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Abstract 
Multiclass learning problems involve finding a defini
tion for an unknown function f(x) whose range is a 
discrete set containing k > 2 values (i.e., k "classes") . 
The definition is acquired by studying large collections 
of training examples of the form (x;, f(x;)) . Existing 
approaches to this problem include (a) direct applica
tion of multiclass algorithms such as the decision-tree 
algorithms ID3 and CART, (b) application of binary 
concept learning algorithms to learn individual binary 
functions for each of the k classes, and ( c) application 
of binary concept learning algorithms with distribut
ed output codes such as those employed by Sejnowski 
and Rosenberg in the NETtalk system. This paper 
compares these three approaches to a new technique 
in which BCH error-correcting codes are employed as 
a distributed output representation. We show that 
these output representations improve the performance 
of ID3 on the NETtalk task and of backpropagation 
on an isolated-letter speech-recognition task. These 
results demonstrate that error-correcting output codes 
provide a general-purpose method for improving the 
performance of inductive learning programs on multi
class problems. 

Introduction 
The task of learning from examples is to find an ap
proximate definition for an unknown function f(x) 
given training examples of the form (x;, f(x;)). For 
cases in which f takes only the values {O, 1}-binary 
functions-there are many algorithms available. For 
example, the decision tree methods, such as ID3 (Quin
lan, 1983, 1986b) and CART (Breiman, Friedman, 01-
shen & Stone, 1984) can construct trees whose leaves 
are labelled with binary values. Most artificial neu
ral network algorithms, such as the perceptron algo
rithm (Rosenblatt, 1958) and the error backpropaga
tion (BP) algorithm (Rumelhart, Hinton & Williams, 
1986), are best suited to learning binary functions. 
Theoretical studies of learning have focused almost 
entirely on learning binary functions (Valiant, 1984; 
COLT 1988, 1989, 1990). 

In many real-world learning tasks, however, the un-

known function f takes on values from a discrete set of 
"classes" : { c1, ... , Ck} . For example, in medical diag
nosis, the function might map a description of a patient 
to one of k possible diseases. In digit recognition, the 
function maps each hand-printed digit to one of k = 10 
classes . 

Decision-tree algorithms can be easily generalized to 
handle these "multi-class" learning tasks . Each leaf of 
the decision tree can be labelled with one of the k class
es, and internal nodes can be selected to discriminate 
among these classes. We will call this the direct multi
class approach. 

Connectionist algorithms are more difficult to ap
ply to multiclass problems, however. The standard 
approach is to learn k individual binary functions 
/1, . .. , /k, one for each class. To assign a new case, 
x to one of these classes, each of the /; is evaluated on 
x, and x is assigned the class j of the function Ji that 
returns the highest activation (Nilsson, 1965) . We will 
call this the one-per-class approach, since one binary 
function is learned for each class. 

Finally, a third approach is to employ a distribut
ed output code. Each class is assigned a unique bi
nary string of length n; we will refer to these as 
"codewords." Then n binary functions are learned, 
one for each bit position in these binary strings. These 
binary functions are usually chosen to be meaning
ful, and often independent, properties in the domain. 
For example, in the NETtalk system (Sejnowski & 
Rosenberg, 1987), a 26-bit distributed code was used 
to represent phonemes and stresses . The individu
al binary functions (bit positions) in this code corre
sponded to properties of phonemes and stresses, such 
as "voiced," "labial," and "stop." By representing 
enough distinctive properties of phonemes and stresses, 
each phoneme/stress combination can have a unique 
codeword. 

For distributed output codes, training is accom
plished as follows. For an example from class i, the 
desired outputs of the n binary functions are specified 
by the codeword for class i. With artificial neural net
works, these n functions can be implemented by the n 
output units of a single network. With decision trees, 
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n separate decision trees are learned, one for each bit 
position in the output code. 

New values of x are classified by evaluating each of 
the n binary functions to generate an n-bit string s. 
This string is then compared to each of the k code
words, and x is assigned to the class whose codeword 
is closest , according to some distance measure, to the 
generated string s. 

This review of methods for handling multiclass prob
lems raises several interesting questions. First, how do 
the methods compare in terms of their ability to clas
sify unseen examples correctly? Second, are some of 
the methods more difficult to train than others (i.e., 
do they require more training examples to achieve the 
same level of performance)? Third, are there princi
pled methods for designing good distributed output 
codes? 

To answer these questions, this paper begins with a 
study in which the decision-tree algorithm ID3 is ap
plied to the NETtalk task (Sejnowski & Rosenberg, 
1987) using three different techniques : the direct mul
ticlass approach, the one-per-class approach, and the 
distributed output code approach. The results show 
that the multiclass and distributed output code ap
proaches generalize much better than the one-per-class 
approach. 

It is helpful to visualize the output code of a learn
ing system as a matrix whose rows are the classes and 
whose columns are the n binary functions correspond- · 
ing to the bit positions in the codewords. In the one
per-class approach, there are k rows and k columns, 
and the matrix has l's only on the diagonal. In the 
distributed output code approach, there are k rows 
and n columns, and the rows of the matrix give the 
codewords for the classes. 

From this perspective, the two methods are closely 
related. A codeword is assigned to each class, and new 
examples are classified by decoding to the nearest of 
the codewords. This perspective suggests that a better 
distributed output code could be designed using error
correcting code methods. Good error-correcting codes 
choose the individual code words so that they are well
separated in Hamming distance . The potential benefit 
of such error correction is that the system could recov
er from errors made in learning the individual binary 
functions . If the minimum Hamming distance between 
any two codewords is d, then l(d - 1)/2J errors can be 
corrected. 

The "code" corresponding to the one-per-class ap
proach , has a minimum Hamming distance of 2, so it 
cannot correct any errors. Similarly, many distribut
ed output codes have small Hamming distances, be
cause the columns correspond to meaningful orthog
onal properties of the domain. · In the Sejnowski
Rosenberg code, for example, the minimum Hamming 
distance is 1, because there are phonemes that differ 
only in whether they are voiced or unvoiced. These ob
servations suggest that error-correcting output codes 
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could be very beneficial. 
On the other hand , unlike either the one-per-class or 

distributed-output-code approaches , the individual bit 
positions of error-correcting codes will not be mean
ingful in the domain . They will constitute arbitrary 
disjunctions of the original k classes . If these functions 
are difficult to learn, then they may negate the benefit 
of the error correction . 

We investigate this approach by employing BCH 
error-correcting codes (Bose & Chaudhuri, 1960; Hoc
quenghem, 1959). The results show that while the in
dividual binary functions are indeed more difficult to 
learn, the generalization performance of the system is 
improved . Furthermore , as the length of the code n 
is increased , additional performance improvements are 
obtained . 

Following this, we replicate these results on the 
ISOLET isolated-letter speech recognition task (Cole, 
Muthusamy & Fanty, 1990) using a variation on the 
back propagation algorithm . Our error-correcting 
codes give the best performance attained so far by any 
method on this task . This shows that the method is 
domain-independent and algorithm -independent . 

A Comparison of Three Multi-class 
Methods on the NETtalk Task 

The NETtalk Task 
In Sejnowski and Rosenberg 's (1987) NETtalk system , 
the task is to map from English words (i .e., strings 
of letters) into strings of phonemes and stresses . For 
example, 

f("lollypop") = ("lal-ipap", ">1<>0>2<"). 
Where "lal-ipap" is a string of phonemes, and 
">1<>0>2<" is a string of stress symbols . There are 
54 phonemes and 6 stresses in the NETtalk formula
tion of this task . Note that the phonemes and stresses 
are aligned with the letters of the original word. 

As defined, f is a very complex discrete mapping 
with a very large range . Sejnowski and Rosenberg re
formulated f to be a mapping g from a seven-letter 
window to a phoneme/stress pair representing the pro
nunciation of the letter at the center of the window . 
For example, the word "lollypop " would be converted 
into 8 separate seven-letter windows : 

g(" ___ loll") = ("l", ">") 
g(" __ lolly") = ("a", "1") 
g("_lollyp") = ("l", "<") 
g("lollypo") = (" - ", ">") 
g("ollypop") = ("i", "0") 
g("llypop_") = ("p", ">") 
g("lypop __ ") = ("a", "2") 
g("ypop ___ ") = ("p", "<") 

The function g is applied to each of these 8 windows, 
and then the results are concatenated to obtain the 
phoneme and stress strings . This mapping function g 
now has a range of 324 possible phoneme/stress pairs. 
This is the task that we shall consid er in this paper. 
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The Data Set 
Sejnowski and Rosenberg provided us with a dictionary 
of 20,003 words and their corresponding phoneme and 
stress strings. From this dictionary we drew at ran
dom ( and without replacement) a training set of 1000 
words and a testing set of 1000 words . It turns out that 
of the 324 possible phoneme/stress pairs, only 126 ap
pear in the training set, because many phoneme/stress 
combinations make no sense (e.g., consonants rarely 
receive stresses). Hence, in all of the experiments in 
this paper, the number of output classes is only 126. 

Input and Output Representations 
In all of the experiments in this paper, the input repre
sentation scheme introduced by Sejnowski and Rosen
berg for the seven-letter windows is employed. In this 
scheme, the window is represented as the concatena
tion of seven 29-bit strings. Each 29-bit string repre
sents a letter (one bit for each letter, period, comma, 
and blank), and hence, only one bit is set to 1 in each 
29-bit string. This produces a string of 203 bits (i .e., 
203 binary features) for each window. Experiments by 
Shavlik, Mooney, and Towell (1990) showed that this 
representation was better than treating each letter in 
the window as a single feature with 29 possible values. 
Of course, many other input representations could be 
used. Indeed, in most applications of machine learning, 
high performance is obtained by engineering the input 
representation to incorporate prior knowledge about 
the task. However, an important goal for machine 
learning research is to reduce the need to perform this 
kind of "representation engineering ." In this paper, we 
show that general techniques for changing the output 
representation can also improve performance . 

The representation of the output classes varies, of 
course, from one multiclass approach to another . For 
the direct multiclass method, the output class is repre
sented by a single variable that can take on 126 possible 
values (one for each phoneme/stress pair that appears 
in the training data). For the one-per-class approach, 
the output class is represented by 126 binary variables, 
one for each class. 

For the distributed output code approach, we em
ploy the code developed by Sejnowski and Rosen
berg. We used the Hamming distance between two 
bit-strings to measure distance. Ties were broken in 
favor of the phoneme/stress pair that appeared more 
frequently in the training data. In Dietterich, Hild, and 
Bakiri (1990a), we called this "observed decoding." 

The ID3 Learning Algorithm 
ID3 is a simple decision-tree learning algorithm devel
oped by Ross Quinlan (1983, 1986b ). In our imple
mentation, we did not employ windowing, CHI-square 
forward pruning (Quinlan, 1986a), or any kind of re
verse pruning (Quinlan, 1987). Experiments reported 
in Dietterich, Hild, and Bakiri (1990b) have shown that 
these pruning methods do not improve performance. 
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We did apply one simple kind of forward pruning to 
handle inconsistencies in the training data: If at some 
point in the tree-growing process all training examples 
agreed on the values of all features-and yet disagreed 
on the class-then growth of the tree was terminated 
in a leaf and _ the class having the most training ex
amples was chosen as the label for that leaf ( ties were 
broken arbitrarily for multiclass ID3; ties were broken 
in favor of class O for binary ID3). 

In the direct multiclass approach, ID3 is applied 
once to produce a decision tree whose leaves are la
belled with one of the 126 phoneme/stress classes . In 
the one-per-class approach, ID3 is applied 126 times 
to learn a separate decision tree for each class. When 
learning class i, all training examples in other class
es are considered to be "negative examples" for this 
class. When the 126 trees are applied to classify ex
amples from the test set, ties are broken in favor of the 
more-frequently-occurring phoneme/stress pair (as ob
served in the training set). In particular, if none of the 
trees classifies a test case as positive, then the most fre
quently occurring phoneme/stress pair is guessed. In 
the distributed output code approach, ID3 is applied 
26 times, once for each bit-position in the output code. 

Results 
Table 1 shows the percent correct ( over the 1000-

word test set) for words, letters, phonemes, and stress
es. A word is classified correctly if each letter in the 
word is correct. A letter is correct if the phoneme 
and stress assigned to that letter are both correct. For 
the one-per-class and distributed output code meth
ods, the phoneme is correct if all bits coding for the 
phoneme are correct ( after mapping to the nearest le
gal codeword and breaking ties by frequency). Similar
ly, the stress is correct if all bits coding for the stress 
are correct. 

There are several things to note . First, the direct 
multiclass and distributed output codes performed e
qually well. Indeed, the statistical test for the dif
ference of two proportions cannot distinguish them. 
Second, the one-per-class method performed marked
ly worse, and all differences in the table between this 
method and the others are significant at or below the 
.01 level. 

Error Correcting Codes 
The satisfactory performance of distributed output 
codes prompted us to explore the utility of good error
correcting codes. We applied BCH methods (Lin & 
Costello, 1983) to design error-correcting codes of vary
ing lengths. These methods guarantee that the rows of 
the code (i.e., the codewords) will be separated from 
each other by some minimum Hamming distanced . 

Table 2 shows the results of training ID3 with 
distributed error-correcting output codes of varying 
lengths. Phonemes and stresses were encoded sep
arately, although this turns out to be unimportant . 
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Table 1: Comparison of Three Multi-class Methods 
Tree Statistics 

Level of Aggregation { 'Yo Correct) Average 
Method word Letter Phoneme Stress N Leaves Depth 

Direct Multiclass 13.5 70.8 81.1 78.3 1 2652.0 73.0 
One-per-class 8.7 66.7 76.4 74.5 126 34.9 10.5 
Distributed 12.5 69.6 81.3 79.2 26 270.0 29.3 

Table 2: Performance of Error-Correcting Output Codes 

BCH Code Level of Aggregation Tree Statistics 
Phoneme Stress % Correct -(1000-word test set) Average 

n d n d Word Letter 
10 3 9 3 13.3 69.8 
14 5 11 5 14.4 70.9 
21 7 13 7 17.2 72.2 
26 11 13 11 17.5 72.3 
31 15 30 15 19.9 73.8 
62 31 30 15 20.6 74.1 

127 63 30 15 20.8 74.4 

Columns headed n show the length of the code, and 
columns headed d show the Hamming distance between 
any two code words. 

The first thing to note is that the performance of 
even the simplest (19-bit) BCH code is superior to 
the 26-bit Sejnowski-Rosenberg code at the letter and 
word levels. Better still, performance improves mono
tonically as the length ( and error-correcting power) 
of the code increases. The long codes perform much 
better than either the direct multiclass or Sejnowski
Rosenberg approaches at all levels of aggregation (e.g., 
74.4% correct at the letter level versus 70.8% for direct 
multiclass). 

Not surprisingly, the individual bits of these error
correcting codes are much more difficult to learn than 
the bits in the one-per-class approach or the Sejnowski
Rosenberg distributed code. Specifically, the average 
number of leaves in each tree in the error-correcting 
codes is roughly 665, whereas the one-per-class trees 
had only 35 leaves and the Sejnowski-Rosenberg trees 
had 270 leaves. Clearly distributed output codes do 
not produce results that are easy to understand! 

The fact that performance continues to improve as 
the code gets longer suggests that we could obtain ar
bitrarily good performance if we used arbitrarily long 
codes. Indeed, this follows from information theory un
der the assumption that the errors in the various bit 
positions are independent. However, because each of 
the bits is learned using the same body of training ex
amples, it is clear that the errors are not independent. 
We have measured the correlation coefficients between 
the errors committed in each pair of bit positions for 
our BCH codes . All coefficients are positive, and many 
of them are larger than 0.30. Hence, there must come 
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Phon. Stress N Leaves Depth 
80.3 80.6 19 677.4 51.9 
82.3 80.3 25 684.7 53.1 
83.9 80.4 34 681.4 53.9 
84.2 80.4 39 700.5 56.4 
84.8 81.5 61 667.8 52.7 
85.4 81.6 77 669.9 53.3 
85.7 81.6 157 661.6 54.8 

a point of diminishing returns where further increases 
in code length will not improve performance . An open 
problem is to predict where this breakeven point will 
occur. 

Error-correcting Codes and Small Training 
Sets 
Given that the individual binary functions require 
much larger decision trees for the error-correcting 
codes than for the other methods , it is important 
to ask whether error-correcting codes can work well 
with smaller sample sizes. It is well-established that 
small training samples cannot support very complex 
hypotheses . 

To address this question , Figure 1 shows learning 
curves for the distributed output code and for the 93-
bit error-correcting code (63 phoneme bits, 30 stress 
bits) . At all sample sizes, the performance of the error
correcting configuration is better than the Sejnowski
Rosenberg distributed code . Hence, even for small 
samples, error-correcting codes can be recommended. 

Replication in Isolated Letter Speech 
Recognition 

To test whether error-correcting output codes provide 
a general method for boosting the performance of in
ductive learning algorithms, we applied them in a sec
ond domain and with a different learning algorithm . 
Specifically, we studied the domain of isolated letter 
speech recognition and the back propagation learning 
algorithm. 

In the isolated-letter speech-recognition task, the 
"name" of a single letter is spoken by an unknown spea-
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Table 3: Parameter Values Selected via Cross Valida
tion 

# Hidden Best 
Configuration Units TSS 
one-per-class 78 10.50 
30-bit ECC 156 142.66 
62-bit ECC 156 161.76 

ker and the task is to assign this to one of 26 classes 
corresponding to the letters of the alphabet. Ron Cole 
has made available to us his ISO LET database of 7,797 
training examples of spoken letters (Cole, Muthusamy 
& Fanty, 1990). The database was recorded from 150 
speakers balanced for sex and representing many dif
ferent accents and dialects. Each speaker spoke each 
of the 26 letters twice (except for a few cases) . The 
database is subdivided into 5 parts (named ISOLETl, 
ISOLET2, etc .) of 30 speakers each. 

Cole's group has developed a set of 617 features de
scribing each example. Each feature has been scaled 
to fall in the range [-1, +1]. We employed the opt 
(Barnard & Cole, 1989) implementation of backprop
agation with conjugate gradient optimization in all of 
our experiments. 

In our experiments, we compared the one-per-class 
approach to a 30-bit (d = 15) BCH code and a 62-bit 
(d = 31) BCH code. In each case, we used a standard 
3-layer network (one input layer, one hidden layer, and 
one output layer). In the one-per-class method, test 
examples are assigned to the class whose output unit 
gives the highest activation. In the error-correcting 
code case, test examples are assigned to the class whose 
output codeword is the closest to the activation vector 
produced by the network as measured by the following 
distance metric: Li !act; - code; I-

One advantage of conjugate-gradient optimization is 
that, unlike backpropagation with momentum, it does 
not require the user to specify a learning rate or a 
momentum parameter. There are, however, three pa
rame_ters that must be specified by the user : (a) the 
startmg random-number seed (used to initialize the ar
tificial neural network), (b) the number of hidden u
nits, and (c) the total-summed squared error at which 
training should be halted (this avoids over-training). 

To determine good values for these parameters, we 
followed the "cross-validation" training methodology 
advocated by Lang, Waibel, and Hinton (1990). The 
training data were broken into three sets: 

• The training set consisting of the 3,120 letters spo
ken by 60 speakers. (These are the examples in 
Cole's files ISOLETl and ISOLET2 .) 

• The cross-validation set consisting of 3,118 letters 
spoken by 60 additional speakers. (These are the 
examples in files ISOLET3 and ISOLET4 .) 

• The test set consisting of 1,559 letters spoken by 
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Figure 1: Learning curves showing% phonemes correct 
for the distributed output code and for the 93-bit error
correcting code (63 phoneme bits with d = 31, 30 stress 
bits with d = 15). 

Table 4: Performance in the Isolated Letter Domain 
Actual % 'Yo 

Configuration TSS Correct Error 
one-per-class 10.51 95.83 4.17 
30-bit ECC 142.26 96.73 3.27 
62-bit ECC 161.85 95.96 4.04 

30 additional speakers. (These are the examples in 
file ISOLET5.) 

The idea is to vary the parameters while training on 
the training set and testing on the cross-validation set. 
The parameter values giving the best performance on 
the cross-validation set are then used to train a network 
using the union of the training and cross-validation 
sets, and this network is then tested against the test 
set. We varied the number of hidden units between 
35 and 182, and , for each number of hidden units we 
tried four different random seeds . Table 3 shows' the 
parameter values that were found by cross validation 
to give the best results. 

Table 4 shows the results of training each configu
ration on the combined training and cross-validation 
sets and testing on the test set . Both error-correcting 
configurations perform better than the one-per-class 
configuration. The results are not statistically signif
icant ( according to the test for the difference of two 
proportions), but this could be fixed by using a larg
er test set. The results are very definitely significant 
from a practical standpoint: The error rate has been 
reduced by more than 20%. This is the best known 
error rate for this task. 
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Conclusions 
The experiments in this paper demonstrate that error
correcting output codes provide an excellent method 
for applying binary learning algorithms to multiclass 
learning problems . In particular , error-correcting out
put codes outperform the direct multiclass method, the 
one-per-class method , and a domain-specific distribut 
ed output code (the Sejnowski-Rosenberg code for the 
nettalk domain). Furthermore, the error-correcting 
output codes improve performance in two very dif
ferent domains and with two quite different learning 
algorithms. 

We have investigated many other issues concerning 
error-correcting output codes, but, due to lack of space, 
these could not be included in this paper. Briefly, we 
have demonstrated that codes generated at random 
can act as excellent error-correcting codes. Experi
ments have also been conducted that show that train
ing multiple neural networks and combining their out
puts by "voting" does not yield as much improvement 
as error-correcting codes. 
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