
91-30-2

un~UEAS~TY

Error-Correcting Output Codes:
A General Method for Improving

Multiclass Inductive Learning Programs

Thomas G. Dietterich
Ghulum Bakiri

Department of Computer Science
Oregon State University

Corvallis, OR 97331-3202

l
n
l
fl
l
I
l

lJ

j

l

Error-Correcting Output Codes:
A General Method for Improving

Multiclass Inductive Learning Programs
Thomas G. Dietterich and Ghulum Bakiri

Department of Computer Science
Oregon State University

Corvallis, OR 97331-3202

Abstract
Multiclass learning problems involve finding a defini
tion for an unknown function f(x) whose range is a
discrete set containing k > 2 values (i.e., k "classes") .
The definition is acquired by studying large collections
of training examples of the form (x;, f(x;)) . Existing
approaches to this problem include (a) direct applica
tion of multiclass algorithms such as the decision-tree
algorithms ID3 and CART, (b) application of binary
concept learning algorithms to learn individual binary
functions for each of the k classes, and (c) application
of binary concept learning algorithms with distribut
ed output codes such as those employed by Sejnowski
and Rosenberg in the NETtalk system. This paper
compares these three approaches to a new technique
in which BCH error-correcting codes are employed as
a distributed output representation. We show that
these output representations improve the performance
of ID3 on the NETtalk task and of backpropagation
on an isolated-letter speech-recognition task. These
results demonstrate that error-correcting output codes
provide a general-purpose method for improving the
performance of inductive learning programs on multi
class problems.

Introduction
The task of learning from examples is to find an ap
proximate definition for an unknown function f(x)
given training examples of the form (x;, f(x;)). For
cases in which f takes only the values {O, 1}-binary
functions-there are many algorithms available. For
example, the decision tree methods, such as ID3 (Quin
lan, 1983, 1986b) and CART (Breiman, Friedman, 01-
shen & Stone, 1984) can construct trees whose leaves
are labelled with binary values. Most artificial neu
ral network algorithms, such as the perceptron algo
rithm (Rosenblatt, 1958) and the error backpropaga
tion (BP) algorithm (Rumelhart, Hinton & Williams,
1986), are best suited to learning binary functions.
Theoretical studies of learning have focused almost
entirely on learning binary functions (Valiant, 1984;
COLT 1988, 1989, 1990).

In many real-world learning tasks, however, the un-

known function f takes on values from a discrete set of
"classes" : { c1, ... , Ck} . For example, in medical diag
nosis, the function might map a description of a patient
to one of k possible diseases. In digit recognition, the
function maps each hand-printed digit to one of k = 10
classes .

Decision-tree algorithms can be easily generalized to
handle these "multi-class" learning tasks . Each leaf of
the decision tree can be labelled with one of the k class
es, and internal nodes can be selected to discriminate
among these classes. We will call this the direct multi
class approach.

Connectionist algorithms are more difficult to ap
ply to multiclass problems, however. The standard
approach is to learn k individual binary functions
/1, . .. , /k, one for each class. To assign a new case,
x to one of these classes, each of the /; is evaluated on
x, and x is assigned the class j of the function Ji that
returns the highest activation (Nilsson, 1965) . We will
call this the one-per-class approach, since one binary
function is learned for each class.

Finally, a third approach is to employ a distribut
ed output code. Each class is assigned a unique bi
nary string of length n; we will refer to these as
"codewords." Then n binary functions are learned,
one for each bit position in these binary strings. These
binary functions are usually chosen to be meaning
ful, and often independent, properties in the domain.
For example, in the NETtalk system (Sejnowski &
Rosenberg, 1987), a 26-bit distributed code was used
to represent phonemes and stresses . The individu
al binary functions (bit positions) in this code corre
sponded to properties of phonemes and stresses, such
as "voiced," "labial," and "stop." By representing
enough distinctive properties of phonemes and stresses,
each phoneme/stress combination can have a unique
codeword.

For distributed output codes, training is accom
plished as follows. For an example from class i, the
desired outputs of the n binary functions are specified
by the codeword for class i. With artificial neural net
works, these n functions can be implemented by the n
output units of a single network. With decision trees,

D
n

n

l

l
j

J
u

n separate decision trees are learned, one for each bit
position in the output code.

New values of x are classified by evaluating each of
the n binary functions to generate an n-bit string s.
This string is then compared to each of the k code
words, and x is assigned to the class whose codeword
is closest , according to some distance measure, to the
generated string s.

This review of methods for handling multiclass prob
lems raises several interesting questions. First, how do
the methods compare in terms of their ability to clas
sify unseen examples correctly? Second, are some of
the methods more difficult to train than others (i.e.,
do they require more training examples to achieve the
same level of performance)? Third, are there princi
pled methods for designing good distributed output
codes?

To answer these questions, this paper begins with a
study in which the decision-tree algorithm ID3 is ap
plied to the NETtalk task (Sejnowski & Rosenberg,
1987) using three different techniques : the direct mul
ticlass approach, the one-per-class approach, and the
distributed output code approach. The results show
that the multiclass and distributed output code ap
proaches generalize much better than the one-per-class
approach.

It is helpful to visualize the output code of a learn
ing system as a matrix whose rows are the classes and
whose columns are the n binary functions correspond- ·
ing to the bit positions in the codewords. In the one
per-class approach, there are k rows and k columns,
and the matrix has l's only on the diagonal. In the
distributed output code approach, there are k rows
and n columns, and the rows of the matrix give the
codewords for the classes.

From this perspective, the two methods are closely
related. A codeword is assigned to each class, and new
examples are classified by decoding to the nearest of
the codewords. This perspective suggests that a better
distributed output code could be designed using error
correcting code methods. Good error-correcting codes
choose the individual code words so that they are well
separated in Hamming distance . The potential benefit
of such error correction is that the system could recov
er from errors made in learning the individual binary
functions . If the minimum Hamming distance between
any two codewords is d, then l(d - 1)/2J errors can be
corrected.

The "code" corresponding to the one-per-class ap
proach , has a minimum Hamming distance of 2, so it
cannot correct any errors. Similarly, many distribut
ed output codes have small Hamming distances, be
cause the columns correspond to meaningful orthog
onal properties of the domain. · In the Sejnowski
Rosenberg code, for example, the minimum Hamming
distance is 1, because there are phonemes that differ
only in whether they are voiced or unvoiced. These ob
servations suggest that error-correcting output codes

2

could be very beneficial.
On the other hand , unlike either the one-per-class or

distributed-output-code approaches , the individual bit
positions of error-correcting codes will not be mean
ingful in the domain . They will constitute arbitrary
disjunctions of the original k classes . If these functions
are difficult to learn, then they may negate the benefit
of the error correction .

We investigate this approach by employing BCH
error-correcting codes (Bose & Chaudhuri, 1960; Hoc
quenghem, 1959). The results show that while the in
dividual binary functions are indeed more difficult to
learn, the generalization performance of the system is
improved . Furthermore , as the length of the code n
is increased , additional performance improvements are
obtained .

Following this, we replicate these results on the
ISOLET isolated-letter speech recognition task (Cole,
Muthusamy & Fanty, 1990) using a variation on the
back propagation algorithm . Our error-correcting
codes give the best performance attained so far by any
method on this task . This shows that the method is
domain-independent and algorithm -independent .

A Comparison of Three Multi-class
Methods on the NETtalk Task

The NETtalk Task
In Sejnowski and Rosenberg 's (1987) NETtalk system ,
the task is to map from English words (i .e., strings
of letters) into strings of phonemes and stresses . For
example,

f("lollypop") = ("lal-ipap", ">1<>0>2<").
Where "lal-ipap" is a string of phonemes, and
">1<>0>2<" is a string of stress symbols . There are
54 phonemes and 6 stresses in the NETtalk formula
tion of this task . Note that the phonemes and stresses
are aligned with the letters of the original word.

As defined, f is a very complex discrete mapping
with a very large range . Sejnowski and Rosenberg re
formulated f to be a mapping g from a seven-letter
window to a phoneme/stress pair representing the pro
nunciation of the letter at the center of the window .
For example, the word "lollypop " would be converted
into 8 separate seven-letter windows :

g(" ___ loll") = ("l", ">")
g(" __ lolly") = ("a", "1")
g("_lollyp") = ("l", "<")
g("lollypo") = (" - ", ">")
g("ollypop") = ("i", "0")
g("llypop_") = ("p", ">")
g("lypop __ ") = ("a", "2")
g("ypop ___ ") = ("p", "<")

The function g is applied to each of these 8 windows,
and then the results are concatenated to obtain the
phoneme and stress strings . This mapping function g
now has a range of 324 possible phoneme/stress pairs.
This is the task that we shall consid er in this paper.

n

n
n

u
j

j

j

J

The Data Set
Sejnowski and Rosenberg provided us with a dictionary
of 20,003 words and their corresponding phoneme and
stress strings. From this dictionary we drew at ran
dom (and without replacement) a training set of 1000
words and a testing set of 1000 words . It turns out that
of the 324 possible phoneme/stress pairs, only 126 ap
pear in the training set, because many phoneme/stress
combinations make no sense (e.g., consonants rarely
receive stresses). Hence, in all of the experiments in
this paper, the number of output classes is only 126.

Input and Output Representations
In all of the experiments in this paper, the input repre
sentation scheme introduced by Sejnowski and Rosen
berg for the seven-letter windows is employed. In this
scheme, the window is represented as the concatena
tion of seven 29-bit strings. Each 29-bit string repre
sents a letter (one bit for each letter, period, comma,
and blank), and hence, only one bit is set to 1 in each
29-bit string. This produces a string of 203 bits (i .e.,
203 binary features) for each window. Experiments by
Shavlik, Mooney, and Towell (1990) showed that this
representation was better than treating each letter in
the window as a single feature with 29 possible values.
Of course, many other input representations could be
used. Indeed, in most applications of machine learning,
high performance is obtained by engineering the input
representation to incorporate prior knowledge about
the task. However, an important goal for machine
learning research is to reduce the need to perform this
kind of "representation engineering ." In this paper, we
show that general techniques for changing the output
representation can also improve performance .

The representation of the output classes varies, of
course, from one multiclass approach to another . For
the direct multiclass method, the output class is repre
sented by a single variable that can take on 126 possible
values (one for each phoneme/stress pair that appears
in the training data). For the one-per-class approach,
the output class is represented by 126 binary variables,
one for each class.

For the distributed output code approach, we em
ploy the code developed by Sejnowski and Rosen
berg. We used the Hamming distance between two
bit-strings to measure distance. Ties were broken in
favor of the phoneme/stress pair that appeared more
frequently in the training data. In Dietterich, Hild, and
Bakiri (1990a), we called this "observed decoding."

The ID3 Learning Algorithm
ID3 is a simple decision-tree learning algorithm devel
oped by Ross Quinlan (1983, 1986b). In our imple
mentation, we did not employ windowing, CHI-square
forward pruning (Quinlan, 1986a), or any kind of re
verse pruning (Quinlan, 1987). Experiments reported
in Dietterich, Hild, and Bakiri (1990b) have shown that
these pruning methods do not improve performance.

3

We did apply one simple kind of forward pruning to
handle inconsistencies in the training data: If at some
point in the tree-growing process all training examples
agreed on the values of all features-and yet disagreed
on the class-then growth of the tree was terminated
in a leaf and _ the class having the most training ex
amples was chosen as the label for that leaf (ties were
broken arbitrarily for multiclass ID3; ties were broken
in favor of class O for binary ID3).

In the direct multiclass approach, ID3 is applied
once to produce a decision tree whose leaves are la
belled with one of the 126 phoneme/stress classes . In
the one-per-class approach, ID3 is applied 126 times
to learn a separate decision tree for each class. When
learning class i, all training examples in other class
es are considered to be "negative examples" for this
class. When the 126 trees are applied to classify ex
amples from the test set, ties are broken in favor of the
more-frequently-occurring phoneme/stress pair (as ob
served in the training set). In particular, if none of the
trees classifies a test case as positive, then the most fre
quently occurring phoneme/stress pair is guessed. In
the distributed output code approach, ID3 is applied
26 times, once for each bit-position in the output code.

Results
Table 1 shows the percent correct (over the 1000-

word test set) for words, letters, phonemes, and stress
es. A word is classified correctly if each letter in the
word is correct. A letter is correct if the phoneme
and stress assigned to that letter are both correct. For
the one-per-class and distributed output code meth
ods, the phoneme is correct if all bits coding for the
phoneme are correct (after mapping to the nearest le
gal codeword and breaking ties by frequency). Similar
ly, the stress is correct if all bits coding for the stress
are correct.

There are several things to note . First, the direct
multiclass and distributed output codes performed e
qually well. Indeed, the statistical test for the dif
ference of two proportions cannot distinguish them.
Second, the one-per-class method performed marked
ly worse, and all differences in the table between this
method and the others are significant at or below the
.01 level.

Error Correcting Codes
The satisfactory performance of distributed output
codes prompted us to explore the utility of good error
correcting codes. We applied BCH methods (Lin &
Costello, 1983) to design error-correcting codes of vary
ing lengths. These methods guarantee that the rows of
the code (i.e., the codewords) will be separated from
each other by some minimum Hamming distanced .

Table 2 shows the results of training ID3 with
distributed error-correcting output codes of varying
lengths. Phonemes and stresses were encoded sep
arately, although this turns out to be unimportant .

1

n

l

1

1

j

I

l
j

j

Table 1: Comparison of Three Multi-class Methods
Tree Statistics

Level of Aggregation { 'Yo Correct) Average
Method word Letter Phoneme Stress N Leaves Depth

Direct Multiclass 13.5 70.8 81.1 78.3 1 2652.0 73.0
One-per-class 8.7 66.7 76.4 74.5 126 34.9 10.5
Distributed 12.5 69.6 81.3 79.2 26 270.0 29.3

Table 2: Performance of Error-Correcting Output Codes

BCH Code Level of Aggregation Tree Statistics
Phoneme Stress % Correct -(1000-word test set) Average

n d n d Word Letter
10 3 9 3 13.3 69.8
14 5 11 5 14.4 70.9
21 7 13 7 17.2 72.2
26 11 13 11 17.5 72.3
31 15 30 15 19.9 73.8
62 31 30 15 20.6 74.1

127 63 30 15 20.8 74.4

Columns headed n show the length of the code, and
columns headed d show the Hamming distance between
any two code words.

The first thing to note is that the performance of
even the simplest (19-bit) BCH code is superior to
the 26-bit Sejnowski-Rosenberg code at the letter and
word levels. Better still, performance improves mono
tonically as the length (and error-correcting power)
of the code increases. The long codes perform much
better than either the direct multiclass or Sejnowski
Rosenberg approaches at all levels of aggregation (e.g.,
74.4% correct at the letter level versus 70.8% for direct
multiclass).

Not surprisingly, the individual bits of these error
correcting codes are much more difficult to learn than
the bits in the one-per-class approach or the Sejnowski
Rosenberg distributed code. Specifically, the average
number of leaves in each tree in the error-correcting
codes is roughly 665, whereas the one-per-class trees
had only 35 leaves and the Sejnowski-Rosenberg trees
had 270 leaves. Clearly distributed output codes do
not produce results that are easy to understand!

The fact that performance continues to improve as
the code gets longer suggests that we could obtain ar
bitrarily good performance if we used arbitrarily long
codes. Indeed, this follows from information theory un
der the assumption that the errors in the various bit
positions are independent. However, because each of
the bits is learned using the same body of training ex
amples, it is clear that the errors are not independent.
We have measured the correlation coefficients between
the errors committed in each pair of bit positions for
our BCH codes . All coefficients are positive, and many
of them are larger than 0.30. Hence, there must come

4

Phon. Stress N Leaves Depth
80.3 80.6 19 677.4 51.9
82.3 80.3 25 684.7 53.1
83.9 80.4 34 681.4 53.9
84.2 80.4 39 700.5 56.4
84.8 81.5 61 667.8 52.7
85.4 81.6 77 669.9 53.3
85.7 81.6 157 661.6 54.8

a point of diminishing returns where further increases
in code length will not improve performance . An open
problem is to predict where this breakeven point will
occur.

Error-correcting Codes and Small Training
Sets
Given that the individual binary functions require
much larger decision trees for the error-correcting
codes than for the other methods , it is important
to ask whether error-correcting codes can work well
with smaller sample sizes. It is well-established that
small training samples cannot support very complex
hypotheses .

To address this question , Figure 1 shows learning
curves for the distributed output code and for the 93-
bit error-correcting code (63 phoneme bits, 30 stress
bits) . At all sample sizes, the performance of the error
correcting configuration is better than the Sejnowski
Rosenberg distributed code . Hence, even for small
samples, error-correcting codes can be recommended.

Replication in Isolated Letter Speech
Recognition

To test whether error-correcting output codes provide
a general method for boosting the performance of in
ductive learning algorithms, we applied them in a sec
ond domain and with a different learning algorithm .
Specifically, we studied the domain of isolated letter
speech recognition and the back propagation learning
algorithm.

In the isolated-letter speech-recognition task, the
"name" of a single letter is spoken by an unknown spea-

l
l
n
l
fl

l

J

Li

u
J

Table 3: Parameter Values Selected via Cross Valida
tion

Hidden Best
Configuration Units TSS
one-per-class 78 10.50
30-bit ECC 156 142.66
62-bit ECC 156 161.76

ker and the task is to assign this to one of 26 classes
corresponding to the letters of the alphabet. Ron Cole
has made available to us his ISO LET database of 7,797
training examples of spoken letters (Cole, Muthusamy
& Fanty, 1990). The database was recorded from 150
speakers balanced for sex and representing many dif
ferent accents and dialects. Each speaker spoke each
of the 26 letters twice (except for a few cases) . The
database is subdivided into 5 parts (named ISOLETl,
ISOLET2, etc .) of 30 speakers each.

Cole's group has developed a set of 617 features de
scribing each example. Each feature has been scaled
to fall in the range [-1, +1]. We employed the opt
(Barnard & Cole, 1989) implementation of backprop
agation with conjugate gradient optimization in all of
our experiments.

In our experiments, we compared the one-per-class
approach to a 30-bit (d = 15) BCH code and a 62-bit
(d = 31) BCH code. In each case, we used a standard
3-layer network (one input layer, one hidden layer, and
one output layer). In the one-per-class method, test
examples are assigned to the class whose output unit
gives the highest activation. In the error-correcting
code case, test examples are assigned to the class whose
output codeword is the closest to the activation vector
produced by the network as measured by the following
distance metric: Li !act; - code; I-

One advantage of conjugate-gradient optimization is
that, unlike backpropagation with momentum, it does
not require the user to specify a learning rate or a
momentum parameter. There are, however, three pa
rame_ters that must be specified by the user : (a) the
startmg random-number seed (used to initialize the ar
tificial neural network), (b) the number of hidden u
nits, and (c) the total-summed squared error at which
training should be halted (this avoids over-training).

To determine good values for these parameters, we
followed the "cross-validation" training methodology
advocated by Lang, Waibel, and Hinton (1990). The
training data were broken into three sets:

• The training set consisting of the 3,120 letters spo
ken by 60 speakers. (These are the examples in
Cole's files ISOLETl and ISOLET2 .)

• The cross-validation set consisting of 3,118 letters
spoken by 60 additional speakers. (These are the
examples in files ISOLET3 and ISOLET4 .)

• The test set consisting of 1,559 letters spoken by
5

88

84

80

76

72

68

64

Error correcting codei ________ _

60 .___...__...,___--1..._.....1.. _ __,_ _ ___JL.....,__.l,_ _ _J_~

0 200 400 600 800 1000 1200 1400 1600
Number of Training Examples

Figure 1: Learning curves showing% phonemes correct
for the distributed output code and for the 93-bit error
correcting code (63 phoneme bits with d = 31, 30 stress
bits with d = 15).

Table 4: Performance in the Isolated Letter Domain
Actual % 'Yo

Configuration TSS Correct Error
one-per-class 10.51 95.83 4.17
30-bit ECC 142.26 96.73 3.27
62-bit ECC 161.85 95.96 4.04

30 additional speakers. (These are the examples in
file ISOLET5.)

The idea is to vary the parameters while training on
the training set and testing on the cross-validation set.
The parameter values giving the best performance on
the cross-validation set are then used to train a network
using the union of the training and cross-validation
sets, and this network is then tested against the test
set. We varied the number of hidden units between
35 and 182, and , for each number of hidden units we
tried four different random seeds . Table 3 shows' the
parameter values that were found by cross validation
to give the best results.

Table 4 shows the results of training each configu
ration on the combined training and cross-validation
sets and testing on the test set . Both error-correcting
configurations perform better than the one-per-class
configuration. The results are not statistically signif
icant (according to the test for the difference of two
proportions), but this could be fixed by using a larg
er test set. The results are very definitely significant
from a practical standpoint: The error rate has been
reduced by more than 20%. This is the best known
error rate for this task.

l
n

n
n
l

l

l

t J

1

j

J
u

Conclusions
The experiments in this paper demonstrate that error
correcting output codes provide an excellent method
for applying binary learning algorithms to multiclass
learning problems . In particular , error-correcting out
put codes outperform the direct multiclass method, the
one-per-class method , and a domain-specific distribut
ed output code (the Sejnowski-Rosenberg code for the
nettalk domain). Furthermore, the error-correcting
output codes improve performance in two very dif
ferent domains and with two quite different learning
algorithms.

We have investigated many other issues concerning
error-correcting output codes, but, due to lack of space,
these could not be included in this paper. Briefly, we
have demonstrated that codes generated at random
can act as excellent error-correcting codes. Experi
ments have also been conducted that show that train
ing multiple neural networks and combining their out
puts by "voting" does not yield as much improvement
as error-correcting codes.

Acknowledgements
The authors thank Terry Sejnowski for making avail
able the NETtalk dictionary and Ron Cole and Mark
Fanty for making available the ISO LET database . The
authors also thank NSF for its support under grants
IRI-86-57316 and CCR-87-16748. Ghulum Bakiri was
supported by Bahrain University .

References
Barnard , E. & Cole, R. A. (1989) . A neural-net train

ing program based on conjugate-gradient optimiza
tion . Rep . No. CSE 89-014. Beaverton, OR : Oregon
Graduate Institute.

Bose, R . C., & Ray-Chaudhuri, D. K. (1960). On a
class of error-correcting binary group codes. Inf C
ntl. , 3, pp. 68-79.

Breiman , L, Friedman, J. H., Olshen, R. A., & Stone,
C . J . (1984). Classification and Regression Trees.
Monterey, CA: Wadsworth and Brooks.

Cole, R . Muthusamy, Y. & Fanty, M. (1990) . The
ISOLET spoken letter database. Rep. No. CSE
90-004. Beaverton , OR : Oregon Graduate Institute .

COLT (1988) . Haussler, D. & Pitt, L. (Eds.) COLT
'88, Cambridge, MA: Morgan Kaufmann.

COLT (1989). Rivest, R. L., Haussler, D., and War
muth , M. K. (Eds.) COLT '89: Proceedings of the
Second Annual Workshop on Computational Learn
ing Theory, Santa Cruz, CA: Morgan Kaufmann .

COLT (1990). Fulk, M.A., and Case, J. (Eds.) COLT
'90: Proceedings of the Third Annual Workshop on
Computational Learning Theory. Rochester, NY:
Morgan Kaufmann .

6

Dietterich, T . G., Hild , H., Bakiri, G. (1990a) A com
parative study of ID3 and backpropagation for En
glish text-to-speech mapping. 7th Int. Conj. on
Mach . Learn . (pp . 24-31) . Austin, TX: Morgan
Kaufmann.

Dietterich, T . G., Hild , H., Bakiri , G. (19906) A com
parison of ID3 and backpropagation for English text
to-speech mapping. Rep . No. 90-30-4. Corvallis,
OR: Oregon State University.

Hocquenghem , A. (1959) . Codes corecteurs d'erreurs .
Chiffres, 2, pp. 147-156.

Lang, K. J, Waibel , A. H, & Hinton, G. E. (1990). A
time-delay neural network architecture for isolated
word recognition. Neural Networks, 3, 33-43.

Lin, S., & Costello, D. J . Jr . (1983) . Error Con
trol Coding: Fundamentals and Applications. En
glewood Cliffs: Prentice-Hall.

Nilsson, N. J. , (1965) . Learning Machines, New York:
McGraw Hill.

Quinlan, J . R. (1983) . Learning efficient classification
procedures and their application to chess endgames ,
in Michalski , R . S., Carbonell, J . & Mitchell , T . M.,
(eds.), Machine learning , Vol. I , Palo Alto : Tioga
Press . 463-482.

Quinlan, J . R. (1986a) . The effect of noise on con
cept learning . In Michalski , R. S., Carbonell , J . &
Mitchell , T . M., (eds.) , Machine learning, Vol. II,
Palo Alto: Tioga Press . 149-166.

Quinlan , J . R. (19866) . Induction of Decision Trees,
Machine Learning, 1(1), 81-106 .

Quinlan , J . R. , (1987) . Simplifying decision trees . Int .
J. Man -Mach . Stud ., 27, 221-234.

Rosenblatt , F . (1958) . The perceptron. Psych. Rev .,
65 (6), 386-408.

Rumelhart, D. E., Hinton , G . E., and Williams , R. J.
(1986) . Learning internal representations by error
propagation . In Rumelhart, D. E. & McClelland,
J . L., (eds.) Parallel Distributed Processing, Vol 1.
318-362 .

Sejnowski, T . J., and Rosenberg, C. R. (1987) . Par
allel networks that learn to pronouce English text .
Complex Syst ., 1, 145-168 .

Shavlik , J . W., Mooney, R. J., and Towell, G. G.
(1990). Symbolic and neural learning algorithms:
An experimental comparison. Mach . Learn ., 6, 111-
144.

Valiant , L. G. (1984). A theory of the learnable .
CACM , 27, 1134-1142.

	Dietterich_Bakiri_91_30_02_A
	Dietterich_Bakiri_91_30_02_B

