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Introduction 

In this short paper, I plan to review the work I have done on neural nets over 

the course of the last 20 years. As one might reasonably expect the questions 

being asked and the approaches to solving them have evolved, but there are still 

fundamental questions which remain unanswered and are pehaps unanswerable with 

present techniques. 

I have used the word "dynamics" in the title to indicate that the major emphasis 

of the paper will be how the state of a neural net changes in the course of time 

ejther autonomously, that is without input, or in response to input. The problems 

of learning in neural nets will not be di~~tly addressed, although I will argue that 

many questions about learning can be recast as questions about dynamics. 

The paper will be organized in five parts. In this section, Introduction, I will 

discuss some basic definitions, give some history, and describe my involvement with 

various issues. In section 2, Dynamics, I will discuss methods for calculating and 

estimating such quantities as the lengths of state cycles. In section 3, Complexity, I 

will discuss the computational complexity of answering some questions about neural 
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nets. In section 4, Chaos, I will discuss the applicability of the concept of chaos to 

the description of the dynamics of neural nets. In section 5, Analog Models, I will 

contrast neural models in which the state variables are continuous with the more 

traditional models in which the state variables are discrete. 

A. neural net consists of neurons which are connected together so that some 

neurons give inputs to other neurons and some neurons receive output from other 

neurons. There are also external inputs and outputs, so that a neuron may receive 

an input from outside the net as well as from neurons within the net, and so that 

a neuron may send an output to outside the net as well as to other neurons within 

the net. The dynamics of the net are specified by the dynamics of the individual 

neurons and by the topology of the interconnections. In the usual case, neurons are 

considered to be 2 state devices. A neuron is either "on" or "off". No gradations 

are allowed. Time is usually assumed to be quantized, so that one can speak of 

instants of time. The state and output of a neuron at time t+ 1 will be a function 

of the inputs to the neuron at . time t. Usually the output of a neuron is simply 

the neuron's state. Since the input lines will ·carrying one of 2 values, it is usual 

to identify the values with "true" and "false", and to say that a neuron computes 

a Boolean function of its inputs. In the following sections, I will assume discrete 

states and discrete time, but in section 5, I will discuss models which behave in a 

more continuous manner. 

As I mentioned earlier, I have been involved with neural nets for over 20 years. 

I first became acquainted with them through Rashevsky's(1960) book. There I 

learned of the work of McCulloch and Pitts(l943). The fact that this work was 

carried out in Chicago was one of the reasons I decided to do my graduate studies 

at the University of Chicago. Although neural nets were not a primary area of study 

at the Committee on Mathematical Biology, I did learn of the work of Landahl and 

Runge(1945) suggesting the use of matrices in the study of neural nets. I learned 

more about neural nets and their applications from the Committee on Information 

Science who studied the design and application of digital computers. Switching 

theory which is the basis for the logical design of computers, derives from Von Neu-
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mann's(1946) adaption of McCulloch and Pitts's neurons . This theory was further 

developed by Burks and Wright(1953), Kleene(1956), and Rabin and Scott(1959), 

and is summarized in Minsky's(1967) book. A visit by Caianiello introduced me to 

his work outlined in Caianiello(1964). A visit by McCulloch introduced me to some 

ideas of Kauffman(1969). Kauffman joined the faculty at Chicago at about that 

time. Ricciardi, a student of Caianiello's, supervised my thesis. Subsequently, I have 

been able to visit Italy to work with Caianiello, Ricciardi, Capocelli, DeLuca, and 

others. Most of the work that developed out of working with this group of people 

will be described in section 2. Although I was able to develop methods for solving 

some problems, other problems seemed to frustrate any reasonable approach. Only 

when I studied the theory of computational complexity did I understand that many 
I 

problems about neural nets are in an exact sense "hard". The theory of complexity 

was developed throughout the 70s and is summarized in Garey and Johnson(1979) . 

I will discuss some hard problems about neural nets in section 3. 

Everything has ups and downs from the stock market to natural populations. 

These booms -and busts were usually thought to be occurances where simple mathe ­

matical models broke down . The work of Li and Yorke(1975) and May(1976) showed 

on the contrary that such behaviors were inherent even in the simplest nonlinear 

models. These bounded but aperiodic or perhaps omniperiodic behaviors were first 

shown to exist in continuous state discrete time models, and were quickly shown 

to occur in continuous time continuous state models. The existence and meaning 

of such chaotic behavior in discrete time discrete state models is more problematic. 

I will discuss our attempts to measure chaotic behavior in neural nets in section 

4. I will also mention some recent discussions about the implications of chaos for 

models of living systems . "-- · 

Rashevsky's(1933) two-factor model is a continuous time continuous state neu­

ral model which antedates the discrete models . There is a line of research on nets 

of these model neurons showing that they can model many classes of phenomena. 

For example, Householder and Landahl(1945) and Rashevsky(1960) include a num­

ber of these analog neural net models . A more complete model of single neuron 
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behavior given by Hodgkin and Huxley(1952) resulted in their winning the Nobel 

prize. Fitzhugh(1961) and Nagumo et al(1962) have studied simplifications of the 

Hodgkin-Huxley model. More recently Mead(1989) has suggested that analog neu­

ral models may be easy to fabricate in VLSI and may form the basis for a new 

generation of computers. In section 5, I will discuss the difficulties facing an eluci­

dation of the theory of analog neural nets, and describe our project for designing 

and building nets of analog neural elements. 
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2 Dynamics 

Each neuron in a neural net will be in one of a finite set at each instant of time, so 

the state of the whole net may be represented by a vector. The vector will haven 

components, one component for each neuron in the net. The value of a component 

will be the state of the corresponding neuron, and the state vector will be a vector 

over the finite set of states possible for each neuron. There will be a finite set of 

possible inputs. Often the input is thought of as coming in on several input lines and 

each line is assumed capable of carrying the same finite set of symbols. Assuming 

that there are m input lines it is natural to represent the input as an m-dimensional 

vector over the set of symbols which can be carried on a single line. The input and 

state vectors are usually subscripted to indicate the time to which they refer. Since 

time is assumed to be discrete, the dynamics of a neural net may be described by 

the difference equation: 

where X represents state vectors and Y represents input vectors. If there are no 

inputs or equivalently the inputs are constant, then the net is called an autonomous 

net and the dynamics are given by the equation: 

With no more structure on the underlying sets, the above equations can still be 

used to follow the sequence of states the net passes through. More structure on the 

underlying sets would allow more reasonable ways to answer questions about a net's 

dynamics. Since neurons are usually assumed to have 2 states, these states can be 

identified with the Boolean values "true" and "false" and the state vectors can be 

considered as vectors over a Boolean algebra. If the input lines are also assumed 

to take on 2 values then functions in the dynamic equations can be considered as 

Boolean functions and hence these functions can be represented using the three 

operations of "and", "or", and "not". While these functions have a number of nice 

properties, "and" and "or" lack inverses which makes some computations difficult. 
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If the underlying set were a field then traditional methods for analyzing dynamical 

systems would be available. A reasonable way to introduce field structure is to asso­

ciate the 2 state values with the integers O and 1 and to carry out computation with 

addition and multiplication both taken mod 2. These two numbers with these two 

operations form the finite field which is often called GF(2) or Z2 • As we will see later 

there are certain limitations caused by working in Z2 • To avoid these limitations 

one would like to work in a larger field, either an infinite field or a field whose size 

could be increased as the size of the nets under consideration increased . The field 

Z2 can be represented within the field of rationals or its dyadic subfield by associ­

ating integer O with rational 1, associating integer 1 with rational -1 , representing 

addition mod 2 by rational multiplication, and representing multiplication mod 2 

by a simple rational pcilynomial. That is, x*y mod 2 is represented by 1/2 ( 1 + u 

+ v - uv) where u is the rational representing x and v is the rational representing y. 

2.1 Analysis and Synthesis 

Dynamics has an analytical. and a synthetic part. In analysis, a dynamic system is 

given and the task is to find a description of the system 's behavior. This description 

should in some reasonable sense be simpler or more compact than the original 

representation of the system. For an autonomous system, an analysis might give 

the number and location of the fixed points, and the periods of any cycles. For 

a system with inputs, an analysis might give the period of the state cycles as a 

function of the period of the input, or a characterization of the input sequences 

which result in a specified output. In synthesis, a behavior is described and the 

task is to build a system with the desired behavior, or to show that no system in 

the class of interest can have the desired behavior. 

The analysis and synthesis problems for loop-free nets were solved by McCulloch 

and Pitts(1943). 
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Theorem 1 ( Analysis Of Loop-Free Nets) In a loop-free net of memoryless neurons 

the state of the net is determined by the inputs over a fixed finite interval of the past. 

That is, Xt+D = G(Yt+n-1, Yt+n-2, ... , Yt). 

This theorem states that loop free nets of memoryless neurons have a memory 

of only finite duration. Notice that initially the state of the net will depend on 

the state that the net is started in, but for a loop-free net, the initial state will 

be forgotten after D time steps. Here D is the depth of the net, the length of the 

longest path from the input of a neuron to the output of any neuron. Nets can have 

arbitrarily high D, so how useful this theorem is, may depend on how large D is. 

McCulloch and Pitts defined two kinds of model neurons. The absolute inhi­

bition neuron, and the additive inhibition neuron. The absolute inhibition neuron 

has excitatory and inhibitory inputs so that the neuron will be "on" at time t+ 1 if 

and only if at time t the sum of its excitatory inputs exceeds the neuron's threshold 

and no inhibitory inputs are received. The additive inhibition neuron, which is also 

called a linear threshold neuron, has excitatory and inhibitory inputs so that the 

neuron will be "on" at time t+l if and. only if at time t the sum of its excitatory 

inputs minus the sum of its inhibitory inputs exceeds the neuron's threshold. They 

showed that these neuronal modes were equivalent in the sense that a net of one 

kind of neurons could be simulated by a net of the other kind of neurons. 

In more detail, this simulation means that for each initial state of the first net 

and any designated subset of the neurons of the first net there is an initial state of 

the second net and a set of neurons of the second net, and a delay d, so that for 

every input sequence the state of the specified neurons in the second net at time 

t+d is identical to the states of the desigg_~ted set of neurons in the first net at time 

t. 

Using this notion of simulation McCulloch and Pitts showed: 

Theorem 2 (Synthesis of Loop-free Nets) Let G be any function from {O, l}mD to 

{ 0, 1 r so that the desired net would have as its state equation 

Xt+D = G(Yt+D-1, Yt+D-2, ... , Yt) 
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where X has n components and each Y has m components, then it is possible to 

construct a loop-free net of absolute inhibition neurons or linear threshold neurons 

so that the constructed net will simulate the desired net. 

Note that the constructed net will generally have many more than n neurons, but 

that if one observes a specified set of n neurons, these neurons will behave as desired. 

Further they showed that the delay necessary was at most 2. 

McCulloch and Pitts also gave an analysis of nets with loops. This analysis was 

clarified by Kleene (1956-), who showed: 

Theorem 3 ( Analysis of Nets with Loops) Consider a neural net with a specified 

initial state and a designated neuron, then the set of input sequences which will cause 

this neuron to be "on", can be specified by a finite expression using only sets of input 

sequences with at most one sequence and the operations of union, concatenation, and 

star. 

This is a strong theorem in that it does not depend on the specific type of neuron 

used-in the net. The only assumptions are that the neurons have a finite number of 

states, and that the neurons either have a finite memory span or can be simulated 

by a net of neurons with finite memory span. The dynamic equation for individual 

neurons may be more complicated than the dynamic equation for McCulloch-Pitts 

neurons. 

Kleene also proved the converse of the above theorem. 

Theorem 4 (Synthesis of Neural Nets) For any set of input sequences which can 

be specified by a finite expression of input sequences with at most one symbol and the 

operations of union, concatenation, and star, there is a neural net of McCulloch-
....._ __ 

Pitts neurons with a designated initial state, a designated neuron, and a delay d, so 

that when the net is started in the designated state, then the designated neuron will 

be "on" at time t+d if and only if the input sequence from time O to time t is in the 

set specified by the finite expression. 

There is a nice exposition of Kleene's results in Minsky(1967). One should notice 

that these results are very strong. They sho~ that nets of the seemingly simple 
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McCulloch-Pitts neurons can compute everything that can be computed by nets of 

more complicated neural models as long as the restrictions of discrete time, finite 

number of states, and finite memory span apply. Minsky also gives a number of 

neuronal models which are equivalent in computational power to McCulloch-Pitts 

neurons. 

There are at least two ways in which these results are weak, however. The 

results do not address the possibility of neuronal models which are computationally 

weaker than the McCulloch-Pitts neurons, and the results do not give direct ways 

to answer traditional questions about dynamics such as the existence and number 

of fixed points. 

Consider an autonomous neural net. From the point of view of Kleene's theorems 

this is a net with a constant input. Kleene's result tells us that the behavior of 

this net can be represented by an expression over a single symbol using the three 

operators, but even given the n expressions, one for each neuron in the net, it is 

unclear how one could reasonably use these expressions to find fixed points or cycle 

lengths. 

Consider an autonomous net in which each neuron computes the sum of its 

inputs; then Xt+i = AXt, where A is a matrix. Now finding the fixed points can 

be easily done by solvng a system of linear equations. It is unclear how Kleene's 

theorem could help us here . 

2.2 Autonomous Nets 

As I have mentioned above the usual problem for an autonomous system is to find 

the fixed points and cycles. For a finite state system this is most of the story. 

Consider the following diagram: 

If we follow the sequence of states starting from the state S1 , then we may 

pass through some sequences of transient states, but eventually we will end up in 
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a cycle. Hence finding the number of cycles of each period will describe the long 

term behavior of such a system, but it will not give information about the short 

term transient behavior. 

ff the dynamic equation for a neural net is linear, that is, Xt+l = AXt where A is 

an nxn .1.natrix, or affine, that is, Xt+l = AXt+C, where C is an nxl vector, it is easy 

to find the fixed points by solving a system of linear equations. Further calculations 

can determine the number and the periods of the various cycles. Techniques for 

these calculations were decribed by Elspas (1959). 

In my thesis Cull (1970) and subsequent papers, Cull (1971a, 1971b ), I sought 

to give analogous techniques for nonlinear neural nets. Starting from the dynamic 

equation 

where F is a nonlinear function from { 0, 1} n to { 0, 1} n, I wanted to apply the 

techniques of linear algebra to the calculation of the behavior of such a net. The 

problem was: How to convert a nonlinear system to a linear system? ff one thinks 

of a net in terms of states then the progression from state to state can be captured 

in a transition matrix. For a net with n neurons, there are zn states, so one can 

define a zn x zn transition matrix T in which Ti,j = l iff state j goes to state i. 

Hence one has a linear representation of a net as Yt+i = TYt, in which a state is 

represented as a znxl vector which contains a single 1. Notice that most of the 

vectors of this linear system represent sets of states rather than single states. From 

this linear transitional representation, it seems reasonable that there should be a 

way to linearize the nonlinear functions that define the net's dynamical equation. 

The trick here is to think of a function from {O, l}n to {O, 1} as as polynomial 

over GF(2) inn variables. For example, any function from {0, 1}2 to {O, 1} can be 

represented as 

where each Cit{ 0, 1} and the operations are carried out mod 2. Further by ex­

panding the n-dimensional vector X to the 2n dimensional vector Z, which has as 
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its components all the products of the n components of X, the dynamic equation 

Xt+l = F(Xt) may be represented by the linear equation Zt+i = HZt, where His 

the matrix which has as its rows the coefficients of the polynomials which are the 

products of the polynomials in F . 

As a small example, if 

then 
1 1 0 0 0 1 

Zt+1= 
X1 ao a1 a2 a12 X1 = HZt -
X2 bo b1 b2 b12 X2 

X1X2 
t+l 

~ C1 C2 C12 X1X2 
t 

where 

~ = aobo 

c1 = a1bo+ aob1 + a1b1 

c2 = a2bo + ao~ + a2b2 

The equations for the e's come from forming the product of the polynomials 

which compute the next values for x1 and x2, and noticing that x2 = x in GF(2). 

It should be almost immediately clear that eigenvectors of T corresponding to 

the eigenvalue 1 will give unions of the cycles in the states of the net. Similarly the 

characteristic polynomial of T can be written so that each factor of the form ,\ k + I 
corresponds to a cycle of length k. It ;;iay at first seem surprising that the same 

statements can be made about the matrix H, but this is true because T and H are 

similar matrices over GF(2). 

In fact, there is a very special matrix Pn which gives the similarity between T 

and H. This matrix , Pn can be defined recursively by 

Po = [1] 
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For a net with n elements 

and since Pn is self-inverse, that is, Pn * Pn = I, 

The special form of Pn depends on the ordering of the components used in the 

linearization, and with this ordering Pn serves as a fast Fourier transform which is 

useful in quickly multiplying polynomials over GF(2). This is only a sketch of the 

results more details are in Cull (1970), Cull (1971a), Cull (1971b), and Cull (1976). 

The major problem with this linearization is that it fails to distinguish things that 

are equivalent mod 2. For example, 

so the characteristic polynomial will not distinguish between 4 cycles of length one, 

1 cyle of length four, or 1 cycle of length two and 2 cycles of length one. Further, 

averaging is problematic because the field does not have elements to express desired 

fractions. To avoid these problems, we need a field that is larger and behaves like 

the rationals. Fortunately such a linearization is possible. The trick is to represent 

0 mod 2 by 1 rational, and 1 mod 2 by -1 rational, then any function from {O, l}n 

to {O, 1} can be represented by a function from {1, -l}n to {1, -1}. 

Theorem 5 Any function from {1, -l}n to {l, -1} can be represented as a poly-

nomial in n variables with coefficients which are integers divided by 2n. 

This theorem can be proved by noticing that the coefficients e's are related to the 

values v's of the function by 

CWn = V where Wn is the matrix defined recursively by 

Wo = [1) 
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and noting that Wn Wn = 2n I. 

With this representation there is also a function matrix, call it G, which gives a 

linearized dynamic equation. Of course, this function matrix is similar to the tran­

sition matrix T because WnT = GWn and T = 1/2nWnGWn and G = 1/2nwnTWn. 

Calculating the characteristic polynomial of G or equivalently T over the ratio­

nals will give a polynomial which has a unique factorization of the form 

where r is the number of transient states and k1 , k2 , ••• , km are the lengths of the 

cycles. Much of the work on this linearization comes from DeLuca (1970), Caianello 

(1973), and Caianello and Grimson (1975). 

My major reason for investigating this representation was to use it to calculate 

the expected lengths of cycles in randomly connected neural nets. The key result 

needed in this calculation is: 

Theorem 6 The expected number of states in cycles whose lengths divide k is 

where Eis the expectation operator and tr(M) = I:f=1 Mi,i is the trace of the matrix 

M. 

Cull (1978) demonstrates that these expected values can actually be calculated 

when the neural net is random in the sense that each neuron is equally likely to ,._ __ 

compute any function of n variables. This random situation, which is usually called 

the totally connected case, can be analyzed by more straightforward combinatoric 

arguments when it is realized that the situation being studied is the statistics of a 

random map from a finite set to the same finite set. Such mappings were studied 

long ago by Rubin and Sitgreaves(1954), and their properties were more recently 

summarized by Gelfand(1982). The point of Cull(1978) was not to find a new harder 
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Figure 1: Expected cycle length as a function of connectivity for nets of 31 neurons. 

way to compute known results, but rather to develop a technique which could be 

used in a variety of situations other than the totally connected case. The calculation 

of known results was only a demonstration of the validity of the technique. With 

this technique it should be possible to obtain at least asymptotic estimates of the 

dependence of various statistics on various properties of nets. In particular, Kau:ff­

man(1969) and Walker(1984) have carried out simulations to study the dependence 

of cycle lengths on the number of inputs (connectivity) of each neuron. We have 

also carried out such computer calulations and an example appears in Figure 1. 

I believe that the techniques outlined here and in Cull (1978) will enable one to 

derive the asymptotic form of curves like the curve in Figure 1, but such calculations 

will not be trivial. This is an open problem which awaits a researcher with the time 

and energy to obtain its solution. 
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3 Complexity 

As we have outlined in the previous section, many questions about the dynamics of 

neural nets may be answered by algorithms whose running time is linear or close 

to linear in the number of states . These algorithms are reasonable for neural nets 

whose representation is about the same size as the number of states. While there 

are nets with such large representations, there are also classes of nets which have 

smaller representations. For example, a linear net can be represented by a matrix 

using about n 2 bits while the net has 2n states. Similarly, linear threshold nets can 

be represented by about n2 weights and if these weights have _few bits then these 

linear threshold nets can be represented with about n3 bits. An obvious question is 

whether there are algorithms for answering questions which run in time proportional 

to the size of the representation rather than the number of states. In particular can 

questions about nets which have 0( nd) representations be settled by algorithms 

which have running times O(nd+k) for some small values of k. 

For lin~ar nets, some easy questions are 

1. Will a particular neuron ever go "on"? 

2. Given a state X is there a state Y so that X is the next state of Y? 

3. Are there any transient states? 

4. Given two nets are they isomorphic? 

Each of these questions can be answered in time at worst O(n 3 ). Unfortunately 

the existence of fast algorithms does not seem to hold for all classes of nets with 
'-- • 

small representations. In particular several problems about neural nets in various 

representations can be shown to be NP-complete or PSPACE-complete, strongly 

suggesting that there are no fast algorithms for these problems. For example, the 

function computed by a neuron can be represented by a Boolean expression which 

can be satisfied exactly when there is some setting of all the neurons which turn 

the neuron "on". Cook (1971) showed that this satisfiability problem for Boolean 
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expressions in conjunctive form is NP-complete. This means that it is easy to show 

that a neuron turns "on" if one can guess the setting that turns the neuron "on", 

but there may be no short way to show that the neuron is always "off". This 

satisfiability problem is as difficult as any problem in NP, meaning that if there 

were a fast algorithm for satisfiability there would be a fast algorithm for every 

problem which has a quick verification (short proof) . Since many of these problems 

have been studied for 200 years without the discovery of a fast algorithm, it seems 

reasonable to assume that no fast algorithms exist for these problems (Garey and 

Johnson (1979) ). 

It is tempting to believe that the NP-completeness is a result of the representa­

tion being too general and that by restricting the representation NP-completeness 

would vanish. Often this is the case. As above, restricting to linear neurons makes 

satisfiability easy. Even if the restriction is to linear threshold neurons, satisfiabil­

ity is easy. To determine if a linear threshold neuron will ever turn "on" simply 

determine if the sum of positive weights is greater than the threshold. Thus if all of 

the neurons with positive effect on the given neuron are "on'? and all of the neurons 

with negative effect are "off", then the neuron will turn "on". But if the sum of 

the positive weights is less than threshold, then no matter how the settings of the 

other neurons are arranged the neuron will never turn "on". 

The fact that satisfiability is easy for linear threshold neurons might give one 

some hope that problems about linear threshold nets would be substantially easier 

than the same problems for general nets, but linear threshold nets are as general 

as general nets. In particular, any Boolean function can be computed by a two­

level linear threshold net. So while one can easily solve satisfiability for a single 

LT-neuron, satifiability for a net of LT':neurons could be difficult as we will show 

next. 

Theorem 7 The following questions are NP-complete. 

1. Is there a setting of the inputs which simultaneously turns on all neurons in 

a (single-level) LT-neural net? 
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2. Is there a setting of the neurons in an autonomous LT-neural net, so that at 

the next time step all of the neurons will simultaneously be on? 

Proof: If either of these questions can be answered positively one can guess the re­

quired settings and quickly check that the guessed setting has the required property. 

Hence the problems are in NP. Each question is NP-complete by reduction from 3-

SAT. In Garey and Johnson(1979) there is a proof that 3-SAT is NP-complete . 

An instance of 3-SAT is a Boolean expression in clause form in which each clause 

contains 3 literals, that is, Boolean variables which appear in complemented or 

uncomplemented form. The expression is satisfiable iff there is a setting of the 

variables so that at least one literal in each clause is true. 

Given any instance of 3-SAT, construct a net with one neuron for each clause 

and one input line for each variable, and connect each input line to each neuron 

corresponding to a clause containing the variable represented by the input line. 

The connection weights and threshold will be assigned depending on the number 

of complemented variables. If a clause has no complemented variables, then the 

corresponding neuron has threshold .5 and three connections each with weight + 1. 

Clearly if at least one input line is on then the net excitation is at least .5 and the 

neuron fires, while if all the input lines are off the net excitation is -.5 and the neuron 

does not fire. If the clause has one complemented variable, then the corresponding 

neuron has threshold -.5, the input line for the complemented variable has weight 

-1, and the input lines for the two uncomplemented variable each have weight +1. 

Clearly if the complemented variable is false, the net excitation is at least .5 and the 

neuron fires. Similarly if at least one of the complemented variables is true, the net 

excitation is at least .5. Finally if the complemented variable is true and both the -· 
uncomplemented variables are false, the net excitation is -.5 and the neuron will not 

fire. If the clause has two complemented variables then the corresponding neuron 

has threshold 1.5, the input lines corresponding to the complemented variables each 

have weight -1, and the input line corresponding to ther uncomplemented variable 

has weight +2. Clearly the neuron will have net excitation at least .5 unless the 

complemented variables are both . true and the uncomplemented variable is false. So 
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the neuron will fail to fire exactly in the case that is required. Finally if the clause 

has three complemented variables then the corresponding neuron has threshold 2.5 

and a weight of -1 on each of its three input lines. Clearly this neuron will fire 

unless all three variables are false, and so the neuron will operate correctly. This 

constructici:i shows how to construct with very little effort a neural net which has an 

input setting which will fire all its neurons exactly when the corresponding instance 

of 3-SAT has a satisfying assignment. We should note that our constructed net 

has only one level; the connections are from inputs to neurons and there are no 

interconnections between neurons. 

A similar construction could build an autonomous LT-neural net which mimics 

an instance of 3-SAT. In this construction the neurons would have to represent 

both the variable and the clauses. This can be managed by letting the number of 

neurons be the maximum of the number of variables and the number of clauses. 

Each neuron would compute a function corresponding to a clause. If there are more 

variables then several neurons would compute the same function, while if there 

are more clauses each neur,on would compute a different function. A subset of the 

neurons would represent variables and there would be connections from the outputs 

of neurons representing variables to the inputs of neurons representing clauses which 

contain those variables. The connection weights and thresholds would be assigned 

in the same manner as in the previous construction. D 

The complete generality of LT-neural nets can also lead to PSPACE-complete 

problems. A problem is in PSPACE if there is a polynomial p(n) and an algo_rithm 

so that every instance of size n of the problem can be solved by the algorithm 

using at most p(n) bits of memory. A problem, Prob, is PSPACE-complete if every 

problem in PSPACE can be reduced to 'Prob using a log space transformation. For 

example, the equivalence problem for regular expressions has been shown to be 

PSPACE-complete (Stockmeyer and Meyer (1973), Stockmeyer (1974), Garey and 

Johnson (1979)). 

The generality of LT-nets follows easily from the ability of an LT-net to computer 

any Boolean function. Minsky (1967) gives a construction in which an n-state, m-
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symbol finite state machine can be simulated by an LT-net with about nm neurons. 

In Minsky 's construction the finite state machine is assumed to be deterministic and 

in the simulating net exactly one of the neurons representing a state-symbol pair is 

"on" at each time instant. So in this construction while the net has 2Mm potential 

sta~es, only n * m of these states will be used in the simulation. The unused 

states of the net can be used to simulate a nondeterministic finite state machine . 

Nondeterminism here means that instead of a simple next state being determined by 

the present state and present input, a set of next states is determined . One could 

view this nondeterminism as giving the machine a choice between possible next 

states, but it may be more reasonable to simply say that the machine goes to the 

whole set of next states rather than making a choice. Now Minsky's construction 

can be used to build a LT-net with nm neurons which simulates a nondeteministic 

finite state machine with n-states and m-symbols . The limitation that only neuron 

at a time will be on in the net no longer holds, but at most n neurons at a time will 

be on. This means that about m * 2n states of the net may be used in the simulation . 

Hence it is easy to construct an LT-net which can simulate -a nondeterministic finite 

state machine. 

As was mentioned above the equivalence problem for regular expressions 1s 

PSPACE -complete . This equivalence problem is: Given two regular expressions 

are the sets of strings represented by the two expressions the same? By a well­

known construction (Hopcroft and Ullman(1979)), from a regular expression one 

can easily construct a nondeterministic finite automation which accepts exactly the 

set of strings represented by the regular expression. The automaton accepts the 

string x if when the automaton is started in a specified initial state and x is in­

put to the automaton, the automaton iritl output YES at the end of the string x. 

So the equivalence problem for nondeterministic finite state machines is PSPACE­

complete. Further since nondeterministic finite state machines can be simulated by 

LT-nets the equivalence problem for LT-nets in PSPACE-complete. We summarize 

this discussion in the following theorem . 

Theorem 8 The equivalence problem for LT-n eural nets is: Given two LT-n eural 
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nets, do the nets accept the same set of input strings? This equivalence problem is 

PSPA CE-complete . 

Proof (Sketch): By reduction from equivalence of regular expressions, and Minsky's 

simulation of a finite state machine by an LT-neural net . □ 

These tw0 examples will serve as examples of arguments classifying problems 

about neural nets. We have investigated a number of related problems and classified 

their complexity, but we have not yet published these results. 

The following sketch shows some complexity classes and the placement of some 

problems within these complexity classes. 

PSPACE 

NP 

p 
•One-On 

Figure 2: The 3 complexity classes P, NP, and PSPACE, and 3 problems -we have 

discussed. A problem is on the boundary if it is complete for the class, that is, the 

problem is one of the hardest problems in the class . .,___ __ 
.,___ __ 
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4 Chaos 

Most introductory texts on dynamics seem to imply that dynamical syst~ms can 

only have a few kinds of typical behaviors: divergence, convergence to a fixed point, 

or convergence to a cycle. Of course, different regions of a state space could have dif­

ferent behaviors. Li and York(1975) showed that even simple difference equations 

could have another typical behavior in which the states in a sequence remained 

bounded, but the sequence did not converge to any periodic behavior. They intro­

duced the term "chaos" for the situation in which the state space contained this 

wandering behavior and also contained cycles of every period. Subsequently, the 

term "chaos" has been used with various definitions by various authors. Chaos now 

loosely means dynamic behavior which is neither simple convergence, nor simple 

divergence, nor simple periodic behavior. Two features of most definitions of chaos 

are: 

1. sensitive dependence on initial conditions, so that nearby states will evolve 

into widely separated states, and 

2. non-integral attractors, so that trajectories will be bounded but non-periodic . 

In Cull(1988) and Cull, Holloway, and Kaul(1989) we conjectured that chaos might 

be useful in describing the behavior of certain kinds of random neural 'nets. Figure 

1 in section 2 shows that for low connectivity random nets usually have small cycles, 

while for high connectivity random nets usually have relatively long cycles with cycle 

lengths about the square root of the number of states. Hence the low connectivity 

nets might be described as being periodic, while the high connectivity nets might 

be described as being random. This lea~s random nets with moderate connectivity 

as candidates for description as chaotic. Let us consider the state diagram of an 

autonomous neural net. If we start in any state and follow the sequence of states , 

eventually we will find a cycle of states. Trying to describe at least the cycle behavior 

in a concise way could be done by giving the lengths of all the cycles. This would 

be reasonable if there are not too many cycles and their lengths are relatively short. 
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Since random nets with low connectivity seem to display short cycle lengths, such a 

description might be reasonable. One might be able to estimate the cycle lengths for 

a given low connectivity net by choosing a few states at random and following the 

states until a cycle is detected. In this manner, one could get a reasonable picture 

of the behavior of the net. For high connectivity nets the cycles will tend to be very 

long, so following a few states to detect cycles could take a very long time. Thus we 

suggest that a reasonable description of a high connectivity random net is that the 

net behaves like a random mapping and it is unreasonable to calculate extra details. 

For moderate connectivity nets, the cycles may also be rather long. Notice that the 

curve in Figure 1 rises very quickly. We think that it may be possible to investigate 

some structure in these moderately connected nets. In particular, if the connections 

are assigned at random, there is a good possibility that at least for some pairs of 

nearby states, the trajectories starting at these states will diverge; that is, the two 

trajectories may go to different cycles, or even if the two trajectories go to the same 

cycle they may go to the cycle at quite different times or they may join the cycle 

at widely separated states. 

The problem we are left with is to calculate the dimension of an attractor. ff 

we could think of an attractor as being embedded in a Euclidian space then we 

would expect that if we sat on a typical point of the attractor and looked at the 

portion of the attractor that is within a radius r of our typical point, we would 

find that volume of the attractor would grow as rd, where d is the dimension of 

the attractor. While finding the volume of the attractor might be difficult, we can 

approximate this calculation by taking a sample of points on the attractor, and 

still expect that the number of sample points within radius r of a sample point 

should grow as rd . IT we let C(r) be tne ·average number of sample points within 

radius r of a sample point, and plot log C(r) against log r, we expect that this 

curve will have slope about d. Berge et al(1986) have suggested that the slope only 

be estimated on the part of the curve that looks like a straight line, and further 

that this calculation should be carried out on k-tuples of consecutive sample points 

with C(r) now being the average number of k-tuples within a k-dimensional sphere 
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around a k-tuple . They further suggest that we should accept the estimate for d 

when we get essentially the same value for several consecutive values of k. This 

technique for estimating dimension seems to work quite well for attractors like the 

Herron attractor in which the state variable is a real number. We used the Herron 

ai,tractor to check our computer programs . Unfortunately we ran into problems 

when we attempted to estimate dimensions from neural net data. The most obvious 

measure of distance for binary state vectors is the Hamming distance, the number 

of components in which two binary vectors disagree. When we tried to estimate 

dimension using Hamming distance, the slope did not settle down but rather kept 

increasing as we increased k. We now believe that it was inappropriate to use 

Hamming distance with this estimation technique. A different estimation technique 

should be used with Hamming distance. Since the estimation technique worked for 

the Henon attractor and in calculations our computer was using a binary vector to 

represent a real number, we thought of turning the state vector for the neural nets 

into approximate real numbers by the same conversion; that is, the binary vector 

(x 1 , x 2 , ••• , xn) could represent the real number Ef=1 Xi2-i. While we _ had hope 

that this technique would work, at least if the ordering of the x's in the vector was 

random, the results of the calculation did not give a reliable estimate of dimension. 

Figure 3 shows an example output. If this gave a good estimate of dimension the 

straight line portions of the curves would be parallel, but in the figure these lines 

are not parallel. 

The question of chaos in neural nets has become more important recently with 

the work of Freeman(1988) and Goldberger(1989) who suggest that real biological 

systems behave chaotically when they are operating in the normal range. They 

suggest that real systems only show peiiodic behavior when something abnormal 

is happening to an organism . Questions about chaos and what it means and how 

to measure it in quantum systems which have discrete states are being studied 

by theoreticians in physics and chemistry. Since chaos was originally defined for 

continuous systems, one may need a definition of continuity for discrete systems 

before chaos can be defined and measured. We leave chaos with the conviction that 
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Figure 3: Typical plot of log C(r) vs. log r in normalized units . 

sional attractor the curves should be parallel. 
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this important aspect of dynamics needs to be integrated into the theory of discrete 

neural nets , and with the reminder that chaos has been measured in continuous 

neural nets which are the topic of the next section . 
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5 Analog Models 

Up to this point I have discussed discrete time finite state neurons, but in this 

section I will consider continuous models which were the subject of my first pub ­

lication, Cull(1967). Continuous models have a long history from the work of Ra­

shevsky(1933) and Hill(1936) through the Nobel prize winning work of Hodgkin 

and Huxley(1952) to the analog devices of Mead(1989). The work of Hodgkin and 

Huxley concentrated on a single neuron and produced a model with parameters 

that corresponded closely with measurable or potentially measurable -physical and 

chemical properties of the neuron. Their model is rather complicated and suffers 

from numerical instability in that digital simulations of the model often produce 

behaviors which do not occur in the continuous model. To avoid those problems 

of too many parameters and numerical instability, most studies of neural nets use 

models for a single neuron which are -less complicated than the Hodgkin- Huxley 

model. In particular, Rashevsky and co-workers showed how fairly small nets of 

model neurons could be used to model a wide variety of phenomena. This work is 

summarized in Rashevsky(1960) and Householder and Landahl(1945). This work 

is important since it shows that many phenomena particularly in the area of per­

ception can be modeled with simple neural nets of simple model neurons. These 

models have two state components ( "excitatory" and, "inhibitory"), obey a linear 

differential equation, and have a nonlinear threshold function on the output. Many 

of these models can be represented in the form in Figure 4. 

A reasonable conjecture is that a net of Rashevsky neurons can simulate the 

behavior of any net of reasonable continuous model neurons. In particular, this 

conjecture suggests that when creating._mpdels using continuous neurons, it might 

be more reasonable to use fairly simple model neurons like Rashevsky neurons rather 

than the more complicated but more exact Hodgkin-Huxley model. The difficulty 

with this conjecture is that it is only a conjecture and it has never been proven. 

I want to point out a major difference between the theory of discrete time, finite 

state neural nets, and the theory of continuous time, continuous state neural nets. 
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Figure 4: This cross-coupled connection can exhibit an amazing variety of behaviors 

depending on the values chosen for the various parameters. 

For the discrete time, finite state nets, the Kleene theorems, given in section 2 of this 

paper, . exactly characterize the class of sequences recognized by such nets. Since 

these theorems show that McCulloch-Pitts neurons suffice to simulate anything 

which can be done by discrete time, finite state model neurons, one can show that 

a model also suffices by showing how a net of these model neurons can simulate 

a McCulloch-Pitts neuron. Hence, a Kleene-like theorem for continuous neurons 

would settle or help to settle the above conjecture about Rashevsky neurons. 

What difficulties are there is proving a continuous analog to Kleene's theorem? 

I think that the principal difficulties are: 1) finding a continuous analog to the dis­

crete sequence, and 2) dealing with memory within neurons rather than nets. If we --look back at Kleene's theorem, we see tliat it involves very simple sets of sequences, 

that is, sets with at most one sequence with length at most one. These simple sets 

are enough because each neuron ( without a loop) can only remember for one time 

instant. Continuous neurons, on the other hand, can use their potential infinity 

of states to remember for arbitrary amounts of time. Of course, most continuous 
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models include some sort of, usually exponential, decay after a finite time span. ff 

this decay is rapid enough then it might not be unreasonable to view even a contin ­

uous neuron as having only a finite extent memory . One is then tempted to consider 

functions which are constant for intervals of time corresponding to the memory time 

of neurons, as the continuous analogs of input sequences . Unfortunately functions 

which are not constant seem to be reasonable as inputs for continuous neural nets . 

For example, a linearly increasing function might be used as an input for a continu ­

ous net which does contrast enhancement or discrimination. While some variability 

seems .necessary, it seems unreasonable to allow variation which makes the function 

nonintegerable. Discrete time enforces a sequence of time intervals; it is unclear 

how or if one should try to impose time intervals on input functions for continuous 

nets. 

Kleene's theorem involves operators as well as sets of sequences . These operators 

- union, concatenation, and -star - correspond to the three basic ways neurons can 

be connected. Union corresponds to parallel connection . Concatenation corresponds 

to serial connection. Star corresponds to neurons conne~ted in a loop. One would 

then expect the analog of these three operators to appear in the continuous analog 

of Kleene's theorem. Of course, one expects that these operators have to be suitably 

generalized to deal with continuous functions rather than sequences. 

So far in this section we have discussed continuous state, continuous time neu ­

ronal models, but recently some researchers have been using continuous state, dis­

crete time neurons (Rumelhart et al ( 1986)). The essential feature of these models 

is the graded output . Instead of the output of a neuron being O or 1 as in the finite 

case or in the continuous case with a threshold nonlinearity, these models have an 

output in the interval [0,1 ]. The step 'function threshold nonlinearity is replaced · 

by a continuous S-shaped function. The graded output of these models is used 

in deciding how to modify connections between neurons during the learning phase 

when these neuronal nets are being "taught" their desired behavior . After learning 

it seems possible to replace the S-shaped output with the step nonlinearity without 

affecting the behavior of the net . As in the continuous state, continuous time case , 
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Figure 5: Circuit for a neuromim.e suitable for VLSI implementation. 

no analog of Kleene's theorem has been proved for continuous state, discrete time 

nets. Discrete time might allow one to make a theorem in terms of input sequences, 

but these nets are often dealt with in an asynchronous manner so that some neu­

rons have their states changed before the new states of other neurons are calculated. 

This asynchrony will make it difficult to prove a Kleene-like theorem. 

The nets mentioned in the last paragraph arise because their creators have to 

simulate their nets on digital computers. From the definitional point of view, these 

nets are continuous state, continuous time; present technology forces the simulations 

to be discrete time. Changes in the technology seem possible. In particula.r, the 

work of Mead(1989) suggests that it is possible to not only design continuous state, 

continuous time nets, but also to fabricate silicon chips based on these designs and 
'---· 

to build analog neural net computers:--"Following this line of reasoning one of my 

students, Hangartner(1990), has designed a chip suitable for VLSI implementation. 

Figure 5 gives a circuit diagram of the basic neuromime used in his design. A chip 

based on this design is being fabricated this summer and Hangartner expects to 

start experimentation on his chip this fall. 
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I have already mentioned two reasons why people are studying continuous state, 

continuous time nets. One reason is that relatively small nets seem to be able to 

capture some interesting behavior. Another reason is that better learning algorithms 

might be possible for such nets. Yet a third reason is the hope by some, for example 

Aleksander(1989), that analog nets can circumvent NP-completeness. In section 3, 

NP-completeness was defined and it was pointed out that many people believe that 

any digital computer program for such problems will have exponential or at least 

superpolynomial running time in the size of the problem. If one considers nets whose 

size can grow as a function of the input size, then this digital computer conjecture 

becomes that the product of the size times the depth of a discrete time, finite state 

net which solves an NP-complete problem must be superpolynomial. The advocates 

of analog nets argue that their nets will have an infinity of states so that they may be 

able to solve NP-complete problems quickly without violating the digital computer 

conjecture. Opponents of analog nets point out that one is only able to measure 

inputs and outputs to some fixed number of digits of accuracy, so that one should 

be able to simulate analog nets digitally, and hence that analog nets will be no 

more powerful computationally than digital nets. While from a theoretical point of 

view, I agree -with the opponents of analog nets, from a practical point of view I 

believe that it might be possible for analog nets to quickly compute at least locally 

optimal solutions to hard problems. My practical belief comes from the ability of 

soap bubbles · to quickly find locally optimal solutions to the Steiner tree problem, 

which is an NP-complete problem. 

The next few years should be an exciting time for analog nets. We can look for­

ward to hardware implementations which may demonstrate the practical usefulness 

of analog nets. We can also look forwardto a firm theoretical basis for the abilities 

and limitations of analog nets. 
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6 Conclusion 

To keep this paper within bounds I have ignored several aspects of neural nets. From 

my own work I have left out work on control sequences for neural nets and related 

problems on sequential machines and digraphs, but I will cite some references to 

this work (Cull (1974, 1975, 1976, 1977, 1978, 1980, 1982)). 

I have also ignored learning for a few reasons. First, I have not directly published 

any work on learning. Second, following an argument of Minsky and Papert (1969) 

learning is a special case of nets with inputs. Their argument is that because of 

there are only a finite number of functions which can be computed by a net, and 

because weights between neurons are only going to be represented to finite accuracy, 

weights can be stored and modified in an extra neural net, and by slightly modifying 

the original net and adding the extra net, this augmented neural net will mimic a 

net with learning without a separate learning process, so that, learning will only be 

a special case of a net with inputs. Third, since the seminal work of Valiant (1984), 

and the subsequent COLT(Conference on Learning Theory) meetings, the theory 

of learning has blossomed, and would require a book length treatise to include the 

known results. 

I have concentrated on topics in which I have worked and on topics which I 

think are important. The examples of complexity are not meant to encourage more 

such examples, but rather to warn that almost all of the things one would like to 

do with neural nets face the problem of computational intractability. The other 

sections suggest some possible ways to avoid intractability and suggest, I hope, 

some reasonable open problems. 

Even if calculating the dynamics of iudividual nets is hard, it may not be hard to 

compute the expected or average behavior of random nets. I hope the techniques I 

described in section 2 may be used to calculate expected behavior for various classes 

of neural nets. 

The ideas from chaos theory might also give a way to describe neural nets 

without becoming computationally bogged down. Unfortunately there are still some 
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open questions about the proper definition of chaos for finite state systems . If the 

right definitions can be found, then it may be possible to use the techniques of 

section 2 to calculate the expected behavior of random nets in the sense of being 

able to predict that chaos is or is not expected and in the sense of estimating some 

parameters like dimension of attractors and Lyapunov exponents. 

For analog nets the theory of chaos will be directly applicable and we can expect 

measurements on both simulated and constructed nets within the next few years . 

On the other hand, characterization theorems for analog nets are needed. Otherwise 

we will continue to see many different models with no clear way to compare their 

abilities and limitations. 

In the end, I find working on and thinking about neural nets is both fun and 

exciting. I will continue working on them. Whether neural nets will serve to solve 

the problems about thinking addressed by Penrose (1989) is beside the point . What 

is important is that we can have a good set of open problems, and a set of techniques 

which may allow us to solve some of these problems. 
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