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The task of inductive learning from examples places constraints on the repre
sentation of training instances and concepts. These constraints are different 
from, and often incompatible with, the constraints placed on the represen
tation by the performance task. This incompatibility explains why previous 
researchers have found it so difficult to construct good representations for in
ductive learning-they were trying to achieve a compromise between these two 
sets of constraints. To address this problem, we have developed a learning sys
tem that employs two different representations: one for learning and one for 
performance. The learning system accepts training instances in the "perfor
mance representation," converts them into a "learning representation" where 
they are inductively generalized, and then maps the learned concept back into 
the "performance representation." The advantages of this approach are (a) 
many fewer training instances are required to learn the concept, (b) the biases 
of the learning program are very simple, and ( c) the learning system requires 
virtually no "vocabulary engineering" to learn concepts in a new domain. 
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1 Introduction 

In the idea paper entitled "Learning Meaning," Minsky (1985) stresses the importance of maintain
ing different representations of knowledge, each suited to different tasks . For example, a system 
designed to recognize examples of cups on a table would do well to represent its knowledge as 
descriptions of observable features and structures. In contrast, a planning system employing cups 
to achieve goals would require a representation describing the purpose and function of cups. 

When we turn from the issue of performance to the issue of learning, it is not clear what 
representation to choose. The most direct approach is to choose the same representation for learning 
as for performance, thus gaining the advantage that any knowledge learned will be immediately 
available to support performance. Early machine learning work, such as Winston's ARCH (Winston 
1975) and Buchanan & Mitchell's Meta-DENDRAL system (Buchanan & Mitchell, 1978), employed 
this approach, and it worked quite well. The design of a structural language capable of capturing 
the concepts of interest was straightforward, and concepts were learned quickly with (relatively) 
few training instances. 

However, when Quinlan (1982) attempted to pursue this approach in his work on learning chess 
end-game concepts, he encountered difficulties. His representation for high-level chess features was 
effective for the task of recognizing end-game positions, but it introduced many problems for the 
learning task. First, the concept language was very difficult to design. Quinlan spent two man
months iteratively designing and testing the language until it was satisfactory. The second problem 
was that it took a large number of training instances (334) to learn the concept of lost-in-3-ply 
completely. These problems illustrate that the approach of employing the same representation for 
learning and for performance was inappropriate for this domain. 

In this paper, we show that inductive learning places constraints on the representation for 
training instances and concepts and that these constraints often conflict with the requirements 
of the performance task. Hence, the difficulty that Quinlan encountered can be traced to the 
fact that the concept lost-in-3-ply is an inherently functional concept that is most easily learned 
in a functional representation. However, the performance task (recognition) requires a structural 
concept representation. The vocabulary that Quinlan painstakingly constructed was a compromise 
between these functional and structural representations. 

The remainder of this paper is organized as follows. First, we discuss the constraints that the 
task of inductive learning places on the representation for training instances and concepts. Second, 
we describe a strategy for identifying the most appropriate representation given these constraints. 
Third, we consider the problems that arise when the representation for learning is different from 
the representation in which the training instances are supplied and from the representation that 
is needed by the performance task. Finally, we describe an implemented system, Wyl, that learns 
structural descriptions of checkers and chess concepts by first mapping the training instances into 
a functional representation, generalizing them there, and converting the learned concept back into 
a structural representation for efficient recognition. 

2 Representational Constraints of Inductive Learning 

The goal of an inductive learning program is to produce a correct definition of a concept after 
observing a relatively small number of positive (and negative) training instances. Gold (1967) cast 
this problem in terms of search. The learning program is searching some space of concept definitions 
under guidance from the training instances. He showed that (for most interesting cases) this search 
cannot produce a unique answer, even with denumerably many training instances, unless some 
other criterion, or bias, is applied. Horning (1969), and many others since, have formulated this 
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task as an optimization problem. The learning program is given a preference function that states 
which concept definitions are a priori more likely to be correct. The task of the learning program 
is to maximize this likelihood subject to consistency with the training instances. 

This highly abstract view of learning tells us that inductive learning will be easiest when ( a) 
the search space of possible concept definitions is small, (b) it is easy to check whether a concept 
definition is consistent with a training instance, and ( c) the preference function or bias is easy to 
implement. In practice, researchers in machine learning have achieved these three properties by 
( a) restricting the concept description language to contain few ( or no) disjunctions, (b) employing 
a representation for concepts that permits consistency checking by direct matching to the training 
instances, and ( c) implementing the bias in terms of constraints on the syntactic form of the concept 
description. 

Let us explore each of these decisions in detail, since they place strong constraints on the choice 
of good representations for inductive learning. 

Consider first the restriction that the concept description language must contain little or no 
disjunction. This constraint helps keep the space of possible concept definitions small. It can 
be summarized as saying "Choose a representation in which the desired concept can be captured 
succinctly." 

The second decision-to use matching to determine whether a concept definition is consistent 
with a training instance-places constraints on the representation of training instances. Training 
instances must have the same syntactic form as the concept definition. Furthermore, since the 
concept definition contains little or no disjunction, the positive training instances must all be very 
similar syntactically . To see why this is so, consider the situation that would arise if the concept 
definition were highly disjunctive. Each disjunct could correspond to a separate "cluster" of positive 
training instances. With disjunction severely limited, however, the positive training instances must 
form only a small number of clusters. 

In addition to grouping the positive instances "near" one another, the representation must also 
allow them to be easily distinguished from the negative instances. This is again a consequence of the 
desire to keep the concept definition simple. The concept definition can be viewed as providing the 
minimum information necessary to determine whether a training instance is a positive or a negative 
instance. Hence, if the concept definition is to be short and succinct, the syntactic differences 
between positive and negative instances must be clear and simple. 

The third decision-to implement bias in terms of constraints on the syntactic form of the 
concept description-makes the choice of concept representation even more critical. Recall that 
the function of bias is to select the correct, or at least the most plausible, concept description from 
among all of the concept descriptions consistent with the training instances. Typically, the bias 
is implemented as some fixed policy in the program, such as "prefer conjunctive descriptions" or 
"prefer descriptions with fewest disjuncts." The bias will only have its intended effect if conjunctive 
descriptions or descriptions with fewest disjuncts are in fact more plausible. In other words, for 
syntactic biases to be effective, the concept description language must be chosen to make them true . 
The net effect of this is to reinforce the first representational constraint: the concept representation 
language should capture the desired concept as succinctly as possible. 

Now that we have reviewed the constraints that inductive learning places on the representation 
of training instances and concepts, we can explain why some machine learning systems have been 
more successful than others. Consider Winston's ARCH program. In his structural representation, 
the positive examples of arches are all very similar (three objects that are restricted in shape 
and arrangement). Negative examples-non-arches-are all easily distinguished by some simple 
observable features such as touching or standing. This explains why the ARCH system was so 
successful. 
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In contrast, consider Quinlan's work on the chess concept lost-in-3-ply. When positive and 
negative examples of lost-in-3-ply are represented as simple board positions, there are no obvious 
distinguishing features. Moving a piece one square often changes the classification of an instance. 
When we consider that there are 1.8 million distinct training instances, it is clear that inductive 
learning in this low level representation would require that the concept description include vast 
numbers of disjuncts. It is not surprising that Quinlan chose to design a higher-level vocabulary 
for describing his training instances. 

In his (1982) article, Quinlan showed how one could evaluate the correctness of an inductive 
learning program by asking how many training examples are required for the program to discover 
a concept of a given complexity (i.e., with a given number of disjuncts). His definition of a perfect 
learning program was one that required only one positive training example for each disjunct in the 
concept definition. Such a learning program would possess a perfect bias. 

We can turn this analysis around and use it to evaluate the combined appropriateness of the 
bias and the representation language. If a program requires few training instances to discover a 
concept, then the combination of the bias and representation is working well to select the proper 
concept definition. 

By this measure, the ARCH program has an excellent bias and representation language, since 
very few training instances are required. On the other hand, even after Quinlan carefully engineered 
the representation language so that it included high level structural and functional terms, his 
system required 334 training instances to learn the concept lost-in-3-ply. This indicates that the 
representation language and the bias were still not very appropriate for learning this concept. 

We can summarize this section by stating the following constraints on the choice of representa
tion languages for inductive learning. First, the language should be able to represent the desired 
concept succinctly (i.e., conjunctively or as a short disjunction). Second, the training instances 
should have the same form as the concept definition . . Third, the representation should capture 
semantic similarities among the positive training instances directly in syntactic forms. Fourth, 
the representation should capture semantic differences between the positive and negative training 
instances syntactically. 

3 Choosing the Most Suitable Representation 

Now that we have reviewed the constraints that inductive learning places on the representation, 
we must consider how to satisfy those constraints in a given learning task. It should be clear that 
we want to select the representation that captures the concept most "naturally." 

The "natural" representation is the one that formalizes the underlying reason for treating a 
collection of entities as a concept in the first place. A concept (in the machine learning sense 
anyway) is a collection of entities that share something in common. Some entities are grouped 
together because of the way they appear (e.g., arches, mountains, lakes), the way they behave (e.g., 
mobs, avalanches, rivers), or the functions that they serve (e.g., vehicles, cups, doors). Occasionally, 
these categories correspond nicely. Arches have a common appearance and a common function (e.g., 
as doorways or supports). More often, though, entities similar in one way (e.g., function) are quite 
different in another ( e.g., structure). 

The performance task for which a concept definition is to be learned may require a structural 
representation (e.g., for efficient recognition), a functional representation (e.g., for planning), or 
a behavior representation (e.g., for simulation or prediction). When we review the successes and 
failures of machine learning, we see that difficulties arise when the representation required for the 
performance task is not the natural representation for the concept. 
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Figure 1: The Multiple Representation Strategy 

Winston's ARCH program was successful because the natural representation-structural-was 
also the performance representation. Quinlan's difficulties with lost-in-3-ply can be traced to the 
fact that this concept is naturally defined functionally, yet the performance task required a struc
tural representation. All board positions that are lost-in-3-ply are the same, not because they have 
the same appearance, but because they all result in a loss in exactly 3 moves. This concept can be 
captured naturally in a representation that includes operators (such as move) and goals (such as 
loss). 

Another example of a case where the natural representation is functional and the performance 
representation is structural is the concept cup (Winston, et al., 1983; Kedar-Cabelli, 1985). Winston 
considers the task of teaching a machine vision system how to recognize cups. For this recognition 
task, a structural representation is desired. However, the natural representation is functional. 
Cups are strongly distinguished from many other objects in the universe by their function of being 
"something you can drink from." In contrast, structural descriptions of cups are quite distinct 
from one another and yet quite similar to objects that are not cups. There exist many changes to 
a cup (such as drilling holes in it) that cause only small and subtle changes in appearance and yet 
convert the cup into a "non cup." If we wish to build a system which could inductively learn cup, 
we would do well to employ a functional representation that included terms such as liftable and 
stable. 

4 Coordinating Different Representations 

For situations in which the representation most appropriate for learning is different from the one 
required for the performance task, there are two basic approaches that can be pursued. First, we 
can try, as Quinlan did, to find an intermediate representation that provides some support for both 
learning and performance. However, the alternative that we have investigated is to employ two 
separate representations-one for learning and one for performance. This raises the problem of 
converting from one representation to another. 

Figure 1 shows the general structure of a learning system that employs this "multiple rep
resentation strategy." Training instances are presented to the system in a representation called 
the "Environment Representation" (ER). To support induction, the instances are translated into 
training instances written in the "Learning Representation" (LR) . Within thi s rf'J1resentation, the 
instances are generalized to produce a concept description. For this concep t l," l,e employed in 
some performance task, it must be translated into the "Performance Represen ta 111111 (PR) ." 

Many existing learning systems can be viewed as pursuing this "multiple repr,·:s,•ntation strat-
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Figure 2: Representations in Wyl 

egy." One instructive example is the ANALOGY system of Winston, et al., (1983). Here the 
training instances are functional descriptions written in English. The ER is therefore a subset of 
the English language. The LR captures functional descriptions and is implemented as a seman
tic net employing causal relationships between functional terms. The knowledge transformation 
method from ER to LR is a two-phase process of ( a) parsing the English description and (b) gener
ating the appropriate semantic net form. The performance task is one of recognition, so the PR is 
mostly structural. The translation in this case uses knowledge about how functional characteristics 
map to structural features. 

5 Overview of Wyl 

We have developed a learning system named Wyl (after James Wyllie, checker champion of the 
world from 1847 to 1878) that applies the multiple representation strategy to learn concepts in 
board games such as checkers and chess. We have chosen this domain because there are simple and 
complete "domain theories" available and there are many interesting concepts that are naturally 
functional (e.g., trap, skewer, fork, lost-in-2-ply) and yet have complex structural definitions. Wyl 
has been applied to learn definitions for trap and 1-move-to-trap in checkers and skewer and knight
fork in chess. 

The performance task of Wyl is recognition. Given a board position, represented simply in 
terms of the kinds and locations of the playing pieces, Wyl must decide whether that position is, 
for example, a trap. To perform this task, the trap concept must be represented in a structural 
vocabulary that permits efficient matching against the board positions. However, as we have noted 
above, concepts such as trap are most easily learned in a functional representation. 

In addition to requiring a structural representation for performance, a structural representation 
is also needed for the training instances. To teach Wyl checkers and chess concepts, we want to 
simply present board positions that are examples of those concepts. Hence, in the terminology of 
the previous section, the ER and the PR are structural representations, but the LR is a functional 
representation. 

The organization of Wyl is shown in Figure 2. Wyl learns from positive instances only. These 
training instances are board positions, represented in an environment representation of simple 
structural features-namely, the kinds and locations of the playing pieces. 

Wyl converts these training instances into a functional representation thr011 gh a process of 
envisionment. The purpose of envisionment is to determine how a given board r" 1-<ition relates to 
the known goals of the players (e.g., loss or win). Wyl knows the rules of checkers (,., nrl chess), so it is 
able to conduct a forward minimax search to see what outcomes the given board p o:;11 in n might lead 
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Figure 3: Checkers Trap training instance State1 

to. Once it has related the board position to some known goal, it constructs an AND/OR graph that 
explains the relationship. We call this AND/OR graph a functional training instance. Wyl employs 
functional training instances to conduct inductive inference in the functional representation. This 
results in a functional concept definition that captures the desired concept. 

The final task is to convert this functional definition into an equivalent structural description 
that can support efficient recognition. This is accomplished through a compilation process that 
generates, as a side-effect, a generalized structural vocabulary for representing the concept. 

The initial knowledge given to Wyl takes four forms. First, there is the environment represen
tation for board positions. Second, there is a representation for each of the legal operators in the 
game (e.g., normal-move and take-move). Third, Wyl is given the rules of the game, represented as 
a recursive schema that describes what moves are legal at what points in the game. Finally, Wyl 
is given definitions of the important goals of the game, such as loss, win, and draw. For chess, Wyl 
is also told that lose-queen is an important goal. 

These given goals are the key to Wyl's learning ability. Wyl learns new functional concepts as 
specializations of these known concepts. For example, the checkers concept trap is a specialization 
of loss. To see this, consider the particular trap position shown in Figure 3. In this position, the 
red king in square 2 is trapped by the white king at square 10. No matter what move the red king 
makes, the white king can take him. Hence, trap is a particular way to lose a checkers game. Once 
Wyl learns a recognition predicate for trap, it is added to the pool of known concepts, where it 
may be specialized further to form some future concept. 

The goals are provided to Wyl in a predicate calculus notation. The checkers concepts of loss 
and win are represented as 

V statel sidel LOSS(statel sidel) {:} recognizedLOSS(statel sidel) 

and 

V V state2 side2 type from over to 
oppositeplayer( sidel side2) 
/\ [ [ takemove(statel state2 from over to sidel type) 

/\W IN(state2 side2)] 

6 
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V statel sidel W IN(statel sidel) {:} recognizedW IN(statel sidel) 
V :3 state2 side2 type from over to 

oppositeplayer(sidel side2) 
/\ [ [ takemove(statel state2 from over to side I type) 

/\LOSS(state2 side2)] 
V [normalmove(statel state2 from to sidel type) 

/\LOSS(state2 side2)]]. 

These formulas are interpreted as follows. A board is an instance of loss if, for all legal moves 
available to sidel, the outcome is a win for the other player (side2). A board is an instance of win 
if there exists a legal move for side I that results in a loss for the other player. In checkers, there 
are two kinds of moves: takemoves, in which one piece captures another by jumping over it, and 
normalmoves, in which a piece simply moves one square. 

The alternating quantification over states is a product of the ccadversary game" domain. In 
general the quantification at each depth is dependent upon whether the outcome is favorable to 
the current player. To prove that a position is unfavorable for sidel, we must prove that all the 
available moves lead to an unfavorable result. To prove that a position is favorable, on the other 
hand, we need only prove that there exists a move that leads to a favorable result. 

This completes our overview of the Wyl system and the information that it is initially given. The 
following three sections describe each of the main phases of the program: envisionment ( converting 
a structural training instance into the functional representation), generalization (inductive inference 
in the functional representation), and compilation (converting the functional concept description 
into a structural representation). We illustrate the operation of Wyl as it learns the checkers 
concept of trap 

5.1 Envisionment 

Wyl starts with a given structural training instance (i.e., board position), which it is told is an 
instance of trap. In Figure 3, we illustrate the first training instance for trap, with red to play. 
The structural representation of the instance State1 is 

occupied(State1 s2 rk1)/\ 
occupied(State1 s10 wk1) :) T RAP(State1 red). 

Where rk1 and wk1 are playing pieces, described as 

type(wk1 king)/\ side(wk1 white)/\ type(rk1 king)/\ side(rk1 red). 

To convert this into a functional instance, Wyl applies a special proof procedure to State1. This 
proof procedure has the effect of conducting a minimax search to look for known goals. When a 
known goal is discovered, the proof procedure returns a minimax search tree (see Figure 4(A)) in 
which each state is marked with its outcome. 

In our trap example, the proof procedure discovered that the board position is an instantiation 
of the concept loss, with each node representing a state in the search and each branch representing 
the particular operators in the search. The first operators instantiated are the normalmoves 
from square s2. These are followed by takemoves that lead to an instanti at ion of the predicate 
recognizedLOSS and termination of the search. 

The next step is to convert this minimax tree into an explanation tr ee ( along the lines of 
Mitchell, et al., 1986). An explanation tree is a proof tree that explai ns the computed outcome 
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Figure 4: Generalization of Checkers Trap instance from Figure 3 

(i.e., loss) of the training instance. The minimax tree contains all of the information needed to 
construct this proof, but it also contains extra information that is irrelevant to the proof. 

Hence, Wyl traverses the minimax tree to extract the minimum (i.e., necessary and sufficient) 
conditions for the proof of the outcome. When the quantification is :3, an OR node is formed, and 
Wyl extracts sufficient conditions of the proof. Only the one operator and its traversed subtree 
leading to the computed outcome are needed for the proof. The dual case is when the quantification 
is V and an AND node is formed. Here the current player was at a disadvantage, and the moves were 
therefore forced. In this case, all of the operators (i.e., moves) are needed for the proof. Figure 4(B) 
shows the outline of the functional training instance that is produced by this process. 

5.2 Generalization 

This functional instance describes a particular way to lose a checkers game. It is a conjunction of 
two fully instantiated (i.e., ground) sequences of operators, each resulting in a Joss. On the other 
hand, the desired concept trap is described as a single generalized sequence of operators ending in 
a Joss. To form a more general concept description from this instance, the generalization step first 
"compresses" the two parallel branches of the instance tree to obtain a single generalized line of 
play. Two simple and strong biases are applied to drive this generalization. 

The first bias is the familiar bias toward maximally-specific conjunctive generalizations. The 
final functional concept definition must be a conjunction of generalized instantiations of the con
cept loss. To implement this bias, the inverse-enumeration rule (illustrated below) is applied re
cursively to the predicates present in the explanation tree (i.e., to norma/move, takemove and 
recognizedLOSS and so on). 

The second bias employed by Wyl states that "There are no coincidences ." More concretely, if 
the same constant appears at two different points within a single training instance, it is asserted 
that those two different points are necessarily equal. Figure 4 demonstrates this bias. In the left 
branch of tree (A), the red piece first moves to square s6. Then the white piece in square s10 
captures the piece in square s6. The "no coincidences" bias says that these two occurrences of 
s6 were necessarily identical. Hence, when they are matched against the right branch of tree (A) 
to s7, they are both generalized to the same variable tonewl. The resulting functional concept 
description is the following: 

V statel T RAP(statel red) {} 
V state2 tonewl oppositeplayer(red white) 

8 
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/\normalmove(statel state2 s2 tonewl red king) 
/\ :3 state3 tonew2 

takemove(state2 state3 s10 tonewl tonew2 white king) 
/\recognizedLOSS(state3 red). 

This states that a trap is a board position in which your opponent has a piece ( at s10) for 
which there exists a take move that captures your piece (at s2) for all moves available. This is an 
overly specific version of trap, since it only describes traps that occur at one particular place on 
the board. The correct definition of trap can be obtained by presenting further training instances . 

Indeed, one more well-chosen training instance suffices to teach trap: 

occupied(State8 s28 wm1)/\ 
occupied(State8 s19 rk1) :::> T RAP(State8 white). 

In this example, a red king has trapped a white man against the east side of the board. The 
minimax search again discovers that this situation leads to a Joss-this time for white. The minimax 
tree is a simple sequence of moves, because white has only one possible move. Hence, the compaction 
process is trivial. The resulting functional training instance is 

V statel T RAP(statel white){:} 
V state2 oppositeplayer(white red) 

I\ normalmove(statel state2 s28 s24 white man) 
/\ :3 state3 

takemove( state2 state3 s19 s24 s28 red king) 
/\recognizedLOSS(state3 white). 

Notice that only the specific starting state, State8 has been generalized (to become statel). 
The specific state names are always generalized by Wyl. 

When the second training instance is matched to the functional concept description, the follow
ing (correct) functional definition of trap is obtained. 

V statel sidel fromnewl fromnew2 T RAP(statel sidel) {:} 
V state2 typel tonewl oppositeplayer(sidel side2) 

5.3 Compilation 

/\normalmove(statel state2 fromnewl tonewl sidel typel) 
/\ :3 state3 type2 tonew2 

takemove(state2 state3 f romnew2 tonewl tonew2 side2 type2) 
/\recognizedLOSS(state3 sidel) 

The third stage of the learning process is to translate the functional knowledge into a form suitable 
for recognition-that is, to re-describe the acquired functional concept in the PR. However, Wyl is 
not given a good vocabulary for the performance language. The only structural representation that 
Wyl receives from the teacher is the representation used to describe individual board positions. This 
language could be used to represent the structural concept, but for trap this would require a large 
disjunction with 146 disjuncts. For other functional concepts, this approach is clearly infeasible. 
Consider trying to represent all possible cups in terms of perceived lines and surface shading. 

Instead of employing the same low level structural language in which the training instances were 
presented, Wyl must construct its own structural concept language for expressing the functional 
concept. 

9 
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There are two basic approaches to constructing a structural concept language, and both involve 
solving the "new term problem." First, the new terms can be created that describe more abstract, 
but still structural features, by some method of clustering. For example, terms such as circle, 
cylinder, and handle could be viewed as clusters of primitives in the cup environment language. 
Second, a more satisfactory solution is to create mixed structural and functional terms that optimize 
the recognition procedure. The aim of this approach would be to automatically design the kind of 
language developed by Quinlan (1982). 

Currently, there are no methods capable of designing such a structural language automatically. 
The only method that provides even a partial solution to this problem is the method of constraint 
back-propagation or goal regression (Mitchell, et al., 1986). Utgoff (1986) shows that this method 
can create new structural terms to extend a given structural language, but there are several prob
lems with his approach that prevent it from working in the checkers and chess domains (see Porter 
& Kibler, 1985). The principal problem is that constraint back-propagation can only be applied to 
OR graphs, so it cannot handle the AND/OR graphs of these game-playing domains. 

We have explored an alternative approach in Wyl based on generation and clustering. First we 
apply the functional definition to generate all possible structural examples of the concept (i.e., all 
possible board positions that are traps according to the functional definition. This can be viewed 
as a highly disjunctive description of the concept in the supplied environment language. Next the 
large number of disjunctions in the description is reduced by a compaction process that creates 
simple new terms. 

The generator works by employing the functional concept as a constructive proof, generating all 
possible board positions consistent with the concept. Each trap position generated is a conjunction 
of the two single observable facts like the original trap example given above and illustrated in 
figure3. In the trap case, a disjunction of 146 possible positions is generated. The compaction 
stage then applies two algorithms to compress this set of 146 positions into a disjunction of 12 
more general descriptions. 

The first algorithm discovers simple relational terms that describe common relationships be
tween squares. For example, in the training example of trap (State1), the white king is directly two 
squares south of the red king. As part of Wyl's initial environment language, primitive facts are 
given that describe the relationship between any square on the board and its immediate neighbors. 
The neighbors of s2 are sw( s2, s6) and se( s2, s 7). The algorithm identifies new relational terms by 
a simple breadth-first search from one of the squares in an instance to discover paths to the others. 
From State1, a disjunction of two terms is found: 

\fsquarel square2 square3 South2squares(squarel square2) 
{:} [se(squarel square3) I\ sw(square3 square2)] 

v[sw(squarel square3) I\ se(square3 square2)] 

The second term-creation algorithm is similar to GLAUBER (Langley et al., 1986) and iden
tifies common internal disjunctions over the primitive structural features. The simple instances 
created by the generator are translated into a feature-vector representation based on the primitive 
attributes. For example, State1 is translated to the following vector: 

T RAPvector(red king s2 white king s10). 

The first three items describe the red king, the following three, the white king. Next, one of the 
squares is replaced by its relationship with the other. The new relational term S outh2squares is 
used, and it yields the new instance: 

T RAPvector(red king s2 white king South2squares). 
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Common disjunctions are found by locating sets of instance vectors that share all but one feature 
in common. For example, consider two trap positions, the initial training instance and a red king 
on s3, white king on s11 given below: 

T RAPvector(red king s2 white king South2squares) 
T RAPvector(red king s3 white king South2squares) 

The algorithm identifies the set {s2, s3}, which is named NorthCenterSide. All of the features can 
be used to form the new terms . Using the trap instances, this algorithm created terms defin
ing regions such as Center {s6, s7, s8, s14, s15, s16, s22, s23, s24}, NorthSingleSide {s4, 
NorthCenterSide }. Directional relationships between squares produce terms such as North, { ne, 
nw} and AnyDirection, {North, South}. In all, Wyl discovers 13 descriptive terms of this kind, 
along with 6 relational terms like South2squares. 

6 Relation to Other Work 

Wyl has much in common with other learning systems that pursue the "multiple representation 
strategy." Explanation-based learning systems (Mitchell, et al., 1986) employ a functional represen
tation to describe the "domain theory." The examples are first presented in a structural language 
(mathematical expressions (Mitchell, et al., 1982; Shavlik, 1985), circuit primitives (Ellman, 1985; 
Mitchell, et al., 1985)), then explained via an envisionment stage using the domain theory to form 
"explanation trees" or "functional instances." These instances are generalized, usually deductively, 
by extracting sufficient conditions from the proof. Finally, the general concept is compiled into a 
structural description to make the knowledge "operational" (Mostow, 1982; Keller, 1983). Analogi
cal learning systems (Winston, et al., 1983; Kedar-Cabelli, 1985) employ functional representations 
to determine when analogy is appropriate. 

The work with analogy has particular relevance to the work presented here, because the con
straints imposed on representations by inductive learning are exactly those imposed by analogical 
reasoning. For two items to be analogous, they must have some commonality. That commonality 
it often not expressed in surface (observable) features, but in function. A hydrogen atom is like 
our solar system not because of size or color, but because of the way the respective components 
interact. So, the most applicable representation for analogical reasoning about different items is 
one in which their underlying similarity is captured syntactically. 

Another interesting comparison is to review the role examples play in these systems. In Wyl, 
examples are crucial to the capability to learn, as new concepts are being acquired. In some 
explanation-based learning systems (Minton, 1984; LEX2) examples play a different role. Here the 
systems already know the concepts (e.g., Joss, productive-operator). The task is to translate these 
concepts into operational form. Examples play the role of focusing the attention of the program. 
For example, a system knowing the functional definition of a cup may proceed to translate its 
knowledge into operational form. The resulting structural description will be extremely disjunctive 
and include all possible physical realizations of a cup. A better approach is to use examples to 
guide this operationalization process. 

7 Conclusion 

In this paper, we have claimed that inductive learning can only succeed in representations in which 
the commonality of concept instances can be captured syntactically. We have justified this claim 
by illustrating the operation of Wyl, a program that learns concepts from examples in chess and 
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checkers. Wyl employs two representations (structural and functional) and performs induction in 
the functional space. This approach of using separate representations, each suited to different tasks, 
has significant advantages: 

8 

• Fewer examples are required to learn the concept. 

• The bias built into the learning program is very simple (maximally-specific conjunctive gen
eralization) . 

• The learning system starts with simple languages and reqmres less domain-specific and 
concept-specific engineering. 
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