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Abstract 

The performance of the error backpropagation (BP) and 1D3 learning algorithms was com
pared on the task of mapping English text to phonemes and stresses. Under the distributed 
output code developed by Sejnowski and Rosenberg, it is shown that BP consistently out
performs ID3 on this task by several percentage points. Three hypotheses explaining this 
difference were explored: ( a) ID3 is overfitting the training data, (b) BP is able to share 
hidden units across several output units and hence can learn the output units better, and ( c) 
BP captures statistical information that 1D3 does not. We conclude that only hypothesis ( c) 
is correct. By augmenting ID3 with a simple statistical learning procedure, the performance 
of BP can be approached but not matched. More complex statistical procedures can improve 
the performance of both BP and 1D3 substantially. A study of the residual errors suggests 
that there is still substantial room for improvement in learning methods for text-to-speech 
mappmg. 
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1 Introduction 

The task of mapping English text into speech is quite difficult. A complete text-to-speech 
system involves many stages of processing. Ideally, sentences are parsed to identify word 
senses and parts of speech. Individual words (and their senses) are then mapped into strings 
of phonemes and stresses. The phonemes and stresses can then be combined by various 
techniques to generate sound waves. For an excellent review, see Klatt (1987). 

In this paper, we focus on the task of mapping isolated words into strings of phonemes 
and stresses as formulated by Sejnowski and Rosenberg (1987) in their widely known work on 
NETTALK. A phoneme is an equivalence class of basic sounds. An example is the phoneme 
/p/. Individual occurrences of a /p/ are slightly different, but they are all considered /p/ 
sounds. For example, the two p's in "lollypop" are pronounced differently, but they are both 
members of the equivalence class of phoneme /p/. We use 54 phonemes (see Appendix A). 

Stress is the perceived weight given to a syllable in a word. For example, the first syllable 
of "lollypop" receives the primary stress, the third syllable receives secondary stress, and the 
middle syllable is unstressed. Stress information is coded by assigning one of six possible 
stress symbols to each letter. Consonants generally receive one of the symbols "<" or ">", 
which indicate that the principal vowel in this syllable is to the left or the right (respectively) 
of the consonant. Vowels are generally marked with a code of O (none), 1 (primary), or 2 
(secondary) to indicate the degree of stress. Lastly, silent stress ( "-") is assigned to blanks. 

Let L be the set of 29 symbols comprising the letters a-z, and the comma, space, and 
period (in our data sets, comma and period do not appear). Let P be the set of 54 English 
phonemes and S be the set of 6 stresses employed by Sejnowki and Rosenberg. The task is 
to learn the mapping J: 

f : L * - P* X S*. 

Specifically, f maps from a word of length k to a string of phonemes of length k and a string 
of stresses of length k. For example, 

f("lollypop") = ("lal-ipap", ">1<>0>2<"). 

Notice that letters, phonemes, and stresses have all been aligned so that silent letters are 
mapped to the silent phoneme /-/. 

As defined, f is a very complex discrete mapping with a very large range. If we assume no 
word contains more than 28 letters ( the length of "antidisestablishmentarianism"), this range 
would contain more than 1070 elements. Existing learning algorithms focus primarily on 
learning Boolean concepts-that is, functions whose range is the set {O, l}. Such algorithms 
cannot be applied directly to learn J. 

Fortunately, Sejnowski and Rosenberg developed a technique for converting this complex 
learning problem into the task of learning a collection of Boolean concepts. They begin by 
reformulating f to be a mapping g from a seven-letter window to a single phoneme and a 
single stress. For example, the word "lollypop" would be converted into 8 separate 7-letter 
windows: 

g(" ___ loll") = ("l"' ">") 
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g(" __ lolly") = ("a"' "1 ") 
g( 11 _lollyp 11 ) = ("l"' "<") 
g("lollypo") = ("-" J ">") 
g("ollypop") = (" i II> "0") 
g( 11llypop_ 11 ) = ("p"' II) II) 

g("lypop __ ") = ("a"' "2") 
g("ypop ___ ") = ( "p"' "<") 

The function g is applied to each of these 8 windows, and then the results are concatenated 
to obtain the phoneme and stress strings. This mapping function g now has a range of 324 
possible phoneme/stress pairs, which is a substantial improvement. 

Finally, Sejnowski and Rosenberg code each possible phoneme/stress pai~ as a 26-bit 
string, 21 bits for the phoneme and 5 bits for the stress. Each bit in the code corresponds 
to some property of the phoneme or stress. This converts g into 26 separate Boolean func
tions, h1 , ... , h26 • Each function hi maps from a seven-letter window to the set {O, 1}. To 
assign a phoneme and stress to a window, all 26 functions are evaluated to produce a 26-bit 
string. This string is then mapped to the nearest of the 324 bit strings representing legal 
phoneme/stress pairs. We used the Hamming distance between two strings to measure dis
tance. (Sejnowski and Rosenberg used the angle between two strings to measure distance, 
but they report that the Euclidean distance metric gave similar results. In tests with the 
Euclidean metric, we have obtained results identical to those reported in this paper.) 

With this reformulation, it is now possible to apply Boolean concept learning methods 
to learn the hi. However, the individual hi must be learned extremely well in order to 
obtain good performance at the level of entire words. This is because errors aggregate. For 
example, if each hi is learned so well that it is 99% correct and if the errors among the hi 
are independent, then the 26-bit string will be correct only 77% of the time. Because the 
average word has about 7 letters, whole words will be correct only 16% of the time. 

In the remainder of this paper, we describe a series of experiments comparing the perfor
mance of the error backpropagation algorithm (BP) to the decision-tree learning algorithm 
ID3. We begin by comparing BP and ID3 on the task described above. Having established 
that BP significantly outperforms ID3 on this task, we formulate three hypotheses to explain 
this difference. We test these hypotheses by performing additional experiments. These ex
periments demonstrate that ID3, combined with some simple statistical learning procedures, 
can nearly match the performance of BP. Finally, we present data suggesting that there is 
still substantial room for improvement of learning algorithms for text-to-speech mapping. 

2 A Simple Comparative Study 

In this study, ID3 and BP were both applied to the learning task described above. We begin 
by briefly reviewing these two learning algorithms and the data set . 

2.1 The Algorithms 

ID3 is a simple decision-tree learning algorithm developed by Ross Quinlan (1983; 1986b ). 
It constructs a decision tree recursively, starting at the root. At each node, it selects, as 
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the feature to be tested at that node, the feature ai whose mutual information with the 
output classification is greatest ( this is sometimes called the information gain criterion). 
The training examples are then partitioned into those examples where ai = 0 and those 
where ai = 1. The algorithm is then invoked recursively on these two subsets of training 
examples. The algorithm halts when all examples at a node fall in the same class. At this 
point, a leaf node is created and labelled with the class in question. The basic operation 
of ID3 is quite similar to the CART algorithm developed by Breiman, Friedman, Olshen & 
Stone (1984) and to the tree-growing method developed by Lucassen and Mercer (1984). 

In our implementation of ID3, we did not employ windowing (Quinlan, 1983), CHI-square 
forward pruning (Quinlan, 1986a), or any kind of reverse pruning (Quinlan, 1987). We did 
apply one simple kind of forward pruning to handle inconsistencies in the training data: If 
all training examples agreed on the value of the chosen feature, then growth of the tree was 
terminated in a leaf and the class having more training examples was chosen as the label for 
that leaf ( in case of a tie, the leaf is assigned to class O). 

To apply ID3 to this task, the algorithm must be executed 26 times-once for each 
mapping hi. Each of these executions produces a separate decision tree. The seven-letter 
window was represented as the concatenation of seven 29-bit strings. Each 29-bit string 
represents a letter (one bit for each letter, period, comma, and blank) , and hence, only one 
bit is set to 1 in each 29-bit string. This produces a string of 203 bits for each window. 

The error backpropagation algorithm (Rumelhart, Hinton & Williams, 1986) is widely 
applied to train artificial neural networks. We employed a fully-connected feed-forward 
network containing 203 input units, a single hidden layer of 160 units, and 26 output units 
( one for each mapping hi). There were no shortcut connections from the input units to the 
output units. We employed the same input and output encodings described above. 

Each artificial neuron is implemented by taking the dot product of a vector of weights w 
with a vector of incoming activations x, adding a bias 0, and applying the logistic function 

1 
Y = 1 + e-(w,x+O) ' 

which is a continuous, differentiable approximation to the linear threshold function used in 
perceptrons. The error backpropagation algorithm incrementally adjusts the weights and the 
bias of each unit in order to minimize the squared error between the computed and desired 
output values. 

Unlike ID3, it is only necessary to apply BP once, because all 26 output bits can be learned 
simultaneously. Indeed, the 26 outputs all share the collection of 160 hidden units, which 
may allow them to be learned more accurately. However, while ID3 is a batch algorithm that 
processes the entire training set at once, BP is an incremental algorithm that makes repeated 
passes over the data. Each complete pass is called an "epoch." During an epoch, the training 
examples are inspected one-at-a-time, and the weights of the network are adjusted to reduce 
the squared error of the outputs. We used the implementation provided with (McClelland 
and Rumelhart, 1988). 

As explained below, we concluded that the best performance was obtained with a learning 
rate of .25, a momentum coefficient of .9, random values in the range (-.3, +.3], and a hidden 
layer containing 160 units. These values are .identical to those employed by Sejnowski and 
Rosenberg, except that their network contained only 120 hidden units. As we will see below, 
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performance with 120 hidden units is not hugely different from performance with 160 hidden 
units. 

Because the outputs from BP are floating point numbers between O and 1, we had to 
adapt the Hamming distance measure when mapping to the nearest legal phoneme/stress 
pair. We used the following distance measure: d(x, y) = Li lxi - Yil• This reduces to the 
Hamming distance when x and y are Boolean vectors. 

2.2 The Data Set 

Sejnowski and Rosenberg provided us with a dictionary of 20,003 words and their corre
sponding phoneme and stress strings. From this dictionary we drew at random ( and without 
replacement) a training set of 1000 words and a testing set of 1000 words. 

2.3 Cross-validation Training 

A serious impediment to the practical application of backpropagation is that it is controlled 
by many parameters including (a) the learning rate, (b) the momentum coefficient, (c) the 
random starting weights, ( d) the range of values of the starting weights, ( e) the target output 
activation level, (f) the number of units in the hidden layer, and (g) the criterion for halting 
training (the desired total sum squared error, TSSE). To determine good values for these 
parameters, we performed cross-validation training following the methodology described by 
Lang, Waibel, & Hinton (1990). To carry out this procedure, we split the training set further 
into an 800-word "subtraining" set and a 200-word "cross-validation" set. Then we executed 
the algorithm many times, varying these parameters while training on the subtraining set 
and testing on the cross-validation set. The goal of this search of parameter space is to find 
those parameters that give peak performance on the cross-validation set. These parameters 
can then be used to train on the entire training set and test on our 1000-word test set. 

The advantage of cross-validation training is that no information from the test set is 
employed during training, and hence, the observed error rate on the test set is a better 
estimate of the true error rate of the learned network. This contrasts with the common, but 
unsound practice of adjusting parameters to optimize performance on the test set. 

Preliminary cross-validation runs indicated that the following parameter values gave good 
performance: learning rate .25, momentum .9, range of initial random values [-.3, +.3], 
target output activation levels 0.0 and 1.0. Other values that we tried were learning rate 
.1 or .2, initial weight range [-.05, +.05], and target output activation levels 0.1 and 0.9. 
After these preliminary runs, we performed a series of runs that systematically varied the 
number of hidden units ( 40, 60, 80, 100, 120, 140, 160, and 180) and the random starting 
weights (four sets of random weights were generated for each network). Performance on 
the cross-validation set was evaluated after each complete pass through the training data 
(epoch). The networks were trained for 30 epochs (except for a few cases, where training 
was continued to 60 epochs to ensure that the peak performance had been found). Table 1 
shows the peak performance (percent of letters correctly pronounced) for each network size 
and the total sum squared error ( on the subtraining set) that gave the peak performance. 
These TSSE numbers ( appropriately adjusted for the number of training examples) can then 
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Table 1: Optimal network size via cross-validation 

Number of Letters Number of 
Hidden Units (% Correct) TSSE Epochs 

40 67.0 2289 28 
60 67.7 939 46 
80 68.3 1062 25 

100 69.3 1041 19 
120 68.7 1480 12 
140 70.0 541 27 
160 70.7 445 37 
180 69.3 477 28 

Table 2: Percent correct over 1000-word test set 

Level of Aggregation ( % correct) 
Method Word Letter Phoneme Stress Bit (mean) 
ID3 9.6 65.6 78 .7 77 .2 96.1 
BP 13.6** 70.6*** 80.8*** 81.3*** 96.7* 

Difference m the cell s1gmficant at p < .05*, .005**, .001 *** 

be used to decide when to terminate training on the entire training set. Based on these runs, 
the best network size is 160 hidden units. 

Having completed cross-validation training, we then proceeded to train on the entire 
training set. During cross-validation training, we stored a snapshot of the weight values after 
the first complete epoch for each random network that was generated. Hence, to perform 
training on the entire training set, we used the best stored 160-hidden unit snapshot as a 
starting point . Our subtraining set contained 5,807 seven-letter windows, so to train our full 
training set ( of 7,229 seven-letter windows), we placed the target TSSE at 554. 

We were surprised by the figures shown in Table 1, since we expected that a reasonably 
small network (e.g., 80 hidden units) would give a good fit to the data . However, the table 
clearly shows that generalization steadily improves as the quality of the fit to the training 
data improves. Furthermore, Figure 1 shows that as training of a network continues past 
the point of peak performance, performance does not decline appreciably. 

2.4 Results 

Table 2 shows percent correct ( over the 1000-word test set) for words, letters, phonemes, 
and stresses. Virtually every difference in the table at the word, letter, phoneme , and stress 
levels is statistically significant ( using the test for the difference of two proportions). Hence, 
we conclude that there is a substantial difference in performance between ID3 and BP on 
this task . 
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Figure 1: Training curve for the best 160-hidden unit network. Vertical bar indicates point 
of maximum performance. 
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Table 3: Classification of test set windows by ID3 and BP, decoding to nearest legal phoneme 
and stress. 

Back Propagation 

Correct Incorrect 

Correct 
4239 512 Disagree : 1385 (19.2%) 

ID3 
(58 .5%) (7.1%) 

873 1618 
Incorrect 

(12.1 %) (22.3%) Agree: 5857 (80 .9%) 

It should be noted that although the testing set contains 1000 disjoint words, some of the 
7-letter windows in the test set also appear in the training set. Specifically, 946 (13.1 %) of 
the windows in the test set appear in the 1000-word training set. These represent 578 distinct 
windows . Hence, the performance at the letter, phoneme, and stress levels are all artificially 
high if one is concerned about the ability of the learning methods to correctly handle unseen 
cases. However, if one is interested in the probability that a letter ( or phoneme, or stress) in 
an unseen word will be correctly classified, then these numbers provide the right measure. 

To take a closer look at the performance difference, we can study exactly how each of 
the 7,242 seven-letter windows in the test set are handled by each of the algorithms. Table 3 
categorizes each of these windows according to whether it was correctly classified by both 
algorithms, by only one of the algorithms, or by neither one. 

The table shows that the windows correctly learned by BP do not form a superset of 
those learned by ID3. Instead, the two algorithms share 4,239 correct windows, and then 
each algorithm correctly classifies several windows that the other algorithm gets wrong. The 
net result is that BP classifies 361 more windows correctly than does ID3. This shows that the 
two algorithms, while they overlap substantially, have learned fairly different text-to-speech 
mappmgs. 

The information in this table can be summarized as a correlation coefficient. Specifically, 
let Xw 3 (XBP) be a random variable that is 1 if and only if ID3 (BP, respectively) makes a 
correct prediction at the letter level. In this case, the correlation between Xrn 3 and XBP is 
.5648 . If all four cells of Table 3 were equal, the correlation coefficient would be zero. 

A weakness of Table 2 is that it shows performance values for one particular choice of 
training and test sets. We have replicated this study four times (for a total of 5 independent 
trials). In each trial, we again randomly drew without replacement two sets of 1000 words 
from the dictionary of 20,003 words. Note that this means that there is some overlap among 
the five training sets ( and among the five test sets). Table 4 shows the average performance 
of these 5 runs. All differences are significant below the .0001 level using a t-test for paired 
differences. 

Throughout this paper, we will report results only for our first 1000-word training and 
test sets. Each of these results has been replicated on the four additional training and test 
sets, and the results of those replications are given in Appendix B. 

In the remainder of this paper, we will attempt to understand the nature of the differences 
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Table 4: Average percent correct (1000-word test set) over five trials . 

Level of Aggregation (% correct) 
Method Word Letter Phoneme Stress Bit (mean) 
ID3 10.2 65.2 79.1 76.5 96.1 
BP 15.1**** 11.3••·· 81.3°* * 81.7**0 96.7**** 

Difference m the cell s1gmficant at p < .0001 •••• 

between BP and ID3 . Our main approach will be to experiment with modifications to the 
two algorithms that enhance or eliminate the differences between them (as measured by the 
correlation between their errors). All of these experiments are performed using only the 
training set and test set from Table 2. 

3 Three Hypotheses 

What causes the differences between ID3 and BP? We have three hypotheses : 

Hypothesis 1: Overfitting. ID3 has overfit the training data, because it seeks complete 
consistency. This causes it to make more errors on the test set. 

Hypothesis 2: Sharing . The ability of BP to share hidden units among all of the hi allows 
it to reduce the aggregation problem at the bit level and hence perform better. 

Hypothesis 3: Statistics. The numerical parameters in the BP network allow it to capture 
statistical information that is not captured by ID3. 

These hypotheses are neither mutually exclusive nor exhaustive. 
The following three subsections present the experiments that we performed to test these 

hypotheses . 

3.1 Tests of Hypothesis 1 (Overfitting) 

1 

l 
l 

l 
l 

The tendency of ID3 to overfit the training data is well established in cases where the data 
contain noise. Three basic strategies have been developed for addressing this problem : ( a) 
criteria for early termination of the tree-growing process , (b) techniques for pruning trees f 
to remove overfitting branches, and (c) techniques for converting the decision tree to a 
collection of rules . We implemented and tested one method for each of these strategies. J 
Table 5 summarizes the results. 

The first row repeats the basic ID3 results given above, for comparison purposes. The 
second row shows the effect of applying a x2 test ( at the .90 confidence level) to decide j 
whether further growth of the decision tree is statistically justified (Quinlan , 1986a). As 
other authors have reported (Mooney et al., 1989), this hurts performance in the NETTALK 
domain . The third row shows the effect of applying Quinlan 's technique of reduce-error j 
pruning (Quinlan , 1987) . Mingers (1989) provides evidence that this is one of the best 
pruning techniques. For this row, a decision tree was built using the 800-word subtraining 
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Table 5: Results of appl ying three overfitting-prevention techniques . 

Level of Aggregation(% correct) 
Method Data set Word Letter Phoneme Stress Bit (mean) 
(a) ID3 (as above) TEST : 9.6 65.6 78.7 77.2 96.1 
(b) ID3 (xi cutoff) TEST : 9.1 64.8 78.4 77.1 96.1 
( c) ID3 (pruning) TEST : 9.3 62.4 76.9 75.1 95.8 
(d) ID3 (rules) TEST: 8.2 65.1 78.5 77.2 96.1 

set and then pruned using the cross-validation set . Finally , the fourth row shows the effect of 
applying Quinlan 's method for converting a decision tree to a collection of rules. Quinlan 's 
method has three steps , of which we performed only the first two . First , each path from the 
root to a leaf is converted into a conjunctive rule. Second, each rule is evaluated to remove 
unnecessary conditions. Third, the rules are combined , and unnecessary rules are eliminated. 
The third step was too expensive to perform on this rule set , which contains 6,988 rules. 

None of these techniques improved the performance of ID3 on this task. This suggests 
that Hypothesis 1 is incorrect: ID3 is not overfitting the data in this domain. This makes 
sense, since the only source of "noise " in this domain is the limited size of the 7-letter window 
and the existence of a small number of words like "read" that have more than one correct 
pronunciation. Seven-letter windows are sufficient to correctly classify 98.5% of the words in 
the 20,003-word dictionary. This may also explain why we did not observe overfitting during 
excessive training in our cross-validation runs with backpropagation either. 

3 .2 A Test of Hypothesis 2 (Sharing) 

One obvious way to test the sharing hypothesis would be to develop a version of ID3 that 
permitted sharing among the 26 separate decision trees being learned. We could then see 
if this "shared-ID3" improved performance. An alternative is to remove sharing from back
propagation , by training 26 independent networks , each having only one output unit , to 
learn the 26 hi mappings. If Hypothesis 2 is correct , then , because there is no sharing a
mong these separate networks, we should see a drop in performance compared to the single 
network with shared hidden units . Furthermore, the decrease in performance should decrease 
the differences between BP and ID3 . 

For the single, shared-hidden-unit network , we employed a network with only 120 hidden 
units rather than the 160-hidden unit network described above. We employed 120 hidden 
units , because this experiment was conducted prior to the cross-validation study mentioned 
above , and because Sejnowski and Rosenberg (1987) employed a network with 120 hidden 
units , and we were replicating the parameters used by them. The performance of a 120-
hidden unit network is comparable to the 160-hidden unit network (see Dietterich , Hild , and 
Bakiri , 1990). 

There are two issues that arise in performing this experiment. The first issue concerns 
the number of hidden units to use in each of the 26 networks. If we try to learn each hi 
mapping with a separate 120-hidden unit network , training does not converge. Hence , we 
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decided to try to find the smallest network, for each hi, that would adequately fit the training 
examples. 

The second issue concerns when to terminate training. Some of the 26 hi are more difficult 
to learn than others. If we train each of the 26 separate networks to a single level of accuracy 
(e.g., 99% correct), the results cannot be directly compared to the performance of the single 
large network. To ensure the fairness of this comparison, we first measured the accuracy 
( over the training set) of each of the 26 bits learned by the single 120-hidden unit network. 
We expressed the accuracy as the sum of the squared error, since this is the criterion that is 
minimized by BP. We then trained each of the 26 separate networks to attain the squared 
error observed in the large network. 

During training, the network (with a specifieq number H of hidden units) was trained 
for 240 epochs (or until the target error level was reached). If, after 240 epochs , the network 
was far away from the target error level and appeared to be stalled, we tried the next higher 
value for H. If the network was close to the target error level and still making progress, we 
continued training for an additional 240 epochs. If the network was close to the target error 
level but stalled, we restarted the training with a different, randomly chosen, setting of the 
weights. 

Surprisingly, we were unable to successfully train the separate networks to the target 
error level on the 1000-word training set. We explored smaller subsets of the 1000-word 
training set (800, 400, 200, 100, and 50-words) and found that training did not succeed 
until the training set contained only 50 words! For the 100-word training set, for example , 
the individual networks often converged to local minima (even though the 120-hidden-unit 
network had avoided these minima). Specifically, bits 4, 6, 13, 15, 18, 21, and 25 could not 
be trained to criterion, even after 2000 epochs. This demonstrates that even if shared hidden 
units do not aid classification performance, they certainly aid the learning process! 

As a consequence of this training problem, we are able to report results for only the 50-
word training set. Table 3.2 summarizes the training process for each of the 26 output bits. 
Each row gives the number of hidden units, the squared error obtained from the 120-hidden
unit network, the squared error obtained from the individual network, and the number of 
epochs required for training. Notice that each individual bit was slightly over-trained as 
compared with the 120-hidden -unit network. This is because the program accumulates the 
squared errors during an epoch and stops when this falls below the target error level. Because 
performance improves during an epoch, the final squared error is somewhat lower. 

Table 7 shows the performance of these 26 networks on the training and test sets. Perfor
mance on the training set is virtually identical to the 120-hidden-unit network, which shows 
that our training regime was successful. Performance on the test set, however, shows a loss 
of performance when there is no sharing of the hidden units among the output units. Hence, 
it suggests that Hypothesis 2 is at least partially correct. 

However, examination of the correlation between ID3 and BP indicates that this is wrong. 
The correlation between Xrn 3 and XBPl (i.e., BP on the single network) is .5167, whereas 
the correlation between Xrn 3 and XBp 26 is .4942. Hence, the removal of shared hidden units 
has actually made ID3 and BP less similar, rather than more similar as Hypothesis 2 claims. 
This same result is obtained in the replications shown in Appendix B. The conclusion is that 
sharing in backpropagation is important to improving both its training and its performance , 
but it does not explain why ID3 and BP are performing differently. 
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T bl 6 T . . St t · t' t 26 I d d t N t k a e ramm_g a IS }CS or n epen en e wor s. 
Number of Squared error Squared error Number of 

hidden units in 120-unit network in separate network epochs 
r 

2 3.0735 2.995 41 
2 1.1114 0.863 393 
1 0.0378 0.037 48 
2 0.1194 0.102 127 
2 0.1183 0.107 311 
1 0.0533 0.050 31 
1 0.1076 0.094 33 
1 0.0398 0.037 43 
1 1.9828 1.978 9 
1 0.0228 0.022 53 
1 0.0309 0.030 40 
1 0.0386 0.035 28 
1 2.0893 2.043 57 
1 0.0523 0.049 27 
3 0.0724 0.066 313 
2 0.4333 0.317 199 
2 2.8737 2.479 123 
3 0.0494 0.047 46 
1 0.0010 0.002 60 
1 0.0010 0.002 60 
2 0.0520 0.050 167 
2 0.0405 0.039 182 
2 0.0528 0.044 253 
1 0.9953 0.987 127 
2 2.1431 2.080 36 
1 0.0010 0.001 115 
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Table 7: Performance of 26 separate networks compared with a single network having 120 
shared hidden units . Trained on SO-word training set , tested on 1000-word test set. 

Level of Aggregation (% correct) 
Method Data set Word Letter Phoneme Stress Bit (mean) 
(a) ID3 TEST: 0.8 41.5 60.5 60.1 92.6 
(b) BP 26 separate nets TRAIN: 82.0 97.6 98.4 99 .2 99.9 

TEST : 1.6 45 .0 56 .6 71.1 92.9 
( c) BP 120 hidden units TRAIN: 82.0 97.4 98.2 99 .2 99.9 

TEST : 1.8 48.4 59.4 72 .9 93.4 
Difference (b )-( c) TRAIN: 0.0 +0.2 +0 .2 0.0 0.0 

TEST: -0.2 _3.4 ••· -2.8 ** -1.8 * -0 .5 
Difference (a)-( c) TEST : -1.0 -6.9 +1.1 -12 .8 -0.9 

Table 8: Performance of backpropagation with thresholded output values. Trained on 1000-
word training set. Tested on 1000-word test set . 

Level of Aggregation (% correct) 
Method Data set Word Letter Phoneme Stress Bit (mean) 
( a) ID3 (legal) TEST: 9.6 65.6 78.7 77.2 96.1 
(b) BP (legal) TEST : 13.6 ... 70.6*** 80.8° * 81.3* ... 96.7* 
(c) BP (thresholded) TEST : 11.2 67.7 78.4 80.0 96 .3 
Difference ( c )-(b) TEST: -2.4 -2.9 *** -2.4 ••· -1.3* -0.4 

3.3 Tests of Hypothesis 3: Statistics 

We performed three experiments to test the third hypothesis . 
In the first experiment, we took the outputs of the back -propagation network and thresh

olded them (values > .5 were mapped to 1, values ~ .5 were mapped to 0) before mapping 
to the nearest legal phoneme/stress pair. Table 8 presents the results for the 1000-word 
training set. 

The results show that thresholding significantly drops the performance of back-propagation . 
Indeed, at the phoneme level, the decrease is enough to push BP below ID3. At the other 
levels of aggregation , BP still out-performs ID3. These results support the hypothesis that 
the continuous outputs of the neural network aid the performance of BP. 

However, thresholding the outputs of BP does not cause it to behave substantially more 
like ID3. The correlation between Xrn3 and XBPthresh is .5685 (as compared with .5648 
for XBP )-this is only a small increase. Close examination of the data shows that the 7-
letter windows "lost" (i.e., incorrectly classified) when BP is thresholded include 120 windows 
correctly classified by ID3 and 112 windows incorrectly classified by ID3. Hence , the mistakes 
introduced by thresholding are nearly independent of the mistakes made by ID3. 

While this experiment demonstrates the importance of continuous outputs , it does not 
tell us what kind of information is being captured by these continuous outputs nor does it 
reveal anything about the role of continuous weights inside the network. For this , we must 
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Table 9: Effect of "observed" decoding on learning performance. 

Level of Aggregation (% correct) 
Method Data set Word Letter Phoneme Stress Bit (mean) 
(a) ID3 (legal) TEST: 9.6 65.6 78.7 77.2 96.1 
(b) BP (legal) TEST: 13.6** 70.6*** 80.8*** 81.3*** 96.7* 
(c) ID3 (observed) TEST : 13.0 70.1 81.5 79.2 96.4 
(d) BP (observed) TEST: 14.3 71.5* 82.0 81.4°* 96.7 
ID3 Improvement: (c)-(a) TEST: 3.4*** 4.5*** 2.8*** 2.0•· 0.3 
BP Improvement: ( d)-:(b) TEST: 0.7 0.9 1.2• 0.1 0.0 

turn to the other two experiments. 
In the second experiment, we modified the method used to map a computed 26-bit string 

into one of the 324 strings representing legal phoneme/stress pairs. Instead of considering all 
possible legal phoneme/stress pairs, we restricted attention to those phoneme/stress pairs 
that had been observed in the training data. Specifically, we constructed a list of every 
phoneme/stress pair that appears in the training set (along with its frequency of occurrence). 
Appendix C shows this frequency information for the 1000-word training set. During testing, 
the 26-element vector produced either by ID3 or BP is mapped to the closest phoneme/ stress 
pair appearing in this list. Ties are broken in favor of the most frequent phoneme/stress pair. 
We call this the "observed" decoding method, because it is sensitive to the phoneme/stress 
pairs ( and frequencies) observed in the training set . 

Table 9 presents the results for the 1000-word training set and compares them to the 
previous technique ("legal") that decoded to the nearest legal phoneme/ stress pair. The 
key point to notice is that this decoding method leaves the performance of BP virtually 
unchanged while it substantially improves the performance of ID3. Indeed, it eliminates a 
substantial part of the difference between ID3 and BP-the two methods are now statistically 
indistinguishable at the word and phoneme levels. Mooney et al. (1989), in their comparative 
study of ID3 and BP on this same task, employed a version of this decoding technique ( with 
random tie-breaking), and obtained very similar results when training on a set of the 808 
words in the dictionary that occur most frequently in English text. 

An examination of the correlation coefficients shows that "observed" decoding increases 
the similarity between ID3 and BP. The correlation between Xrn3observed and XBPobserved is 
.5865 (as compared with .5648 for "legal" decoding). Furthermore, "observed" decoding is 
almost always monotonically better (i.e., windows incorrectly classified by "legal" decoding 
become correctly classified by "observed" decoding, but not vice versa). 

From these results, we can conclude that BP was already capturing most of the infor
mation about the frequency of occurrence of phoneme/stress pairs, but that ID3 was not 
capturing nearly as much. Hence, this experiment strongly supports Hypothesis 3. 

A drawback of the "observed" strategy is that it will never decode a window to a 
phoneme/stress pair that it has not seen before. Hence, it will certainly make some mistakes 
on the test set. However, phoneme/stress pairs that have not been observed in the training 
set make up a very small fraction of the windows in the test set. For example, only 7 of the 
phoneme/stress pairs that appear in our 1000-word test set do not appear in the 1000-word 
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Table 10: Effect of "block " decoding on learning performance . 

Level of Aggregation (% correct) 
Method Data set Word Letter Phoneme Stress Bit (mean) 
(a) ID3 (legal) TEST : 9.6 65.6 78.7 77.2 96.1 
(b) BP (legal) TEST : 13.6** 70.6"** 80.8"*" 81.3"** 96.7* 
(c) ID3 (block) TEST : 17.5 73.2 83.8 80.4 96.7 
(d) BP (block) TEST: 19.3 73.7 83.6 81.4 96.7 
ID3 Improvement : (c)-(a) TEST : 7.9""* 7.6**" 5.1"** 3.2**" 0.6" 
BP Improvement: ( d)-(b) TEST : 5.7"** 3.1 ..... 2.8""" 0.1 0.0 

training set. In the test set , they only account for 11 of the 7,242 windows (0.15%). If we 
were to train on all 19,003 words from the dictionary that do not appear in our 1000-word 
test set , there would be only one phoneme/stress pair present in the test set that would not 
appear in the training set , and it would appear in only one window . 

The final experiment concerning Hypothesis 3 focused on extracting additional statistical 
information from the training set. We were motivated by Klatt 's (1987) view that ultimate
ly letter-to-phoneme rules will need to identify and exploit morphemes (i.e. , commonly 
occurring letter sequences appearing within words) . Therefore, we analyzed the training 
data to find all letter sequences of length 1, 2, 3, 4, and 5, and retained the 200 most
frequently-occurring sequences of each length. For each retained letter sequence, we formed 
a list of all phoneme/ stress strings to which that sequence is mapped in the training set 
( and their frequencies). For example, here are the five pronunciations of the letter sequence 
"ATION " in the training set (Format is ((phoneme string) (stress string) (frequency))). 

(("eS-xn" "1>0<<" 22) 
("©S-xn" "1<0<<" 1) 
("eS-xn" "2>0<<" 1) 
("©S-xn" "2<0>>" 1) 
("©S-xn" "1<0>>" 1)) 

During decoding, each word is scanned (from left to right) to see if it contains one of the 
"top 200" letter sequences of length k (varying k from 5 down to 1). If a word contains such 
a sequence , the letters corresponding to the sequence are processed as follows. First , each of 
the k windows centered on letters in the sequence is evaluated (i.e. , by the 26 decision trees 
or by the feed-forward network) to obtain a 26-bit string , and these strings are concatenated 
to produce a bit string of length k · 26. Then, each of the observed pronunciations for the 
sequence is converted into a k · 26-bit string according to the code given in Appendix A. 
Finally , the "unknown" string is mapped to the nearest of these observed bit strings. 

After decoding a block , control skips to the end of the matched k-letter sequence and 
resumes scanning for another "top 200" letter sequence of length k. After this scan is 
complete , the parts of the word that have not yet been matched are re-scanned to look 
for blocks of length k - 1. Every letter in the word is eventually processed , because every 
individual letter is a block of length 1. We call this technique "block" decoding. 
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Table 11: Classification of test set windows by ID3 and BP with "block" decoding. 

Back Propagation 

Correct Incorrect 

Correct 
4892 410 Disagree : 855 (11.8%) 

ID3 
(66.6%) (5.7%) 

445 1495 
Incorrect 

(6 .1%) (20.6%) Agree: 6387 (88.2%) 

Table 10 shows the performance results on the 1000-word test set. Block decoding signif
icantly improves both ID3 and BP, but again, ID3 is improved much more ( especially below 
the word level). Indeed, the two methods cannot be distinguished statistically at any level 
of aggregation. Furthermore, the correlation coefficient between Xmablock and XBPblock is 
.6973, which is a substantial increase compared to .5648 for legal decoding. Hence , block 
decoding also makes the performance of ID3 and BP much more similar. Table 11 shows 
how the 7,242 seven-letter windows of the test set are handled by ID3 and BP . 

Curiously, these summary numbers hide substantial shifts in performance caused by 
block decoding. To demonstrate this, consider that there is only a . 7153 correlation between 
Xrnalegal and Xrnablock• This reflects the fact that while "block" decoding gains 734 windows 
previously misclassified by "legal" decoding, it also loses 183 windows that were previously 
correctly classified by "legal" decoding. Similarly, there is only a .7693 correlation between 
XBPlegal and XBPblock (reflecting a gain of 452 and a loss of 227 windows) . 

The conclusion we draw is that block decoding further reduces the differences between 
ID3 and BP, and hence that this experiment also supports Hypothesis 3. The experiment 
suggests that the block decoding technique is a useful adjunct to any learning algorithm 
applied in this domain. It also suggests that the performance of block decoding could be 
improved if some way could be found to avoid losing windows that were correctly classified 
without block decoding. One technique we are exploring is to combine the constraints of 
blocks that overlap . 

4 Discussion 

4.1 Improving These Algorithms 

The results shown in previous sections demonstrate that ID3 and BP, while they attain 
similar levels of performance, still do not cover the same set of testing examples. In particular , 
an analysis of the 7,242 7-letter windows in the test set reveals that there are 855 windows 
that are incorrectly classified by one of the algorithms and correctly classified by the other. 
This suggests that an inductive learning algorithm should be able to label correctly all of 
these 855 windows . This would yield a performance of 79.4% at the letter level, which would 
be quite good . 
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Table 12: Best configuration: ID3, 15-letter window , 127-bit error correcting code, 7-letter 
phoneme and stress context, domain-specific input features, observed decoding, simplified 
stresses . 

Level of Aggregation (% correct) 
Training set Word Letter Phoneme Stress Bit (mean) 
1,000 words 40.6 84.1 87.0 91.4 92.2 

19,003 words 64.8 91.4 93.7 95.1 95.8 

There are several directions that can be explored for improving these algorithms. We 
have pursued several of these directions in order to develop a high-performance text-to-speech 
system. Our efforts are reported elsewhere (Bakiri & Dietterich, 1990b ). 

One approach is to design better output codes for phoneme/stress pairs. Our experi 
ments have shown that BCH error correcting codes provide better output codes than the 
output code used in this paper. Randomly-generated bit-strings produce similar performance 
improvements (see Bakiri & Dietterich, 1990a) . 

Another approach is to widen the 7-letter window and introduce context. Lucassen and 
Mercer (1984) employ a 9-letter window and scan the word from back-to-front. They also 
include the phonemes and stresses of the four letters to the right of the letter at the center 
of the window. These phonemes and stresses can be obtained, during execution, from the 
letters that have already been pronounced during the scan. Our experiments (with a 15-letter 
window) indicate that this produces substantial performance gains as well. 

A third technique for improving performance is to supply additional input features to the 
program. One feature of letters that helps is a bit indicating whether the letter is a vowel 
or a consonant. A feature of phonemes that helps is whether the phoneme is tense or lax . 

A fourth technique to be pursued is to refine the block decoding method. Blocks should be 
chosen more carefully and checked by cross validation. Decoding should consider overlapping 
blocks . 

A fifth direction that we have not yet pursued is to implement one of the published 
methods for obtaining class probability estimates from decision trees. Buntine (1990), for 
example, presents an algorithm that provides fairly accurate probability estimates at the 
leaves of a decision tree, rather than the simple binary outputs that we employed. This 
could eliminate the need for "observed" decoding. 

By combining the error-correcting output codes with a wider window, a back-to-front 
scan to include phoneme and stress context, and domain specific features, we have obtained 
excellent performance with our 1000-word training and test sets. Table 12 shows our best
performing configuration when trained on 1000 words and when trained on 19,003 words. 
Details of this configuration are described in Bakiri & Dietterich (1990b ). 

It is difficult to compare these performance levels to the human-developed letter-to-sound 
rules incorporated in systems such as DECtalk (Klatt, 1987). The criteria for correctness 
employed in this study are very strict: The phoneme and stress classes must match exactly. 
A little thought shows that this is overly strict. Some of the stress symbols (i.e., < and >) 
do not affect pronunciation at all. Other stress symbols (i.e., secondary, 2, and tertiary, o, 
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stresses) are indistinguishable when played through the DECtalk synthesizer. Some phoneme 
errors ( e.g., substituting /k/ for / e/) are very serious, while others ( e.g., substituting /x/ 
for /©/) are virtually indistinguishable. Hence, additional research is required to develop an 
error cost function that would permit better comparisons. Without such a cost function, the 
comparisons in this paper among learning algorithms are still valuable, because they provide 
a difficult, large scale classification problem. But the performance figures shown here do 
not give a good indication of the quality of the speech produced by applying the learned 
classification trees or networks. 

Klatt (1987) points out three properties of the domain that present special challenges to 
inductive learning methods: 

(1) the considerable extent of letter context that can influence stress patterns in a 
long word ( and hence affect vowel quality in words like "photograph/photography") , 
(2) the confusion caused by some letter pairs, like CH, which function as a single 
letter in a deep sense, and thus misalign any relevant letters occurring further 
from the vowel, and (3) the difficulty of dealing with compound words (such as 
"houseboat" with its silent "e" ), i.e. , compounds act as if a space were hidden 
between two of the letters inside the word. 

Long-distance interactions pose a difficult problem for BP, since capturing them presum
ably requires a very wide window. This in turn requires a very large network with many 
weights, and these will be much more difficult and time-consuming to train. ID3 scales very 
well as the number of irrelevant features grows, so we have been able to apply it to much 
wider windows without problems. General solutions to the other two problems mentioned 
by Klatt appear to be quite challenging. 

4.2 Applying ID3 to Aid BP 

An interesting observation from this and other studies is that the performance of ID3 and 
BP is highly correlated. This suggests a methodology for using ID3 to aid BP even in 
domains where BP out-performs ID3. In many real-world applications of inductive learn
ing, substantial "vocabulary engineering" is required in order to attain high performance. 
This vocabulary engineering process typically involves the iterative selection and testing of 
promising features. To test the features, it is necessary to train a BP network using them
which is very time-consuming. Because ID3 is so highly correlated with BP, it could be used 
instead to test feature sets. Once a good set of features is identified, a BP network could 
then be trained. 

To examine this idea in more detail, consider Table 13. This shows the performance of 
ID3 and BP on each of the 26 individual bits (i.e., without decoding them at all). (Each 
algorithm was trained on the 1000-word training set and tested on the 1000-word test set. A 
120-hidden unit network was employed with BP). The correlation coefficient is .9812, which 
is significant well below the .001 level. 

In addition to considering the similarity in the predictive performance of ID3 and BP, 
we can also consider the difficulty of training the two algorithms. Table 14 shows the 
performance of ID3 and BP on the individual output bits when trained on the 50-word 
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Table 13: Performance , complexity, and difficulty of learning . 50-word training set , 1000- n 
word test set. 

I 

1D3 
bit windows I (%) 

1 6984 96.4 
2 6779 93.6 
3 7104 98.1 
4 6936 95.8 
5 6584 90.9 
6 7065 97.6 
7 7207 99.5 
8 7213 99.6 
9 7206 99.5 

10 7237 99.9 
11 7240 100.0 
12 7202 99.4 
13 6810 94.0 
14 7148 98.7 
15 6944 95.9 
16 6903 95.3 
17 6629 91.5 
18 6863 94.8 
19 7242 100.0 
20 7242 100.0 
21 6863 94.8 
22 6658 91.9 
23 6682 92.3 
24 6542 90.3 
25 6729 92.9 
26 7242 100.0 
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BP 
windows I 

6963 
6781 
7110 
6925 
6591 
7064 
7181 
7198 
7214 
7232 
7239 
7158 
6801 
7138 
6914 
6966 
6640 
6997 
7242 
7242 
6997 
6752 
6779 
6603 
6798 
7242 

(%) 
96.1 
93.6 
98.2 
95.6 
91.0 
97.5 
99.2 
99.4 
99.6 
99.9 

100.0 
98.8 
93.9 
98.6 
95.5 
96.2 
91.7 
96.6 

100.0 
100.0 

96.6 
93.2 
93.6 
91.2 
93.9 
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training set ( and tested on the 1000-word test set) . For BP, these are the 26 separate, 
individually-sized networks that were trained to test Hypothesis 2. The table also shows 
some measures of the difficulty of learning. For 1D3, the number of nodes in the learned 
decision tree and the depth of the tree are given. For BP, the minimum number of hidden 
units and the number of epochs are shown. As with Table 13, the performance is highly 
correlated (r = .9550). More importantly, the number of nodes and the number of hidden 
units have a correlation coefficient of .6602. There is a reasonably strong correlation between 
the number of nodes and the number of epochs as well (0.5913). 

This shows that 1D3 and BP tend to agree on the difficulty of these learning problems. 
This agreement suggests that by running 1D3 on a new problem, we could obtain an estimate 
of the number of hidden units needed by BP and the number of epochs required to train 
them . This would be very useful, because it could reduce the number of cross-validation 
runs required to determine good parameters for BP. 

5 Conclusions 

The relative performance of ID3 and Backpropagation on the text -to-speech task depends 
on the decoding technique employed to convert the 26 bits of the Sejnowski/Rosenberg code 
into phoneme/stress pairs . Decoding to the nearest legal phoneme/stress pair (the most 
obvious approach) reveals a substantial difference in the performance of the two algorithms . 

Experiments investigated three hypotheses concerning the cause of this performance dif
ference. 

The first hypothesis-that 1D3 was overfitting the training data-was shown to be in
correct. Three techniques that avoid overfitting were applied, and none of them improved 
ID3's performance. 

The second hypothesis-that the ability of back propagation to share hidden units was 
a factor-was shown to be only partially correct. Sharing of hidden units does improve the 
classification performance of backpropagation and-perhaps more importantly-the conver
gence rate of the gradient descent search. However, an analysis of the kinds of errors made 
by ID3 and backpropagation ( with or without shared hidden units) demonstrated that these 
were different kinds of errors. Hence, eliminating shared hidden units does not produce an 
algorithm that behaves like ID3. This suggests that the development of a "shared 1D3" algo
rithm that could learn multiple concepts simultaneously is unlikely to produce performance 
similar to BP. 

The third hypothesis-that backpropagation was capturing statistical information by 
some mechanism (perhaps the continuous output activations)-was demonstrated to be the 
primary difference between 1D3 and BP. By adding the "observed" decoding technique to 
both algorithms, the level of performance of the two algorithms in classifying test cases 
becomes statistically indistinguishable ( at the word and phoneme levels). By adding the 
"block" decoding technique, all differences between the algorithms are statistically insignif
icant. 

Given that with block decoding the two algorithms perform equivalently, and given that 
BP is much more awkward to apply and time-consuming to train, these results suggest that 
in tasks similar to the text-to-speech task, 1D3 with block decoding is clearly the algorithm of 
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Table 14: Performance, complexity, and difficulty of learning . 50-word training set , 1000-
word test set. 

ID3 BP 
bit windows (%) nodes depth windows (%) # hidden units epochs 

1 6743 (93 .1) 33 14 6465 (89.3) 2 41 
2 6388 (88.2) 44 18 6372 (88.0) 2 393 
3 7008 (96.8) 9 5 6973 (96.3) 1 48 
4 6577 (90.8) 38 14 6448 (89.0) 2 127 
5 5977 (82.5) 57 16 5833 (80.5) 2 311 
6 6734 (93.0) 18 8 6729 (92.9) 1 31 
7 7154 (98.8) 7 4 7116 (98.3) 1 33 
8 7029 (97.1) 14 9 6963 (96.1) 1 43 
9 7163 (98.9) 3 2 7143 (98.6) 1 9 

10 7224 (99.8) 4 3 7209 (99.5) 1 53 
11 7241 (100.0) 5 3 7221 (99.7) 1 40 
12 6878 (95.0) 16 8 6798 (93.9) 1 28 
13 6500 (89.8) 30 9 6408 (88.5) 1 57 
14 7057 (97.4) 18 11 6919 (95.5) 1 27 
15 6624 (91.5) 25 9 6518 (90.0) 3 313 
16 6781 (93.6) 26 10 6829 (94.3) 2 199 
17 6247 (86.3) 45 12 6133 (84.7) 2 123 
18 6438 (88.9) 35 14 6363 (87.9) 3 46 
19 7242 (100.0) 1 0 7242 (100.0) 1 60 
20 7242 (100.0) 1 0 7242 (100.0) 1 60 
21 6438 (88.9) 35 14 6199 (85.6) 2 167 
22 5904 (81.5) 48 12 6308 (87.1) 2 182 
23 6302 (87.0) 41 27 6390 (88.2) 2 253 
24 6208 (85. 7) 42 11 6281 (86.7) 1 127 
25 6517 (90.0) 40 12 6413 (88.6) 2 36 
26 7242 (100.0) 1 0 7242 (100.0) 1 115 
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choice. For other applications of BP, ID3 can play an extremely valuable role in exploratory 
studies to determine good sets of features and predict the difficulty of learning tasks. 
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A The 26-bit Code for Phoneme/Stress Pairs 

Sejnowski and Rosenberg developed the following distributed code for representing the 
phonemes and stresses. The examples were supplied with their database. 

Phoneme Code 
Phoneme Codeword Examples 

/a/ 000010000000100100000 w Ad, dOt , Odd 
/b/ 000100000001010000000 Bad 
/cl 000001000000000010000 Or , cAUght 
/d/ 100000000001010000000 aDd 
/el 010000000000100010000 Angel, blAde , w Ay 
/f/ 000100010000000000000 Farm 
/g/ 000001000001010000000 Gap 
/h/ 001000001000000000000 Hot, WHo 
Iii 000100000000101000000 Eve, bEe 
lkl 000001000001000000000 Cab, Keep 
Ill 010000000100010000000 Lad 
/ml 000100000010010000000 Man, iMp 
lnl 100000000010010000000 GNat, aNd 
lo/ 001000000000100010000 Only, Own 
/pl 000100000001000000000 Pad , aPt 
/r/ 000010000100010000000 Rap 
Isl 100000010000000000000 Cent , aSk 
/ti 100000000001000000000 Tab 
/ul 001000000000101000000 bOOt , OOze , yOU 
/vi 000100010000010000000 Vat 
/w/ 000100001000010000000 We, liqUid 
/xi 000010000000000010000 pirAte, welcOme 
/yl 000010001000010000000 Yes, senlor 
lzl 100000010000010000000 Zoo, goeS 
/A/ 110000000000100010000 Ice, hEight , EYe 
/Cl 000010100000000000000 CHart , Cello 
/DI 010000010000010000000 THe , moTHer 
/E/ 010100000000000010000 mAny , End , hEAd 
/GI 000001000010010000000 leNGth, loNG, baNk 
/I/ 000100000000001000000 glve , bUsy, captAin 
I JI 000010100000010000000 Jam , Gem 
/Kl 000011110000000000000 aNXious , seXual 
ILi 100000000100010000000 eviL, abLe 
/Ml 010000000010010000000 chasM 
/NI 000010000010010000000 shorteN, basiN 
IOI 100010000000100010000 on, bOY 
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Phoneme Code 
Phoneme Codeword Examples 

/Q/ 000101100001010000000 Quilt 
/R/ 000001000100010000000 honeR, afteR, satyR 
/S/ 000010010000000000000 oCean, wiSH 
/T/ 010000010000000000000 THaw, baTH 
/U/ 000001000000001000000 wOOd, cOUld, pUt 
/W/ 000011000000101010000 oUT, toWel, hoUse 
/XI 110000100000000000000 miXture, anneX 
/YI 110100000000101000000 Use, fEUd, nEw 
/Z/ 000010010000010000000 uSual, viSion 
/©/ 010000000000000100000 cAb, plAid 
/!/ 010100100000000000000 naZi, piZZa 
/#/ 000011100000010000000 auXiliary, eXist 
l*I 100100001000010100000 WHat 
r1 100000000000000100000 Up, sOn, blOOd 
/+/ 000000000000000000000 abattOir, mademOiselle 
I-I 000000000000000001001 silence 
/_/ 000000000000000001010 word-boundary 
/./ 000000000000000000110 period 

Here are the meanings of the individual bit positions: 

Bit Position Meaning 
1 Alveolar = Central! 
2 Dental = Front2 
3 Glottal = Back2 
4 Labial= Front! 
5 Palatal = Central2 
6 Velar = Back! 
7 Affricative 
8 Fricative 
9 Glide 
10 Liquid 
11 Nasal 
12 Stop 
13 Tensed 
14 Voiced 
15 High 
16 Low 
17 Medium 
18 Elide 
19 FullStop 
20 Pause 
21 Silent 
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The stress code actually encodes syllable boundary information as well as stresses . 

Stress Code 
Stress Codeword Meaning 

< 10000 a consonant or vowel following the first 
vowel of the syllable nucleus . 

> 01000 a consonant prior to a syllable nucleus. 
0 00010 the first vowel in the nucleus of 

an unstressed syllable. 
2 00100 the first vowel in the nucleus of a 

syllable receiving secondary stress . 
1 00110 the first vowel in the nucleus of a 

syllable receiving primary stress. 

- 11001 silence 
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Table 15: Percent correct over 1000-word test set 

Level of Aggregation (% correct) 
Dataset Method Word Letter Phoneme Stress Bit (mean) 
a ID3 9.6 65.6 78.7 77.2 96.1 

BP 13.6** 70.6*** 80.8*** 81.3*** 96.7* 
b ID3 10.4 65.6 79.6 76.4 96.1 

BP 15.7*** 71.5••· 81.7*** 81.4*** 96.7* 
C ID3 10.5 64.4 78.9 75.7 96.0 

BP 15.2° * 71.4••· 81.4*** 81. 7°* 96.7* 
d ID3 10.9 65.8 80.0 76.2 96.2 

BP 16.3*** 71.3••· 81.4* 81.6*** 96.7* 
e ID3 9.5 64.7 78.2 77.1 96.0 

BP 14.5** 71.6*** 81.3*** 82.3*** 96.7* 
Difference m the cell s1gmficant at p < .05*, .005° , .001'"0 

Table 16: Correlation Between ID3 and BP 

Dataset Legal Observed Block 
a .5648 .5865 .6973 
b .5844 .5945 .7110 
C .5593 .5796 .7077 
d .5722 .5706 .6723 
e .5563 .5738 .6879 

Average Increase .0136 .1278 

B Replication of Results on Four Additional Data 
Sets 

To simplify the presentation in the body of the paper , we presented data only for one choice 
of training and test sets. This appendix provides that same data on all five training and 
testing sets to demonstrate that the results hold in general. Table 15 shows the performance , 
under legal decoding, of ID3 and BP when trained on each of the 5 training sets and tested 
on the corresponding test sets. 

B.1 Performance of ID3 and BP under legal decoding 

Table 16 shows the correlation coefficients between the errors made by ID3 and by BP 
under the three different decoding methods. Notice that, with one exception, observed 
decoding always enhances the similarity between ID3 and BP, and that block decoding 
substantially increases this similarity. The "average increase" row shows the average increase 
in the correlation coefficient over legal decoding . 
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Table 17: Performance difference (in percentage J?Oints) between a single 120-hidden unit 
network and 26 seperate networks. Trained on 50 words and tested on 1000 words. 

Level of Aggregation (% point differences) 
Replication Data set Word Letter Phoneme Stress Bit (mean) 
a TRAIN: 0.0 -0 .2 -0.2 0.0 0.0 

TEST : 0.2 3.4 2.8 1.8 0.6 
b TRAIN : 4.0 0.1 -0 .2 -0.5 -0 .1 

TEST: 0.6 3.4 2.9 0.8 - 0.2 
C TRAIN : 4.0 0.0 0.0 0.0 -0 .1 

TEST: 1.1 3.0 2.2 2.9 0.0 
d TRAIN : 0.0 -0.6 -0 .5 0.0 -0 .1 

TEST : 0.3 3.7 2.8 2.1 0.0 
e TRAIN : 4.0 -0.5 -0 .6 0.0 -0.1 

TEST: 0.7 2.7 2.1 1.6 -0.1 
Averages TRAIN: 2.4 -0.2 -0.2 0.1 -0.1 

TEST: 0.6 3.2 2.6 1.8 0.1 

Table 18: Error Correlations 

Correlation Coefficients 
Replication Xm3 and XBP1 Xm3 and XBP26 

a .5167 .4942 
b .5005 .4899 
C .5347 .5062 
d .4934 .4653 
e .4934 .4790 
Average Decrease 0.0208 

--. 

B.2 Tests of the Sharing Hypothesis 

For replications b, c, d, and e, the training procedure for each of the 26 separate networks 
was slightly different from the procedure described for replication a. Starting with H = l , a 
network with H hidden units was trained for 1000 epochs. If this did not attain the desired 
fit with the data, the next larger value for H was tried . If a network with 5 hidden units failed 
to fit the data, the process was repeated , starting again with H = l and a new randomly
initialized network. No network required more than 4 hidden units . Table 17 shows the 
observed performance differences. The training figures show that, with the exception of 
word-level and stress-level performance, the 26 separate nets fit the training data slightly 
better than the single 120-hidden-unit network. 
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C Frequency Information for Phoneme/Stress Pairs 
Observed in the 1000- Word Training Set 

Phoneme/stress pairs observed in the 1000-word training set . 

Phoneme Stress Count Phoneme Stress Count 
a < 3 p < 58 
a 0 15 p > 165 
a 1 97 r < 139 
a 2 21 r > 230 
b < 32 s < 158 
b > 121 s > 188 
C < 2 t < 249 
C 0 2 t > 173 
C 1 39 t 0 1 
C 2 15 u < 2 
d < 99 u > 1 
d > 97 u 0 8 
e < 3 u 1 30 
e 0 4 u 2 5 
e 1 86 V < 39 
e 2 38 V > 53 
f < 17 w > 37 
f > 81 w 0 4 
g < 26 w 1 10 
g > 57 w 2 3 
h > 31 X < 57 
i < 2 X > 4 
i 0 144 X 0 515 
i 1 51 X 1 3 
i 2 16 X 2 17 
k < 114 y > 5 
k > 201 y 0 6 
1 < 108 y 1 2 
1 > 163 z < 48 
m < 95 z > 9 
m > 107 A < 2 
n < 382 A 0 12 
n > 81 A 1 45 
0 0 17 A 2 31 
0 1 67 C < 13 
0 2 26 C > 22 
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Phoneme 
D 
D 
E 
E 
E 
E 
E 
G 
I 
I 
I 
I 
J 
J 
K 
L 
L 
M 
N 
a 
a 
R 
s 
s 
T 
T 
u 
u 
u 
w 
w 
w 
X 
y 
y 
y 

Stress Count 
< 7 
> 2 
< 2 
> 1 
0 3 
1 138 
2 35 
< 37 
< 5 
0 151 
1 133 
2 43 
< 21 
> 40 
< 1 
< 54 
> 38 
0 11 
< 14 
1 6 
2 2 
< 119 
< 27 
> 49 
< 5 
> 18 
0 5 
1 12 
2 7 
0 1 
1 17 
2 4 
< 14 
0 20 
1 25 
2 8 

Phoneme Stress Count 
z < 6 
z > 5 
(Q < 1 
(Q 0 15 
(Q 1 164 
(Q 2 35 
! > 1 
# < 1 
* > 4 
- 0 1 
- 1 54 
- 2 4 
+ 1 1 
- < 542 
- > 233 
- 0 241 
- 1 34 
- 2 8 
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