
90-60-18

LifUUEASITY

5CIEnCE

INFORMATION THEORY METRIC FOR ASSEMBLY LANGUAGE

Curtis R. Cook
Computer Science Department

Oregon State University
Corvallis, Oregon 97331-3202

l
l

1

I
I
j

1

J

l
j

INFORMATION THEORY METRIC FOR ASSEMBLY LANGUAGE

ABSTRACT

Curtis R. Cook
Computer Science Department

· Oregon State University
Corvallis, Oregon 97331-3202

This paper presents a study of the distribution of assembly language
instructions in two flVionics software applications and the development of an
information theoretic software complexity metric based on the study. The
instructions were grouped into classes , e.g load and store, . arithmetic, jump,
compare, etc. As expected the distribution of instruction classes over the
modules was generally uniform and nearly three-fourths of the instructions
were load, store, or jump instructions. . The biggest · surprise was that nearly one
half of the 320 different instructions were not used.

The assembly language complexity metric is based on the premise that
programs with familiar instructions are much easier to understand and work
with than programs with unfamiliar instructions. Familiarity was approximated
by frequency of instruction use. The metric is similar to one developed by
Berlinger, except we computed the information content per instruction class and
the average information content per instruction while he summed the
information content of the instructions. Maintenance programmers selected
what they felt were the most difficult modules. Our metric gave the highest
complexity values to most of these modules.

INTRODUCTION

Software complexity metrics measure the ease or difficulty a programmer
will experience in working with (e.g. testing, maintaining, understanding) a
program. The most common complexity metrics are based on source code
characteristics such as size (lines of code), control flow (number of different
execution paths through program), data · structures, information flow between
modules, and combinations of characteristics [2].

A quite different class of software complexity metrics are those based on
information theory. These measures consider the frequency of use of
programming language elements. The basic premise of . information theory
metrics is that a programmer is more likely to accurately use or more quickly
understand commonly used elements that infrequently used ones. For example,
a typical assembly language has several hundred instructions including many
with various options. These instructions can be partitioned into three subsets
(frequent, less frequent, and rarely) according to how often they are used. The
frequent subset is the set of instructions (e.g. load, store, shift, and compare)
commonly used by assembly language programmers. Assembly language
programmers thoroughly understand this subset. The rarely used subset of
instructions are normally the infrequently used instructions such as the special
purpose instructions (e. g. interrupt handling, channel, and chaining) or
specialized forms of instructions. Because they are so rarely used these
instructions are generally not well understood. The remainder of the
instructions fall into the less frequently used subset.

The proportion of assembler instructions in the frequently, less frequently
and rarely used subsets depends on the programmer and the number of
different instructions. If there are a small number of different instructions
normally they will be evenly split among the three subsets. If there are a large
number of different instructions then a small proportion (e.g. 15-20%) ~ill be
used frequently while a large proportion (50% or more) will seldom be used.

It is important not to infer that the instruction mix in each of the three
subsets will be the same for all programmers. Generally the mixture will be
similar, but it may be quite dissimilar because of programmer preferences, the
programming application domain, problem constraints, and so forth.

There is an interesting information theory analogy with written prose
comprehension. Frequency of words is an important factor in measuring written
English prose comprehension. Reading speed is slowed by unfamiliar words and
readers will experience difficulty understanding prose with unfamiliar words. It
takes longer for working memory to process unfamiliar words and determine
the relationship between other units in the sentence. [5] Readability formulas
assign an index of probable difficulty for readers and/or a grade level to prose.
Researchers consider word difficulty the . most important factor in readability.
Hence readability formulas take into account word difficulty either by word

D
I

.J

I

j

j

I
J

l
n
l

I
1
I
j

I

I

j

J

J

I
l

LJ

length (e.g. longer words are typically less frequently used), by a count of the
number of words not in a list of common words or by assigning a weight to
words according to their position in a list of common words [4]. Howes and
Solomon [3] showed that frequently used English words are recognized faster
than less frequently used words. However, general word lists fail to account for
individuality as people with interests in particular fields use words in that field
more frequently than they are found in general prose. Researchers believe that
familiarity is a more important factor in measuring readability than frequency.

Information theory based software complexity metrics are more sensitive
to the infrequently used program elements than frequently used ones.

· Programs with rarely used program elements are typically more difficult to
understand and more likely to contain errors than programs with mostly
frequently used program elements and no rarely used elements. Hence these
measures would assign a higher complexity to an assembly language program
with several rarely used instructions than to a program without rarely used
instructions. This agrees with our intuition that a programmer encountering one
of the rarely used instructions may need to refer to a reference manual for its
details in order to understand its function.

In this paper we present an analysis of the distribution of assembly
language instructions for two medium size aircraft avionics applications and an
information theory software complexity metric based on the analysis. The
software is decomposed functionally and each function is composed of files. The
analysis showed a strong relation between distribution of instructions and the
functions and is consistent over the two applications and their modified versions.
Our software complexity metric weights instructions according to frequency of
use. The files rated as most difficult by the programmers who maintain the
avionics software were the files with high metric values.

INSTRUCTION DISTRIBUTION FOR A V8B AND Fl8 SOFTWARE

The data available for this study was five aircraft avionics application
programs written in CMS-2M with embedded AYK-14 Assembly language. Most
of the program was in assembly language. The programs were designed as a set
of functions each composed of files (modules). The file naming convention was
that all files for a particular function began with the same first letter. For
example, the mathematical files all begin with "M". This allowed the logical
grouping of files by function.

We were also able to group the assembly language instructions into classes.
The reference manual divides the A YK-14 Assembly Language instructions into
11 classes: (1) Load and Store, (2) Arithmetic, (3) Logical, (4) Compare, (5)
Jump, (6) Shift, (7) Miscellaneous, (8) Executive Mode, (9) Command and Chairi,

(10) Stack and Queue, and (11) Floating Point and Sort. This breakdown 1s
typical for most assembly languages.

We developed a analysis program that tabulated the instruction
frequencies for each file. Three of the five avionics programs in our data set
were for the AV8B and two for the F-18. Version 7 of the A V8B was a later
release of Version 5 and Version 6 was for night flying and developed from
Version 5. For the Fl8, 89A is a later release of 87X.

The instruction frequencies and percentages for files and instruction
classes for the A V8B and F18 programs are given in Tables 1 - 10. Tables 1, 3,
5, 7, and 9 give the instruction frequency for each instruction and function as
well as the totals for each. The last row in these tables gives the percentage of
the total instructions for each instruction class. For each function Tables 2, 4, 6,
8, and 10 give the percentage of instructions in each class for that function. Our
analysis of the data is divided into two parts: (1) Instruction Distribution and
(2) Outliers and Rarely Used Instructions.

Instruction Distribution

1. There were no floating point (actually trigonometric and logarithmic
functions) or· sort instructions in any of the programs so they were omitted from
the tables. Hence there were only 10 instruction classes:

2. As expected, the instruction distribution for both the A V8B and Fl 8 were
very similar. Over one-half of the instructions were load or store instructions
and nearly one-fourth were jumps. Slightly over 10% were arithmetic and
logical and 10-12% were compare and shift instructions. Miscellaneous was
between 3 and 4~ while executive, chain/command, and stack/queue totaled 1 %
or less. There were only 4 stack/queue instructions in the A V8B software and
only 5 in the Fl 8. The rank order of the instruction classes by frequency for the
three A V8B data sets are identical and the rank order by frequency for the two
Fl 8 data sets are also identical. The rank orders for all five data sets are the
same except for two transposes in the ordering: The arithmetic and compares;
the shift and miscellaneous.

3. There are 320 distinct instruction op codes in the AYK-14 Assembly
Language. In each of the five programs slightly more than one-half (169-175))
of the distinct op codes were used. Even though the load and store instruction
class account for over half of the instructions used and there are 44 distinct load
and store op codes, it was surprising that op code L (load register) and S (store
register) accounted for over one-fourth of the program instructions.

. I
l

I
1

l
j

J

j

J
J

l
l
l
I
n
I
I
·1

I

l

I
I
J

J

j

l
j

4. The Fl 8 files contained 50% more instructions than the A V8B files. There 1s
quite a range of file size. The smallest files contain less than 100 assembly
language instructions and the largest contain over 15,000 instructions.

Outliers and Rarely Used Instructions

1. Outliers: Outliers are defined for the percentage values in tables 2, 4, 6, 8,
and 10. A value in one of these tables is an outlier if it is at least two standard
deviations above the weighted average (last row in Tables 1, 3, 5, 7, and 9).

Load/Store: None.
Arithmetic: M and Q files (A V8B) and M files (Fl 8).
Logic: Q files (F18).
Compare: Y files (AV8B).
Jump: None.
Shift: A files (AV8B).
Miscellaneous: B and Y files (AV8B) and B files (F18).

2. We operationally define a rarely used instruction class as one that accounts
for at most 1 % of the total number of instructions in the software. There are
three rarely used instruction classes and these instructions are concentrated in a
very few files:

Executive: Less than 200 occurrences. Used only in C, G, and X files for the
A V8B data and used only in C, X, and Z files for Fl 8 data.

Chain/Command: Used about 1 %. For A V8B used only in C and X files. For
F18 used only in C, D, X, and Z files.

Stack/Queue: Used 4 times in X files in A V8B and 5 times in X files in F18.

Name load ari th logic comp iump shift misc exec chain stack total
afiles 238 89 1 3 49 46 0 0 0 0 426
bfiles 633 100 85 147 280 78 170 0 0 0 1493
cfiles 470 63 51 80 272 30 17 63 68 0 1114
dfiles 3078 837 105 216 1328 304 93 0 0 0 5961
2:files 1361 497 12 127 437 185 20 2 0 0 2641
hfiles 2146 411 138 298 961 210 219 0 0 0 4383
lfiles 135 1 8 26 68 3 20 0 0 0 261
mfiles 424 354 6 39 164 68 10 0 0 0 1065
nfiles 2110 463 53 145 685 205 54 0 0 0 3715
ofiles 6292 943 236 941 2646 300 436 0 0 0 11794
qfiles 39 45 0 0 0 0 1 0 0 0 85
rfiles 2369 602 22 234 838 188 51 0 0 0 4304
ufiles 4533 336 101 709 2590 249 279 0 0 0 8797
wfiles 311 36 15 36 136 7 28 0 0 0 569
xfiles 500 55 30 45 369 28 36 32 422 4 1521
vfiles 45 0 6 14 18 1 11 0 0 0 95
total 24684 4832 869 3060 10841 1902 1445 97 490 4 48224
% 51 10 2 6 22 4 3 0 1 0

Table 1. Instruction Frequencies for A V8B Version 5

Name load ari th 10 l?i C como iumo shift misc exec chain stack
afiles 56 21 0 1 12 11 0 0 0 0
bfiles 42 7 6 10 19 5 11 0 0 0
cfiles 42 6 5 7 24 3 2 6 6 0
dfiles 52 14 2 4 22 5 2 0 0 0
gfiles 52 19 0 5 17 7 1 0 0 0
hfiles 49 9 3 7 22 5 5 0 0 0
!files 52 0 3 10 26 1 8 0 0 0
mfiles 40 33 1 4 15 6 1 0 0 0
nfiles 57 12 1 4 18 6 1 0 0 0
pfiles 53 8 2 8 22 3 4 0 0 0
a files 46 53 0 0 0 0 1 0 0 0
rfiles 55 14 1 5 19 4 1 0 0 0
ufiles 52 4 1 8 29 3 3 0 0 0
wfiles 55 6 3 6 24 1 5 0 0 0
xfiles 33 4 2 3 24 2 2 2 28 0
vfiles 47 0 6 15 19 1 12 0 0 0

Table 2. Percentages for AV8B Version 5 Instructions.

·1

l
I
n
1
I
. I

1

I
I
J

!
j

J

J

I
J

l
'l
n
1
D
n

Name load ari th logic comp iump shift misc
afiles 238 89 1 3 49 46 0
bfiles 660 101 85 151 300 81 172
cfiles 514 63 53 85 279 30 17
dfiles 3098 845 105 215 1330 307 93
gfiles 2216 938 28 216 676 340 23
hfiles 2382 448 160 331 1079 223 247
lfiles 129 2 8 23 62 3 19
mfiles 424 354 6 39 164 68 10
nfiles 2315 519 53 157 737 209 54
ofiles 6722 1035 253 1048 · 2866 324 468
a files 39 45 0 0 0 0 1
rfiles 2496 620 30 248 885 200 52
ufiles 5025 393 121 778 2846 302 285
wfiles 448 54 18 45 196· 3 37
xfiles 552 59 30 48 386 28 37
vfiles 45 0 6 14 18 1 11
total 27303 5565 957 3401 11873 2165 1526
% 51 10 2 6 22 4 3
Table 3. Instruction Frequencies for A V8B Version 7

exec
0
0

64
0
2
0
0
0
0
0
0
0
0
0

35
0

101
0 1

l
I

Name load ari th logic comp iumo shift misc

I
J

afiles
bfiles
cfiles
dfiles
gfiles
hfiles
lfiles
mfiles
nfiles
ofiles
a files
rfiles
ufiles
wfiles
xfiles
vfiles

56
43
44
52
50
49
52
40
57
53
46
55
52
56
34
47

21 0
7 5
5 5

14 2
21 1

9 3
1 3

33 1
13 1
8 2

53 0
14 1
4 1
7 2
4 2
0 6

1 12 11 0
10 19 5 11
7 24 3 1
4 22 5 2
5 15 8 1
7 22 5 5
9 25 1 8
4 15 6 1
4 18 5 1
8 23 3 4
0 0 0 1
5 20 4 1
8 29 3 3
6 24 0 5
3 24 2 2

15 19 1 12

j Table 4 Percentages for A V8B Version 7 Instructions.

J

J

j

J

chain stack total
0 0 426
0 0 1550

68 0 1173
0 0 5993
0 0 4439
0 0 4870
0 0 246
0 0 1065
0 0 4044
0 0 12716
0 0 85
0 0 4531
0 0 9750
0 0 801

443 4 1622
0 0 95

511 4 53406
1 0

exec chain stack
0 0 0
0 0 0
5 6 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
2 27 0
0 0 0

Name load ari th logic comp iump shift misc exec
afiles 238 89 1 3 49 46 0 0
bfiles 693 105 85 156 324 80 179 0
cfiles 461 57 52 66 231 27 19 65
dfiles 3653 986 142 254 1585 350 115 0
e:fil es 1466 501 15 135 449 188 24 2
hfiles 2516 434 185 317 1073 236 250 0
ifiles 30 1 0 0 6 0 0 4
lfiles 128 2 8 23 62 3 19 0
mfiles 263 168 8 32 104 19 2 0
nfiles 2391 533 56 162 783 222 65 0
pfiles 9324 897 365 1355 4140 405 610 1
a files 151 157 0 0 0 0 1 0
rfiles 2593 605 31 259 925 203 50 0
sfiles 124 11 6 5 56 3 4 29
tfiles 291 48 3 50 93 8 16 0
ufiles 6304 434 165 892 3363 329 314 0
wfiles 465 52 27 44 210 1 35 0
xfiles 580 60 31 61 415 30 46 52
vfiles 45 0 6 14 18 1 11 0
total 31716 5140 1186 3828 13886 2151 1760 153
% 53 9 2 6 23 4 3 0

Table 5. Instruction Frequencies for A V8B Version 6.

Name load ari th logic como iump shift misc
afiles 56 21 0 1 12 11 0
bfiles 43 6 5 10 20 5 11
cfiles 45 6 5 6 22 3 2
dfiles 52 14 2 4 22 5 2
gfiles 53 18 1 5 16 7 1
hfiles 50 9 4 6 21 5 5
ifiles 73 2 0 0 15 0 0
lfiles 52 1 3 9 25 1 8
mfiles 44 28 1 5 17 3 0
nfiles 57 13 1 4 19 5 2
ofiles 55 5 2 8 24 2 4
a files 49 51 0 0 0 0 0
rfiles 56 13 1 6 20 4 1
sfiles 52 5 3 2 24 1 2
tfiles 57 9 1 10 18 2 3
ufiles 53 4 1 8 28 3 3
wfiles 56 6 3 5 25 0 4
xfiles 33 3 2 3 23 2 3
vfiles 47 0 6 15 19 1 12

Table 6. Percentages for A V8B Version 6 Instructions.

chain stack
0 0
0 0

50 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

503 4
0 0

553 4
1 0

exec chain
0 0
0 0
6 5
0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 0
0 0
0 0

12 0
0 0
0 0
0 0
3 28
0 0

total
426

1622
1028
7085
2780
5011

41
245
596

4212
17097

309
4666

238
509

11801
834

1782
95

60377

stack
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

l
·7

l
l
n
1

I

I
I

I
I
u
I
J

j

J

1

7
l

l
I
j

J

I
J

J

u
J

Name load ari th logic comp jump shift misc exec
afrles 3889 1177 199 519 1577 442 165 0
bfiles 1730 364 222 501 949 193 506 0
cfiles 571 74 46 115 324 36 19 79
dfiles 1655 83 95 294 959 33 162 0
efiles 1025 222 31 240 450 68 69 0
g:files 5853 1424 155 688 2469 732 245 0
hfiles 6444 746 253 1055 3333 410 356 0
!files 1266 148 142 259 560 95 146 0
mfiles 398 381 12 26 146 81 11 0
nfiles 2833 602 78 274 1083 270 120 0
pfiles 3454 381 179 821 1847 85 468 0
qfiles 44 8 10 4 18 2 0 0
sfiles 2087 188 200 316 1008 134 212 0
tfiles 6509 742 360 1555 3608 458 860 0
ufiles 3311 492 90 530 1757 172 110 0
xfiles 1022 81 73 109 652 45 79 99
zfiles 1202 142 119 175 454 125 80 2
total 43293 7255 2264 7481 21194 3381 3608 180
% 48 8 3 8 24 4 4 0

Table 7. Instruction Frequencies for Fl 8 Version 87X

Name load ari th logic comp jump shift misc
afiles 49 15 2 7 20 6 2
bfiles 39 8 5 11 21 4 11
cfiles 43 6 3 9 24 3 1
dfiles 45 2 3 8 26 1 4
efiles 49 11 1 11 21 3 3
gfiles 51 12 1 6 21 6 2
hfiles 51 6 2 8 26 3 3
!files 48 6 5 10 21 4 6
mfiles 38 36 1 2 14 8 1
nfiles 54 11 1 5 21 5 2
ofiles 48 5 2 11 26 1 6
qfiles 51 9 12 5 21 2 0
sfiles 50 5 5 8 24 3 5
tfiles 46 5 3 11 26 3 6
ufiles 51 8 1 8 27 3 2
xfiles 38 3 3 4 24 2 3
zfiles 52 6 5 8 20 5 3

Table 8. Percentage of F18 Version 87X Instructions.

chain stack total
0 0 7968
0 0 4465

77 0 1341
397 0 3678

0 0 2105
0 0 11566
0 0 12597
0 0 2616
0 0 1055
0 0 5260
0 0 7235
0 0 86
0 0 4145
0 0 14092
0 0 6462

530 5 2695
16 0 2315

1020 5 89681
1 0

exec chain stack
0 0 0
0 0 0
6 6 0
0 11 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
4 20 0
0 1 0

Name load a ri th logic comp jump shift misc exec
afiles 4146 1211 211 584 1733 464 188 0
bfiles 1807 366 223 528 1000 196 517 0
cfiles 571 74 46 115 326 36 19 79
dfiles 1675 83 97 305 977 33 163 0
efiles 1075 229 35 256 487 72 76 0
gfiles 6227 1522 164 730 2586 800 254 0
hfiles 5651 693 222 920 2913 374 314 0
lfiles 1279 149 142 260 562 95 146 0
mfiles 398 381 12 26 146 81 11 0
nfiles 3128 654 75 321 1239 280 117 0
ofiles 3507 380 180 830 1886 87 472 0
qfiles 44 8 10 4 18 2 0 0
sfiles 2147 190 201 322 1030 135 224 0
tfiles 7361 896 414 1738 4024 . 493 997 0
ufiles 3391 512 98 554 1804 175 113 0
xfiles 1039 82 76 112 663 47 78 104
zfiles 1213 143 120 177 456 126 80 2
total 44659 7573 2326 7782 21850 3496 3769 185
% 48 8 3 8 24 4 4 0

Table 9. Instruction Frequencies for Fl 8 Version 89 A.

Name load ari th logic como iumo shift misc
afiles 49 14 2 7 20 5 2
bfiles 39 8 5 11 22 4 11
cfiles 43 6 3 9 24 3 1
dfiles 45 2 3 8 26 1 4
efiles 48 10 1 11 22 3 3
gfiles 51 12 1 6 21 7 2
hfiles 51 6 2 8 26 3 3
lfiles 49 6 5 10 21 4 6
mfiles 38 36 1 2 14 8 1
nfiles 54 11 1 6 21 5 2
pfiles 48 5 2 11 26 1 6
a files 51 9 12 5 21 2 0
sfiles 51 4 5 8 24 3 5
tfiles 46 6 3 11 25 3 6
ufiles 51 8 1 8 27 3 2
xfiles 38 3 3 4 24 2 3
zfiles 52 6 5 8 20 5 3

Table 10. Percentages of F18 Version 89A Instructions.

chain stack
0 0
0 0

77 0
397 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

530 5
16 0

1020 5
1 0

exec chain
0 0
0 0
6 6
0 11
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
4 19
0 1

total
8537
4637
1343
3730
2230

12283
11087
2633
1055
5814
7342

86
4249

15923
6647
2736
2333

92665

stack
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

l
~1

l
l

f

j

I
J

J

l
n
l
l

1

I
I

INFORMATION THEORY BASED SOFTWARE COMPLEXITY MEASURE

The major programming task performed on the avionics software is
maintenance. Since up to half of maintenance programmer's time is spent
studying the code and related documentation, the understandability of the
software is a major complexity factor. Hence we believe that a maintenance
programmer will have a more difficult time understanding a program with
unfamiliar assembly language instructions than a program containing only
familiar instructions. If we assume that a programmer is more familiar with
commonly used instruction that with rarely used instructions, then the
distribution of instructions provides a method of classifying instructions as
familiar or unfamiliar. For our data the frequently used instructions are the
load/store, jump, arithmetic, etc. and the rarely used instructions are the
command/chain, executive mode, and stack/queue instructions since they are
used 1 % or less of the time.

Berlinger [1] developed an information theory complexity measure is
based on the the frequency of tokens in the program. His complexity measure M
1s defined by

M = -:E filog Pi

where fi is the frequency of the ith token and Pi is the probability of the ith
token.

M is sensitive to the frequency and probability of tokens. M will have a
low value if many high probability (e.g. familiar) tokens are used. On the other
hand M will have a high value if there are many low probability (e.g.
unfamiliar) tokens. An analogy is the influence of word familiarity on the
difficulty of understanding or reading written text. Generally text
comprehension and reading is easier and faster if it contains many familiar
words. Unfamiliar words slow down the reading and comprehension task.

Our information based complexity measure M' is based on a formula by
Berlinger. We define M' by

M' = Ml(number of instructions)

1. Our tokens in Berlinger's M are the 10 classes of assembly language instructions.
Their probabilities are the number of times they occur divided by the total
number of instructions. We divided M by the number of instructions because

J

u
J

we found that the instruction frequencies dominated the value of M. (Our
smallest files contained less than 100 instructions and the largest over 10,000.)
We wanted our metric to better reflect the distribution of the tokens, especially

the rarely occurring tokens Hence we changed Berlinger's complexity measure
M so that it computed a weighted mean.

Table 11 gives the frequencies of the classes of assembly language
instructions for the 5 data sets, the probability of each class and the logarithm
(base 2) of each probability The last column is the weight of each instruction
class. Note that the load/store instructions have a weight of about one while the
executive mode, chain/command, and stack/queue instructions have weights
above 6.5. Table 12 gives the M' values for each of the files and for each file in
the 5 data sets. The M' value for all the files combined is 2.1348.

From Table 12 we see that the only files to exceed 3.0 are the Xfiles in all
five data sets. The next highest M' values are the Cfiles which are above 2.7 for
all five data sets. Both of these ~ets of files have high M' values because they
contain a high proportion of the executive mode and chain/command
instructions. Note that only the Xfiles contain the few stack/queue instructions
which have a weight of over 13. But merely containing executive mode or
chain/command instructions does not guarantee a high M' value. For example,
the Gfiles and Jfiles (A V8B) and the Zfiles (F18) all contain chain/command and
executive mode instructions, but their M' values are close to or less than the
mean. For the A V8B, the X-, C-, B-, and M-files had M' values greater than 2.4
while for the F18 the X-, C-, B-, M- and D- files had values greater than 2.4 ..

PROGRAMMER DATA

Programmers responsible for maintammg the A V8B software were asked
to rate the difficulty of the software. The list of what they felt were the most
complex files included the mathematical (M files), executive (X files), and Bit and
Self-test files (B files). They felt that parameterization, executive instructions
used, and familiarity with the domain made these files complex. The X files are
rated most difficult by our metric and the B and M files are rated third and
fourth most difficult.

The list of files provided by the programmers also included a few files the
other function classes. These files were not rated as unusually complex by our
metric; however, these files were among the largest which suggests that the
programmers considered program size an important difficulty factor.

CONCLUSION

The analysis of the distribution of assembly language instructions showed
the expected, but it also produced some surprises. Distribution of the instruction
classes over the modules was generally uniform. Nearly three-fourths of the
instructions were load, store, or jump instructions. The biggest surprise was that
that nearly one-half of the 320 op codes were not used. We suspect that for

l
n
l
l
I
I
l
l
J

I
I
J

J

J

j

7
l
n
l
I
7
l

j

J

I
J

J

J

assembly languages the larger the number of different instruction, the larger the
proportion of unused instructions.

The basic premise for our information theory software complexity metric
is that programs with familiar instructions are much easier to understand and
work with than programs with unfamiliar instructions. Because of such factors
as programmer preferences and application domain, the sets of familiar and
unfamiliar instructions will vary between programmers. We used frequency of
instruction use as an approximation for instruction familiarity in our metric.
This seems to reasonable because it is flexible and easy to compute.

We grouped the instructions into related classes and then computed the
probabilities for each class . An alternative would be to compute the probability
for each instruction. We feel that the alternative will give too much weight to a
rarely used instructions, should be investigated.

We chose the average information content per instruction for our metric
rather than the sum of information content for the instructions. We felt that it

· was important to know whether a large information value was because of a large
number of instructions or because of infrequently used instructions. It may be
possible to develop a metric that incorporates both size and information content.

The metric values agreed reasonably well with the subjective judgements
of the maintenance programmers except for large programs. More data needs to
be collected from different applications and for different assembly languages to
validate the metric.

All Files Fraction of total Lo g(Fraction)
load/store 171,655 0.4984 -1.004
Arithmetic 30,365 0.0881 -3.503
Logical 7,602 0.0220 -5.501
Compare 25,552 0.0742 -3.752
Jump 79,644 0 .2312 -2.112
Shift 13,095 0.0380 -4. 716
Miscellaneous 12,108 0.0351 -4.829
Executive Mode 716 0.0020 -8.909
Chain / Command 3 ,594 0.0104 -6.582
Stack/Queue 22 0.000064 -13.93
TOTAL 344 ,353

Table 11. Total, fraction and log(fraction) for each instruction class.

FILES VS V7 V6
Afiles 2.0846 2.0846 2.0846
Bfiles 2.5356 2.5144 2.4926
Cfiles 2.7653 2. 7094 2. 7351
Dfiles 2.0298 2.0295 2.0341
Efiles
Gfiles 2.1055 2.1709 2.0811
Hfiles 2.1790 2.1782 2.1636
Jfiles 1.9987
Lfiles 2.0499 2.0478 2.0520
Mfiles 2.4045 2.4045 2.2412
Nfiles 1.9519 1.9355 1.9467
Pfiles 1.9978 2.0088 1.9424
Qfiles 2.3723 2.3723 2.2864
Rfiles 1.9495 1.9506 1.9329
Sfiles 2.6259
Tfiles 1.9175
Ufiles 1.9255 1.9303 1.8878
Wfiles 1.9536 1.8899 1.8947
Xfiles 3 .4209 3 .4006 3 .5142
Yfiles 2.3853 2.3853 2.3853
Zfiles
File Total 2.0933 2.0957 2.0502

Table 12. Information Theory Metric for files.

87X 89A
2.1692 2.1689
2.5695 2.5531
2.7397 2.7387
2.4893 2.4855
2.1296 2.1392
2.0882 2.0915
1.9949 2.0033

2.2474 2.2422
2.5039 2.5039
2.0061 1.9870
2.1329 2.1291
2.2057 2.2057

2.1292 2.1252
2.1918 2.1963
1. 94 78 1.9566

3 .1659 3 .1625

2.1918 2.1905
2.1850 2.1870

~

n
l
I
]

l
l
. I

I
J

J

I
I
]

u
j

J
j

J

I
J

I
J

J

References

1. E. Berlinger, An Information Theory Based Complexity Measure, Proceedings
of the 1980 National Computer Conference. pp. 773-779.

2. S. Conte, H. Dunsmore, and V. Shen, Software Engineering Metrics and Models.
Benjamin/Cummings, Menlo Park, California, 1986.

3. D. H. Howes and R. L. Solomon, Visual Duration Threshold as a Function of
Word-Probability, Journal of Experimental Psychology ,Vol. 41 (June 1951), pp.
401-410.

4. G. Klare, The Measurement of Readability. Iowa State University Press, Ames,
Iowa, 1963.

5. R. P. O'Reilly and J. E. Walker, An Analysis of Reading Rates in College
Students, Reading Research and Instruction, Vol. 29 No. 2 (Winter 1990), pp. 1-
11.

	Cook_Curtis_R_90_60_18_A
	Cook_Curtis_R_90_60_18_B

