
86-30-5

urnUEAS~TY

SELECTING APPROPRIATE REPRESENTATIONS FOR LEARNING FROM EXAMPLES

Nicholas S. Flann
Thomas G. Dietterich

Department of Computer Science
Oregon State University
Corvallis, Oregon 97331

1

n
n

l
l

1

u
J

u

Selecting Appropriate Representations for
Learning from Examples

Abstract

Nicholas S. Flann & Thomas G. Dietterich
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

The task of inductive learning from examples places constraints on the repre
sentation of training instances and concepts. These constraints are different
from, and often incompatible with, the constraints placed on the represen
tation by the performance task. This incompatibility explains why previous
researchers have found it so difficult to construct good representations for in
ductive learning-they were trying to achieve a compromise between these two
sets of constraints. To address this problem, we have developed a learning sys
tem that employs two different representations: one for learning and one for
performance. The learning system accepts training instances in the "perfor
mance representation," converts them into a "learning representation" where
they are inductively generalized, and then maps the learned concept back into
the "performance representation." The advantages of this approach are (a)
many fewer training instances are required to learn the concept, (b) the biases
of the learning program are very simple, and (c) the learning system requires
virtually no "vocabulary engineering" to learn concepts in a new domain.

Submitted to AAAI-86, Philadelphia, PA

7

1

l
l

I

j

l J

l J

J

j

1 Introduction

In the idea paper entitled "Learning Meaning," Minsky (1985) stresses the importance of maintain
ing different representations of knowledge, each suited to different tasks . For example, a system
designed to recognize examples of cups on a table would do well to represent its knowledge as
descriptions of observable features and structures. In contrast, a planning system employing cups
to achieve goals would require a representation describing the purpose and function of cups.

When we turn from the issue of performance to the issue of learning, it is not clear what
representation to choose. The most direct approach is to choose the same representation for learning
as for performance, thus gaining the advantage that any knowledge learned will be immediately
available to support performance. Early machine learning work, such as Winston's ARCH (Winston
1975) and Buchanan & Mitchell's Meta-DENDRAL system (Buchanan & Mitchell, 1978), employed
this approach, and it worked quite well. The design of a structural language capable of capturing
the concepts of interest was straightforward, and concepts were learned quickly with (relatively)
few training instances.

However, when Quinlan (1982) attempted to pursue this approach in his work on learning chess
end-game concepts, he encountered difficulties. His representation for high-level chess features was
effective for the task of recognizing end-game positions, but it introduced many problems for the
learning task. First, the concept language was very difficult to design. Quinlan spent two man
months iteratively designing and testing the language until it was satisfactory. The second problem
was that it took a large number of training instances (334) to learn the concept of lost-in-3-ply
completely. These problems illustrate that the approach of employing the same representation for
learning and for performance was inappropriate for this domain.

In this paper, we show that inductive learning places constraints on the representation for
training instances and concepts and that these constraints often conflict with the requirements
of the performance task. Hence, the difficulty that Quinlan encountered can be traced to the
fact that the concept lost-in-3-ply is an inherently functional concept that is most easily learned
in a functional representation. However, the performance task (recognition) requires a structural
concept representation. The vocabulary that Quinlan painstakingly constructed was a compromise
between these functional and structural representations.

The remainder of this paper is organized as follows. First, we discuss the constraints that the
task of inductive learning places on the representation for training instances and concepts. Second,
we describe a strategy for identifying the most appropriate representation given these constraints.
Third, we consider the problems that arise when the representation for learning is different from
the representation in which the training instances are supplied and from the representation that
is needed by the performance task. Finally, we describe an implemented system, Wyl, that learns
structural descriptions of checkers and chess concepts by first mapping the training instances into
a functional representation, generalizing them there, and converting the learned concept back into
a structural representation for efficient recognition.

2 Representational Constraints of Inductive Learning

The goal of an inductive learning program is to produce a correct definition of a concept after
observing a relatively small number of positive (and negative) training instances. Gold (1967) cast
this problem in terms of search. The learning program is searching some space of concept definitions
under guidance from the training instances. He showed that (for most interesting cases) this search
cannot produce a unique answer, even with denumerably many training instances, unless some
other criterion, or bias, is applied. Horning (1969), and many others since, have formulated this

1

n
n
1

1

lJ

J

I
J
J
J

task as an optimization problem. The learning program is given a preference function that states
which concept definitions are a priori more likely to be correct. The task of the learning program
is to maximize this likelihood subject to consistency with the training instances.

This highly abstract view of learning tells us that inductive learning will be easiest when (a)
the search space of possible concept definitions is small, (b) it is easy to check whether a concept
definition is consistent with a training instance, and (c) the preference function or bias is easy to
implement. In practice, researchers in machine learning have achieved these three properties by
(a) restricting the concept description language to contain few (or no) disjunctions, (b) employing
a representation for concepts that permits consistency checking by direct matching to the training
instances, and (c) implementing the bias in terms of constraints on the syntactic form of the concept
description.

Let us explore each of these decisions in detail, since they place strong constraints on the choice
of good representations for inductive learning.

Consider first the restriction that the concept description language must contain little or no
disjunction. This constraint helps keep the space of possible concept definitions small. It can
be summarized as saying "Choose a representation in which the desired concept can be captured
succinctly."

The second decision-to use matching to determine whether a concept definition is consistent
with a training instance-places constraints on the representation of training instances. Training
instances must have the same syntactic form as the concept definition. Furthermore, since the
concept definition contains little or no disjunction, the positive training instances must all be very
similar syntactically . To see why this is so, consider the situation that would arise if the concept
definition were highly disjunctive. Each disjunct could correspond to a separate "cluster" of positive
training instances. With disjunction severely limited, however, the positive training instances must
form only a small number of clusters.

In addition to grouping the positive instances "near" one another, the representation must also
allow them to be easily distinguished from the negative instances. This is again a consequence of the
desire to keep the concept definition simple. The concept definition can be viewed as providing the
minimum information necessary to determine whether a training instance is a positive or a negative
instance. Hence, if the concept definition is to be short and succinct, the syntactic differences
between positive and negative instances must be clear and simple.

The third decision-to implement bias in terms of constraints on the syntactic form of the
concept description-makes the choice of concept representation even more critical. Recall that
the function of bias is to select the correct, or at least the most plausible, concept description from
among all of the concept descriptions consistent with the training instances. Typically, the bias
is implemented as some fixed policy in the program, such as "prefer conjunctive descriptions" or
"prefer descriptions with fewest disjuncts." The bias will only have its intended effect if conjunctive
descriptions or descriptions with fewest disjuncts are in fact more plausible. In other words, for
syntactic biases to be effective, the concept description language must be chosen to make them true .
The net effect of this is to reinforce the first representational constraint: the concept representation
language should capture the desired concept as succinctly as possible.

Now that we have reviewed the constraints that inductive learning places on the representation
of training instances and concepts, we can explain why some machine learning systems have been
more successful than others. Consider Winston's ARCH program. In his structural representation,
the positive examples of arches are all very similar (three objects that are restricted in shape
and arrangement). Negative examples-non-arches-are all easily distinguished by some simple
observable features such as touching or standing. This explains why the ARCH system was so
successful.

2

7
7
n
n
n

l
j

J

lJ

I J

j

u
J

In contrast, consider Quinlan's work on the chess concept lost-in-3-ply. When positive and
negative examples of lost-in-3-ply are represented as simple board positions, there are no obvious
distinguishing features. Moving a piece one square often changes the classification of an instance.
When we consider that there are 1.8 million distinct training instances, it is clear that inductive
learning in this low level representation would require that the concept description include vast
numbers of disjuncts. It is not surprising that Quinlan chose to design a higher-level vocabulary
for describing his training instances.

In his (1982) article, Quinlan showed how one could evaluate the correctness of an inductive
learning program by asking how many training examples are required for the program to discover
a concept of a given complexity (i.e., with a given number of disjuncts). His definition of a perfect
learning program was one that required only one positive training example for each disjunct in the
concept definition. Such a learning program would possess a perfect bias.

We can turn this analysis around and use it to evaluate the combined appropriateness of the
bias and the representation language. If a program requires few training instances to discover a
concept, then the combination of the bias and representation is working well to select the proper
concept definition.

By this measure, the ARCH program has an excellent bias and representation language, since
very few training instances are required. On the other hand, even after Quinlan carefully engineered
the representation language so that it included high level structural and functional terms, his
system required 334 training instances to learn the concept lost-in-3-ply. This indicates that the
representation language and the bias were still not very appropriate for learning this concept.

We can summarize this section by stating the following constraints on the choice of representa
tion languages for inductive learning. First, the language should be able to represent the desired
concept succinctly (i.e., conjunctively or as a short disjunction). Second, the training instances
should have the same form as the concept definition . . Third, the representation should capture
semantic similarities among the positive training instances directly in syntactic forms. Fourth,
the representation should capture semantic differences between the positive and negative training
instances syntactically.

3 Choosing the Most Suitable Representation

Now that we have reviewed the constraints that inductive learning places on the representation,
we must consider how to satisfy those constraints in a given learning task. It should be clear that
we want to select the representation that captures the concept most "naturally."

The "natural" representation is the one that formalizes the underlying reason for treating a
collection of entities as a concept in the first place. A concept (in the machine learning sense
anyway) is a collection of entities that share something in common. Some entities are grouped
together because of the way they appear (e.g., arches, mountains, lakes), the way they behave (e.g.,
mobs, avalanches, rivers), or the functions that they serve (e.g., vehicles, cups, doors). Occasionally,
these categories correspond nicely. Arches have a common appearance and a common function (e.g.,
as doorways or supports). More often, though, entities similar in one way (e.g., function) are quite
different in another (e.g., structure).

The performance task for which a concept definition is to be learned may require a structural
representation (e.g., for efficient recognition), a functional representation (e.g., for planning), or
a behavior representation (e.g., for simulation or prediction). When we review the successes and
failures of machine learning, we see that difficulties arise when the representation required for the
performance task is not the natural representation for the concept.

3

7
n
n

7
l

I
1

1

d
u
j

J

Environment Learning
Representation Representation

gemii,ation Performance
Representation

Figure 1: The Multiple Representation Strategy

Winston's ARCH program was successful because the natural representation-structural-was
also the performance representation. Quinlan's difficulties with lost-in-3-ply can be traced to the
fact that this concept is naturally defined functionally, yet the performance task required a struc
tural representation. All board positions that are lost-in-3-ply are the same, not because they have
the same appearance, but because they all result in a loss in exactly 3 moves. This concept can be
captured naturally in a representation that includes operators (such as move) and goals (such as
loss).

Another example of a case where the natural representation is functional and the performance
representation is structural is the concept cup (Winston, et al., 1983; Kedar-Cabelli, 1985). Winston
considers the task of teaching a machine vision system how to recognize cups. For this recognition
task, a structural representation is desired. However, the natural representation is functional.
Cups are strongly distinguished from many other objects in the universe by their function of being
"something you can drink from." In contrast, structural descriptions of cups are quite distinct
from one another and yet quite similar to objects that are not cups. There exist many changes to
a cup (such as drilling holes in it) that cause only small and subtle changes in appearance and yet
convert the cup into a "non cup." If we wish to build a system which could inductively learn cup,
we would do well to employ a functional representation that included terms such as liftable and
stable.

4 Coordinating Different Representations

For situations in which the representation most appropriate for learning is different from the one
required for the performance task, there are two basic approaches that can be pursued. First, we
can try, as Quinlan did, to find an intermediate representation that provides some support for both
learning and performance. However, the alternative that we have investigated is to employ two
separate representations-one for learning and one for performance. This raises the problem of
converting from one representation to another.

Figure 1 shows the general structure of a learning system that employs this "multiple rep
resentation strategy." Training instances are presented to the system in a representation called
the "Environment Representation" (ER). To support induction, the instances are translated into
training instances written in the "Learning Representation" (LR) . Within thi s rf'J1resentation, the
instances are generalized to produce a concept description. For this concep t l," l,e employed in
some performance task, it must be translated into the "Performance Represen ta 111111 (PR) ."

Many existing learning systems can be viewed as pursuing this "multiple repr,·:s,•ntation strat-

4

l
n
n
l

l

ll
J

(J

l J

j

Structural Functional
Representation

envisionment
Representation

instance instance

concept
compilation

gm,,i.atfon

concept

Figure 2: Representations in Wyl

egy." One instructive example is the ANALOGY system of Winston, et al., (1983). Here the
training instances are functional descriptions written in English. The ER is therefore a subset of
the English language. The LR captures functional descriptions and is implemented as a seman
tic net employing causal relationships between functional terms. The knowledge transformation
method from ER to LR is a two-phase process of (a) parsing the English description and (b) gener
ating the appropriate semantic net form. The performance task is one of recognition, so the PR is
mostly structural. The translation in this case uses knowledge about how functional characteristics
map to structural features.

5 Overview of Wyl

We have developed a learning system named Wyl (after James Wyllie, checker champion of the
world from 1847 to 1878) that applies the multiple representation strategy to learn concepts in
board games such as checkers and chess. We have chosen this domain because there are simple and
complete "domain theories" available and there are many interesting concepts that are naturally
functional (e.g., trap, skewer, fork, lost-in-2-ply) and yet have complex structural definitions. Wyl
has been applied to learn definitions for trap and 1-move-to-trap in checkers and skewer and knight
fork in chess.

The performance task of Wyl is recognition. Given a board position, represented simply in
terms of the kinds and locations of the playing pieces, Wyl must decide whether that position is,
for example, a trap. To perform this task, the trap concept must be represented in a structural
vocabulary that permits efficient matching against the board positions. However, as we have noted
above, concepts such as trap are most easily learned in a functional representation.

In addition to requiring a structural representation for performance, a structural representation
is also needed for the training instances. To teach Wyl checkers and chess concepts, we want to
simply present board positions that are examples of those concepts. Hence, in the terminology of
the previous section, the ER and the PR are structural representations, but the LR is a functional
representation.

The organization of Wyl is shown in Figure 2. Wyl learns from positive instances only. These
training instances are board positions, represented in an environment representation of simple
structural features-namely, the kinds and locations of the playing pieces.

Wyl converts these training instances into a functional representation thr011 gh a process of
envisionment. The purpose of envisionment is to determine how a given board r" 1-<ition relates to
the known goals of the players (e.g., loss or win). Wyl knows the rules of checkers (,., nrl chess), so it is
able to conduct a forward minimax search to see what outcomes the given board p o:;11 in n might lead

5

l
n
l
n
l
l

n

J

l l
l

11

l I
j

J

j

Figure 3: Checkers Trap training instance State1

to. Once it has related the board position to some known goal, it constructs an AND/OR graph that
explains the relationship. We call this AND/OR graph a functional training instance. Wyl employs
functional training instances to conduct inductive inference in the functional representation. This
results in a functional concept definition that captures the desired concept.

The final task is to convert this functional definition into an equivalent structural description
that can support efficient recognition. This is accomplished through a compilation process that
generates, as a side-effect, a generalized structural vocabulary for representing the concept.

The initial knowledge given to Wyl takes four forms. First, there is the environment represen
tation for board positions. Second, there is a representation for each of the legal operators in the
game (e.g., normal-move and take-move). Third, Wyl is given the rules of the game, represented as
a recursive schema that describes what moves are legal at what points in the game. Finally, Wyl
is given definitions of the important goals of the game, such as loss, win, and draw. For chess, Wyl
is also told that lose-queen is an important goal.

These given goals are the key to Wyl's learning ability. Wyl learns new functional concepts as
specializations of these known concepts. For example, the checkers concept trap is a specialization
of loss. To see this, consider the particular trap position shown in Figure 3. In this position, the
red king in square 2 is trapped by the white king at square 10. No matter what move the red king
makes, the white king can take him. Hence, trap is a particular way to lose a checkers game. Once
Wyl learns a recognition predicate for trap, it is added to the pool of known concepts, where it
may be specialized further to form some future concept.

The goals are provided to Wyl in a predicate calculus notation. The checkers concepts of loss
and win are represented as

V statel sidel LOSS(statel sidel) {:} recognizedLOSS(statel sidel)

and

V V state2 side2 type from over to
oppositeplayer(sidel side2)
/\ [[takemove(statel state2 from over to sidel type)

/\W IN(state2 side2)]

6

V [normalmove(statel stat e2 from to sidel type)
/\W IN(state2 side2)]]

l
n
n
n

n

I J

lJ
J

J

u

V statel sidel W IN(statel sidel) {:} recognizedW IN(statel sidel)
V :3 state2 side2 type from over to

oppositeplayer(sidel side2)
/\ [[takemove(statel state2 from over to side I type)

/\LOSS(state2 side2)]
V [normalmove(statel state2 from to sidel type)

/\LOSS(state2 side2)]].

These formulas are interpreted as follows. A board is an instance of loss if, for all legal moves
available to sidel, the outcome is a win for the other player (side2). A board is an instance of win
if there exists a legal move for side I that results in a loss for the other player. In checkers, there
are two kinds of moves: takemoves, in which one piece captures another by jumping over it, and
normalmoves, in which a piece simply moves one square.

The alternating quantification over states is a product of the ccadversary game" domain. In
general the quantification at each depth is dependent upon whether the outcome is favorable to
the current player. To prove that a position is unfavorable for sidel, we must prove that all the
available moves lead to an unfavorable result. To prove that a position is favorable, on the other
hand, we need only prove that there exists a move that leads to a favorable result.

This completes our overview of the Wyl system and the information that it is initially given. The
following three sections describe each of the main phases of the program: envisionment (converting
a structural training instance into the functional representation), generalization (inductive inference
in the functional representation), and compilation (converting the functional concept description
into a structural representation). We illustrate the operation of Wyl as it learns the checkers
concept of trap

5.1 Envisionment

Wyl starts with a given structural training instance (i.e., board position), which it is told is an
instance of trap. In Figure 3, we illustrate the first training instance for trap, with red to play.
The structural representation of the instance State1 is

occupied(State1 s2 rk1)/\
occupied(State1 s10 wk1) :) T RAP(State1 red).

Where rk1 and wk1 are playing pieces, described as

type(wk1 king)/\ side(wk1 white)/\ type(rk1 king)/\ side(rk1 red).

To convert this into a functional instance, Wyl applies a special proof procedure to State1. This
proof procedure has the effect of conducting a minimax search to look for known goals. When a
known goal is discovered, the proof procedure returns a minimax search tree (see Figure 4(A)) in
which each state is marked with its outcome.

In our trap example, the proof procedure discovered that the board position is an instantiation
of the concept loss, with each node representing a state in the search and each branch representing
the particular operators in the search. The first operators instantiated are the normalmoves
from square s2. These are followed by takemoves that lead to an instanti at ion of the predicate
recognizedLOSS and termination of the search.

The next step is to convert this minimax tree into an explanation tr ee (along the lines of
Mitchell, et al., 1986). An explanation tree is a proof tree that explai ns the computed outcome

7

l
7

n
l
l
l
1

I
lJ
j

l)

'J

J

LJ

Ll

J

:3

D kind=move
from=s2
to=tonew1

kind=take
from=slO
over=tonew1

result=loss

(C)

Figure 4: Generalization of Checkers Trap instance from Figure 3

(i.e., loss) of the training instance. The minimax tree contains all of the information needed to
construct this proof, but it also contains extra information that is irrelevant to the proof.

Hence, Wyl traverses the minimax tree to extract the minimum (i.e., necessary and sufficient)
conditions for the proof of the outcome. When the quantification is :3, an OR node is formed, and
Wyl extracts sufficient conditions of the proof. Only the one operator and its traversed subtree
leading to the computed outcome are needed for the proof. The dual case is when the quantification
is V and an AND node is formed. Here the current player was at a disadvantage, and the moves were
therefore forced. In this case, all of the operators (i.e., moves) are needed for the proof. Figure 4(B)
shows the outline of the functional training instance that is produced by this process.

5.2 Generalization

This functional instance describes a particular way to lose a checkers game. It is a conjunction of
two fully instantiated (i.e., ground) sequences of operators, each resulting in a Joss. On the other
hand, the desired concept trap is described as a single generalized sequence of operators ending in
a Joss. To form a more general concept description from this instance, the generalization step first
"compresses" the two parallel branches of the instance tree to obtain a single generalized line of
play. Two simple and strong biases are applied to drive this generalization.

The first bias is the familiar bias toward maximally-specific conjunctive generalizations. The
final functional concept definition must be a conjunction of generalized instantiations of the con
cept loss. To implement this bias, the inverse-enumeration rule (illustrated below) is applied re
cursively to the predicates present in the explanation tree (i.e., to norma/move, takemove and
recognizedLOSS and so on).

The second bias employed by Wyl states that "There are no coincidences ." More concretely, if
the same constant appears at two different points within a single training instance, it is asserted
that those two different points are necessarily equal. Figure 4 demonstrates this bias. In the left
branch of tree (A), the red piece first moves to square s6. Then the white piece in square s10
captures the piece in square s6. The "no coincidences" bias says that these two occurrences of
s6 were necessarily identical. Hence, when they are matched against the right branch of tree (A)
to s7, they are both generalized to the same variable tonewl. The resulting functional concept
description is the following:

V statel T RAP(statel red) {}
V state2 tonewl oppositeplayer(red white)

8

7

1

l
l

lJ
l I
J

u
J

/\normalmove(statel state2 s2 tonewl red king)
/\ :3 state3 tonew2

takemove(state2 state3 s10 tonewl tonew2 white king)
/\recognizedLOSS(state3 red).

This states that a trap is a board position in which your opponent has a piece (at s10) for
which there exists a take move that captures your piece (at s2) for all moves available. This is an
overly specific version of trap, since it only describes traps that occur at one particular place on
the board. The correct definition of trap can be obtained by presenting further training instances .

Indeed, one more well-chosen training instance suffices to teach trap:

occupied(State8 s28 wm1)/\
occupied(State8 s19 rk1) :::> T RAP(State8 white).

In this example, a red king has trapped a white man against the east side of the board. The
minimax search again discovers that this situation leads to a Joss-this time for white. The minimax
tree is a simple sequence of moves, because white has only one possible move. Hence, the compaction
process is trivial. The resulting functional training instance is

V statel T RAP(statel white){:}
V state2 oppositeplayer(white red)

I\ normalmove(statel state2 s28 s24 white man)
/\ :3 state3

takemove(state2 state3 s19 s24 s28 red king)
/\recognizedLOSS(state3 white).

Notice that only the specific starting state, State8 has been generalized (to become statel).
The specific state names are always generalized by Wyl.

When the second training instance is matched to the functional concept description, the follow
ing (correct) functional definition of trap is obtained.

V statel sidel fromnewl fromnew2 T RAP(statel sidel) {:}
V state2 typel tonewl oppositeplayer(sidel side2)

5.3 Compilation

/\normalmove(statel state2 fromnewl tonewl sidel typel)
/\ :3 state3 type2 tonew2

takemove(state2 state3 f romnew2 tonewl tonew2 side2 type2)
/\recognizedLOSS(state3 sidel)

The third stage of the learning process is to translate the functional knowledge into a form suitable
for recognition-that is, to re-describe the acquired functional concept in the PR. However, Wyl is
not given a good vocabulary for the performance language. The only structural representation that
Wyl receives from the teacher is the representation used to describe individual board positions. This
language could be used to represent the structural concept, but for trap this would require a large
disjunction with 146 disjuncts. For other functional concepts, this approach is clearly infeasible.
Consider trying to represent all possible cups in terms of perceived lines and surface shading.

Instead of employing the same low level structural language in which the training instances were
presented, Wyl must construct its own structural concept language for expressing the functional
concept.

9

l

l
l

(I
ll
j

u

There are two basic approaches to constructing a structural concept language, and both involve
solving the "new term problem." First, the new terms can be created that describe more abstract,
but still structural features, by some method of clustering. For example, terms such as circle,
cylinder, and handle could be viewed as clusters of primitives in the cup environment language.
Second, a more satisfactory solution is to create mixed structural and functional terms that optimize
the recognition procedure. The aim of this approach would be to automatically design the kind of
language developed by Quinlan (1982).

Currently, there are no methods capable of designing such a structural language automatically.
The only method that provides even a partial solution to this problem is the method of constraint
back-propagation or goal regression (Mitchell, et al., 1986). Utgoff (1986) shows that this method
can create new structural terms to extend a given structural language, but there are several prob
lems with his approach that prevent it from working in the checkers and chess domains (see Porter
& Kibler, 1985). The principal problem is that constraint back-propagation can only be applied to
OR graphs, so it cannot handle the AND/OR graphs of these game-playing domains.

We have explored an alternative approach in Wyl based on generation and clustering. First we
apply the functional definition to generate all possible structural examples of the concept (i.e., all
possible board positions that are traps according to the functional definition. This can be viewed
as a highly disjunctive description of the concept in the supplied environment language. Next the
large number of disjunctions in the description is reduced by a compaction process that creates
simple new terms.

The generator works by employing the functional concept as a constructive proof, generating all
possible board positions consistent with the concept. Each trap position generated is a conjunction
of the two single observable facts like the original trap example given above and illustrated in
figure3. In the trap case, a disjunction of 146 possible positions is generated. The compaction
stage then applies two algorithms to compress this set of 146 positions into a disjunction of 12
more general descriptions.

The first algorithm discovers simple relational terms that describe common relationships be
tween squares. For example, in the training example of trap (State1), the white king is directly two
squares south of the red king. As part of Wyl's initial environment language, primitive facts are
given that describe the relationship between any square on the board and its immediate neighbors.
The neighbors of s2 are sw(s2, s6) and se(s2, s 7). The algorithm identifies new relational terms by
a simple breadth-first search from one of the squares in an instance to discover paths to the others.
From State1, a disjunction of two terms is found:

\fsquarel square2 square3 South2squares(squarel square2)
{:} [se(squarel square3) I\ sw(square3 square2)]

v[sw(squarel square3) I\ se(square3 square2)]

The second term-creation algorithm is similar to GLAUBER (Langley et al., 1986) and iden
tifies common internal disjunctions over the primitive structural features. The simple instances
created by the generator are translated into a feature-vector representation based on the primitive
attributes. For example, State1 is translated to the following vector:

T RAPvector(red king s2 white king s10).

The first three items describe the red king, the following three, the white king. Next, one of the
squares is replaced by its relationship with the other. The new relational term S outh2squares is
used, and it yields the new instance:

T RAPvector(red king s2 white king South2squares).

10

7
l
l
l
l

l

]

l

j

LI

J

Common disjunctions are found by locating sets of instance vectors that share all but one feature
in common. For example, consider two trap positions, the initial training instance and a red king
on s3, white king on s11 given below:

T RAPvector(red king s2 white king South2squares)
T RAPvector(red king s3 white king South2squares)

The algorithm identifies the set {s2, s3}, which is named NorthCenterSide. All of the features can
be used to form the new terms . Using the trap instances, this algorithm created terms defin
ing regions such as Center {s6, s7, s8, s14, s15, s16, s22, s23, s24}, NorthSingleSide {s4,
NorthCenterSide }. Directional relationships between squares produce terms such as North, { ne,
nw} and AnyDirection, {North, South}. In all, Wyl discovers 13 descriptive terms of this kind,
along with 6 relational terms like South2squares.

6 Relation to Other Work

Wyl has much in common with other learning systems that pursue the "multiple representation
strategy." Explanation-based learning systems (Mitchell, et al., 1986) employ a functional represen
tation to describe the "domain theory." The examples are first presented in a structural language
(mathematical expressions (Mitchell, et al., 1982; Shavlik, 1985), circuit primitives (Ellman, 1985;
Mitchell, et al., 1985)), then explained via an envisionment stage using the domain theory to form
"explanation trees" or "functional instances." These instances are generalized, usually deductively,
by extracting sufficient conditions from the proof. Finally, the general concept is compiled into a
structural description to make the knowledge "operational" (Mostow, 1982; Keller, 1983). Analogi
cal learning systems (Winston, et al., 1983; Kedar-Cabelli, 1985) employ functional representations
to determine when analogy is appropriate.

The work with analogy has particular relevance to the work presented here, because the con
straints imposed on representations by inductive learning are exactly those imposed by analogical
reasoning. For two items to be analogous, they must have some commonality. That commonality
it often not expressed in surface (observable) features, but in function. A hydrogen atom is like
our solar system not because of size or color, but because of the way the respective components
interact. So, the most applicable representation for analogical reasoning about different items is
one in which their underlying similarity is captured syntactically.

Another interesting comparison is to review the role examples play in these systems. In Wyl,
examples are crucial to the capability to learn, as new concepts are being acquired. In some
explanation-based learning systems (Minton, 1984; LEX2) examples play a different role. Here the
systems already know the concepts (e.g., Joss, productive-operator). The task is to translate these
concepts into operational form. Examples play the role of focusing the attention of the program.
For example, a system knowing the functional definition of a cup may proceed to translate its
knowledge into operational form. The resulting structural description will be extremely disjunctive
and include all possible physical realizations of a cup. A better approach is to use examples to
guide this operationalization process.

7 Conclusion

In this paper, we have claimed that inductive learning can only succeed in representations in which
the commonality of concept instances can be captured syntactically. We have justified this claim
by illustrating the operation of Wyl, a program that learns concepts from examples in chess and

11

n
n
1

l
l

I

I l

u
u
j

j

checkers. Wyl employs two representations (structural and functional) and performs induction in
the functional space. This approach of using separate representations, each suited to different tasks,
has significant advantages:

8

• Fewer examples are required to learn the concept.

• The bias built into the learning program is very simple (maximally-specific conjunctive gen
eralization) .

• The learning system starts with simple languages and reqmres less domain-specific and
concept-specific engineering.

Acknowledgments

The authors wish to thank Bruce Porter for reading a draft of this paper. This research was
partially supported by a Tektronix Graduate Fellowship (to Flann) and by the National Science
Foundation under grant numbers IST-8519926 and DMC-8514949.

9 References

Buchanan, B. G. and Mitchell, T. M., "Model-Directed Learning of Production Rules," in Pattern
Directed Inference Systems, Waterman, D. A. and Hayes-Roth, F. (Eds.), Academic Press,
New York, 1978.

Ellman, T., "Generalizing Logic Circuit Designs by Analyzing Proofs of Correctness," in Proceedings
of IJCAI-85, Los Angeles, CA 1985.

Gold, E. "Language identification in the limit." in Information and Control, Vol 16, pp447-474,
1967.

Horning, J. J. "A Study of grammatical inference." Rep. No. CS-199, Computer Science Depart
ment, Stanford University . 1969.

Kedar-Cabelli, S.T., "Purpose-Directed Analogy," in Proceedings of the Cognitive Science Society,
Irvine, Calif., 1985.

Keller, R. M., "Learning by Re-expressing Concepts for Efficient Recognition," in Proceedings of
AAAI-89, Washington, D.C., 1983.

Langley, P. W ., Zytkow, J., Simon, H. A., and Bradshaw, G. L., "The search for regularity: Four
Aspects of Scientific Discovery," in Machine Learning: An Artificial Intelligence Approach,
Vol JJMichalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.), Tioga Press, Palo Alto,
1986.

Minsky, M. "Society of mind," Technical Report, Massachusetts Institute of Technology, (1985).

Minton, S. "Constraint-Based Generalization: Learning Game-Playing Plans from Single Exam
ples," in Proceedings of AAAI-84, 1984.

Mostow, D. J. "Machine Transformation of Advice into a Heuristic Search Procedure," in Machine
Learning: An Artificial Intelligence Approach , Vol I Michalski, R. S., Carbonell, J. G. and
Mitchell, T. M. (Eds.), Tioga Press, Palo Alto, 1982.

12

n
l
n

l

l
I

u
J

J

u

Mitchell, T.M., Utgoff, P. E. and Banerji, R., "Learning by Experimentation: Acquiring and Refin
ing Problem-Solving Heuristics", in Machine Learning: An Artificial Intelligence Approach,
Vol I Michalski, R. S., Carbonell, J. G. and Mitchell, T . M. (Eds.), Tioga Press, Palo Alto,
1982.

Mitchell, T.M ., Mahadevan, S., and Steinberg, L. I., "LEAP: A Learning Apprentice for VLSI
Design," in Proceedings of IJCAI-85, Los Angeles, CA 1985.

Mitchell, T.M., Keller, R. M., and Kedar-Cabelli, S.T. "Explanation-Based Generalization: A
Unifying view," in Machine Learning 1, 1, 1986.

Quinlan, J. R., "Learning Efficient Classification Procedures and their Application to Chess End
Games" in Machine Learning: An Artificial Intelligence Approach, Vol I Michalski, R. S.,
Carbonell, J. G. and Mitchell, T. M. (Eds.), Tioga Press, Palo Alto, 1982.

Quinlan, J . R., "The Effects of Noise on Concept Learning," in Machine Learning: An Artificial
Intelligence Approach, Vol II Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds.),
Tiogga Press, Palo Alto, 1986.

Shavlik, J. W., "Learning About Momentum Conservation", in Proceedings of IJCAI-85, Los An
geles, CA 1985.

Utgoff, P. E., "Shift of Bias for Inductive Concept Learning," in Machine Learning: An Artificial
Intelligence Approach, Vol II Michalski, R. S., Carbonell, J. G. and Mitchell, T. M. (Eds .),
Tiogga Press, Palo Alto, 1986.

Winston, P.,Binford, T., Katz, B. and Lowry, M. "Learning Physical Descriptions from Functional
Definitions, Examples and Precedents," Proceedings of AAAI-83, Washington, D .C., 1983.

Winston, P.H., ''Learning Structural Descriptions from Examples," in The Psychology of Computer
Vision, Winston, P. H. (Ed .), McGraw Hill, New York, ch. 5, 1975.

13

	Flann_Dietterich_86_30_05_A
	Flann_Dietterich_86_30_05_B

