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EDITORIAL 

Exploratory Research in Machine Learning 

Exploratory research contributes to the continued vitality of every discipline. The aim of explorato
ry research is to identify new tasks-tasks that cannot be solved by existing methods. Once a new 
task has been found, exploratory research seeks to develop a precise definition of the task and to 
understand the factors that make the task different from previously-solved tasks. 

Until recently, most research in machine learning was primarily exploratory. However, during 
the past decade, some areas of the :field-particularly inductive learning-have matured to the 
point that careful, quantitative experiments are now possible and pro:ved theoretical results have 
been obtained. Although these trends are extremely healthy and long overdue, there is a danger 
that the increased attention to these products of mature research may discourage researchers from 
undertaking and publishing research of a more exploratory nature. The goal of this editorial is to 
emphasize the importance of exploratory research and to encourage the publication of high quality 
exploratory results in Machine Learning. 

A Model of the Research Process 

To appreciate the role of exploratory research, it is helpful to examine the various phases of the 
research process. We begin by defining each of the phases and indicating the kinds of results 
obtained in each phase. 

Research begins with a phase of exploration, usually driven by specific problems in specific 
domains. For example, the early research in inductive concept learning was motivated by neural 
modeling (Rosenblatt, 1957), psychological modeling (Hunt, Marin & Stone, 1966), and mini
mization of switching circuits (Michalski, 1969) to name only a few of the pioneering projects. 
Exploratory research seeks to understand a new problem and develop a precise task definition. 
In the area of inductive concept learning, a clear definition of the task eventually emerged in the 
work of Mitchell (1978) . Subsequent exploratory research has produced less constrained and more 
realistic definitions ( e.g., Valiant, 1984). 

Exploration is usually followed by ( or associated with) a phase in which algorithms and methods 
are developed. In addition to the methods developed from the exploratory research mentioned 
above (perceptrons, CLS, and Aq), the past decade has seen an explosion in the number of learning 
methods (such as ID3 (Quinlan, 1983), PLS (Rendell, 1983), Back-propagation (Rumelhart , Hinton, 
& Williams , 1986), Stagger (Schlimmer, 1987), etc.). The primary research result in this phase is 
simply the development of a new method. 

The goal of the third phase of research is to perform empirical evaluation of the methods 
that have been developed. The first empirical evaluations of machine learning algorithms were 
performed using the training set/test set methodology by Hunt, Marin , & Stone (1966). Subsequent 
evaluations focused on additional criteria such as the number of examples required to obtain good 
performance (Quinlan, 1983), noise tolerance (Quinlan, 1986), concept drift (Schlimmer & Granger, 
1986), and incremental learning (Schlimmer & Fisher, 1986). In this third phase, methods are 
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typically evaluated in isolation, although researchers are encouraged to proceed to comparative 
studies (phase four) as quickly as possible. 

Once more than one method is available, the fourth phase of research can begin. In this phase, 
algorithms are compared against one another under controlled situations ( e.g., same data, same 
representation, etc). The goal of the research is to determine which algorithms are better ( and 
under what conditions). Inductive concept learning research is actively proceeding through this 
phase, as demonstrated in the papers by Fisher (1987), Schlimmer & Fisher (1986), Utgoff (1988) , 
Quinlan (1988) , Mingers (1989) , Mooney, Shavlik, Towell, & Gove (1989) , Weiss & Kapouleas 
(1989), Fisher & McKusick (1989). 

A fifth phase of research, which may proceed independently of phases three and four, is the 
theoretical analysis of the task and the methods. For inductive concept learning, there has been an 
explosion of activity in the past five years, as represented by Valiant (1984), Blumer, Ehrenfeucht, 
Haussler, & Warmuth (1987), Ehrenfeucht, Haussler , Kearns, & Valiant (1988), Judd (1987), Pitt 
& Warmuth (1988), Kearns & Valiant (1988), and many others. The goal of this research is to 
develop upper and lower bounds on the performance of any algorithm. Another goal is to analyze 
specific algorithms to determine their relationship to these upper and lower bounds. Theoretical 
analysis must also determine the sensitivity of its results to slight changes in the task definition. 

A sixth phase of research attempts to tie together all that is known about a probl em and 
provide a theoretical foundation for the field. One form that this can take is a generative theory 
of methods that tells how to design a good method for any particular problem. In the inductive 
concept learning area , the minimum description length principle (Rissanen, 1978) and its Bayesian 
justification shows some promise of providing such a foundation, although much research remains 
to be done in this area. 

The Role of Machine Learning 

Machine Learning has the responsibility to encourage and publish high quality research in all of 
these phases . Recently, editorials in Machine Learning have attempted to articulate good techniques 
for the empirical evaluation of machine learning methods (i.e., phases three and four) and the 
development of good theoretical work (i.e., phase five). Nearly all of the manuscripts received by 
the journal fall into these three phases. This is appropriate, and I expect it to continue in the 
future . However, I would like to give some attention to the other phases, especially exploratory 
research. 

An exploratory paper should include the following: (a) a precise statement of a new learning 
problem or learning situation, (b) a justification for why this is a new problem rather than being only 
superficially different, ( c) a discussion of the feasibility of solving the problem, ( d) a description 
of the issues that are believed to be important in attacking this new problem ( e.g., tradeoffs , 
important variables that should be controlled, etc.) , and ( e) a suggested agenda for future research 
in the area. Each of these points should be justified by appealing to properties of some particular 
domain or domains. To demonstrate the novelty of the task, for example, one good approach is 
to show that existing methods fail ( or are inapplicable). To show that it is feasible to solve the 
problem , a convincing strategy is to propose and implement a method that solves the problem. 
Without such justification and illustration, the paper is unlikely to pursuade the readers that this 
is an important kind of new problem or that it is a problem where research progress can be made. 

An exploratory research paper should enable (and encourage) readers to pursue the research 
items on the agenda of part ( e). To achieve this , the description of the research problem must be 
so clear that any reader could apply the description to decide whether another problem in a new 
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domain was an instance of the research problem in question. It should be possible for the reader 
to replicate and explore, in a new domain, the problems and issues described. 

Three good examples of exploratory research papers are (a) Amarel's (1968) paper on refor
mulation in the missionaries-and-cannibals problem, (b) the first paper describing LEX (Mitchell, 
Utgoff, & Banerji, 1983), and (c) the first LEAP paper (Mitchell, Mahadevan, & Steinberg, 1985). 
Each of these papers described either hand examples or partial implementations of systems. None 
of the papers provided empirical verification of the kind required in later research phases. But 
each clearly described a new kind of learning situation and analyzed the important issues and open 
research questions in the area. Each paper was tightly coupled to a domain, which provided the 
motivating examples for the claims in the paper. 

One critical feature that each of the three papers share is exceptionally clear and convincing 
writing. High quality writing is even more important in exploratory papers than it is in papers 
describing other phases of research. This is because the material in exploratory papers necessarily 
involves new domains and new ways of looking at problems. Consequently, it is less familiar to 
readers and tends to fall outside established paradigms. 

There are many areas of the machine learning field that are ripe for exploration and that would 
benefit from the publication of good exploratory research papers. Consider, for example, the area 
of knowledge integration, which studies the problem of how to integrate new knowledge into a large 
existing knowledge base quickly and easily. There is a great need for a precise definition of this 
task and a methodology for evaluating proposed knowledge integration methods. 

Another area in which exploratory research is proceeding is the area of learning robots. What 
are the learning tasks facing a robot? How can we measure our progress as we attack these tasks? 
A paper answering these questions would be a valuable contribution to the field. 

Concluding Remarks 

According to the research model described above, a research field cannot remain vital unless it 
devotes some portion of its energies to exploratory research. It is this research that identifies new, 
important problems to attack. Without exploratory research, it is easy for a field to degenerate 
into "algorithm polishing" activities that yield only modest improvements in performance and stick 
within the safe boundaries of established paradigms. 

This editorial has described the makeup of a high-quality exploratory research paper. I en
courage authors to consider these criteria and to submit exploratory research papers to Machine 
Learning. 

Thomas G. Dietterich 
Editor 
Department of Computer Science 
Oregon State University 
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