumeration types whose absence never
became annoying enough for them to be added to X-2 and the
by-reference pa.rameter mode whose absence became annoying.
The implementation and design of X-2 were interleaved. This
allowed programs to be written in X-2 to determine which
constructs would be needed in the language.

Several design requirements came from the experience of
designing another language, Lithe[l5]. Lithe has several
programming concepts which worked very well and were to be
retained: the class-instance model, access to - low-level
machine instructions, pa.rameterized classes, and iterators.
There were several things that were to be included in X-2
that are not in Lithe but should have been: garbage collec
tion, loops with exit, and procedure types. A useful
feature of Lithe similar to those found in LISP systems is a
command interpreter that allowed statements of the language
to be executed interactively. A programming environment
more like that of Smalltalk was desired to carry these ideas
further. X-2 was to allow experimentation with concurrency,
although no processes have been added to X-2 yet. The user
can greatly modify the syntax of Lithe. This allowed more
flexibility than was needed, so X-2 was to have a more rigid
syntax. The implementation was to be transportable and to
demonstrate that a usable system could really be built.

l. THE PHILOSOPHY .QF PROGRAMMING .!J..S.filJ ..IN DESIGNING X-2

The task of programming can be viewed as writing a
specification of a task for a computer to perform. The first
draft of a specification usually is incomplete and incorrect
and does not specify what was intended. The specification
must then be modified to match the intent. A programming
language should assist in writing these specifications.
This view differs from the common view associated with
abstract data types, in which the programming language is
viewed mainly as a way to implement the specifications. The
specification is assumed to be written in a different
language.

There are several approaches to writing a specifica
tion; an existing specification can be modified, a specifi
cation can be built from large prefabricated pieces, or it
can be built from primitive pieces. Programming is usually
done by the third method. The other two methods require
that an existing program be understood which is a difficult
task if the program is written in most existing languages;

2

l
1

1

l

J

ll
lJ

I
J

1

u

in fact, it is often easier to start over than to use what
already exists. Starting over wastes effort in duplication.
Several things can be done to make the programs easier to
understand. Simple things, that is easy to understand,
should be chosen over complex things whenever possible.
Programs should be as uniform as possible within a single
program and between different programs. If the same tech
nique or part has been used many times, much less effort is
needed to understand it in yet another program because it is
familiar. The way abstractions organize a program greatly
influences whether the pieces of a program can be reused.
Abstraction has two components: suppression of detail and
generalization. If the wrong details are suppressed or if
the generalization takes the wrong direction, an abstraction
can be of little use in other programs.

Since a programming language itself is a specification,
it should have the same characteristics of simplicity and
uniformity . The easiest way to get these characteristics
is to choose a simple, powerful model of computation. For
example, LISP[l3] uses lambda calculus and lists as its
model, Snobo1[8] uses pattern matching, Prolog[4] uses
theorem proving, and Smalltalk uses the class-instance
model with message passing. X-2 also uses the class
instance model. This model has proved to be quite powerful
in languages such as Simula[8], Smalltalk, CLU[l2], and
Lithe.

To understand the design of X-2, some knowledge of X-2
is needed. The next section gives an informal introduction
to X-2 by means of an example.

~- A Brief Introduction .t.Q .x2

X2 is an object based language that uses the class
model. The classes replace the notion of a type in Pascal
like languages. The class model is a_n abstract model of the
world. The class model has three characteristics:

1. Every entity of the world is an object, no matter what
its function.

2. Every object is an instance of an unique class. The
class of an object determines the object's behavior;
that is, the operations defined on the object.

3. Each instance contains some state (or memory).

Smalltalk uses
objects. This
instance model
cedure calls

message passing to implement operations on
is not a fundamental part of the class

as the operations can be implemented as pro
just as well. Latter versions of Smalltalk

3

l
7
l
l
I
l
I
n
I
I
j

J

J

I
J
J

J

class:

t list
first-t,tail-(t list)

add: x-t to: 1-t list ref
free[t] $ Allows t to be replaced by any class.
locals:

k-t list
body:

k <- create, k first<- x, k tail<- 1
1 <- k

empty return: t list
free[t]
body:

nil return

for: i-t ref in: 1-t list do: s-statement delay
free[t]
body:

loop:
if: 1 isempty then: exit
i <- 1 first
s
1 <- 1 tail

(x-t list) isempty return: bool
free[t]
body:

(x eq: nil) return

Figure 1

have a class hierarchy which allows many classes to share
the same code. No such hierarchy exists in X-2. This is
partly because the parameterized classes of X-2 removed some
of the need for the hierarchy and partly because X-2 was
intended for testing other possible organizations of
classes.

Figure 1 defines a p;trameterized class for linked lists
with operations for creating an empty list, adding to a
list, testing for an empty list, and a "for" loop for step
ping through the elements of a list. The details of figure
1 are explained in the next sections.

4

l
7

I
1

j

u
d
J

J

A. • .l. Syntax

The syntax of X-2 is similar to that of Smalltalk. The
simplest expression is just a reference to some object which
is an operator with no arguments. For example:

X nil empty

Unary operators follow a single argument:

x list 1 isempty

To conform to standard practice, X-2 has one unary prefix
operator "-" which is equivalent to the postfix operator
"minus"; that is, "-8 11 is equivalent to 118 minus" -

General operators consist of one or more arguments
separated by selectors. All the selectors are concatenated
to form the operator name:

add: 3 to: 1 $ operator is 11add:to: 11

X eq: nil $ operator is "eq: II

free: t $ operator is "free: 11

if: a then: b else: C $ operator is 11 if: then: else:"

There are some binary operations that are abbreviations for
general operators. For example:

8+x
x<-3
8*3
x=y

. is the same as
is the same as
is the same as
is the same as

8 add: x
x gets: 3
8 mul t: 3
x equal: y

These infix operators decrease the number of parentheses
needed in expressions. There is also a notation to describe
an operator that takes a variable number of arguments which
are all of the same type:

list [3,4 ,8,9] list [11abc"] block[a<-b, b<-c]

The order of precedence from highest to lowest of these dif
ferent operators is:

unary operators
the operators"* and"/"
the prefix unary "- 11

the operators 11+11 and "-"
relational binary operators such as 11= 11

the general operators
the assignment operator, 11 <- 11

To avoid confusion, precedence and associativity conform to
normal usage.

5

7
l
l
n
n
1

l
)

l
lJ

Li
I
I
J

The loop statement in figure 1 is an equivalent form
to:

loop:block[if:l isempty then:exit,i<-1 first,s,l<-1 tail]

Since indentation is significant, the above line can be
expressed in two as:

loop:
if: 1 isempty then: exit, i<- 1 first, s, l<- 1 tail

When each statement is put on a separate line as in the fig
ure, the comma must be left out between statements because
they are automatically inserted at the end of the line. To
suppress the automatic insertion of a comma, begin the line
with a"#" at the proper indentation level. Automatic
insertion of commas is included because they are often
accidentally omitted.

~.2. Defining Lists in ~-2.

Figure 1 defines linked lists over any class; that is,
list of integers, list of reals, list of list of reals, or
list of any other class. If only list of integers were to
be defined, the following class definition would be used:

class:
list, · first-int,tail-list

This defines a new class named "list" whose instances have
two parts to their state: an integer part named "first" and
a list named "tail". This also automatically defines a spe
cial instance of the class list that has no state named
"nil". In this example, nil will be used to represent the
empty list.

The definition of the class in the figure defines more
general lists by parameterizing the class with a parameter
named "t". When a variable of class list is defined the
parameter must be specified, for example, "1-int list" or
"1-int array list". The procedure definitions in figure 1
have . a line: "free[t]". This line indicates that when the
procedure is used the tin the definition can be replaced by
any type, as long as all occurrences in a single use are
replaced by the same type.

The procedure "add: to:" in figure 1 uses "create" which
creates a new instance of the class. Note that "k first" is
used instead of the more familiar "k.first" to access com
ponents.

6

l

1

1

I
n

l

l
I
l I
u
J

Parameters in X-2 are normally passed by-value. In the
"add:to" procedure the second operator is passed by
reference by adding "ref" as an unary operator to the type.
If "delay" was used instead of "ref", the parameter would be
passed by name as in Algol 60.

Using delay parameters allows CLO-like iterators to be
defined. An iterator is a generalization of a "for" state
ment. Instead of stepping through a sequence of integers,
an iterator steps through the elements of a data structure
such as a tree or list. The "for:in:do:" procedure of fig
ure 1 is an iterator for lists. This iterator works by
assigning each value in the list to the parameter i and then
evaluating the delay parameter s. Since i is passed by
reference, the parameters is evaluated with a -different
value for i each time it is evaluated.

Here is a sample procedure using lists:

test
locals:

L-int list, i-int
body:

L<-empty
for: i from: 1 to:

add: i to: L
10 do:

for: i in: L do:
write: i, write: ff II

This procedure will output:

10 9 8 7 6 4 3 2 1

~- DESIGN ISSUES

~.i. Encapsulation

Any modern programming language must deal with the
issue of information hiding. An encapsulation unit (which
we refer to as a package) is a mechanism that walls off a
section of a program and controls what names are visible
inside and outside the wall. Ada's packages, Modula's
modules[l5], and CLU's clusters are examples of encapsula
tion units. One issue in designing an encapsulation mechan
ism is whether there should be an one-to-one correspondence
between the encapsulation units and the class definitions.
Sometimes it is useful to wall off a set of procedures that
define no classes. Also, allowing only one class per pack
age is awkward when defining closely related classes, such
as a class for the header of a list and one for the elements

7

l
1

1

I
I
n

I
I

I I

J

u
J

J

of a list, since a wall is introduced between the
classes[l3]. A more useful encapsulation unit will allow any
number of classes per unit.

Another issue in encapsulation is whether one should
control both imports and exports from a package. Control
ling the imports, that is, what identifiers are visible
inside an unit, limits the amount of information needed to
understand the package. If the package only imports a few
other packages then only those packages need to be examined
to understand the package which uses them. If the imports
are not controlled the whole system must be considered.
Exports are controlled to hide the internal details of the
package so they are not a concern in understanding the rest
of the system. By default nothing should be imported and
nothing exported to encourage the programmer to only import
what is needed inside the package and only export what is
needed in the rest of the system.

Yet another issue in encapsulation is whether the
import and export lists should be lists of packages or lists
of specific procedures. One of the advantages of using a
list of packages is that one obtains a whole set of related
procedures whereas if one is required to list each procedure
separately, one procedure is likely to be forgotten.
Another problem with requiring a list of specific procedures
is that these lists become very long. Also if overloading
is present, a procedure name may not be enough to uniquely
identify a procedure. To uniquely specify the procedure the
types of the parameters also must be given.

Encapsulation is really a successor to nesting of pro
cedures for scope control[3]. For this reason nesting was
left out of X-2.

The encapsulation in X-2 is achieved by the use of con
texts, which are sets containing other contexts, classes,
and procedures. The same procedure or context may appear in
more than one context. These contexts are built using a
context editor provided in the programming environment. To
encapsulate a section of program two contexts are used: one
for the imports and any procedures that are defined and a
second for the exports. The use of contexts in X-2 gives a
much finer control over visibility than do the encapsulation
units found in languages such as Ada, CLU, and Modula. Usu
ally a package has only one view from the outside and one
from the inside. In X-2 it is possible to construct a con
text which contains any set of identifiers. This allows
several contexts to be constructed so a package can have
many different views.

There are several difficulties with contexts in X-2.
Each procedure can have a different context, which produces

8

l
l
l
7
l
l

I
I
I
I
J

j

I J

j

J

u
u

an overwhelming number of contexts. To keep the number of
contexts manageable the same context should be shared by
many procedures. Another problem arises when trying to pro
duce a linear, textual form of a program. The context
structure is a general graph structure which does not have a
simple linear representation. Also, because a procedure can
appear in many contexts there is no way to tell in which
context a procedure is defined. This makes it difficult to
distinguish between the application program and the system.

~.2. Parameterized Classes.

One powerful mechanism for abstraction is parameteriza
tion. This allows a single abstraction to be used in more
places because the parameters allow variations. In
languages like Modula-2 and Pascal [8] , a list of integers
and a list of reals must be defined with two separate types.
The only real difference between these definitions is that
the type name has changed from integer to real. It would be
useful to parameterize this type and thus only have one
definition. Then one could use a "int list" and a "real
1 ist ". These parameterized types should behave much like
unparameterized types since they are only a generalization.
The Ada generic type concept does not behave like the type
in Ada. An extra "instantiation" step is required with the
generic type.

X-2 only allows types to be used as parameters to
types. Other parameters to types such as integers were not
allowed because the interactions became difficult to under
stand. Arrays can be considered as parameterized types.
Most languages require the size of an array to be specified
in the declaration of an array. This requires an integer
parameter to the type. Thus arrays in X-2 can only have the
base type as a parameter; the size of an array must be a
runtime field of the array. This allows the size of the
array to be easily specified at run time instead of at com
pile time as is required in Pascal. This makes arrays more
useful, for often the array bounds are unknown at compile
time.

Parameterized types also are useful in defining the
basic concept of a variable. A parameterized class "name"
is used to represent the address of a variable. The parame
ter of name gives the type of value stored at that address.
When a variable of type Tis declared, it is given a class
"T name". "T name" represents the 1-value of the variable
and "T" the r-value. A statement such as "x<-x+l" can be
considered as a set of procedure calls, namely: "x gets: (x

9

I
n
l

I
l
I
7

I
j

j

J

I
j

J

J ·

dref add: l)". The headings of these procedures would be:

x return: int name

(a-int add: b-int) return: int

(a-y name) dref return: y
free [y]

a-y name gets: b-y
free [y]

The extra clause on the last two headings means that the y
can be replaced by any type to get a valid procedure which
allows one rule to describe all assignments. If x were a
global variable, a procedure could be written that would
allow access to the value only:

xrval ue return: int
body: x return

or a procedure that would allow getting or changing the
value:

xlvalue return: int name
body: x return

The procedure xlvalue can be treated just as any other
able in a assignment statement: "xlvalue<-xlvalue+l".
ferencing is done implicitly. Thus procedures can
1-val ues.

vari
Dere

return

The parameterized type name can also be used to pass a
parameter by reference. For example, consider a procedure
to increment an integer:

inc: x-int name
body:

x<-x dref dref +l

In X-2 parameters are treated as initialized local vari
ables. Thus a parameter definition "y-int" will produce a
procedure to reference it like:

y return: int name

The parameter definition "x-int name" will produce:

x return: int name name

Thus "x" must be dereferenced twice to get the value. X-2
only implicitly dereferences a variable once to simplify the
implementation. Using one implicit and one explicit

10

7

I
1

1

l
I
I
I
J

l J

j

I
J

I
u

dereference does not work because X-2 does not know whether
to apply the explicit dereference before or after the impli
cit one and will complain about the ambiguity. Even if X-2
allowed two implicit dereferences there would still be ambi
guities in some cases, for example, with "x<-x" which can be
interpreted as "x dref <- x dref dref" or "x <- x dref".

To avoid having to use explicit dereferencing with
call-by-reference parameters an explicit call-by-reference
parameter mode was added. This allows the increment pro
cedure to be written as:

inc: x-int ref
body:

x<-x+l

The procedure will still be viewed when it is used as if it
were declared as before, but in the definition of the pro
cedure the parameter "x-int ref" will produce a procedure
which returns the value of the parameter:

x return: int name

This allows a reference parameter to be used like other
local variables.

An alternate way to remove explicit dereferences from
by-reference parameters is to treat parameters as constants
instead of variables, but this introduces a distinction
between where value parameters and local variables can be
used.

.5. • .3. ITERATORS

When defining abstract data types iterators are very
useful. Consider the follow two program fragments to write
out the elements of a linked list.

loop:
if: (p eq: nil) then: exit
write: p first, p<-p tail

i<-0
loop:

if: i<=p size then: exit
write: (p index: i) , i<-i+l

In the second fragment, "index:" is the subscript operator
for arrays. The two underlying implementations of linked
lists are quite obvious from the code fragments. On the
other hand, if an iterator is used, the same program

11

l
l
l
l
]

1

I
)

I
I
j

J

I
I
j

J
LJ

fragment would be used no matter what the implementation:

for : i in: p do :
write: i

Call-by-name parameters were added to X-2 mainly for defin
ing iterators as was done in figure 1.

One would like to generalize the above writing of a
list by using a procedure that would write out a list no
matter what the element type of the list. The following
does not quite work:

write: 1- t list
free[t]
local:

i-t list
body:

for: i in: p do:
write: i $ will produce an error message

The "write: i" in this procedure is referring to a specific
procedure for a specific type. Some way is needed to
specify the properties oft that must be present to use this
procedure. CLU and Lithe provide such mechanisms, but no
such mechanism has yet been added to X-2.

2.~. OTHER SEMANTIC ISSUES.

X-2 assumes there is a good garbage collector built
into the system. Garbage collection errors are among the
most difficult errors to detect and find. Errors tend to be
detected long after they occur and then small changes to the
program may make the evidence of the error disappear com
pletely. Also, the programmer may produce a much less read
able program if he deals with the garbage collection him
self.

Loop-with-exit is the only primitive looping construct
contained in X-2. The loop-with-exit produces more readable
programs than just while loops. At the moment while loops
are not include in X-2. It may be that while loops are used
often enough and are enough clearer than a loop-with-exit to
justify their inclusion.

A case statement is included in X-2 because it is more
readable than a sequence of if-then's and can more easily be
compiled into efficient code.

Any large system needs some way to recover from
addressing errors and arithmetic traps. Languages such as
CLU and ADA provide extensive exception handling mechanisms,

12

l
1

n
n

1

I
l
j

l
I
J

J

J
j

j

u
u

but there is some doubt as to the wisdom of this[2]. X-2
provides only a very limited mechanism. A way is provided
to pair a block of code with an error handler. If any error
arises while executing this block of code, control is passed
to the error handler. A string is saved telling what error
occurred. The user is allowed to generate an error and pass
a string telling what error occurred.

X-2 runs on an interpreter. Access is given to the machine
instructions of this interpreter. This has two advantages:
new instructions can be added to the interpreter without

class:
t array

(a-t array) size return: int
free[t]
instruction: 6 arg: 15 $ this instruction gives the size of

$ the space allocated

(newarray: size-int) return: t ar .ray
free[t]
$creates a new array
instruction: 6 arg: 18 $ This instruction allocates

$ space off the heap.

(a-t array index: i-int) return: t name
free[t]
instruction: 37 arg: 0 $ Forms the address of the ith
$ word in the segment of space allocated off the heap.

(expand: a-t array by:i-int) return: t array
free(t]
$This procedure creates a bigger array and
$copies the old array to the bigger one.
locals:

b-t array,j-int
body:

b <- newarray: a size+i
for: j from: 0 to: a size-1 do:

b index: j <- a index: j
b return

Figure 2

13

il
l

J

J

J

changing the compiler for X-2 at all; and access to the
instruction allows some basic data types to be defined
instead of including them in the language definition. For
example, there is no array type in the definition of X-2.
Figure-2 shows how an array type can be defined. The use
of numbers instead of mnemonics as the opcodes of the
machine is poor practice, but has not been annoying enough
to change, since access to the machine is used only infre
quently.

Access to the machine also allows the strong typing of
the language to be defeated. Type checking is valuable for
catching many mistakes in a program, but sometimes type
miss-matches is what the programmer really wanted. Some
way should then be provided to defeat the strong t~ping.

A procedure type was included in X-2. A procedure can
be stored in a data structure and later retrieved and
called. A good example of where this is useful is in a
window manager in a Smalltalk-like programming environment.
The window manager needs a different set of instructions for
displaying each different kind of window. The best
representation of each set of instructions is a procedure.
The window manager needs to store these procedures for later
retrieval. In languages without a procedure type such as
Ada and Pascal, a good window manager can be very difficult
to write. Smalltalk does not use a procedure type but uses
the fact that binding of procedure names to procedures is
done at runtime •

.5 • .5. syntax

Several things were considered in designing the syntax
for X-2. The user must be allowed to redefine the meaning
of any existing syntax in the programming language. This is
needed to blend user-defined extensions into the language
and to allow the user to change the actual implementation of
an abstraction type without changing the syntax. This is
often impossible in Pascal; for example, if one used an
array to start with, but later decided to use a sparse
representation of an array, one is forced to go back and
change the syntax because the meaning of "a[l]" can not be
changed.

Too much user flexibility in the syntax has been
avoided. If the user is allowed to radically change the syn
tax, the syntax must first be deciphered before the program
can be understood. Changing the syntax will usually make
little impact on a program because the semantics of the con
structs is much more important.

14

l
7
l

. l
1
I

Li

J

lJ
lJ

J
j

A uniform syntax for both control structures and
expressions was desired, so the programmer would not need to
deal with a different syntax mechanism when defining control
structures. Also the syntax of user-defined control struc
tures should be no different from the predefined control
structures.

Overloading of the meaning of a specific syntax was
desired. This allows more concise and uniform naming conven
tions. For example, with overloading one name "write:" can
be used for:

writeint: i
writeBool: B
writeStack: s
writeReal: r

Which procedure is meant by "write:" is resolved by the
types and number of the argument.

"<-" was used as the infix assignment operator instead
of the more common":=" to limit the amount of look-ahead
the scanner must use. A two character look-ahead would be
needed for ":=". Consider "x:=y" , "x: y", "xy+z", and
"x+y". If "x" is the current character, one character
look-ahead is needed to determine if the identifier contin
ues. If the look-ahead is a colon, the character following
the colon must be examined to determine whether the colon is
part of the selector "x:" or an assignment operator.

Indentation was made significant to the compiler. The
reason behind this is that because indentation is signifi
cant to the human reader it should be significant to the
compiler. This prevents errors arising from the compiler
interpreting the indentation one way and the reader another
way. Using a more conventional treatment of indentation
would affect the language very little.

.6.. conclusion

X-2 has been implemented on a Motorola-68000-based system
with a bit-mapped display. It took the author about one
calendar year to write a simple programming environment for
X-2 including a window manager, a text editor, separate com
pilation at the procedure level, a Baker-style garbage col
lector[!], and the compiler. This is all written in X-2
itself except for 20 pages of machine language that imple
ment the basic interpreter. The time it took to write this
implementation demonstrates that X-2 did attain some measure
of simplicity.

15

]

7
. I
n
J
l

I
j

I l
LI

J

LI

J

J

X-2 is meeting the original design goals. The implementa
tion is of reasonable speed which demonstrates the feasibil
ity of using an interpreter that uses the same storage
mechanism for activation records as other objects. X-2 has
helped discover some problems with contexts mentioned ear
lier. Plans have been made to use X-2 further in investi
gating organization of programs.

]_.

[1]

[2]

[3]

REFERENCES

Baker, H.G. List Processing in Real Time on a Serial
Computer. Commun. ACM 21,4 (April 197 8) , 2 80-2 .94.

Black, A.P. Exception
Thesis, Univ. of Oxford,
82-01-02, Department of
Washington.

Handling: .'.rhe ~ Against.
January 1982. Also Tech. Rep.

Computer Science, Univ. of

Clarke, L.A., Wileden, J.C., and Wolf, A.L. Nesting in
Ada Programs is for the Birds. Proceedings .Qf ~ .ACM
SIGPLAN Symposium on the .Ads Programming Language.
Boston, December, 1980, 139-145. Published as Vol 15
No. 11 of SIGPLAN Notices.

[4] Clocksin, w.F., and Mellish, c.s. Programming .in .PLQ=
.l,Qg. Springer-Verlag, Berlin, 1981.

[5] Ada Programming Language, Department of Defense, Mili
tary Standard MlL-STD-l 815A, January, 1983.

[6] Franta, W.R. ~Process~ of simulation. North
Holland, New York, 1977.

[7] Goldberg, A., and Robson D. Srnalltalk-.8.Q.: ~ Language
and Its Implementation. Addison-Wesley, 1983.

[8] Griswold, R.E., Poage, J.F., and Polonsky, I.P. .T.M
SNOBOL4 Programming Language, 2nd ed. Prentice-Hall,
Englewood Cliffs, 1971.

[9] Jensen, K., and Wirth, N. Pascal ~ Manual and
Report, 2nd ed. Springer-Verlag, New York, 1974.

[10] Krasner, G., Ed. Smalltalk-fill: .B.i.t.§ of History, Words
_o_f Advice. Addison-Wesley, 1983.

[11] Ledgard, H.F., and Singer, A. Scaling Down Ada. ~
lillill• ACM 25,2(Feb. 1982), 121-125.

16

l
1
l
n
l

I
l
I

)

1

l J

j

J

J

J

[12] Liskov, B, Snyder, A., Atkinson R., and Schaffert, c.
Abstraction Mechanisms in CLU. Commun.~ 20,8(Aug.
1977), 564-576.

[13] McCarty, J., Abrahams, P.W., Edwards, D.J., Hart, T.P.,
and Levein, M. I. rn l . .5 Programmer' .e Manual, 2nd ed.
MIT Press, Cambride, 1965.

[14] Rowe, L.A. Data Abstraction from a Programming
Language Viewpoint. Proceedings .Qf .t..bg workshop .QD

.Jlg_t_g Abstraction, Databases, .ruig Conceptual Modelling,
June 1980,29-35. Published as Vol 16 No. 1 of SIGPLAN
Notices.

[15] Sandberg, D. w. A Language Combining~ Flexible syntax
lil.tb Classes. Thesis, University of Washington, 1982.
Also Tech. Rep. 82-12-03, Department of Computer Sci
ence, Univ. of Washington.

[16] Wirth, N. Programming .in Modula-2, Springer-Verlag, New
York, 1983.

17

	Sandberg_David_W_85_60_01_A
	Sandberg_David_W_85_60_01_B

