
90-30-2

Lirl~UEAS~TY

5C~Er7CE

Inductive and Numerical Methods in Knowledge Comp\lation

Giuseppe Cerbone
Thomas G. Dietterich

Computer Science Department
Oregon State University

·corvallis, OR 97331-3902

l
n
l
l
fl

l
j

u

J
J
J

Inductive and Numerical Methods .
Ill

Knowledge Compilation

March 14, 1990

Giuseppe Cerbonet
Thomas G. :Uiette:icht

Oregon .State University
Computer Science Dept.

Corvallis, OR 97331
Phone (503) 737-3273

cerbone©cs.orst.edu
tgd©cs.orst.edu

Abstract

Many important application problems can be formalized as constrained non-linear opti
mization tasks. However, numerical methods for solving such problems are brittle and
do not scale well. Furthermore, they do not provide much insight into the structure of
the problem space. This paper describes a method for discovering efficient rules that
can bypass the numerical methods and produce solutions directly. The rules also pro
vide some insight into the problem structure. The method is illustrated in the domain
of 2-dimensional structural design. To discover design rules in this domain, a numerical
optimizer is run on example problems. The resulting optimal designs are then ana
lyzed to detect geometric patterns . These patterns can then be applied to reformulate
the search space and the objective function and construct a more direct and efficient
problem-solving procedure . As a side-effect of this process, new geometric features are
defined that can be used to help discover additional design rules for more complex
problems.

fThis research · was supported by the National Science Foundation under Presidential Young Investigator Award
IRl-86-57316 with additional support from SUN Microsystems . During part of this research, G.Cerbone was supported
by a research fellowhip (CNR 203.01.43) from the Italian National Research Council.

iThe authors wish to thank Prasad Tadepalli for insightful comments on drafts of this paper.

1

l
n
l

d

u

J

1 Introduction

Many important applications can be formalized as constrained optimization tasks. For example,
we are studying the engineering domain of two-dimensional (2-D) structural design. In this task,
the goal is to design a structure of minimum weight that bears a set of loads and whose components
do not enter any forbidden regions. Figure 1 shows a non-optimal solution to a design problem in
which there is a single load (Ll), two stationary support points (S1 and S2), and one forbidden
region (FR). The solution consists of six members, El, E2, E3,E4, ES and E6, that connect the load
to the support points. In principle, optimal solutions to problems of this kind can be found by
numerical optimization techniques. However, in practice ([Pik86]) these techniques are very slow
and they can only solve problems with a limited number of unknowns. Hence, their applicability
to real-world problems is severely restricted.

In contrast, human experts are able to construct satisfactory, albeit sub-optimal, solutions to
these problems. One group ([NGa89]) has constructed an expert system, MOSAIC, for this task
by encoding the knowledge of expert designers. Rather than employing numerical techniques,
MOSAIC parses the input problem to identify abstract features. Using these features, it is able to
describe and construct a solution.

The goal of our research is to develop knowledge compilation techniques that can automatically
discover rules of optimal design in this domain. Our approach is to solve simple problems and
transfer the knowledge acquired from these problems to help solve more complex problems. By this
boot-strapping process, we hope to obtain a high-performance design system with broad coverage.

The key question that we must answer is to determine what form of knowledge can be usefully
transferred from simple problems to complex ones. The individual design rules learned by the
system are unlikely to transfer. However, in the process of formulating design rules, it is helpful
to define new abstract features of the kind used in MOSAIC. We hypothesize that these features
will prove useful in acquiring design rules for more complex problems. Hence, these features will
provide the vehicle for transferring knowledge from simple problems to complex ones.

To discover design rules for a particular problem, we first solve the problem via numerical
optimization. Then, the optimal solution is analyzed inductively to discover geometrical patterns.
The observed patterns are employed as constraints on the search for an optimal design. In fact,

"" the patterns can often be exploited to reformulate the search space. For example, the search space
may be restricted to a small finite set of candidate solutions. The objective function may also be
simplified. Even when the search space cannot be converted to a space of finite candidates, it can
often be reduced in dimensionality - that is, the number of unknown coordinates of connection
points. All of these reformulations substantially improve the speed with which a problem solver
can find solutions to similar design problems.

The remainder of the paper is organized as follows. Section 2 presents the 2-D structural
design task. This is followed in Section 3 by an overview of the method we have developed and
an example of the kind of rules we want the system to learn. Section 4 describes the geometric
domain knowledge supplied to the system. We employ a bottom-up search strategy to discover
useful patterns and constraints, and this is described in Section 5. Finally, in Section 6, we give
an example of how abstract features learned in one problem can be usefully transferred to a more
complex problem.

2

l

n
l

j

j

J

j

j

J

!
!

1500

1400

1300

1200

1100

1000

900

800

600

S00

400

300

200

poo

!
!

A Common Window

reaturo • corner, Initial Structure, Vol.uu ia: 1. 79824530+7
Oooutry -> ((?L 1400 . 1400) (751 900 . 0) (7j2 2900 . 0) (?Cl 290 . 700) (7C2 600 . 900))
Loada -> ((?L 270 1000)) [! .

Sl S2
·---···----···---.. -.... -----•-----·•·-----·-----... -----·---··--... -.. -... .

200 400 600 900 1000 1200 1400 1600 1900 2000 2200 2400 2600 2900

Figure 1: A non-optimal solution to a simple 2-D structural design problem.

3

n
l

j

l

J

I
J

J

J

2 Task description

Table 1 describes the task of 2-D structural design. A complete design consists of a connected
collection of columns and rods. Columns withstand compressive forces while rods oppose tensile
stresses. As we have already seen, Figure 1 is an example of a structural design problem and solution
in which Ll is the load, Sl and S2 are two supports, Cl and C2 are intermediate connection points,
and the forbidden region is the filled polygon. Although not indicated in the figure, members E2
and ES are in tension, and members El, E3, E4, and E6 are in compression. The solution shown
here is far from optimal.

We have introduced several simplifying assumptions to provide a tractable testbed for developing
and testing knowledge compilation methods. Specifically, we assume that structural members are
ioined by frictionless pins, only statically determinate structures 1 are considered, only one material
is used for both columns and rods, the cross section of a column is square, columns and rods of any
length and cross sectional area are available, supports have no freedom of movement along either
axis, and a local minimum suffices. We hope to relax.these assumptions as the work progresses.

Given these assumptions, the weight of each member is proportional to the volume of the
member, which is in turn proportional to the product of the magnitude of the force acting in the
member and the length of the member. Hence, numerical optimization can simply minimize the
volume of the structure.

One common procedure ([PS70]) for solving problems of this kind consists of the three steps
shown in Table 2. First, the problem solver chooses what is loosely termed a "topology" for the
solution structure. A topology is a graph whose edges are members and whose nodes are loads,
supports, and intermediate connection points. The topology also indicates the configuration of the
graph with respect to the forbidden regions. The topology does not further specify the locations,
lengths, or cross-sectionaj. areas of the members.

Once a topology is selected, the locations of the loads and supports are known, so the second
step is to determine the locations of the connection points (and hence the lengths, locations, internal
forces, and cross-sectional areas of the members) so as to minimize the weight of the structure. This
is usually accomplished by numerical non-linear optimization techniques.

The third and final step in the process optimizes the shapes of the individual members. This
can often be accomplished by linear programming. ~

In this paper, we consider only the second step, which can be formulated as a non-linear
constrained optimization problem. The objective function is the volume of the structure, and the
constraints are the equilibrium equations from the method of joints and the inequalities derived
from the requirement that no member enters the forbidden regions. The unknown parameters are
the (x, y)-coordinates of the intermediate connection points.

In future work, we plan to develop topology selection rules (step 1) by analyzing the geometrical
design rules learned using the methods described in this paper.

1 A statically determinate structure contains no redundant members, and hence, the geometrical layout of the
structure completely determines the forces acting in each member. These forces can be computed using the method
of joints ((WS84]).

4

l
I l
l
n

I

J

I
u

J

J
J

Table 1: The 2-D Desi~ Task.
Given: A 2-dimensional region R

A set of convex polygonal forbidden regions within R
A set of stable points (supports)
A set of external loads with application points within R

Find: A structural configuration made of straight columns and rods
that has minimum weight, is stable with respect to all exter
nal loads, uses as many supports as necessary from the given
set, does not contain members that cross one another, and
does not enter any of the forbidden regions.

Table 2: Optimization stages for the structural design task.
Optimization Explanation
Topological which considers as variables the number of connection points

and the connectivity among them. For instance, the frames
in Figures 1 and 2 are topologically equivalent.

Geometrical in which the topology is assumed and the variables to be
optimized are the locations of the extra connection points.
Figure 2 shows the result of geometrical optimization applied
to the structure in Figure 1.

Physical in which topology and geometry are assumed and physical
characteristics of the frame are optimized. Examples of pa
rameters optimized in this phase are: material and shape of
members .

5

t

l
n
fl

1
n
l

n

J

J

j

J

J

3

t

1400

1300 Cl

1200

t UDO
!
t

t 1000
I
I

'900 I
I

'800 I
I

~ 700
I
I

• '°° I
I

hoo

I
!
I
!

400

300

IOO

100

0

A Common Window
1cmml Optimization

!'oaturo • comer, After optiaizing point., (7C2 ?Cl), Vol.uao h: 4117652.0 ·
Oeoaetry -> ((?L 1400 . 1400) (?Sl 900 . O) (?S2 2800 • 0) (?Cl 317 . 1323) (7C2 1000 . 1000))
Loa.els -> ((?L 270 1000))

E2 L1

E5

Sl S2

~-----------------..-----------.... -------------------------.... -------------------------.... -------------200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800

Figure 2: An optimal solution to the simple problem from Figure 1.

Discovering Optimal Design Rules

Our approach to discovering geometrical design rules involves three main steps: (a) apply numer
ical optimization techniques to find the optimal solution to a given example problem, (b) apply
geometric knowledge to discover patterns that relate the optimal solution to the given geometric
objects, (c) treat these patterns as constraints and incorporate them into the solution generator.

To see how these three steps work, consider again the example problem in Figure 1 which we
shall refer to as the "corner" example. During the first step, this initial structure is optimized to
produce the structure shown in Figure 2. This optimization process can be formalized2 as follows:

2 We employ Prolog-like logical notation throughout.

6

I l
n
l
l
n
n

r J

11

J

j

j

J
j

J

If T= A(Cl,C2)
topology([load(Ll)],

[support(S1),support(S2)],
[region(FR)],

Then (Cl,C2) =

(point(Cl),point(C2)],
[edge(El, Ll,S2),edge(E2, Ll, Cl),
edge(E3,Ll,C2),edge(E4,Cl ,C2),
edge(E5,Cl,Sl),edge(E6,C2,Sl)])

min((Pl,P2),
[Pl E ~ 2 • P2 E ~ 2 • legal(T{Pl,P2))],
weight{T{Pl,P2))) .

This states that the points Cl and C2 should be chosen as those points Pl and P2 (drawn from
~ 2) that minimize the weight of the given topology and do not violate any constraints on legal
structures . The min operator takes three arguments: the variables to consider, a conjunction of
predicates defining a set of values from which those variables should be drawn, and the objective
function to be minimized. Notice that a topology is a very complex term. Lambda-binding is used
to parameterize the term with respect to the two unknown connection points.

The topology symbol groups together loads, supports, connection points, forbidden regions, and
edges. Because we are only concerning ourselves with geometric optimization rules, this topological
information is assumed to be given.

The second step involves looking for patterns relating the locations of the connection points
Cl and C2 to the given geometric objects. For now, let us focus on C2. Our system notices that
C2 lies on what we would call a "corner" of the forbidden region. However, "corner" is not one
of the geometric concepts initially provided to the system. Instead, the system constructs the
following chain of geometric relations. C2 lies at the intersection of two lines. These two lines are
the boundary lines of two semiplanes. The two semiplanes are chosen from the semiplanes that
define the forbidden region. The~e is only one forbidden region, and it is a given. This chain is
used to define a new feature, g-corner, which we call "generalized comer" because, unlike a corner,
a g-corner may lie outside the forbidden region (at any point where two boundary lines intersect).

The system also notices that in order to build a structure of the desired topology, it is necessary
that there be a clear line-of-sight from the load Ll to C2 and from the stable support S1 to C2.

In the third step, we incorporate these observed patterns to reformulate the generator. Specif
ically, we obtain the following design rule :

7

t

l
l
l
1

J

'.l

11

! j

I
J

J

J
J
j

J

If T = >.(Cl,C2)
topology([load(Ll)],

[support(S1),support(S2)],
[region(FR)],
[point(Cl),point(C2)],
[edge(El,Ll,S2),edge(E2,Ll,Cl),
edge(E3,Ll,C2),edge(E4,Cl,C2),
edge(E5,Cl,Sl),edge(E6,C2,Sl)]),

line(Ln,Ll,S1)

Then C2=min(P2,
(g-corner(P2, FR),see(P2, Ll,[FR]),see(P2,Sl,[FR])],
d1stance(~2,Ln)),

Cl=min(Pl,
[Pl E ~ 2 , legal(T(Pl,C2))],
weight(T(Pl,C2)))

The rule states that in problems with the same topology, the problem solver should construct a
line Ln from Ll to S1 and identify all g-corners of the forbidden region. It should then place C2 at
a g-corner that is visible from Ll and S1 and that minimizes the distance to Ln. Cl is then located
to minimize the weight of the entire structure. The new feature g-corner is defined as follows:

g-corner(Gc, FR) {:} semiplane(SPl , FR), boundaryline (LNl, SPl),.
semiplane(SP2, FR), boundaryline (LN2, SP2),
intersect(LN1,LN2,Gc)

The relation intersect(A,B,C) says that the intersection of objects A and Bis object C.
Of these three steps, the second step is the most complex and difficult . Hence, the remainder of

the paper discusses the geometric knowledge given to the system and the search methods employed
to discover geometric patterns.

4 Geometric Knowledge Base

In this section we describe the geometric knowledge base that is applied to discover patterns in the
results of the numerical optimization process . There are three parts to this knowledge base: (a)
primitive geometric entities, (b) relationships among geometric entities (and the definitions of those
relationships in terms of the primitives), and (c) relationships between topology and geometry.

There are seven primitive geometric entities: points, lines, line segments, semiplanes, re
gions, distances, and angles. Each entity has a standard form. For example, points are repre
sented as (x,y) coordinate pairs. Lines are represented by the three coefficients in the equation
ax+ by+ c = 0. Semiplanes are represented by a line and a comparison symbol (either ~ or ~).
By substituting the comparison symbol for the = sign in the linear equation, one obtains the ap
propriate semiplane. Forbidden regions are represented as sets of semiplanes. Line segments are
represented by a distinguished endpoint and a direction vector that when added to the distinguished
endpoint produces the other endpoint. ·

8

l
1
D
n

~ I

I

I
J

J

lJ

J

J
J
J

Table 3: Relations among geometrical objects.
Relation Explanation
angle(a,Sgl,Sg2) a is the angle between segments Sgl and Sg2. The segments

share the same designated endpoint.
line(Ln,Pl,P2) Ln is the line that passes through points Pl and P2.
line-polar(Ln,Sg,a) Ln is the line that passes through the designated endpoint of

the segment Sg at angle a from the segment.
segment(Sg,Pl,P2) Sg is the segment with endpoints Pl and P2. P 1 is the des-

ignated endpoint.
semiplane(Sp,FR) Sp is a semiplane defining region FR.
boundaryline(Ln,Sp) Ln is the boundary of semiplane Sp.
intersect(Objl,Obj2,0bj3) Objl and Obj2 intersect to produce Obj3, which may be nil.
same(Objl,Obj2) Objl and Obj2 are the same geometric object.

There are many relationships that can be defined among these geometric primitives. The full
domain theory provides rules for defining each relationship. Table 3 lists each of these relations.

In addition to the geometric primitives and relations among primitives, there is one rule con
cerning the topology of a structure:

If edge(E,Pl,P2)
Then see(Pl,P2,FRs)

This states that if the topology contains an edge that connects Pl to P2, then there must be
a line-of-sight relationship between Pl and P2 with respect to all forbidden regions FRs. In other
words, the line segment connecting Pl and P2 must not intersect any forbidden region in FRs.

5 Finding Geometric Patterns and Constructing Rules

Given this knowledge base, the system searches for patterns by reasoning forward fr9m the given
geometrical objects and the unknown objects (i.e., the intermediate connection pointi) in an effort
to find a general, constraining relationship between them. For expository purposes, we will divide
this search into four phases, although they are interleaved in the implementation.

1. Reason forward from givens to identify geometric objects related to the givens.

2. Look for patterns relating these geometric objects to the unknowns.

3. Define new features that encapsulate the discovered patterns.

4. Accumulate see constraints from the topology .

Let us follow the corner example through each of these phases.

9

l
l
.l
l
0
l

J

I

I 1

u
J

j

u
J
u

Phase 1: Reason forward from the givens. Reasoning begins with the load, the supports,
and the forbidden region specified in the given topology. It then progresses by chaining together
the relationships listed in Table 3. Each geometric object extracted by this process ca.n be labelled
as given. Here is a listing of some of the resulting chains of relations:

given(FR),
semiplane(SPl, FR), semiplane(SP2, FR),
semiplane(SP3, FR), semiplane(SP4, FR),
boundaryline(LNl, SPl), boundaryline(LN2, SP2),
boundaryline(LN3, SP3), boundaryline(LN4, SP4).

Phase 2: Find patterns. The second phase involves reasoning forward from the unknowns and
the objects identified in Phase ! looking for additional instances of the relations from Table 3.

For the corner example, the system notices that intersect(LN1,C2,C2) and intersect(LN2,C2,C2)
that is, C2 lies on both lines LNl a.nd LN2. Reasoning forward through the rules defining intersect,
it can conclude that intersect(LN1,LN2,C2). This phase terminates either when no more rules are
applicable or when the unknowns have been related to the givens.

Phase 3: Define new features. In the third phase, we collect all of the relations connecting
the unknown to the original givens and use this to define a new abstract feature. In the corner
example, this leads us to define the g-corner concept:

g-corner(Gc, FR) {::} semiplane(SPl, FR), boundaryline (LNl, SPl),
semiplane(SP2, FR), boundaryline (LN2, SP2),
intersect(LN1,LN2,Gc).

All instances of this new feature are detected via forward reasoning · as in Phase 1 a.nd added
to the collection of given geometric objects. In particular, we obtain g-corner(C2,FR). In Figure 2,
there are five g-corners, the four corners and the intersection of the two non-parallel boundaries of
the forbidden region.

Phase 4: Accumulate line-of-sight constraints. The topology includes two edges connecting
C2 to the givens, namely to Ll and S1. Hence, by applying the line-of-sight rule, we can infer the
constraints:

see(C2,Ll,[FR]), see(C2,Sl,[FR]).

This completes the forward search for patterns and constraints. To obtain an efficient design
rule, we ca.n now reformulate the solution procedure to incorporate these constraints.

Because the g-corners ca.n be constructed from the given geometric objects, they can serve as a
generator of candidate points for C2. This suggests a generator of the form:

C2 = min(P2,
(g-corner(P2,[F R]),see(C2, Ll,[FR]),see(C2,S1,(F R])],
objective-function)

10

l
l
0
n
I
l
I

1

I
l l
J

J
J

where we need to find some objective function. We cannot use the weight function, because that
requires values for both Cl and C2. One strategy we are investigating is•to apply the "minimum
perturbation principle", which says that the solution to a complex problem should be a minimum
perturbation of the solution to a simpler problem. Specifically, we can generate a "relaxed" version
of the problem in which the forbidden region has been removed. The optimal solution to this
relaxed problem includes a member connecting the load ll directly to support S1. We can then
use the distance between P2 and the line connecting ll and Sl as the objective function.

This gives us the first part of the final design rule:

If T = ,\(Cl,C2)
topology([load(ll)],

[support(Sl),support(S2)],
[region(FR)],
[point(Cl),point(C2)],
[edge(El, ll,S2),edge(E2, ll, Cl),
edge(E3,Ll,C2),edge(E4,Cl,C2),
edge(E5,Cl,Sl),edge(E6,C2,Sl)]),

line(Ln,Ll,Sl)

Then C2=min(P2,
[g-corner(P2,FR),see(P2,ll,[FR]),see(P2,Sl,[FR])],
distance(P2, Ln))

This strategy is an instance of the general technique ([Gas79], [MP89]) of using the solution to
a relaxed version of a difficult problem as a heuristic guide for solving the original problem.

Now that we have an efficient procedure for finding C2, the point can be marked as a given
geometric object.

Let us turn our attention to Cl, the other connection point. To construct an efficient generator
for Cl, we repeat the four steps given above. This explanation depends on discovering that the
angles ll - C2 - Cl and Cl - C2 - Sl are equal.

In Phases 1 and 2, among others, the following relations are derived:

segment(Sgl,C2,Ll), segment(Sg2,C2,Cl), segment(Sg3,C2,Sl),
angle(a,Sgl,Sg2), angle(,B,Sg2,Sg3), angle(, ,Sgl,Sg3),
a= ,B, a+ ,B = 1 , a= f,
line-polar(Lna,Sgl,a), intersect(Lna,Cl,Cl)

In Phase 3, the new feature bisector-point(P,C2,Ll,S1) is defined to be any point that lies on the
line bisecting the angle L1 - C2 - S1:

bisector-point(P,C2,Ll,S1) {:} segment(Sgl,C2,Ll), segment(Sg2,C2,S1),
angle(,,Sgl,Sg2), a= 3, line-polar(Lna,Sgl,a),

· intersect(Lna,P,P).

Forward inference identifies Cl as a bisector-point: bisector-point(Cl,C2,Ll,Sl).
In Phase 4, we can obtain the following line-of-sight constraints:

11

l

l
n
1
)

1

J

I
11

I J

j

J

J
j

J

see(Cl,11,(FR]), see(Cl,C2,(FR]), see(Cl,Sl,(FR]).

It is easy to incorporate these constraints into the solution procedure, because we can use the
weight function as the objective function. The final solution procedure is

6

H T= ..\(Cl,C2)
topology([load(Ll)],

[support(Sl),support(S2)],
[region(FR)],
(point(Cl),point(C2)),
[edge(El, Ll,S2),edge(E2, Ll, Cl),
edge(E3,Ll,C2),edge(E4,Cl,C2),
edge(E5,Cl,S1),edge(E6,C25l)D,

line(Ln,Ll,S1)

Then C2=min(P2,
[g-corner(P2,FR),see(P2,Ll,[FR]),see(P2,Sl,[FR])],
distance(P2, Ln)),

Cl=min(Pl,
[Pl E ~ 2 , bisector-point(Pl,C2,Ll,Sl),
see(Pl,Ll,[FR]),see(Pl,C2,[FR]),see(Pl,Sl,[FR])],

weight(T(Pl,C2))).

Knowledge Transfer from Simple to Complex Problems

As we discussed in the introduction, our overall strategy involves transferring knowledge acquired
from analyzing simple problems to solve more complex problems. This is accomplished by transfer
ring the new features and relations that are defined during Phase 3 of the explanation-generation
process.

To see how this works, consider Figure 3, which we shall refer to as the "tangent" example.
The design rule constructed in the last section does not transfer to this problem because there are
no g-corners with line-of-sight relations to Ll and S1. Hence, it is necessary to derive a new rule
to handle problems of this kind. Fortunately, the features and relations defined in the previous
example can be applied to this new problem.

To derive the new rule, we begin by applying the numerical optimizer to produce an optimal
solution (shown in Figure 4). Then, we reason forward from the givens to find patterns. Here are
some of the relationships discovered in this process:

given(FR), semiplane(SPl, FR), semiplane(SP2, FR),
semiplane(SP3, FR), semiplane(SP4, FR),
boundaryline(LNl, SPl), boundaryline(LN2, SP2),
boundaryline(LN3, SP3), boundaryline(LN4, SP4),
g-corner(CRl, FR), g-corner(CR2, FR), g-corner(CR3, FR),
g-corner(CR4, FR), g-corner(CR5, FR), g-corner(CR6, FR),
line(LNa,Ll,CRl), line(LNb,S1,CR2),
intersect(Lna, Lnb,C2)

12

l
l
l
n
l
l

l I

11

I J

J

l
J
J

J

1500

1400

1300

,2no

1100

1000

900

800

700

600

S00

400

300

200

100

0

Cl

A C0mmm1 Window

•
reature • tangent, Initial Structure, Vohae is: 4. 08142e+7
Oeoutry -> ((?L 2400 . 1400) (751 2000 • 0) (752 3800 . 0) (?Cl 800 . 1000) (7C2 1200 . 1000))
Low --> ((7L 270 1000))

L1

····---···----··-•··-····---•-····--··-···-----···------ ------·-----··--- ... ------- ... --,■----·•·---··--···---··- ···•·-700 1000 1300 1600 1900 2200 2500 2800 3100 3400 3700 4000

Figure 3: A non-optimal solution to the tangent problem.

13

l
l
1

il
l

I I
11

I J

j

J

j

J

J

1500

1400

1300

1200

1000

Cl
900

800

700

600

S00

400

300

200

100

0

A Common Window

!"eature • tangent. After opti.aizing pointa (?C2 ?Cl), Vohae ia : 9719763. 0
Oooutry -> ((?L 2400 . 1400) (?S1 2000 . 0) (7S2 3800 . 0) (?Cl 700. 0 . 9.50. 0) (7C2 1614. 2222 . 771. 3777S))
Loacb -> ((?L 270 1000)) L l

S2

Figure 4: Example in Figure 3 after numerical optimization .

14

l
7

l

1

l
I
l

I
I

j

j

j

Notice that six g-corners are found. These enable us to easily construct the two lines LNa and
LNb (and many other useless lines as well). Lines LNa and LNb intersect at point C2. Hence, the
g-corner concept allows us to rapidly detect a new pattern connecting the unknowns to the givens.

From these relationships, the system can define the new concept tangent-intersection:

tangent-intersection(Tg,FR,Pl,P2) ¢> region(FR),
g-corner(CRl,FR), line(LNa,CRl,Pl)
g-corner(CR2,FR), line(LNb,CR2,P2)
intersect(LNa,LNb, T g).

When this is combined with the line-of-sight constraints, we obtain

tangent-inte1 .. ection(C2, FR, Ll,S 1), see(C2, Ll,(FR]), see(C2,S l,(FR]).

To construct the final solution procedure for this case, we need to gather constraints for Cl as
well. It turns out that as in the previous problem, Cl is a bisector-point. Hence, the final procedure
looks like:

If T= ,\(Cl,C2)
topology((load(Ll)],

(support(S1),support(S2)], .
(region(FR)],
(point(Cl),point(C2)],
(edge(El, Ll,S2),edge(E2, Ll, Cl),
edge(E3,Ll,C2),edge(E4,Cl,C2),
edge(E5,Cl,Sl),edge(E6,C2,Sl)]),

line(Ln,ll,S1)

Then C2=min(P2,
[tangent-intersection(P2, FR),see(P2, Ll,[F R]),see(P2,S 1,(FR])],
distance(P2, Ln)),

Cl=min(Pl,
(Pl E ~ 2 ,bisector-point(Pl,C2,Ll,Sl),
see(P 1, Ll,(FR]),see(Pl, C2,(FR]),see(Pl,S1,(FR])],

weight(T(Pl,C2))).

This example shows how features learned from solving one problem can substantially aid the
discovery of new design rules and additional features.

Note that to learn efficient design procedures for large problems, it is still necessary to first
solve at least a representative set of problems using numerical optimization methods. Hence, while
the new features do permit the rule-construction process to scale, they do not completely solve the
scaling problem. This remains an important problem for future work.

15

l
1
7
n
D

I I

l
J

I

j

J

J

J

j

J

7 Concluding Remarks.

The methods outlined in this paper show how an inductive analysis of the results of numerical
optimization can produce efficient optimal design rules. Because there is an inductive component
to this process, however, these rules are not guaranteed to be correct. Fortunately, it is quite
inexpensive to test whether a proposed solution (suggested by the rules) is in fact locally optimal.
Hence, errors in the rules can be detected easily, and this should allow the rules to be repaired and
refined (by adding conditions). Furthermore, even when a rule proposes a suboptimal design, that
design may provide a good starting point for performing numerical optimization. The convergence
of non-linear optimizers depends critically on the quality of such starting points.

This paper also shows how new features can provide a vehicle for transferring knowledge from
simple problems to more complex ones. The new features substantially reduce the cost of analyzinp;
the results of numerical optimization in larger problems.

Our future work will focus on using the geometric design rules to discover topology selection
rules. We believe that with each geometric design rule it will be possible to associate a formula that
predicts the approximate weight of the optimal design. These formulas can then be analyzed to
determine conditions under which one topology will be lighter than another. This kind of analysis
would be too expensive to perform using only numerical optimization techniques. Topological
optimization is nearly impossible to perform using current numerical methods, so a solution to this
problem will provide an important tool for mechanical designers.

References

[Gas79] J. Gaschnig. A problem-similarity approach to devising heuristics. In Proceedings of
IJCAI-6, pages 301-307, 1979.

[MP89] J. Mostow and A. E. Prieditis. Discovering admissible heuristics by abstracting and
optimizing: a transformational approach. In Proceedings of IJCAI-11, pages 701-707,
1989.

[NGa89] Nevill, G.E. Jr., Garcelon, J.H., and al. Automating preliminary mechanical--configuration
design: The MOSAIC perspective. In NSF Engineering Design Research Conference, 1989.

[Pik86]

[PS70]

[WS84]

Ralph W. Pike. Optimization for Engineering Systems. Van Nostrand, 1986.

A.C. Palmer and D.J. Sheppard. Optimizing the shape of pin-jointed structures. In Proc.
of the Institution of Civil Engineers, pages 363-376, 1970.

Chu-Kia Wang and Charles G. Salmon. Introductory Structural Analysis. Prentice Hall,
New Jersey, 1984.

16

	Cerbone_Dietterich_90_30_02_A
	Cerbone_Dietterich_90_30_02_B

