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Abstract 

Biological and physical limitations require that DNA be sequenced in fragments. 
There are several approaches to obtain the appropriate sized fragments of DNA to 
sequence. The method of sequencing that we are interested in is loosely referred 
to as shotgun sequencing. Many copies of the genomic DNA to be sequenced are 
cleaved by one or more restriction endonucleases resulting in a multiset, S, of DNA 
fragments that are not ordered. DNA fragments are essentially selected at random 
from this multset and sequenced. A consensus sequence is constructed by join
ing together fragments which overlap. (One hopes that the consensus sequence is 
very close to the original sequence.) Since errors occur reading the sequences, the 
overlaps must be approximate, not exact. 

This process of reassembly is similar to the NP-complete shortest common su
perstring problem [GMS80]. To simplify the problem we make the following as
sumptions. 

• An integer k can be supplied that defines the minimum acceptable overlap 
between two sequences . 

• There is a unique alignment of the sequence fragments such that all suf
fix/prefix overlaps are of length k or greater. 

• All suffix/prefix overlaps are exact (log inexact) matches. 

We define the string consensus problem and give three algorithms to solve it. We 
then define the log inexact string consensus problem and give three algorithms to 
solve it. We believe that the log inexact string consensus problem is closer to the 
problem of constructing a consensus sequence from shotgun data that biochemists 
are trying to solve than the problems previous approximation algorithms for the 
shortest common superstring problem . 

Introduction 

Biological and physical limitations require that DNA be sequenced in fragments. Be

cause of these limitations there are, from a computational perspective, two approaches 

used to obtain the appropriate sized fragments of DNA to sequence. 
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One class of methods for sequencing DNA is loosely termed ordered sequencing. 

These methods use an oligonucleotide primer to initiate the DNA sequencing at a known 

point and the sequencing reaction proceeds from this point. The leading several hundred 

bases of the DNA strand are sequenced and then removed using exonucleases exposing 

the next segment of the DNA to be sequenced. The process of sequencing several 

hundred bases and removing them is continued until the entire DNA sequence has been 

determined. 

Another class of methods for sequencing DNA is loosely referred tO' as shotgun 

sequencing. Many identical copies of the DNA genome to be sequenced are cleaved 

by one or more restriction endonucleases. A restriction endonuclease will cleave the 

DNA sequence at each occurrence of a specific six to eight base subsequence (sonication 

can also be used to create unordered fragments). This results in a multiset of DNA 

fragments that are not ordered. DNA fragments are essentially selected at random from 

this multiset and sequenced. A consensus sequence that is believed to represent the 

original DNA sequence is assembled by finding overlaps between the DNA fragments 

that have been sequenced. 

In this technical report we will present several algorithms that can be used to 

assemble the sequenced DNA fragments into a consensous sequence. In section 2 we 

will review the work that has been done on the shortest superstring problem. Section 3 

introduces the perfect string consensus problem. Examining this problem will motivate 

some of the assumptions that we will make later in the paper. The string consensus 

problem is introduced along with three algorithms to solve it in section 4. Section 5 

will define the inexact shotgun sequencing problem, a problem similar to the string 

consensus problem, but allowing some errors in the prefix/suffix matches. Section 5 will 

also present three algorithms to solve the inexact shotgun sequencing problem. 

2 Previous Work 

In this section we will examine the work that has been done on the process of reconstruct

ing a consensus sequence from the individual sequence fragments. Several people have 

studied this problem from the biologist's perspective (CK82, Sta82, JJD86] and many 
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people have studied similar problems in computer science [Mai78, GMS80, PSTU83, 

TU88, Tur89, Ukk90, Li90, BJL +91]. 

In 1980 Gallant, Maier & Storer (GMS80] showed that the shortest common 

superstring problem is NP-complete. They first defined superstring, 

a superstring of a set of strings S = { S1 , S2, ... , Sn} is a string S containing 

- each Si, 1 ::; i ::; n, as a substring, 

and then defined the shortest common superstring problem, 

Given a set of strings S and a positive integer l, does S have a superstring 

of length l? 

With these definitions they are able to show that the shortest common superstring prob

lem is NP-complete even when the alphabet is restricted to {0,1}. The NP-completeness 

result suggests that there is no polynomial time algorithm for this problem. Therefore, 

one should probably attack this problem in one of several ways: 

1. Add assumptions about the substrings so that the problem with the extra assump

tions is no longer NP-complete. 

2. Show that the hard instances of the problem are rare, so that the problem can 

usually be solved quickly. 

3. Instead of finding the superstring with the minimum length, find a superstring 

with a length that can be shown to be close to the minimum length. 

In a paper by Peltola, Soderlund, Tarhio & Ukkonen (PSTU83] a heuristic for a 

generalized minimal length superstring problem is given. The problem is generalized by 

allowing errors in the string matching. They define superstring, 

a superstring of a set of strings S = { S1, S2, .. . , Sn} is a string S containing 

each Si, 1 ::; i::; n, as an approximate substring. 

An approximate substring Si of S with an error ratio 8 is defined, 

a substring of S that can be transformed into Si with at most 8ISil delete, 

insert, replace, and transpose operations. 
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The minimum number of delete, insert, and replace operations needed to transform one 

string into another is frequently called the minimum edit distance. They then define 

the generalized minimal length superstring problem, 

Given a set of strings S, a positive integer k, and an error ratio 6, 0 < 6 < 1, 

does Shave a common superstring of length at most k? 

No· performance guarantees are given for the heuristic. 

The heuristic has three basic steps. First a complete pairwise alignment graph is 

computed using the standard dynamic algorithm of Sellers (Sel7 4] and others. Each node 

of the graph represents some Si ES. An edge exists between Si and Sj iff the minimum 

edit distance is less than 6ISil• The value assocated with the edge is the minimum 

edit distance between Si and Sj, From this graph, a global alignment is computed by 

essentially computing the minimal spanning tree of the pairwise alignment graph. The 

minimal spanning tree provides an ordering of the strings and the optimal alignment 

of adjacent strings, but does not provide the optimal global alignment, or the optimal 

local alignment when more than two strings overlap . The final step in the heuristic 

computes the consensus string from the overlap graph and the minimal spanning tree. 

The running time of the heuristic is 0(6N 2) where N is I:siES ISil, the sum of the 

lengths of the strings in S. No performance guarantees are given for the heuristic. 

Papers by Tarhio & Ukkonen (TU88] and Turner (Tur89] develop approximation 

algorithms that they conjecture will find an approximate shortest common superstring 

that is, at worst, twice the length of the actual shortest common superstring. Tarhio 

& Ukkonen (TU88] analyzed their algorithm in terms of the compression of the strings 

in S instead of the length of the shortest common superstring of S. The compression 

is N - c, where c is the length of the approximate shortest common superstring that 

their algorithm computes. The main result of the paper is that (N - c) ~ ½(N - Cmin) 

where Cmin is the length of the actual shortest common superstring. The running time 

of the algorithm presented by Tarhio & Ukkonen is 0( nN) . 

The algorithm computes the maximal overlap of all pairs of strings in S. It then 

behaves in a greedy fashion to construct a short common superstring by selecting the 

longest overlap between two strings. When a string has been overlapped on both ends 
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it is removed from S. The process of selecting the longest overlap continues until no 

strings remain in S. 

Turner [Tur89] presents an algorithm to approximate the shortest common su

perstring with the same performance guarantees as the algorithm of Tarhio & Ukko

nen [TU88]. Turner uses suffix arrays to reduce the number of suffix/prefix comparisons 

that need to be done. The running time of the algorithm is O(NlogN) or O(Nlogn), 

depending on whether direct indexing over the alphabet Eis allowed. 

Later, in a paper by Ukkonen [Ukk90], an O(N) or O(N min(log n, log IEI)) al

gorithm, depending on whether direct indexing over the alphabet E is allowed, to solve 

the approximate shortest common superstring problem is presented. This reduction in 

ti~~ is achieved by a clever use of the Aho-Corasick [AC75] string matching automaton. 

Again, this algorithm achieves the same compression ratio as the algorithms of Tarhio 

& Ukkonen and Turner. 

The first approximation algorithm that approximated the shortest common su

perstring of S instead of the maximal compression of the strings in S was given by 

Li [Li90]. Li was able to give an algorithm to compute an approximate shortest com

mon superstring of length O(LlogL) where Lis the length of the shortest common 

superstring. The algorithm is similar to the greedy algorithms given above by Tarhio & 

Ukkonen, Turner, and Ukkonen. It differs when the strings with the maximum overlap 

are joined, not only are the strings that were joined removed from the set of strings, but 

all substrings of the resulting joined string are removed from the set of strings. This 

results in the size of the set of strings decreasing fast enough to show the O ( L log L) 

bound on the length of the approximate shortest common superstring. Although the 

running time of the algorithm is not considered, it is clearly polynomial in the size of 

the input. 

Blum et. al.[BJL +91] recently showed that the greedy algorithm of Tarhio & 

Ukkonen [TU88] and Turner [Tur89] does find superstrings that are, at worst, a multi

plicative factor of four longer than the minimum length superstring. 

I 
r 
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3 The Perfect Match String Consensus Problem 

Previous work on finding the shortest common substring problem has ignored the process 

of generating the fragment strings. In this section we will look at a problem similar to 

the shortest common superstring with some added information about how the fragment 

strings were generated. In section 4 we will make much more severe assumptions about 

how the fragment strings were generated. 

3.1 Problem definition 

We will use the symbol l:!:) for multiset union. Let there be k identical copies of the 

st:i;_ing W E r;n, W1 , W2 , ••• , Wk. Associated with each Wi, 1 ~ i ~ k, is a multiset 

of substrings, Si= {T1,T2, ... ,TiJ, such that Wi = T1 ·T2···T1;• Let S = l:!:11:'.il~kSi. 

The perfect string consensus problem is to find all W that could generate S g\_ven the 

multiset S and the integer k. 

3.2 How many distinct W exist? 

For the remainder of this section, we will assume that we started with two copies of W, 

that is k = 2. There are two simple situations that will result in W not being unique. 

The first results when any two of the W's are cleaved at the same position. W is not 

unique if, for any h, i, and j, j /; IWI 

smce 

I WiWi+i • • •Wj I E Sand 

lwhWh+i ··•Wjl E S 

W = I w1 · · •Wi-1 I Wi • • •Wj I Wj+i • • ·w1w1 I 
and 

W = I Wj+i • • •w1w1 I w1 • • ·Wh-1 I wh • · •Wj I = I Wj+i · • ·w1w1 I w1 • • •Wi-1 j wi • · •Wj I 
The second situation that will result in W not being unique can be described as 

follows. If we have seven distinct strings, 

Rl,R2,R3,R4,R5,R6,R7 ES 

l 
l 
1 

l 
w 

l 
l 
7 
l 
l 
I 
1 

) 

J 

J 

J 

J 

J 



7 
1 

□ 
l 

j 

I. 
u 
I J 

j 

j 

J 
u 

3.2 How many distinct W exist? 

such that 

Rl, R2, R3, R4, R5 E S1 , and 

R6,R7 E S2 

suffix( Rl) • R2 • prefix( R3) R6 

suffix(R4) · prefix(R5) R7 

suffix(Rl) 

prefix(R3) 

suffix(R4) 

prefix(R5) 

then there must be more than one arrangement of the R's to construct W. 

W = ... Rl • R2 • R3 . . . R4 · R5 .. . = ... . R6 .. ....... . R7 .. . 

and 

W = ... Rl • R3 ... R4 • R2 · R5 . . . = .. . R7 . .. R6 . .. 

7 

The first case is actually a special case of the second. This can be seen by letting prefix 

(R5) = R3 and noting that both R3 and R6 must end at the same position in W. 

In a similar way we can create a multiset of n strings that can be arranged to 

form n! distinct W's where, for k = 2, IWI = ;2 + 1; + 6. Similar arg~ments can be 

made for k > 2. Let the multiset of strings Xn be defined as 

Xo 

The length of W will be 

{ xyyx, xy, yxxy, xy} 

Xn-1 l±l {yxn+Iy, xyyx, xn-l} 

IWI LXEXn IXI 
k 

n2 7n 
2+2+ 6 

There are n! distinct arrangements of the strings in Xn that form W. The form 

of these arrangements will be: 

W h1 h2 h h1 h2 h = xyyx • X • xyyx • X • • • xyyx • X n • xy = xy • yxx xy • yxx xy · • · yxx n xy 
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where h1, h2, ... , hn are distinct integers, 0 ~ hi < n. The order of the n pairs xh, and 

yxxh• xy in the construction of W is arbitrary, so there are n! distinct strings that can be 

W . Notice that in no case are the two constructions of W cleaved at the same position 

( case 1). 

3.3 Algorithm to find W 

Since it is possible that so many different W exist, if we must produce all possible 

W then the best we can do is to search the entire space. Given two strings, V and 

W, i = IVI, j = IWI, i ~ j, such that v1 = w1, v2 = w2, ···,Vi= Wi, we will define the 

extension of V to W to be the string wi+1 • • •Wj. We can build candidate strings, W1 

an'a W2, from strings in S by choosing some string S1 ES and letting it be a prefix of 

W1. We must then remove S1 from S so that it will not be reused in the construction 

ofW. 

The extension of W2 to W1 is just S1. Next we compute S', 

S' ={SISE SI\ (prefix(S) = extension(W1, W2) V 

S = prefix( extension(W1, W2)))} 

We next pick some S2 ES' and make it a prefix of W2 • We now have 

The process of computing the extension of W1 to W2 and finding the multiset of 

strings that could be used to extend the shorter of W1 and W2 is repeated as long as it 

is possible to do so. When it becomes impossible to continue and S is not empty, we 

must backtrack and pick some new Si from some S' and try again. 

The algorithm in Figure 1 assumes that k = 2, although the same ideas will work 

for any k. Let Ebe the extension of the candidate strings for W1 and W2. Let Ube the 

submultiset of S whose elements have not been used in the construction of W1 or W2 • 
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find-W (E, U, P, Results) 

if (U = A) A (E = t-) 
Print reverse (Results) 

else 
if P = A backtrack 
else 

for each nextP E P 
Results +- nextP l!J Results 
newE +- extension (E, nextP) 
newP +- {SISE SA prefixq (newE, S)} 
find-W (newE, U - nextP, newP, Results) 

Figure 1: Algorithm to compute W 

9 

Let P be the submultiset of U whose elements have prefixes that exactly match E. The 

function prefixq will be true if either argument is a prefix of the other. This algorithm 

has been implemented in lisp and has run on various computers. 

4 The String Consensus Problem 

The perfect string consensus problem is not a good abstraction of the problem bio

chemists are faced with when they need to produce a consensus sequence from fragment 

sequences. In the perfect string consensus problem, every segment of each of the k 

copies of W must be in S. We believe the string consensus problem, defined below, is 

a better abstraction of the problem biochemists are trying to i,olve. 

4.1 Introduction 

Finding the minimum length superstring of a set of strings seems to require us to 

look at many of the possible alignments of the strings in the set. When molecular 

biologists try to solve the similar problem of aligning their sequence fragments into a 

contiguous sequence, they assume that matches of a length greater than some constant 

are "significant". In this section will use this assumption to construct an algorithm to 

build a contiguous sequence. This assumption will allow us to find alignments that are 

"good enough" and not require us to search the entire space of alignments. We will see 

that, in these algorithms, the run time is directly related to the compression. 

We will use calligraphic letters such as S to denote multisets of strings. Capital 

r 
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letters late in the alphabet will be used to indicate strings, while lower case letters will 

be used for characters of a string such as S = s 1s2 •. • sn. The strings are composed of 

characters from the alphabet :E, u = l:EI. We will let N be the sum of the lengths of 

the strings in S, N = :Es,eslSil• Let C be the compression, C = N - ISconsensusl• Let 

suffix (T, j) be the suffix of T that has length j, similarly for prefix (T, j). 

In this section we will present two new algorithms to solve the consensus string 

pr.:-,blem. The first uses the ideas of Rabin-Karp [KR87] string matching. The second 

algorithm sorts the strings before building a consensus string. The ideas of Knuth, 

Morris & Pratt [KMP77], and Boyer & Moore [BM77] were considered, but it is not 

clear to us how to construct a small finite automata that would match strings with 

errors. 

4.2 Assumptions 

By making the following assumptions we will define the string consensus problem. 

• An integer k can be supplied that defines the minimum acceptable overlap between 

two strings. 

• There is a unique alignment of the strings in S such that all suffix/prefix overlaps 

are of length k or greater. 

• All suffix/prefix overlaps are exact matches. 

4.3 The problem definition 

We are given a multiset of strings, S = {Si, S2, ... , Sn}, and an integer k. 

the following assumptions about S and k 

l. Si is not a substring of Sj for 1 ~ i, j ~ n, i =p j. 

2. An ordering, H, of the strings in S exists such that 

The problem is, given the multiset S and the integer k, find the ordering H. 

We make 
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4.4 Naive algorithm 

A naive algorithm to solve the string consensus problem is presented in Figure 2. The 

length k prefixes and suffixes of each pair of strings S1, S2 E S are compared. If a 

prefix and suffix match, the strings S1 and S2 are removed from S and the string that 

results when S1 and S2 are joined is added to S. Note that when a string is added to S 

it ~ill be used in future prefix suffix comparisons. When no more prefix suffix matches 

of length k exist in S and ISi > 1, k is incremented and the prefix suffix matching of 

the strings in S is repeated. 

We will assign a comparison to the string S if a character in a suffix of S is 

compared to a character in the prefix of some T. Each iteration of the outer for loop 

will contribute one character of compression. The inner loop executes at most n times 

for each iteration of the outer for loop. The if statements in the inner for loop will 
'· 

take at most 0(N) time. The algorithm in Figure 2 has a worst case running time of 

0(nCN). 

In the average case we expect that almost all prefix suffix comparisons either 

match, or disagree after looking at a small constant number of characters. The expected 

time for the if statement in the inner for loop is constant. The expected time for the 

algorithm in Figure 2 is 0( nC). 

The algorithm in Figure 2 has been implemented in Con a Sun 3/260. Figure 3 

shows the results of running the program on strings of lengt~ 507. The length of the 

overlaps between strings was between 180 and 200 characters. The number of strings 

was varied between 25 and 500 and the amount of CPU time used to compute the 

consensus string is plotted. Since the length of the strings was held constant we expect 

the time to grow as 0( n2 ). Figure 4 shows the square root of the running time plotted 

against the number of strings. 

4.5 Rabin-Karp type algorithm 

Given two strings S and T, i = ISl,j = ITI, i < j, the Rabin-Karp algorithm for 

string searching computes a hash value for the shorter string, S. A hash value for 

each length i substring of Tis computed and compared with the hash value for S. By 

cleverly choosing the hashing function, the hash value for the substring of T ending 
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consensus_naive ( S) 

k - minimum match length acceptable - 1 
while ISi > 1 

k-k+l 
for each Sa E S 

for each Sb E S 
if suffix (Sa, k) = prefix (Sb, k) 

remove Sa and Sb from S 
add (join (Sa, Sb)) to S 

if suffix (Sb, k) = prefix (Sa, k) 
remove Sa and Sb from S 
add (join (Sb, Sa)) to S 

Figure 2: Naive algorithm for the string consensus problem 
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Figure 3: Running time for naive algorithm. 
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Figure 4: Square root of running time for naive algorithm. 

at position h can be computed from the hash value for the substring of T ending at 

position h - 1 and the character th, The hash function Rabin and Karp [KR87] chose 

was hash( m) = m mod p where p is a large prime and m is an integer representation of 

the string Th-i+I ... Th. With this in mind, it is easy to compute the hash value of the 

length i substring of T ending at position h 

hash(h) = ((hash( h - 1) - index(th-i) ·<Ti-I)· <T + index(th)) mod p 

Associated with each c E :E is a unique integer l, 0 ~ l < <T. The function index( c) will 

return the integer associated with c. 

The probability of two strings drawn randomly from :Ei having the same hash 

value is shown by Gannet & Baeza-Yates [GBY90] to be 

! +o (l). 
p <T' 

With the appropriate choices of p and k, the frequency of collisions will be small. 

The Rabin-Karp algorithm has two properties that make it particularly well 

suited to the consensus string problem. 

• The hash value for the prefix and suffix of a string can be computed incrementally. 

Given the hash value for the length i prefix of a string, the hash value for the length 

i + 1 prefix can be computed with a constant number of operations. 
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• The hash value of a substring can be incrementally computed equally well from 

the right or the left end of the substring. 

Figure 5 gives an algorithm based on the ideas of Rabin and Karp for the string 

consensus problem. Since the strings we are comparing are always prefixes (suffixes), we 

do not need to subtract the value of the leading ( trailing) character of the string. The 

Ph forward hash value of the string S (fhv[S]) is the hash value of the string s1s2 ••• Sj. 

The function we will use to compute the Ph fhv[S] from the (j - l) st fhv[S] is 

fhv[S] = (fhv[S] · o-+ index(sj)) mod p. 

Let i = ISi - j + 1. The ph backward hash value of the string S (bhv[S]) is the hash 

value of the string SiSi+iSISI· The function we will use to compute the Ph bhv[S] from 

the (j - 1 yh bhv[ S] is 

bhv[S] = ((index(si) · o-i-l) + bhv[S]) mod p. 

The initial length k forward and backward hash values are computed for each 

SES. Each fhv[S] and bhv[S] is added to a binary tree. Whenever the hash value being 

added to the tree matches a hash value already in the tree, the associated strings are 

compared. If the prefix of one matches the suffix of the other, the strings are removed 

from S and joined, the resulting string is added back to S. When all of the possible 

prefixes and suffixes of length k have been joined, the value of k is incremented, the 

search tree is cleared and the hash values for the new value of k are computed. 

If we assume that no collisions occur, the number of operations used by the 

Rabin-Karp type algorithm for the consensus string problem is 

O(C • log lnl). 

The lines of the inner for loop will be executed once for each position of compression 

in the final consensus sequence. The "if (fhv[S] (j_ hashtree) add (fhv[s], hashtree)" and 

"if (bhv[S] (j_ hashtree) add (bhv[s], hashtree)" lines take O(logn) time to execute and 

each of the other lines of the inner loop will take constant time, therefore the running 

time of the algorithm in Figure 5 will be 0( C · log lnl). 

The hash tree is set up as a binary tree. Associated with each node is a hash 

value and a linked list of all strings that have the hash value associated with the node. 
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4.6 Algorithm based on sorting 

consensus_RK (S) 

dm-1 
k - minimum suffix-prefix length 
compute initial values of fhv and bhv 
while ISi > 1 

hashtree - nil 
for each S E S 

j - ISi - k + 1 
fhv[S] - (fhv[S] * a + index (sk)) mod p 
bhv[S] - (bhv[S] + (index (s;)·dm)) mod p 
if (fhv[S] '/. hashtree) add (fhv[S], hashtree) 
else join (S, matched string from hash tree) 
if (bhv[S] '/. hashtree) add (bhv[S], hashtree) 
else join (S, matched string from hash tree) 

dm - (dm·a) mod p 
k-k+l 

Figure 5: Rabin-Karp type algorithm for the string consensus problem 

15 

•. 

When a string has the same hash value as a node, a linear search is performed on the 

strings associated with the node and if a match is found, it is returned. If no match is 

found, the string is added to the linked list. In the extraordinary case where each string 

hashes to the same value, the algorithm will perform just as the naive algorithm. 

The algorithm in Figure 5 has been implemented in Con a Sun 3/260. Figure 6 

shows the results of running the program on strings of length 507. The length of the 

overlaps between strings was between 180 and 200 characters. The number of strings 

was varied between 25 and 1000 and the amount of CPU time used to compute the 

consensus string is plotted. Figure 7 show _the time divided by the log of the number of 

strings as the number of strings was varied. 

4.6 Algorithm based on sorting 

In the naive algorithm a great deal of time is spent searching for a string in S with a 

particular prefix. If the list of prefixes were sorted, the time needed to search S for a 

string with a particular suffix could be significantly reduced. In this section we will use 

a trie to speed the search. 

By sorting the strings using a bucket sort and keeping track of the positions- of 

the buckets within the sorted list, we can find a prefix of length i using 0( i) operations . 

r 



16 

140 

120 
T 
i 100 m 
e 

i 80 
n 

s 60 e 
C 
0 

40 n 
d 
s 20 

0 

14 

12 

10 
T 
i 

8 m 
e 

I 6 

0 4 
g 

n 2 

0 

0 

0 

4 THE STRING CONSENSUS PROBLEM 

100 200 300 400 500 600 700 800 900 1000 
Number of sequences 

Figure 6: Running time for RK algorithm. 
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4.6 Algorithm · based on sorting 17 

consensus_trie ( S) 

trie t- sort...seqs ( S, 0) 
k - minimum match length acceptable 
while ISi > 1 

for each SES 
R t- search (S, trie, k) 
if Rf A 

T t- join (R, S) 
add T to S 
remove R and S from S 

kt-k+l 
print one remaining entry in S 

Figure 8: Algorithm to compute consensus sequence using a trie 

During the standard bucket sort of the strings we will build a trie (Knu73] where a 

node at depth i represents a bucket containing all strings in S with a particular prefix 
~ 

of length i. The children of a depth i node represent the strings in S with prefixes of 

length i + 1 where the strings associated with the parent node and the strings associated 

with the child node agree in positions 1 through i. 

The function sort...seqs in Figure 9 will recursively sort the sequences and build 

the trie. When ISi > 1, the strings in Swill be sorted by the position indicated by the 

variable "column". The strings are then divided into at most a groups, one group for 

each distinct character appearing at position "column" in some S E S. A node in the 

trie is created for each of the non-empty groups of strings. ~ach of these nodes is a 

child of the node representing S. The function sort...seqs is then called recursively for 

each of the groups of strings. 

The function sorLby_position will order the strings passed to it by the characters 

in the position passed to it. The function sorLby_position returns a node of the trie that 

points to the beginning of a buckets along with the size of each bucket. The function 

sorLby_position takes time proportional to the number of strings being sorted. The time 

to sort the strings and construct the trie is proportional to N, the sum of the length of 

the strings, since each character of the strings in Sis compared at most once. 

The algorithm used to search the trie is given in Figure 10. It is essentially just 

a a-ary tree search for the length j suffix of the string S. It does assume that you 

can index by the characters in E in constant time. If it is not possible to index by the 

.... 

I 
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sort...seqs (S, column) 

/* column is the position in the strings that the strings are to be ordered by * / 

root+- nil 
if ISi > 1 

root +- sorLby _position ( S, column) 
for each i, such that O ~ i < c, 

Si +- root.bucket_posi 
root.childi +- sort...seqs (Si, column + 1) 

return root 

Figure 9: Algorithm to build trie and sort strings 

search (S, trie, j) 

/* Traverse trie * / 

while (trie :/= A) A (j > 0) 
prev +- trie 

c +- s1s1-i 
trie +- trie.nextc 
j+-j-1 

j+-j+l 
T +- prev.bucket_posc 

Cs +- s1s1-; 
h +- O 
Ct +- th-j 

/* Compare strings * / 

while (cs:/: Ct) A (j > 1) 
j+-j-1 
h+-h+l 
Cs +- SISl-j 

Ct+- th 

if (cs= Ct) A (j = 1) return T 
else return nil 

Figure 10: Algorithm to search a trie for a string 
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characters in ~ then an O(log l~I) search would have to be used to index the buckets 

and trie pointers. The worst case time required to determine if a prefix of length I exists 

in the ISi strings is 0(1). This can be seen by noting that in the search procedure, at 

most one comparison is done at each character position and only charaders in the prefix 

are compared. 

The algorithm to find the consensus sequence using the sorted list of strings and 

the trie is given in Figure 8. For a given value of k, the suffix of length k of each string 

is searched for in the sorted list of prefixes. If a match is found the strings are removed 

from S, joined, and the result of the join is added back to S. When all of the the suffixes 

of length k have been searched for, k is incremented and the process is repeated. 

Each iteration of the inner loop will result in one character of compression. In 

the worst case, the time to build the consensus string is 

O(o-nC). 

This situation arises when the the branching factor on the trie is nearly one. When the 

branching factor is closer to a, the expected time to build the consensus string is 

O(Clogn). 

The algorithm in Figures 8, 9 and 10 has been implemented in C on a Sun 

3/260. Figure 11 shows the results of running the program on strings of length 507. 

The length of the overlaps between strings was between 180 and 200 characters. The 

number of strings was varied between 250 and 10000 and the amount of CPU time used 

to compute the consensus string is plotted. Figure 12 shows the time divided by the log 

of the number of strings as the number of strings was varied. 

5 Inexact Consensus Problem 

The process of sequencing DNA and RNA is not perfect and mistakes are occasionally 

made in processing the gels, reading the gels and entering the data into a database. In 

this section, we will not assume that all suffix/prefix overlaps match perfectly, but that 

there are at most log( v) positions where the suffix and prefix do not match ( v is the 

length of the overlap between the two strings). 
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Figure 11: Running time for sort algorithm. 
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We will discuss three algorithms to solve the log inexact string consensus problem. 

The first is a naive algorithm that we present for the purpose of comparison. The second 

algorithm is based on the · Rabin-Karp string matching algorithm. The final algorithm 

that we will present is based loosely on the sorting algorithm presented in section 4.6. 

The algorithm based loosely on the Rabin-Karp string matching algorithm will, 

with high probability, return the correct solution in 

O(CISl(loglog 2 p) + ISllogp) time. 

The worst case time bound for the Rabin-Karp based log inexact string matching algo

rithm is 

O(nClogp) 

where pis some large prime, usually chosen to fit in a small number of words of memory. 
~ 

The second algorithm, based very loosely on the sorting algorithm presented in 

section 4.6, will return a correct answer in 

worst case time and 

expected time. 

The large table required by the Rabin Karp algorithm makes it useful only for 

consensus sequences with very short prefix/suffix overlaps. The sorting based algorithm 

for the log inexact consensus sequence problem seems to be practical for a variety of 

problems. 

We will say that the two length n string S and T "log inexact match" or S ~ T 

if 
n-1 

1) Si EIHi) ~ log n 
i=O 

where 
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5.1 Assumptions 

We will make the following assumptions and then define the log inexact string consensus 

problem. 

• An integer k can be supplied that defines the minimum acceptable overlap between 

two strings. 

• There is a unique alignment of the strings in S such that all suffix/prefix overlaps 

are of length k or greater . 

• All suffix/prefix overlaps are log inexact matches. 

5.2 Problem definition 

We are given a multiset of strings, S = {S1, S2, .. . , Sn}, and an integer k. W.~ make 

the following assumptions about S and k 

1. Si is not a substring of Sj for 1 ~ i, j ~ n, i-::/ j. 

2. An ordering, H, of the strings in S exists such that 

The problem is, given the multiset S and the integer k, find the ordering H. 

5.3 Naive Log Inexact Algorithm 

The naive algorithm presented in Figure 13 will solve the log inexact consensus sequence 

problem . The algorithm simply tries all possible length k prefix/suffix log inexact 

matches, merges the log inexact matches that are found and increments k. This process 

is iterated until the only string remaining in S is the single consensus string. 

Theorem 1 The algorithm presented in Figure 13 will use 

O(nCN) 

time in the worst case to compute the log inexact consensus string. 
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5.3 Naive Log Inexact Algorithm 

naive (S, k) 

while ISi > 1 
for each Si E S 

for each Si E {S - Si} 
if verify (Si, Sj, k) 

add (join (Si, Sj),S) 
remove (Si, S) 
remove ( Sj, S) 

Figure 13: Naive algorithm for log inexact consensus string problem 
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Proof. Each iteration of the outer for loop increases the compression by one. The time 

for\,erify(Si, Sj, k) will be at most min(ISd, !Sil) since we can use a simple character by 

character comparison of the strings to determine if they log inexact match. The time 

to complete one iteration of the outer for loop will be no more than nN. So the time 

to compute the log inexact consensus sequence will be O(nCN). I 

Theorem 2 The algorithm presented in Figure 13 will use 

O(nClogN) 

time in the average case to compute the log inexact consensus string. 

Proof. Each iteration of the outer for loop increases the compression by one. The 

expected time for a verify call that fails is O(log N) since we only need to find log k errors 

and k may be as large as the longest string in S. The total time spent in successful 

calls to verify is 0( C). Since the outer for loop is iterated once for each character of 

compression, the expected time is O(nClog N). I 

If the overlap between adjacent strings in the log inexact consensus sequence and 

string length are both held constant, the worst case performance of the algorithm is 

O(n 3 ) and the expected case is O(n 2 logn). 

The naive algorithm was implemented in C and run on a Sun 3/260. Figure 14 

shows the running time as the number of strings is varied from 4 to 120. Each string was 

100 characters long and had an overlap length of 50 with its neighbor in the log inexact 

consensus sequence. The minimum overlap accepted (k) was 24 characters. Figure ~ 15 

shows the sqrt of the running times presented in Figure 14. 
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5.4 Rabin Karp Log Inexact Algorithm 

enum-diffs (XOR-value, x, y, position) 
if bitposition (position, XOR-value) is set 

enum-diffs (XOR-value - 2position, x + 2position, y, position + 1) 
enum-diffs (XOR-value - 2position, x, y + 2position, position + 1) 

else if XOR-value > 0 
enum-diffs (XOR-value, x, y, position + 1) 

elseifx>y 
print (x - y) 

Figure 16: Algorithm to convert XOR value to differences 

5.4 Rabin Karp Log Inexact Algorithm 

25 

We can use the ideas developed in section 4.5 and extend the definition of string equality 

to !mild an algorithm that will solve the log inexact consensus string problem. Let the 

function F have the domain of all S E I:* and the range of non-negative integers. F( S) 

will be the base o- integer representation of the string S. Given two strings S ,_and T, 

from Eq we let 

F(S) = index(s 1) • o-q-l + index(s 2) • o-q-2 + • • • + index(sq) 

F(T) index(t 1) • o-q-l + index(t 2 ) • o-q-2 + • • • + index(tq). 

When there is exactly one position i such that Si =J ti, F(S) and F(T) will differ 

by do-q-i, 0 :'.S d < o-. If Si =J ti and Sj = ti for allj, 0 :'.S j < i, i < j :'.Sq, then 

F(S) = F(T) + (index(si) - index(ti))o-q-i 

If the two strings S and T differ in positions i1 and i2 then F( S) and F(T) will differ by 

some additive combination of d1o-q-ii and d2o-q-i2 , 1 :'.S d1, d2 :'.S o-, and so on for larger 

numbers of differences. 

Before the log inexact consensus string is computed, a table of differences between 

F(S) and F(T) for all S ~ T must be computed. A list of integers, XORlist, is 

generated. The binary representation of each integer in the list has at most log p ones, 

each one representing the position of a mismatch between S and T. Since the mod 

operator can be distributed over addition, but mod can not be distributed over XOR, 

the XORlist must be converted into a list of differences. For each integer in the XOR 

list, there may be several different values of S and T that will generate F(S) XOR 

F(T). The table of differences is the set of all positive differences between F(S) and 
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F(T) where F(S) XOR F(T) is in the XOR list. The algorithm in Figure 16 will return 

the set of all possible values F(S)-F(T) such that XORvalue = F(S) XOR F(T). The 

enum-diffs algorithm in Figure 16 is initially called as 

enum-diffs(F(S) XOR F(T),0,0,0). 

The RK log inexact algorithm presented in Figure 17 will find an ordering of the 

strings in S that solves the log inexact consensus string problem. The algorithm first 

computes the forward and backward hash values for each S E S for the length k prefixes 

and suffixes (fhv[S] and bhv[S] respectively). The while loop will proceed as long as two 

conditions hold, there is more than one string in S and the length of the prefixes being 

examined is less than log p times some constant . Each iteration of the while loop looks 

for prefix/suffix matches of length one greater than the previous iteration and starts at 

k, the minimal acceptable prefix/suffix match length. The two for loops simply select 

pairs of strings to be examined . The forward and backward hash values are computed 

for strings being compared and then the difference of the two hash values is computed. 

The errorlist is searched for the difference and if the difference is found, it is verified 

that the two strings do have a prefix/suffix log inexact match of length at least k. Once 

the prefix/ suffix log inexact match has been verified, the strings are removed from S, 

joined and the joined string is returned to S. 

5.5 Reliability 

The algorithm in Figure 17 relies on the values F( S) - F(T), S ~ T, to be sparsely 

distributed between O and p - 1. To estimate the running time of this algorithms we 

need to know how frequently S ,;f, T and F(S) - F(T) E errorlist. 

We will show that the number of error values when S1 ~ S2 is small compared 

to the complete range of error values. Therefore, when S1 ,;f, S2, it is unlikely that 

F(S1) - F(S 2) E errorlist. 

Lemma 1 Given q pairs of strings, <S1, S2>, where S1 and S2 are randomly selected 

from 1;Iogq such that S1 ,;f, S2, we expect loglogq • logq1°glogq of the q pairs to have 

F(S1) - F(S2) E errorlist. 

1 

l 
l 
n 
n 
l 
l 
l 

I 
I 
I 
J 

I 
I 
I 
I 
I 
J 



l 

7 
0 
n 
l 
7 

. I 
1 

j 

lj 

ii 
I 
j 

J 

u 

5.5 Reliability 27 

match ( S, k, errorlist) 

for each SES 
fhv[S] - index(si) • <Tk-I + index(s2 ) • <Tk- 2 + • • • + index(sk) (mod p) 
bhv[S] - index(s1s1-k+1) · <Tk-I + index(s1s1-k+2 ) • <Tk- 2 + · · · + index(s1s1) (mod p) 

dm-1 
while (ISi > 1) A (k < c • logp) 

k-k+l 
for each SES 

fhv[S] - fhv(S] * <T + index(sk) (mod p) 
for each TE (S - S) 

bhv[T] - bhv[T] + index(tlTl-k) * dm (mod p) 
diff - lfhv[S] - bhv[T]I 
if diff E errorlist 

if verify (S, T, k) 
add (join (S, T), S) 
remove ( S, S) 
remove (T, S) 

dm - dm * <T ( mod p) 

Figure 17: RK based algorithm for log inexact match problem 

Proof. We know that 

x • ( x - 1) · · · · · ( x - log X + 1) < xlog x 

log x · (log x - 1) · • • • • 2 - .. 

so the number of error values in the error list is at most 

L ~ L ~ log log if. -log qlog log q. 
log log q ( log q ) log log q ( log q ) 

i=O i i=O log log q 

Since we are assuming that the hashing function is randomly distributing the hash 

values from O . . . q -1 the number of times that F(Si)-F(S 2) E errorlist will be about 

the same as the number of values in errorlist . I 

5.5.1 Running time 

The log inexact RK algorithm in Figure 17 will not build a tree of prefix values as the 

exact RK algorithm (See Figure 5) does, but must scan the entire list of prefix values 

sequentially since strings that are nearly the same may have very different hash values. 

If we limit the number of mismatches to O(log v) then the number of error values 

will be at most 0( vlogv) since each error value will be a combination of log v or fewer 
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Figure 18: Running times for the naive and RK algorithms. 
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Figure 19: Square root of running times for the naive and RK algorithms. 
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5.5 Reliability 29 

powers of u, { u0 , u 1 , .•• , qv, -u 1 , ••• , -uv} multiplied by some i, i < q. These 

values can be precomputed and sorted so that the time to search the list of error values 

for a particular value will be O(log2 v ). 

Theorem 3 The algorithm presented in Figure 17 will use 

O(CISl(loglog 2 p) + ISllogp) 

expected time to compute the log inexact consensus string when v, the maximum overlap 

length between strings, is at most log p. 

Proof. The for loop that initializes the forward and backward hash values will execute 

in O(nk). Each statement in the while loop will execute in constant time with the 

exceptions of the "if diff E errorlist" statement and the "if verify (S, T, k)" call. Since 

the number of values in the errorlist is O(vlogv) and vis at most logp, the "if diff E 

errorlist" statement will execute in O((loglogp) 2) time. Each iteration of the outer for 

loop will result in one character of compression. At most n searches of the errorlist will 

be done for each character of compression. Since there are C characters of compression, 

the running time without the calls to verify will be O(nC(loglogp)2). By lemma 1 we see 

that if we let v = logp then we expect loglogp(logp) 10glogp incorrect inexact matches 

for every p pairs of strings that we look at. Since we will be looking at nC pairs of 

( (log p )log log P log log p) 
strings the expected number of incorrect calls to verify will be ~ nC 11 • 

The expected time to discover that two strings do not log inexact match is O(loglogp) 

since there can be at most log log p mismatches and we expect to find each mismatch by 

looking at a constant number of positions. The time contributed by incorrect calls to 

"f ill b O ((1 1 )2 ( c(logp)loglogp)) h f h all "f ill veri y w e og og p n 11 • Eac o t e n-1 correct c s to veri y w 

( ( (lo )log log P) ) take O (log p) time. The calls to verify will take O (log log p )2 nC g P 11 + n log p 

time. Adding these times we get the running time of the RK inexact match algorithm. 

[ ( 
(lo p )loglogp) l 

0 (loglogp) 2 nC g p + nlogp + nC(loglogp)2 

. (log p )log log p 
Smee P ~ 1 

( 
(lo p)1oglogp) 

n(loglogp) 2C ~ (loglogp) 2 nC g p 
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leading to the running time of 

O(CISl(loglog 2 p) + 1s1 logp) I 

Theorem 4 The algorithm presented in Figure 17 will use 

O(nClogp) 

worst case time to compute the log inexact consensus string when v, the length of the 

overlap between strings, is at most log p. 

Proof. The time used to initialize the forward and backward hash values and the 

number of iterations of the for loops will be 0( nk ). In the worst case, the "if diff E 

errorlist" statement will always be true and verify must always be called. Therefore 

there will be nC searches of the error list and calls to verify. Since each search of the 

errorlist takes O ((loglogp) 2) time and each call to verify could, in the worst c~e, take 

O(logp) time, the worst case time is 

O(nC(loglogp) 2 + logp[nC + n - 1]) or 

O(nClogp). 

The algorithm given in Figure 17 to solve the log inexact string consensus problem 

was implemented in Con a sun 3/260. The running time of this algorithm, as well as 

the running time of the naive algorithm, is shown in Figures ~.5.1. Figure 5.5.1 shows 

the square root of the running times. 

5.5.2 Increased match length 

We can increase the effective size of p by using the Chinese remainder theorem. Let 

PI, P2 ... , Pm be pairwise relatively prime positive integers, then the system of con

gruences 

X 
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a1 (mod pi), 

a2 (mod P2), 

am (mod Pm), 
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5.5 Reliability 

match ( S, k, rprimes, errorlist) 

for each SES 
for each Pi E rprimes 

fhv[S, i] - index(s1) · <1k-l + index(s2) · <1k- 2 + · · · + index(sk) (mod Pi) 
bhv[S, i] - index(s1s1-k+i) · <1k-l + index(s1s1-k+2) · <1k- 2 + · · · + index(s1s1) 

(mod Pi) 
for each Pi E rprimes dm[i] t- 1 
while (ISi > 1) A (k < c · logp) 

kt-k+l 
for each SES 

for each Pi E rprimes 
fhv[S, i] t- fhv[S, i] * <1 + index(sk) (mod Pi) 

for each T E ( S - S) 
for each Pi E rprimes 

bhv[T, i] t- bhv[T, i] + index(tlTl-k) * dm[i] (mod Pi) 
for each Pi E rprimes 

diff[i] t- lfhv[S, i] - bhv[T, i]I 
if diff E errorlist 

if verify (S, T, k) 
add (join (S, T), S) 
remove (S, S) 
remove (T, S) 

for each Pi E rprimes 
dm[i] t- dm[i] * <1 (mod Pi) 

Figure 20: Extended RK based algorithm for log inexact match problem 

31 



32 5 INEXACT CONSENSUS PROBLEM 

has a unique solution modulo p = p1p2 •••Pm• [Ros84] With a few simple modifications 

to the algorithm in Figure 17 we can construct an algorithm that takes advantage of 

the Chinese remainder theorem. The extended RK inexact string matching algorithm 

is given in Figure 20. 

The analysis of reliability does not change since the system of congruences has 

a unique solution modulo p. The running time of the extended RK inexact algorithm 

would increase by a factor of m. 

5.5.3 Parallelism 

There are at least two obvious ways to take advantage of parallelism for the algorithm 

in Figures 17 and 20. First, to increase the length of the prefix/suffix matches that we 

could confidently look at, we could, in parallel, compute the hash values modulo several 

primes instead of just one prime . Secondly, to increase the speed we could do'· almost 

all of the error list searching in parallel. We will look at the second of these ideas using 

several different models of parallel computation. 

The following ideas are for the RK log inexact match algorithm in Figure 17. By 

using another factor of m processors the running time for the algorithm presented in 

Figure 20 will be the same as discussed below. 

We can execute the "diff E errorlist" statement in constant time with log2 v 

EREW 1 PRAM 2 processors if we are allowed to amortize the time. During each iteration 

of the inner loop, each of the log2 v processors will be at a ·different position in the 

errorlist since a binary search on the errorlist is being done. There will be no time when 

two processors try to access the same position in the errorlist. If we can amortize the cost 

of the searches over the entire execution of the algorithm, the "diff E errorlist" statement 

can be done in constant time with log2 v processors. By Brent's theorem (GR88) it is 

also true that the "diff E errorlist" statement can be done in log v time using log v 

processors. 

The verify(S, T, k) statement can be done in logv time with lo~v EREW PRAM 

processors. Each processor, Pi , O ::; i < lo~ v' will count the number of mismatches 

1 Exclusive Read Exclusive Write 

2 Parallel Random Access Machine 
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5.6 Suffix Array Based Log Inexact Algorithm 

log-inexact-suffix-array ( S, k) 

Stot - S1 o , o S2 o , o · · · o, o Sn 
build a suffix-array for Stot 
for each string Si E S 

position[i] - search-suffix-array (Si, Stat, k, suffix_array) 

Figure 21: Algorithm to solve the log inexact match problem 
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between the substrings Silogv •.. S(i+I) logv-l and tilogv •.. t(i+I) logv-l • The sum of the 

lo~v mismatch results can be computed in O(log v) time. 

With O (10;~iP) EREW PRAM processors we can solve the log inexact consen

sus sequence problem in O(nCloglogp) time using the algorithm in Figure 17. The 

time processor product is equal to the worst case time for the sequential version of this 

algorithm. 

With a factor of n more EREW PRAM processors we can do the in~er loop 

in loglogp time giving a running time of O(Cloglogp) time using n (10~~iP) EREW 

PRAM processors. 

Using O ( n2 ( 10;~iP)) CREW3 PRAM processors we could solve the log inexact 

consensus sequence problem in O(nloglogp) time. With this many processors we can 

do all of the n2 string comparisons in parallel. The CREW PRAM processors are needed 

since n processors will be examining each S E S. 

Since the hash values for prefixes and suffixes of length k are dependent on the 

hash values of the prefixes and suffixes of length k - 1 the iterations of the while loop 

of the algorithm in Figure 17 can not easily be parallelized. 

5.6 Suffix Array Based Log Inexact Algorithm 

Two strings, Si and S; oflength m, with at most log m positions that do not match must 

have a common substring S', IS'I ~ lo;m. In this section we will develop an algorithm 

based on this simple observatioll to solve the log inexact consensus sequence problem. 

5.7 Algorithm 

3 Concurrent Read Exclusive Write 
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search-suffix-array (Si, Stot, k, suffix_array) 

ptr - 0 
blocksize - lio~kj 
while ptr < ISil 

P = search (Si (ptr) ... Si (ptr + blocksize - 1), suffix_array) 
for each Pj E P 

if verify (Si, Stot [Pj - ptr]) 
return Pj - ptr 

ptr - ptr + blocksize 
return nil 

Figure 22: Algorithm to find log inexact matches using a suffix array 

Figures 21 and 22 give an algorithm for the log inexact consensus sequence problem. 

Given the set of strings S = { S1, S2, . .. , Sn} and an integer k that specifies the minimum 

length overlap, the algorithm will compute the log inexact consensus sequence. The 

string 

where 1 ¢ :E, is composed and a suffix array is created for Stot (See (MM90]). Each 

string S, E S is positioned in Stot so that a prefix of Si log inexact matches a prefix of 

some suffix of Stot• The log inexact match must be at least k characters in length and 

must not include the character 1 . Knowing the position of each Si in St~t will allow us 

to easily construct a log inexact consensus sequence. 

Positioning each S, E Stot is done using the algorithm in Figure 22. The string 

S, is partitioned into jS; I iog k substrings, each of length 10Z k. While a log inexact match 

has not been found for Si, the suffix array is searched for the substrings of S,. For each 

exact match between a substring of Si and a substring of Stot, the the location of the 

exact match is used to verify that a log inexact match exist between a prefix of S, and 

a suffix of some Sj in Stot• 

5. 7.1 Worst case running time 

Theorem 5 The worst case running time of the algorithm in Figures 21 and 22 is 

Q ( N 3 iogk). 

Proof. The worst case time to build the suffix array is O(N log N) [MM90). The 
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5.7 Algorithm 35 

function verify can easily be computed in time linear in the size of the strings using 

a simple character by character comparison. For each Si E S there will be at most 

N l5d}ogk calls to verify since there will be at most N substrings returned from the 

function search and at most l5d}og k calls to search will be made. The total time spent 

in the function verify will be at most 

Searching the suffix array ( calling the function search) for Si takes O(ISil + 
log IStotD [MM90] time. For each Si there will be at most ISdiogk calls to searc~ so the 

total time spent in search will be at most 

5.7.2 Expected running time 

The expected running time is significantly better than the v-:orst case running time. 

Before we give the expected running time we need to prove the following lemma that 

will be used to show that we can expect to look at a constant number of the PJs in 

Figure 22. 

Lemma 2 Given m urns and m - 1 balls, each ball placed in a randomly selected urn, 

the expected number of empty urns after each ball has been placed in an urn is me- 1 as 

m goes to infinity. 

Proof. Let Pi be the probability that urn Ui is empty. 
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The expected number of empty urns is 

lim -- 1--( m ( 1 )m) 
m-+oo 1- ! m 

( 1 )m-1 
m 1-

m 

~ (1 -_!.)m 
1-- m 

m 

I 

Theorem 6 The expected running time of the algorithm in Figures 21 and 22 is 

Pi:oof. Si is seg~ented into log k pieces of length 10; k. We are likely to find a segment 

of Si that exactly matches some substring of Stot looking at a constant number of 

segments. This can be seen by lemma 2, let m = log k, treat each segment of {i as an 

urn, and each of the log k errors in the log inexact match as a ball. From lemma 2 we 

expect 10~ k segments to contain none of the log k errors. Therefore, since the expected 

ratio of segments with no errors to total segments is a constant, we expect to look at a 

constant number of the segments to find a match with no errors. 

We expect that search will return 

N 

substrings of Stot since we are assuming that all length 10; k strings are equally likely 

to be substrings of Stot• Each call to search will take O ( 10;k) time. We expect each 

unsuccessful call to verify to take log k time since at each position of the potential match 

there is a 11b·t chance that the characters do not match and we only need to find log k 

positions where the characters do not match. The total time spent in successful calls to 

the function verify will be less than O(N). The time to build the suffix array is expected 

to be O(N)[MM90]. So, the expected time to solve the log inexact match problem using 

the algorithm in Figures 21 and 22 is 
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Figure 23: Running time of suffix array algorithm varying number of strings 
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Figure 24: Running time of suffix array algorithm varying size of strings 
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Figure 25: Running time of suffix array algorithm varying size of minimum overlap 
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Figure 26: Log of running time of suffix array algorithm allowing n€ errors 
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5.7.3 Implementation and Discussion 

The algorithm discussed in section 5.6 has been implemented in C and run on a Sun 

3/260. Figure 23 shows the running time of the algorithm presented in figures 21 and 

22 as the number of strings is varied from 100 to 2500 while the length of the strings is 

100, the minimum acceptable overlap is 24, and the overlap between adjacent strings is 

50. Figure 24 shows the running time of the algorithm as the size of the strings is varied 

from 100 to 2000 characters while the number of strings is 100, the minimal acceptable 

overlap is 24, and the actual overlap is 50. Figure 25 shows the running time of the 

algorithm as the size of the minimum acceptable overlap is varied from 6 to 48. The 

number of strings is 200, the size of the strings is 200, and the actual overlap is 150. 

Although the suffix array based log inexact consensus sequence algorithm was 

initially designed to construct a consensus sequence from sequence fragments, it can be 

used to align similar sequences. As an example of this, we have used the algorithm to 

align the following three sequences from GenBank [BB88] . 

l. Saccharomyces cerevisiae TATA-box factor (TFIID) gene, 5' flank. This 1157 base 

pair DNA sequence was published by Schmidt et. al. (SKPB89] and has GenBank 

accession number M26403. 

2. S. cerevisiae TATA-binding protein (TFIID) gene, complete eds. This 2439 base 

pair DNA sequence was published by Hahn et. al. [HBSG89] and has GenBank 

accession number M27135. 

3. S. cerevisiae transcription initiation factor IID (TFIID). This 1140 base pair DNA 

sequence was published by Horikoshi et. al. [HWF+89] and has GenBank accession 

number X16860. 

The sequences M26403 and M27135 can be aligned with 6 differences, the se

quences M26403 and X16860 can be aligned with 7 differences and the sequences M27135 

and X16860 can be aligned with 1 difference. Running the suffix array based log inexact 

algorithm uses 2.62 CPU seconds to build the suffix array and 0.08 seconds to align the 

sequences with a minimum acceptable overlap (the value k) of 24. The naive algoritp.m 

uses over 37 CPU seconds with the minimum acceptable overlap set to 24. To help the 
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naive algorithm we could remove the last 1000 base pairs of the sequence M27135 and 

set the minimum acceptable overlap to 900. With this help the naive algorithm still 

takes over 11 CPU seconds to compute the alignment. 

5. 7 .4 Generalization 

We have used log n errors in a match of length n simply because we used log n errors 

in -the RK log inexact consensus sequence algorithm in section 5.4. Any function of n, 

fn(n), such that fn(n) ~ n could be used as the maximum number of errors allowed in 

a length n match. Following the same arguments that were used in sections 5.7.1 and 

5.7.2 it can be shown that allowing fn(n) errors in matches of length n, the algorithm 

in :Figures 21 and 22 will use 

worst case time and 

expected time. 

We allowed n€, 0 < £ < 1, errors for matches of length n. Figure 26 shows the 

log of the running time of the algorithm in Figure 21 and 22 when allowing n€ errors 

in length n matches while varying £. The data shown in Figure 26 is for 10 sequences, 

each 410 bases long with overlaps of 180 bases and a minimum acceptable overlap of 40 

bases. 

Figure 26 has a knee at about f = 0.45. As the number of errors allowed increases, 

the likelihood that some substring of Stot will be falsely matched by the string 

R = Si[ptr] ... Si[ptr + blocksize - 1] 

(see Figure 22) increases. When the number of errors allowed is increased by one, the 

number of substrings in Stot that falsely match R is expected to increase by a factor of 

u. There is some value µ of£ where we expect there to be one substring in Stot that 

falsely matches R. We expect the running time to be constant for 0 < £µ since we 

expect one call, the correct call, to verify for each pair of strings that match. As f grows 

above µ we expect false calls to verify. The number of false calls to verify will grow by 
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a multiplicative factor of u for each additional error allowed in a match. This is seen 

in the exponential growth in running time as f. increases from f. = 0.45 to f. = 0.85 in 

Figure 26. Eventually, as f. grows, there will be so many errors allowed that nearly any 

pair of strings will match and the number of calls to verify will fall. 

6 Conclusion 

We have defined the consensus string problem and presented two new algorithms to 

solve it. We let 

• n be the number strings in the multiset S = {S1, S2, ... , Sn} 

• C be the compressions, C = N - ISconsensusl 

• k be the minimum acceptable overlap length between strings 

The first algorithm using ideas of Rabin-Karp exact string matching, is expected to 

solve the problem in O(Clogn) time. The second algorithm developed to solve the 

consensus string problem is also expected to run in 0( Clog n) time, but in practice 

runs faster than the Rabin-Karp type algorithm by a factor of about ten. 

We also define a similar problem, the log inexact consensus sequence problem, and 

present two new algorithms to solve this problem. The first algurithm used an extension 

of the ideas based on Rabin-Karp string matching developed for the consensus string 

problem. This algorithm, although not practical in many situations, is useful when the 

prefix/suffix overlap is known to be small. The algorithm is also easily parallelizable. 

The second algorithm uses suffix arrays as developed by [MM90] and is expected 

to run in O (nN1!f!_ + N) time. This algorithm is generalized to allow not only log k 
II:I log k 

errors but any reasonable function of k errors. Finally, we give an example of the use 

of this algorithm to align three nearly identical DNA sequences of the TFIID gene in 

yeast, although this was not the intended use of the algorithm. 

These algorithms allow a few bases to be transformed but do not allow bases to be 

deleted. If, for example, a base is missed while reading a GC rich region ( an occasional 
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problem) the algorithms presented in this paper will not work since part of the match 

will be offset by one position. One area of future research will be designing algorithms 

for this problem that allows a small number of deletions as well as the transformations. 
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