
91-60-1

Url~UEAS~TY

5C~ErlCE

Loop Scheduling on Distributed-Memory Parallel Processors

Hesham El-Rewini
Department of Math and Computer Science

University of Nebraska at Omaha
Omaha, NE 68182-0243

Ted Lewis
Computer Science Department

Oregon State University
Corvallis, OR 97331-3902

l
7
n
0
n

1

I

j

J
j

J

J

LJ

Loop Scheduling
On

Distributed-Memory Parallel Processors

Hesham El-Rewini

Department of Math & Computer Science
University of Nebraska at Omaha

Omaha. NE 68182-0243

(402) 554-2852 -

rewini@unocss.unomaha.edu

Abstract ·

Ted Lewis

Computer Scie~ce Department
Oregon State University

Corvallis, OR 97331-3902

(503) 737-3273

lewis@mist.cs.orst.ed~

We provide a new solution to the problem of scheduling parallel program tasks that

are enclosed in a set of nested loops on distributed-memory parallel computers. The

new solution is extended to a new scheduling heuristic for scheduling unrolled

loops onto arbitrary target machines. Our technique allows several iterations of a

set of loops as well as tasks within the same iteration to overlap in execution in a

way that minimiz.es the loop completion time. We then compare local neighborhood

search versus simulated annealing optimization methods to find the best way to

unroll the nested loops. Finally, the schedule is presented in the form of a Gantt

chart that indicates the allocation and the order of the tasks in the unrolled loops .

1 Introduction

Many researchers in the areas of compiler optimization and task scheduling have

studied loops (4, 9, 10, 12, 13], because they offer potentially great improvements in

parallel program performance. For example, work has been done on the transformation

and reduction of recurrences in sequential loops and partitioning such loops into

independent sequential loop components which can execute in parallel (6, 7]. Wolfe [10]

has studied several high level compiler loop transformations, namely vectorization,

concurrentization, loop fusion, and loop interchange in order to speed up the execution of

loops using parallel computers . The Doacross technique [2], takes advantage of loop­

carried dependences and provides a unified framework to schedule sequential and parallel

loops for both SIMD and MIMD parallel machines.

I

Alth?ugh relatively efficient schedules can be obtained for sequential loops using the

Doacross scheduling technique, fine grained parallelism in such loops is not exploited. To

utilize fine-grained parallelism in a sequential loop, some compilers unroll the loop body

several times and compact the produced code by treating the unrolled loop as an acyclic

dependence graph. Zaky and Sadayappan (13] addressed the problem of optimally

scheduling sequential loops on synchronous parallel processors such as VLIW. They

showed that when a relatively high degree of hardware parallelism is available in the

system, simple loop unrolling is not an effective approach to ex~cting parallelism and

gave an algorithm that produces an optimal synchronous schedule for an innermost

sequential loop on an idealized parallel processor system with an unbounded number of

processors.

A load balancing technique called loop spreading that evenly distributes parallel tasks

on multiple processors without decrease in performance even when the size of the input

data is not a multiple of the number of processors, was introduced by Wu and Lewis [11].

One common approach that has been used to schedule tasks contained in a loop on parallel

computers is to assign each iteration to one processor. Assigning all tasks in one iteration

to the same processor completely ignores any parallelism that might occur within each

iteration. Also, when data are passed from one iteration to another, the synchronization

delay might slow down the execution. On the other hand when data are passed from one

task to another within the same iteration, it might be useful to assign all tasks to the same

processor to reduce communication delay. Consequently, a scheduling method that can

exploit parallelism that might exist among different iterations as well as within each iteration

is needed.

In this paper we introduce a representation of parallel program task dependencies that

are enclosed in a set of nested loops. We also introduce a loop unrolling technique that

allows several iterations of a set of loops as well as tasks within the same iteration to

overlap in execution in a way that minimizes the loop execution time. In _addition, this

technique can handle the case when the loop upper bounds are not known before execution

time.

We use the scheduling heuristic MH developed earlier by the authors and described in

[3], to schedule the body of the unrolled loops on a given parallel machine. Because this

heuristic accounts for communication time delays, it is especially appropriate for

distributed-memory machines. However, the technique is also applicable to shared;..memory

machines.

2

I
I
l

n
l
n

I
I
I
J

J
l
l

l

l
l
7
0
l

l

ll
Li

J

For scheduling, we compare local neighborhood search versus simulated annealing

techniques to find the best loop unrolling and achieve near-optimal mapping of the program

tasks on the given target machine. We have integrated both local neighborhood search and

simulated annealing methods in one tool to find: 1) the best unrolling vector for a particular

set of tasks when they run on a particular target machine and 2) the Gantt ch~ that

indicates the allocation and the order of the tasks in the unrolled loop on the available

processing elements. In general we recommend that both methods be tried since their

performance differs from one application to another and from one target machine to

another.

The paper is organized as follows. In section 2 we discuss dependence among tasks

and give the terminology used in the paper. We discuss loop unrolling in section 3.

Scheduling post-unrolling loops is given in section 4. The loop unrolling optimization

problem is introduced in section 5. We present two simple examples in section 6. Finally,

we give our conclusion in section 7.

2 Dependence Among Tasks

A dependence between two tasks can be a data dependence or a control dependence.

A control dependence is a consequence of the flow of control in a program. For example,

the execution of a task in one path under an if test is contingent on the if test taking that

path. Thus, the task under control of the if is control dependent upon the if test. Data

dependence is a consequence of the flow of data in a program. A task that uses a variable

in an expression is data dependent upon the task which computes the value of the variable.

Dependence relations between tasks forming a program can be viewed as precedence

relations. If task w is control dependent or data dependent on task v, then execution of

task v must precede execution of task w . Data dependence in loops can be further

classified as follows: 1) loop-carried dependence; if data are passed between different

iterations and 2) loop-independent dependence; if data are passed from one task to another

within the same iteration.

2.1 Terminology and Definitions

1bis section gives definitions which will be used throughout this paper. We use V to

represent the set of all tasks that are enclosed in n nested loops and k = IVI.

Iteration Vector. When some tasks are contained inn nested loops, we refer to separate

instances of their execution using an iteration vector. A vector I= <i1,i2, ... ,¾i> is called

an iteration vector if the loop body is executed in the period when the j th level loop is in the

3

i_{11 iteration, 1:::; j :::; n. Simply, an iteration vector holds the values of the loop control

variables of the n nested loops.

Distance Vector. Using iteration vectors, we can define a-distance vector for each

dependence between tasks. Suppose that v and w are two tasks enclosed in n nested
loops. If w during iteration Iw is dependent on v during iteration Iv the distance vector

for this dependence is Id= Iw -Iv. Task w is "loop-carried" data dependent on task v

iff lw ,t,fv (the distance vector elements are not all zeros). (?therwise the dependence is

called "loop-independent" (the distance vector elements are all zeros).

Dependency Ordered Pair. We define a dependency ordered pair between two tasks
w, during iteration Iw, and v, during iteration Iv, as (Id ,D) where Id is the distance

vector Id= Iw - Iv and D is the size of the message that w receives from v. Task w can

have more than one data dependency ordered pairs from task v. This multi-dependence

between v and w can be represented using a dependency set

Dependency Set. The dependency set between two tasks is the set of all dependency

?rdered pairs between those tasks.

Upper Bound Vector. We define the upper bound vector for n nested loops to be
<b 1,b2, ... ,bn>, where bi is the upper bound of the loop at the ith level (notice that the

outermost loop is at the first level and the innermost loop is at the nth level).

Unrolling Vector. We define the unrolling vector= <u1,u2 •... ,un>• that is the ith loop

is unrolled l1i times.

Elements of iteration and distance vectors are numbered from outermost to innermost,

as are loops. Thus, the outermost and innermost loops are at levels 1 and n, respectively.

We assume that loops are normalized to iterate from one to some upper bound in steps of

one. Non-normalized loops can be normalized through simple transformations [10]. We

also assume perfect (tightly) nested loops which means all the tasks are enclosed in all the

nested loops. · At least two ways of transforming imperfectly nested loops into perfect ones

have been developed; loop distribution [10], and the Non-Basic-to-Basic-Loop

transformation [l]. The last assumption we make is that all distance vectors can have only

non-negative values to guarantee acyclic loop-carried data dependence.

2.2 Task Graph Representation in Loops

The loop-independent data dependences among tasks can be easily represented using

directed edges in task graphs. However, loop-carried data dependences are difficult to

4

I
l
l
1

u
l

n
I

I
J

J

I
I
j

J

J

l
l

0
l
I
·1

I
. l

[I
j

ll
u

J

J
J
u

represent in task graphs since they express dependences among tasks in different loop

iterations. In this section we introduce the dependency matrix (DM) to represent loop­

independent as well as loop-carried data dependences among tasks that are enclosed in a set

of nested loops. The amount of computation needed at each task can also be represented

using the task size array (TSA).

Dependency Matrix (DM)

Loop-carried and loop-independent data dependence among th~ tasks in V can be

represented using a kxk: Dependency Matrix (DM). DM[ij] represents _ the dependency set

from task vj to vi• where vj• vie V. A <I> entry in DM[i,j] means that there is no

dependence from vj to vi. Recall that Vis the set of tasks enclosed in the nested loops and

k= IVI.

Task Size Array ITSA)

We also define the task size array (fSA) as an array of length k. TSA[i] represents

the size (the amount of computation) of task vi.

Figure 1 shows an example of DM and TSA for two tasks a and b that are enclosed

in 2 nested loops. It also shows the array TSA for tasks a and b. DM[l,1] =
{(<l,0>,5),(<l,l>,10)} means that an instance of task a, during iteration <i,j>, is data

dependent on instances of itself during iterations <i-1,j> and <i-1,j-1> and the data sizes

are 5 and 10 bytes, respectively, DM[l.2] = <I> means that there is no data dependence

from b to a, DM[2,1] .= {(<0,0>.20)} means that b is data dependent on a during the

same iteration and the data size is 20 bytes (Notice that this is a loop-independent data

dependence), and finally DM[2,2] = { (<l,0>,12)} means that an instance of task b, during

iteration <ij>, is data dependent on an instance of itself during iteration <i-1,j> and the

data size is 12 bytes. The size of tasks a and b are 7 and 9 respectively as given in TSA.

a b

a ({ (<1,0>,5) , (<1,l>,10)} <I> J
b {(<0,0>,20)} {(<l,0>,12)}

DM TSA

Figure 1 DM and TSA for Two Tasks a and b Enclosed in Two Nested Loops.

5

3 Unrolling Loops

When a single loop, with upper bound b, is unrolled u times, u + 1 copies of the

body are replicated, the loop control variable is adjusted for each copy, and the step value

of the loop is multiplied by u + 1. Similarly, when a set of n nest~ loops, with upper

bound vector = <b 1,b2 , ... ,b
0
> is unrolled using unrolling vector = <u 1,u 2, ... ,u0 >,

n
IJ (~+ 1) copies of the body are replicated, the loop control variables are adjusted for each

i=l
copy, and the step value of the ith loop is multiplied by~+ 1.

For each vj e V, where Vis the set of tasks in the pre-unrolling loop, there are
n

IJ(ui+l) tasks namely v/l'Y2,···,Yn, (0 ~Yi~ ui, 1 ~ i ~ n) in the -post-unrolling loop.
i=l

Figure 2 shows an example of loop unrolling when 2 nested loops are used. Consider the

nested loops given in Figure (a), where the body of the loop has only one task, v. Figure

(b) shows the loop resulting from unrolling the innermost loop once (u = < 0,1>) and the

resulting tasks vOO and /J 1• Similarly Figure (c) shows the loop resulting from unrolling

the outermost loop once (u = <1,0>) and the resulting tasks vOO and v1°. Finally Figure

(d) shows the loop resulting from unrolling both loops once each (u = <1,1>) and the

resulting tasks vOO , v01, v1 O, and v11. In this example, the loop upper bounds are

assumed to be a multiple of two for simpli~ty.

The tasks that form the body of a loop can be represented by an acyclic directed graph

called a task graph. A directed edge (i,j) between two tasks i and j exists if there is a data

dependency between the two tasks which means that task j cannot start execution until it

gets some input from task i after its completion. We define the task graph G0 = (V ,E) that

represents the body of a pre-unrolling loop, where V is the original set of tasks as defined

above and E is the set of loop-independent data dependency edges -given in DM. Thus the

loop-carried data dependences are ignored in G0 and the pre-unrolling graph can be simply

scheduled by . ~xecuting the iterations one after another without any overlap between

iterations . .

In order to consider the loop-carried dependences in a task graph, we define the task

graph Gu= (V',E') that represents the body of an unrolled loop using u = <u 1,u2, ... ,un>

as unrolling vector, where V' is the set of all tasks generated in the post-unrolled loop and

E' is the set of edges that represent loop-independent and loop-carried data dependence

generated from DM. Scheduling the post-unrolling graph, Gu allows different iterations of

the lo6p to overlap in execution . For example, the task graphs G0 and Gu ,when u =

6

l

l
l

n
]

I
I
J

I
J

1

I

1

I
l
I
l
D
l
I
l
1

I
l

I
ll
u
t

J
j

u

<1,1> for the DM and TSA given in Figure 1 are shown in Figures 3-a and 3-b,

respectively . The upper portion of each node contains the task ' title while the lower portion

contains the task size. The number next to an edge represents the message size to be

passed through that edge.

for (i = 1; i S 2*n 1; i+:+-)

V

for (j = 1; j~ 2*n2; j++)
{

T(i,j);
}

(a)

for (i = 1; i ~ 2*n 1; i = i+2)
for (j = 1; jS 2*n2; j++)

{
vOO T(i,j);
v10 T(i+lj)

}

(c)

for (i = 1; i S 2*n 1; i = i++)
for (j =' l; j S 2*n2; j = j+2)

{
vOO T(i,j);
vOl T(ij+l);

}
(b)

for (i = 1; i S 2*n 1; i = i+2)
for (j = l;j S2*n 2; i=j+2)

{
vOO T(i,j);
vOl T(ij+ 1);
vlO T(i+l,j);
vll T(i+lj+l);

}
(d)

Figure 2 (a) Original Loop, (b) Innermost Loop is Unrolled Ori.ce (u = <0,1>), (c)
Outermost Loop is Unrolled Once (u = <1,0>), and (d) Both Loops are Unrolled once

each (u = <1,1>).

Figure 3 (a) G0 (b) Gu (u = <1,1>), for the Loop Represented by DM and TSA
Given in Figure 1.

7

I

4 Scheduling Post-Unrolling Loops

Because loop-carried dependences may allow several iterations of a set of loops to

overlap in execution, loop unrolling can help to exploit the parallelism that might exist

among different iterations. The basic idea is to unroll the loop using some iteration vector
to allow dependencies among different iterations to appear in the task graph Gu as given

above. That task graph is then scheduled on a given target machine using one of the

techniques given in [3]. The iterations of the unrolled loop are ~x~cuted one after another.

This allows the set of tasks in the unrolled version to overlap in execution.

Three different cases should be considered in the program: 1) if the number of loop

iterations is greater than and a multiple of the (unrolling value + 1), then no more iterations

need to be executed after the unrolled loop, 2) if the number of loop iterations is greater

than and not a multiple of the .(unrolling value + 1), then the tasks in the remaining

iterations can still be assigned to the same processing elements they were assigned to in the

generated schedule, and 3) if the number of loop iterations is less than the unrolling value,

then the tasks in all iterations are assigned to the same processing elements they were

assigned to in the generated schedule.

Example 1

Consider the DM and the TSA given in Figure 4. Tasks a and b with task size = 15

as shown in the TSA are enclosed in a single loop (n = 1). The pre-unrolling task graph,

Go is given in Figure 5a which shows that there is no loop-independent data dependence

between-the two tasks which means that within one iteration tasks a and b can run totally in

parallel. Let's assume Gust for the sake of discussion) that the upper bound of the loop is

known to be 4. In the case when we have only one processor, tasks a and b run

sequentially in any order (we assume that task a executes first) and this process is repeated

4 times with total execution time= 120 units of time as shown in Figure 5b.

Now supppse that we have two processors connected together and we are going to

exploit only the parallelism within each iteration and neglect the parallelism that might take
place if we unroll the loop. We run tasks a and b concurrently on processors Pl and P2,

respectively so each iteration takes only 15 units of time. Since task a during iteration <i>

receives data from task b during iterations <i-1> and -~ask b during iteration <i> receives

data from task a during iteration <i-1> arid since tasks a and b are scheduled on different

processors, a new iteration has to wait for 10 units of time b~fore starting execution.

Figure 5c shows that each iteration takes 15 units of time, however due to the

8

l
l
n
D

I
I
J

J

I

1

J

l
l
. l

7
0
1

r

I
lJ

d
I
J

J

communication delay a new iteration can be initialized every 25 units of time and the 4

iterations take 90 units of time .

Figure 6a shows the task graph Gu, when the loop is unrolled once (u <1>). It can

be easily noticed that scheduling tasks a0 and b1 together on one processor and tasks ho

and a1 on the other is the best way to schedule task graph Gu on two processors. row we

are able to initialize a new iteration every 30 units of time without having to wait for any

communication and the total execution time is only 60 units of time, as shown in Figure 6b.

By exploiting the parallelism without unrolling we get speedup ~ 1 ½ , however after

unrolling the loop once, speedup= 2 (which is the maximum theoretical speedup we can

ge~ using two processors). It is not always the case that we have zero communication delay

between iterations because it depends on the way we assign the tasks to the available

processing elements .

a b

a (<I> {(<l<I>>,10)} J
b {(<l>,10)}

a (15)
b 15

DM TSA

Figure 4 DM and TSA for Two Tasks a and b Enclosed in a Single Loop.

9

pl
pl p2

a T iteration I

15
iteration 1

30

b

a t
delay

25

iteration 2

40

iteration 2 50
delay

60

b

a + iteration 3

65

iteration 3 15
delay

90

b

a t iteration 4

90

120

b
iteration 4 mm communication time

J_ Cl cxcrution time

(a) (b) (c)

Figure 5 (a) Task Graph Go, and (b)&(c) Gantt Charts Result From Scheduling Four
Iterations of the Loop on One _and Two Processing Elements, respectively.

pl p2

0 0
a b T

15 iteration 1

30

1 1
b a

0 0
a b t

45
1 1 iteration 2

60

b a
J_

(a) (b)

Figure 6 (a) Task Graph Gu, u = <l>, and (b) Gantt Chart Results From Scheduling
Two Iterations of the Unrolled Loop on Two Processing Elements

0
l

l
I

J

I

j

J
J

J
J

J

l
l
7
n
0
n

J

j

lJ
j

J

Li

Example 2

In the case of nested loops, the performance might differ depending on which loop is

unrolled. Figure 7 shows the DM and the TSA for tasks a and b enclosed in 2 nested

loops . In this example, we assume that the upper bound vector b = <2,4>. Figures 8a, b,

c show the original loop, the loop after unrolling the outermost loop once, and the loop

after unrolling the innermost loop once.

Figure 9a shows the task graph Gu, when the outermost loop is ,unrolled once (u =
<1,0>). The Gantt chart given in Figure 9b shows that a new iteration has to wait 10 units

of time because task a (b) during iteration (ij) receives data from task b (a) during

iteration (i,j-1) and they are located on different processors. That leads to total execution

time equal to 110 units of time. On the other hand, when the innermost loop is unrolled

once, no delay is needed and the total execution time is 80 units of time. Figure 10a shows

the task graph Gu, when the innermost loop is unrolled once (u = <0,1>) and the Gantt

chart is given in Figure 1 Ob.

a b

a (<I> { (<l,0>,5):_<0,l>,20)} J
b {(<l,0>,5)~(<0,l>,20)} -v

a (10)
b 10

DM TSA

Figure 7 Two Tasks a and b Enclosed in Two Nested Loops Represented Using DM
and TSA .

For i = 1, 2

For j = 1,4

I a; b;

For i = 1, 2, 2

For j = 1,4

~00 10 10
~;a;b

For i = 1, 2

For j = 1,4, 2

~00 01 01
~;a;b

11

(a) (b) (c)

Figure 8 (a) Original I.pop, (b) the Loop After Unrolling the Outermost Loop Once, and
(c) the Loop After Unrolling the Innermost Loop Once.

pl p2

00
boo a

10 i = l,j = 1

10 10
a b

20

delay

30

40 i=l,j=2

50

delay

(,()
00

boo a
70

i = l,j = 3

10 10
a b - Communication

80

delay D Execution

90

Gu boo a
100 i =l,j = 4

10 10
a b

110

(a) (b)

Figure 9 (a) Task Graph Gu, u = <1,0>, and (b)The Schedule After Unrolling the
Outermost Loop Once.

12

l
J

l
w

n
)

n
J

1

J

I
I
J

J

J

l
l
7
n
D
n
l
I

I

l J

j

u
u
J

pl p2

00
boo a

10 i = l, j = l

01 b 01 a
20

00
boo a

30 i= l,j = 3

01 01
a b

40
00

boo a
so i=2,j=l

01 b 01 a
60

00

Gu 70
boo a

i=2,j=3

u = <0,1> 01 01
a b

80

(a) (b)

Figure 10 (a) Task Graph Gu, u = <0,1>, and (b) the Schedule After Unrolling the
Innermost Loop Once.

These two examples show how loop unrolling reduces loop execution time and

therefore improves performance. The examples also show the change in the loop execution

time that results from using different loop unrolling vectors. In both examples we assumed

that the communication time between any two tasks running on the same processor is

negligible. We also assumed that the processing speed and the transfer rate in the target

machine is always equal to one (this allows us to deal with the message size and the task

size as units of time). These may not be realistic assumptions, however.

5 Loop Unrolling Optimization Problem

How many times should·aloop be unrolled to speed up its execution? How should

the tasks forming the body of the loop be scheduled onto a given arbitrary target machine?
Our goal is to find the vector u = <u 1,u2, ... ,llu> and schedule the tasks in the task graph

Gu on a given parallel system such that the total loop execution time is minimized. This

problem is an example of combinatorial minimization. The space over which the function

is defined is n-dimensional discrete but very large, so it cannot be explored exhaustively.

Therefore, we need an efficient optimization algorithm.

13

The most obvious optimization ,technique uses a greedy algorithm. Given some

starting point, move downhill as far as possible. This leads to a local, but not necessarily a

global, minimum. An example of this technique is Local Neighborhood Search [5].

Another optimization technique that avoids the pitfalls of finding a local minimum is

simulated annealing. Simulated annealing is a probabilistic modification of traditional

neighborhood search techniques [8].

Both approaches find a solution to a combinatorial optimization problem by starting

with some solution and making a series of modifications to the solution. In neighborhood

search algorithms, modifications which improve the solution by some given cost criterion

are accepted and others are rejected. The . acceptance criterion in simulated annealing is

more complex. All modifications which lead to a better solution are accepted. All

modifications which result in a poorer solution (higher cost) are accepted with probability

exp(-~) where 6B is the difference between the costs of the solutions before and after the

update, and Tis a parameter known as temperature. Over time, the parameter T is slowly

reduced, causing a reduction in the probability that a modification which results in a poorer

solution will be accepted.

To make use of the local neighborhood or the simulated annealing methods, we must

provide a description of possible system configuration, a generator of changes in the

configuration, and an objective function whose minimization is the goal of the procedure.

The unrolling vector can be used as our system configuration which can be updated to

generate new system configurations. If the upper bound vector is known when the

schedule is generated, a complete unrolling niight be done to generate the task graph Gu for

scheduling. If the nested loops are too large to unroll completely, then an exact formula for

the time to execute the outermost loop is used as an objective function. If the upper bound

vector is not known when the schedule is generated but is known before the loop begins

execution, anotbe: formula that does not contain the loop upper bounds is needed to reflect

the effect of using different values of the unrolling vector.

In section 5.1 we give the formulation of the problem for both local neighborhood

search and simulated annealing methods. The objective function and loop completion time

parameters are given in section 5.2.

5.1 Problem Formulation

The loop unrolling optimization problem can be formalized as follows:

14

I

1

I

J

j

J

J

J

l

l
I

l
l
l
~

0
l
l

fl

l
. I

. ~': -:

I
1-

l l
u
l

j

J

1. Configuration. A.configuration is a vector u = <u1,u2, ... ,un>, where ui ~ 0; 1~~-

2. Update. The update consists of two types: a) An i is chosen randomly in the range
[1,n] then ui is changed according to some policy; or b) some ui's (chosen

randomly) are selected for change, 1 Si Sn.

3. Objective Function. The total loop execution time. (This will be explained in the

next section).

4. Schedule. The local neighborhood search method keeps trying until some

terminating condition happens. In the simulated annealing solution we choose a

starting value for the temperature parameter T greater than the largest ~- We

proceed downward in multiplicative steps each amounting to some deq:ease in T.

We hold each new value ofT constant for some number of changes in the unrolling

vector, or for some number of successful moves, whichever comes first. When

effort to further reduce E becomes sufficiently discouraging, we stop.

The problem now is how to choose the initial value of u. We define the maximum

distance vector for a matrix DM to be <m 1, II½•···• ll¾i>, where II½. ~ '½_, '½. is the ith

component in a distance vector Id, Id is the first component in an ordered pair p, p e

DM[i,j], 1 Si S k, and 1 S j S k. It can be noticed that the maximum distance vector is the

minimum unrolling vector that can uncover all the hidden loop-carried dependence edges in

a loop. Considering those edges in the scheduling procedure can help in exploiting the

parallelism that might exist among different iterations. Consequently, we use the maximum

distance vector as the initial value of the unrolling vector u.

5.2 The Objective Function

Our goal is to minimize the total execution time of the loop . The completion time of

the tasks forming the body of the loop as well as the communication delay among different

iterations in the post-unrolling loop play an important role in computing the total execution

time of a loop. In this section we show the algorithm we use to obtain the completion time

of the lx?dY of a loop and the communication delay between different iterations. We then

show the objective function used in the local neighborhood search and the simulated

annealing methods.

Given a DM that represents data dependence among tasks <?nclosed in a set of n

nested loops with an upper bound vector b = <b 1,b2, ... ,bn>. We assume that the loop is

unrolled using u = <u 1,u2, ... ,llu>- Recall that Gu is a task graph that represents the body

of an unrolled loop. We define the following:

't -: is the time to execute the loop at level i. Notice that 'tu n+l is the time to execute
u~ '

G0 only once, and that 'tu,l is the time to execute the outermost loop (the whole thing).

Aui is the communication delay between any two consecutive iterations of a loop at

level i. Notice that ¾,i = 0 when ui = be 1 because when we unroll a_ loop at the ith level

be 1 times we generate all the instances of that loop.

Given a number of nested loops (n), unrolling vector (u), ~ependence matrix (DM),

task size array (TSA), and a target machine description (M), we show how we obtain the

parameters ('tu,n+l) and (A.u,i• l<i ~).

We use MH to schedule the task graph Gu on the given target machine[3]. MH

takes two inputs: 1) a description of the parallel program modules and their interactions in

the form of a task graph, and 2) description of the target machine in the form of an

undirected graph. MH produces as output a Gantt chart that shows the allocation of the

program modules onto the target machine's processing elements and the execution order of

tasks allocated to each processing element.

From the Gantt chart produced by MH, we can get 'tu,n+l (the time to run the tasks

represented by the task graph G0). The communication delay between any two consecutive

iterations of a loop at level k <¾,i• 1 ~ i < n) can also be figured out from the Gantt chart

and the task graph Gu as the maximum time that a task has to wait until it receives a

message from a task scheduled in some previous iteration. When the upper bound vector is
unknown before execution time it becomes impossible to find ¾,i• 1 ~ i < n. However, we

can always obtain the worst case communication delay by considering only one iteration for

all levels greater than i (enclosed in a loop at _level i).

5.2.1 Execution Time Formulas

Given a DM that represents data dependence among tasks enclosed in a set of n
nested loops with an upper bound vector b = <b 1,b2, •.• ,b0 > and an unrolling vector u =
<u1,u2, ..• ,u0 >. The time to execute the nested loop can be obtained as follows.

r b1 7 r b1 1 b1
'tu,l = u1+1 ('tu,2 + 1u,1)- ¾,1 - (u1+1 - u 1+1) 'tu,2 (l)

Changing the unrolling vector u might change loop execution time. The best value of

the unrolling vector would be the one that gives the shortest loop execution time. When the

upper bound vector b is known before execution time, formula 1 can be used to compute

the execution time. Different values of the unrolling vector u can be tried in order to find

the shortest execution time. When the upper bound vector b is not known, another formula

16

I
l
l
n
D
l
)

1

I J

J

I
J

J

J

l
l
. l
l
0
l

I
u
J

I
u
j

J

that does not contain b is needed to compare the eff~ct of using different values of the

unrolling vector.
b

Formula (1) can be bounded as: -cu 1 ~ r +11 1 (-cu 2 + Au 1) , Ul , ,

. b1
'tu,l can be approXllllated as: 'tu,1 z ul + 1 ('tu,2 + "-u,1)

The time to execute a loop at level i can be approximated as follows.
b-

'tu,i = Uj~ 1 ('tu,i+l+ Au}, 1 ~ i ~ n

(2)

(3)

(4)

Using formula (4), the time to execute the outermost loop can be obtained as follows:
b1 b2 _..!1_ bn

'tu 1 = -+1 (-+1 (+1 (...... (-+1 ('tu n+l +Aun)+)+ Au 3) + Au 2) + Au 1)
• U 1 U2 U3 ¾ , ' , , ,

n-1 rr b- .
u::iT Au,n-1+ ········· +

. 1 1
l=

2 rr b-
*1 "-u.2

. 1
1=1

b·
S. 1< b th - 1->11<·< be bo dedb mce _ t1j < i en u-+l _ , _ 1 _ n, 'tu,l can un y:

1

(5)

(6)

(7)

Notice that when n = 1 (single loop) the two formulas (6) and (7) are identical which

means:
b1

'tu,1 = u1+1 ('tu,2 + ¾,1) (8)

5.2.2 Objective Function Evaluation

The execution time as given in formula (7) is considered our objective function.

However since the upper bound vector b is usually not given before execution time and
n

since ITbi does not change during the optimization search then the objective function can

i=l

be given as:

17

n

E = (rrllj~l) ('tu,n+l+i!/-'u,i)
1=1 .

The objective function can be evaluated as follows:

procedure:

number of nested loops (n), unrolling vector (u),

dependence matrix (DM), task size array (fSA), machine (M)

- build_graph G0

- call :MII (G0 ,M) and get 'tu,n+l and (¾,i , 1 ~ i ~ n)
n

- compute objective function E = (ITui~ 1) ('tu,n+ 1 + ig?'u,i)

i=l

(9)

In comparing the two methods, we found the performance of simulated annealing

was either much better or much worse than the performance of local neighborhood search.

The simulated annealing algorithm can be tuned by varying some parameters in the

algorithm such as starting temperature, temperature reduction policy, and exit condition.

Also the local neighborhood search method can be tuned by varying the exit condition .

Since the two algorithms can be tuned through a set of parameters and since the

performance of the two methods differ from one task graph (represented using OM and

TSA) to another and from one target machine to another, we implemented both techniques

in one tool so that both methods can be tried. By tuning the set of parameters associated

with each algorithm, a near optimal solution can be reached . We believe that finding the

best unrolling vector and the best schedule should be achieved through iterative interaction

between parallel program designers and the loop unrolling tool.

18

J

J

u

I

n
I
J

I
I
J

1

J

l
n
D
1

7
I

I
I -.
lJ
u
1

j

I
u

6 Examples

In this section we illustrate the local neighborhood search and the simulated

annealing methods in the loop unrolling techniques through two examples. The examples

show two cases; a single loop and three nested loops. In both examples, we use a

hypercube of four processing elements as the target machine. In each case information

about the unrolling vector, the value of the objective function, number of nodes and edges
. th · llin 1 d th d 1. number of edges) . th lled
m e post-unro g oops, an e average egree , number of nod~s m e unro

loops are given in tabular form. We also give some curves that shov., the change in the

objective function with each move in the unrolling space.

In both methods, we start with the maximum distance vector as initial unrolling

vector. The search space is restricted using some maximum values for the elements of the

unrolling vector. The local neighborhood search method keeps trying until some

termination condition is reached (in these examples we restricted the number of tries to

some number depending on the size of the search space). In the simulated annealing

method, we choose a starting value for the temperature parameter T greater than the largest

LlE (some random runs were made to find the range of ~E). We proceed downward in

multiplicative steps each amounting to some decrease in T. We hold each new value of T

constant for some number of changes in the unrolling vector, or for some number of

successful moves, whichever comes first. When effort to further reduce E becomes

sufficiently discouraging, we stop.

Single Loop Cn = 1)

Figure 11 shows the DM and the TSA matrices for four tasks. It can be noticed that

there is no loop-independent data dependence edges which means that the four tasks are

completely independent within the same iteration. However, loop-carried data dependence

edges are shown in DM. Since the four tasks are enclosed in a single loop, the search space

is only one dimension and exhaustive search can be applied to show the behavior of the

objective function (E) over the search space. Table 1 shows the move number, the

unrolling vector (the unrolling vector is just one element; n = 1), the value of the objective

function (E), number of nodes, number of edges, and the degree in the post-unrolling loop.

Figure 12 shows the change in the objective function (E), wh_en unrolling increases in

steps of one. It can be noticed that the value of E changes up and down in a way that

increases the chance of being stuck in a local minimum. We thought that simulated

annealing would be a solution to this problem, however we tried both methods. Table 2

19

and Figure 13 show the results of applying the local neighborhood search. We restricted

the number of tries to 20. This method made only three successful moves out of 20 tries

and the answer was best u = <12> with E = 6.7610.

Table 3 shows the simulated annealing solution. We proceeded downward in

multiplicative steps each amounting to a 20 percent decrease in T. We held each new value

of T constant for 8 changes in the unrolling vector or for 4 successful moves. We also

restricted the number of tries to 16. Simulated annealing made 9 successful moves and the

answer was best u = <12> with E = 6.7610. Figure 14 shows .the change in E with each

successful move . Of course exhaustive search can be used to search the whole space in the

same number of tries. However we used this example with the same restricted search

space just to show both methods. Tables 2 and 3 show that the two methods have found

the same answer which happened to be the minimum in the restricted _§earch space.

Three Nested Loops <n = 3)

Figure 15 shows DM and TSA for three tasks enclosed in three nested loops. The

sizes of the three tasks are 9, 3, and 6 ,respectively. In this example we restricted the

number of tries to 40 and restricted the search space to 1000 points by using maximum

value = 11 for the three elements of the unrolling vector. Table 4 shows the local

neighborhood search solution and the answer was best u = < 8,7,8> with E = 3.5216 and

number of nodes and edges= 1944 and 6246 respectively. Figure 16 shows that this

method made only 6 successful moves out of 40. The simulated annealing solution is given

in Table 5 and the best u = < 7,7,8> with E = 3.6770 and number of nodes and edges=

1728 and 5492 respectively . Figure 17 shows that simulated annealing made 9 successful

moves in the search.

1 2 3 4

i(
{(<4>,8)} { (<1>,3),(<4>,20)} {(<4>,9),(<3>,7),(<2>,8)}

((:,!)) J
HiJ

{(<4>,14);(<1>,2)} {(<3>,4)} { (<3> ,17),(<4> ,3)}

{(<3>,11)} {(<2>,20)} {(<3>,6)}

{(<l>,4)} {(<3>,16),(<2>,13)} {(<2>,11)} {(<2>,10)}

DM TSA

Figure 11 DM and TSA for Four Tasks (1, 2, 3,and 4) Enclosed in a Single Loop.

20

l
7

0
l

l

l
u
u
J
J
j

l
l
l
n
D
l
I
n
I
l
I
I
I

I I
j

J

J

J

J

1 1

1 0

E 9

8

7

6
0 10 20

Move Number

Figure 12 The Change in E when the Loop is Unrolled From 4 to 21 Exhaustively (n=l)

9

8

E

7

6
0 1 2

Move Number

3 4

Figure 13 Three Successful Moves in Local Neighborhood Search (n=l)

21

9

8

E

7

6

0 2 4 6 8 1 0

Move Number

Figure 14 Nine Successful Moves in Simulated Annealing (n = 1)

1 2 3

1 {(<0,2,0>,28)} {(<0,0,1>,55)
(<2,2,0>,198)
(<1,0,0>,74)}

~m 2 {(<2,0,0>,116) {(<0,1,0>,167)
(<1,0,0>,81)} (<l,0,0>,130)}

3 {(<l,0,0>,120) {(<0,2,0>,73)} <I>
(<0,l,2>,65)
(<0,0,2>,68)}

DM TSA

Figure 15 DM and TSA for Three Tasks (1, 2, and 3) Enclosed in Three Nested Loops.

22

l
1

l

l
l
l

l
l

l
1

I
J

l

l
fl
l
I
~

l
1

I
l I

l l

I
J

J

20

E 10

0
0 1 2 3 4 5 6 7

Move Number
. .

Figure 16 Six Successful Moves in Local Neighborhood Search (n = 3)

E 10

0 2 4 6 8 10

Move Number

Figure 17 Nine Successful Moves in Simulated Annealing (n = 3).

23

move
number

1
2
3
4
5
6
7
8
9
10
11
12
13
14 .
15
16
17
18

move
number

1
2
3

move
number

1
2
3
4

- 5
6
7
8
9

number number
01 E of nodes of edges

4 8.4565 20 46
5 10.3300 24 66
6 10.4288 28 86
7 9.3737 32 106
8 8.7700 36 126
9 8.9364 40 146
10 7.2772 44 166
11 8.2577 48 186
12 6.7610 52 206
13 7.4212 56 226 -
14 6.9300 60 246
15 8.3901 64 266
16 7.9426 68 286
17 7.6643 72 306
18 6.9424 76 326
19 7.5321 80 346
20 7.4706 84 366
21 7.1389 88 386

Table 1 Exhaustive Search (n = 1)

number number
01 E of nodes of edges

4 8.4565 20 46
10 7.2772 44 166
12 6.7 610 52 206

Table 2 Local Neighborhood Search (n = 1)

number number
01 E of nodes of edges
4 8.4565 20 46
10 7.2772 44 166
11 8.2577 48 186
10 7.2772 44 166
21 7.1389 88 386
18 6.9424 76 326
12 6.7610 52 206
21 7.1389 88 386
12 6.7610 52 206

Table 3 Simulated Annealing Solution (n = 1)

degree

2.300
2.750
3.071
3.312
3.500
3.650
3.773
3.875
3.962
4.036
4.100
4.156
4206
4.250
4289
4.325
4.357
4.386

degree

2.300
3.773
3.962

degree

2.300
3.773
3.875
3.773
4.386
4.289
3.962
4.3-86
3.962

.:\.?-::-" ·.

24

l
l

1
l

I
l
I
j

J

j

j

j

J
J

1
l
l
n
l
I

I
l

1

J

J

J

move number number
number ul U2 U3 E of nodes of edges degree

1 2 2 2 17.8148 81 153 1.889
2 2 4 5 9.0000 270 651 2.411
3 2 7 8 5.9120 648 1722 2.657
4 2 6 8 5.6031 567 1485 2.619
5 8 6 8 3.8342 1701 5391 3.169
6 8 7 8 3.5216 1944 6246 3.213

Table 4 Local Neighborhood Search (n = 3)

move number number
number 01 U2 u~ E of nodes of edges d_egree

1 2 2 2 17.8148 81 153 1.889
2 2 8 2 11.2592 243 567 2.333
3 7 2 8 6.7500 648 1732 2.673
4 2 4 5 9.0000 270 651 2.411
5 2 8 5 7.3271 486 1263 2.599
6 7 8 7 3.9184 1728 5512 3.190
7 7 8 6 4.1726 1512 4780 3.161
8 7 8 8 3.6049 1944 6244 3.212
9 7 7 8 3.6770 1728 5492 3.178

Table 5 Simulated Annealing Solution (n = 3)

7 Conclusion

In this paper we have introduced a new way to represent parallel program tasks and

their precedence relations. The new representation allows us to express loop-carried data

dependences among tasks that cannot be represented using ordinary task graphs . We also

introduced a new technique for scheduling unrolled loops onto arbitrary target machines in

a way that minimizes the completion time. The scheduler considers communication delays

among tasks on different processors which makes this method particularly useful for loop

unrolling on distributed-memory target machines.

We have integrated both local neighborhood search and simulated annealing methods

in one tool to find: 1) the best unrolling vector for a particular set of tasks when they run on

a particular target machine and 2) the Gantt chart that indicates the allocation and the order

of the tasks in the unrolled loop on the available processing elements. We showed two

simple examples for a single loop and three nested loops to show the performance of the

two methods in each case. It is recommended that both methods be tried since their

25

f

	El_Rewini_Lewis_91_60_01_A
	El_Rewini_Lewis_91_60_01_B

