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Abstract 

Control abstraction is the process by which programmers define new control constructs 
by specifying an ordering of statement execution. Using control abstraction, we can create 
new control constructs for parallel programming, separate the specification of parallelism and 
synchronization from the rest of the application code, and vary the paralellism exploited during 
execution by selecting alternative implementations of control constructs. 

This paper argues for the inclusion of control abstraction in parallel programming languages 
by demonstrating that the benefits of control abstraction far outweigh the costs. We present a 
notation for precisely defining the meaning of a parallel control construct; and use that nota­
tion in the definition a small set of primitive mechanisms for parallel programming with control 
abstraction. We show how to define and implement new parallel control constructs using these 
primitive mechanisms, and provide examples of application-specific control constructs used in 
real programs . Finally, we describe techniques that can be used to implment a parallel program­
ming language based on control abstraction, and demonstrate the efficiency of those techniques 
in an implementation on the BBN Butterfly multiprocessor . 
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1 Introduction 

Sequential programming languages use sequencing, repetition, and selection to define a total order ­
ing of statement executions in a program. Parallel programming languages 1 use additional control 
flow constructs, such as fork, cobegin, or parallel for loops, to introduce a partial order on state­
ment executions, which admits a parallel implementation. Since parallelism is primarily an issue of 
control flow, the control constructs provided by the language can either help or hinder attempts to 
express and exploit parallelism. 

Control constructs typically define an ordering on statement execution, without regard to a 
specific implementation of that ordering. The specification of a control construct at language­
definition time is an example of control abstraction. More generally, control abstraction is the 
process by which programmers specify a statement ordering (parameterized with respect to the 
statements being ordered) separately from an implementation of that ordering. A control construct 
is the result of that process. 

Although the benefits of control abstraction in sequential programming are widely recognized, 
particularly in the implementation of abstract data types, few parallel programming languages 
support control abstraction, and the benefits of control abstraction in parallel programming are 
not recognized. 

• With control abstraction, programmers can extend the set of common control constructs 
without changing the language definition or implementation. Given the importance of control 
flow in parallel programming, it seems premature to base a language on a small, fixed set 
of control constructs. With control abstraction, a large set of control constructs becomes 
feasible ( even when based on a very small set of primitive mechanisms) because they may be 
developed as needed and placed in a library. 

• Control abstraction separates the definition and use of a control construct from its implemen­
tation, which enables parallel control constructs to have several different implementations, 
each exploiting a different amount of parallelism. Programmers may easily choose among 
these implementations at the points where constructs are used, thus tuning the application 
to a given architecture. 

• Programmers may define application-specific control constructs that provide precisely the 
parallelism their algorithms admit, no more and no less. By defining a construct that provides 
no less parallelism than can be used, programmers have maximum flexibility in adapting to 
different architectures. By defining a construct that provides no more parallelism than can 
be tolerated, programmers avoid mixing explicit . synchronization with program logic. 

• Programmers may associate control operations with abstract data structures, so that the 
generation and distribution of parallelism cooresponds to the generation and distribution of 
data. Association of control with data also increases the accuracy of programs in representing 
their potential parallelism, leaving more room for alternate implementations and architectural 
adaptability. 

1 Our focus is on explicitly parallel imperative programming languages, such as SR [Andrews et al., 1988] and Ada 
[U. S. DoD, 1983]. 
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Control abstraction is not free. We have to consider both its programming costs and its im- l 
plementation costs. Section 3 presents a notation for precisely defining the partioal order of a 
parallel control construct. Section 4 introduces our particular mechanisms for control abstraction, 
defines these mechanisms in terms of our notation, and argues that they are sufficient. These n 
mechanisms are part of the Matroshka programming language [Crowl, 1991), which we designed 
and have implemented on the BBN Butterfly and Alliant FX multiprocessors. Section 5 gives sim-
ple, straightforward examples of how to define and implement common parallel control constructs, l 
thus indicating that programming costs are reasonable. In the process, we show that the partial 
order of the implementations of these constructs satisfy the partial order of the constructs' defi-
nitions. Section 6 gives examples of how application-specific control constructs can improve the .n 
clarity, efficiency and portability of parallel programs. Section 7 presents a set of optimizations that J I 
enable Matroshka to be nearly as efficient as compiled languages. We compare the performance of 
a Matroshka program with that of a C program on the BBN Butterfly. We conclude in section 8 ) 
that the benefits of control abstraction to parallel programming far outweigh its costs and that 
parallel programming languages should support control abstraction. 

2 Related Work 

Hilfinger [1982) provides a short history of major abstraction mechanisms in programming lan­
guages, from procedure and variable abstraction in Fortran, through data structure abstraction in 
Algol68 and Pascal, to data type abstraction in Alphard, CL U, and Euclid. However, Hilfinger 
does not mention control abstraction, even though significant mechanisms for control abstraction 
are present in Lisp [Steele, 1984). In Lisp, control abstraction is present to enhance the expressive­
ness of the language. 

Control abstraction has also been used in sequential languages designed to support data ab­
straction. For example, CLU iterators [Liskov et al., 1977) (or generators) are a form of control 
abstraction intended to support abstract data structures. With iterators, the user of an abstract 
structure can operate on the elements of the structure without knowing the representation of the 
structure. In CL U, and other languages for data abstraction, control abstraction plays a secondary 
role to the specification and representation of data abstractions. 

Given that parallelism is a form of control fl.ow, control abstraction is particularly important 
for parallel programming, in part because control more directly affects performance. Yet, . to our 
knowledge, only those parallel programming languages that inherit control abstraction from a parent 
sequential language support it. For example, both Multilisp [Halstead, 1985) and Paralation [Sabot, 
1988) use Lisp closures in the implementation of the parallel programming constructs presented 
to users, but their developers have not argued the benefits of control abstraction as a parallel 
programming tool. 

One of the primary benefits of control abstraction is that it separates the use of control from its 
implementation. This separation enables multiple implementations of a construct, each exploiting 
different amounts of parallelism. This separation has been used for architectural adaptability in Par 
[Coffin and Andrews, 1989) and Chameleon [Alverson, 1990; Alverson and Notkin, 1991). Par is a 
programming language that admits multiple implementations of the co statement, a type of parallel 
for loop. Chameleon is set of C++ classes for implementing task generators and schedulers. Neither 
Par nor Chameleon support general control abstraction however, since both lack a mechanism 
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similar to closures. We present the case for using general control abstraction to achieve architectural 
adaptability in parallel programs in [Crowl and LeBlanc, 1991] and [Crowl, 1991]. 

3 Defining Control Constructs 

In order to use a control construct, we must know what it does. This section introduces a notation 
for precisely defining the meaning of a control construct. 

A control construct defines an order of execution for a set of compound statements passed as 
parameters to the control construct. Each compound statement parameter represents work to be 
performed. For example, the (else-less) Pascal if statement has two parameters, the test and the 
then body [Jensen and Wirth, 1975]. The implementation of a construct executes the compound 
statement parameters in an order consistent with the definition of the construct. 

Sequential control constructs define a total order on the execution of the its compound statement 
parameters. In contrast, parallel control constructs define a partial order of execution. To prevent 
confusion regarding the meaning of a parallel control construct, we must be precise about this 
partial order. We will use the precedes relation to describe the partial order for parallel control 
constructs. Given two events, a and b, the expression a -+ b states that a must precede b. That is, 
in all possible executions of the program, event a occurs before event b. The precedes relation is 
transitive, but of course not reflexive. 

Control constructs execute a compound statement as a single, indivisible unit. In addition, 
control constructs may be used in many different situations, and therefore do not in general know the 
internal structure of compound statements they execute. Given these two facts, control constructs 
may only define a partial order of execution between compound statements in terms of two events 
that take place during the execution of a compound statement: a control transfer from the construct 
to the compound statement and the corresponding return. We use ! work to denote the 'call' to 
a body of work, and j work to denote its 'return'. Note that the call to a body of work always 
precedes its return, that is ! work -+ j work V work. 

Programmers define a control construct by listing its parameters and specifying the partial 
orders with the precedes relation. For example, we can define the Pascal if as follows: 

if test then work 
! if test= true -+ ! work -+ j work -+ j if 
! if test= false -+ j if 

It is often the case in the definition of a control construct that we mention no events within 
a body of work, and simply execute the body and wait on its return . The corresponding prece­
dence notation, -+ ! work -+ j work -+ , sometimes gets unwieldy so we use the the shorthand 
expression -+ work -+ . Using this shorthand the first if rule becomes: 

! if test=true -+ work -+ j if 

If the precedes relation is the only means of specification, implementors may always provide a 
sequential implementation corresponding to a topological sort of the precedes relations. However, in 
the presence of explicit synchronization, deadlock may result if a sequential implementation is used. 
For example, if the body of work passed to a sequential implementation of a parallel for construct 
explicitly synchronizes among its various activations, then we may have a situation in which the 
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construct waits on an iteration that waits on another iteration. To avoid this situation, we must 
introduce another relation - the anti-preceeds relation. When a control construct specifies that a 
anti-preceeds b, a f+ b, then in no implementation of the construct may a ---+ b be true. In other 
words, b cannot wait (even indirectly) on a. However, a can wait on b. Also, while a---+ b =}bf+ a 
the converse is not true, that is b f+ a =fo a ---+ b. In other words, not waiting does not imply 
preceeding. The anti-preceeds relation is neither reflexive nor transitive. 

For notational convenience, we define the concurrent relation. When a control construct specifies 
that two events a and b are concurrent, a II b, then a f+ b I\ b f+ a. That is, in no implementation of 
the construct may either a ---+ b or b ---+ a be true. Practically, this means that implementations of 
the construct must use at least blocking coroutines, if not true parallelism. The concurrent relation 
is reflexive, but not transitive. 

4 Mechanisms for Control 

Every imperative programming language must provide a set of primitive control mechanisms. If 
these mechanisms support control abstraction, programmers may implement new control constructs 
more suited to their application. This section introduces a small set of mechanisms for parallel 
programming with control abstraction and defines their semantics using the notation of section 3. 
These mechanisms are operation invocation, statement sequencing, first-class closures, early reply, 
conditional execution, and wait-free synchronization. These mechanisms are part of the Matroshka 
parallel programming language; see [Crowl, 1991] for additional details. With these mechanisms, 
programmers may build a rich variety of control constructs to represent precisely the parallelism 
in an algorithm. 

4.1 Operation Invocation By operation invocation, we refer to either procedure invoca­
tion in procedural languages, or to method invocation in object-based languages. In this paper, 
we use a procedural notation for operation invocation. For conciseness, we also use a conventional 
prefix/infix expression notation for sequential data operations, such as integer addition. These 
expressions have the semantics of their equivalent functional expressions. 

Operations both accept parameters and return results. We define argument evaluation to occur 
before operation invocation. That is, given f(g()) we know that g ---+ f. 

Operations may call themselves recursively. We choose recursion over iteration · because it 
enables more direct expression of divide-and-conquer algorithms, which are important to parallel 
programming. 

4.2 Statement Sequencing A sequence of statements defines a total order on statement 
executions ( operation invocations). Notationally, we separate statements by a semicolon. For 
example, given f () ; g () we know that f ---+ g. 

4.3 First-Class Closures General control abstraction requires a mechanism for encapsu­
lating and manipulating the body of work passsed to a control construct. This work must have 
access to the environment that invokes the control construct. Like Lisp [Steele, 1984], Smalltalk 
[Goldberg and Robson, 1983], and their derivatives, we use first-class closures to capture the code 
and its environment. Closures capture their environment at point of elaboration and may affect 
variables in their environments that are not visible to the callers of the closures. 
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Closures are reusable, and programmers may invoke any single closure many times. Each 
invocation produces a separate activation. These activations have no implicit synchronization. To 
communicate between closure activations and the control construct, closures may accept parameters 
and return results. 

In our notation, the definition of a closure consists of a parameter list within parentheses followed 
by a sequence of statements within braces. One of these statements may be the reply statement. 
We denote the value-returning reply statement with the keyword reply preceding the return value 
expression. Replies that return control, but no value, omit the expression. For example, we write 
a closure that accepts an integer parameter and returns twice its value as: 

( i: integer) { reply 2*i} 

This is a similar to a Lisp >.-expression. We use a type syntax similar to Pascal, including reference 
parameters. The type of this closure is: 

closure( i: integer): integer 

Given a variable twice that references such a closure, we invoke the closure just as we would an 
operation: twice ( 4 ) . We can also call a closure at the point we define it: 

( i: integer) { reply 2*i} ( 4) 

The first pair of parentheses defines the parameter type, the braces define the body, and the second 
pair of parenthesis invoke the closure and pass the argument. 

The invocation of a closure preceeds the first statement in the closure and the evaluation of the 
reply value preceeds the closure reply. For example, given the closure definition 

( p: integer ) { f1O; ... ; fiO; reply g(); } 

the statements calling the closure 

... ; fxO; closure( h() ) ; fyO; 

result in the following partial order of execution: 

• • • --+ fx --+ h --+ 1 closure --+ f1 --+ • • •--+ fi --+ g --+ j closure --+ fy --+ • • • 

As an example of the use of closures in a control construct, consider the Pascal if statement 
described in section 3. It takes two parameters, the test and the body of work. To cast this into our 
closure notation, we must convert the if statement into an operation call, and convert the work 
into a closure parameter. The definition (as opposed to the implementation) is: 

operation if( test: boolean; work: closure()) 

An example of its use is: 

if( y > 0, { print y}) 

This example introduces two notational shortcuts. First, when a closure takes no parameters, we 
omit the parameter list. Second, if the a value-less reply the last statement in a closure, we omit 
the reply. 
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Closures are, in essence, the in-line definition of a nested operation. Operations are simply 
named closures. So all claims about closures also apply to operations. In particular operations as 
well as closures may be passed as arguments for later invocation. 

4.4 Early Reply An invocation of a operation (or closure) may reply with a result and 
then continue executing in parallel with the caller. The caller waits for a reply, but does not wait 
for termination of the operation. Early reply is the sole source of parallelism in Matroshka. This 
mechanism is not new [Andrews et al., 1988; Liskov et al., 1986; Scott, 1987), but its expressive 
power does not appear to be widely recognized. 

The presence of an early reply in a operation or closure definition specifies a partial order of 
execution, which admits parallelism . For example, given the closure definition 

( p: integer) { f10; ... ; fiO; reply g(); fj(); ... ; fnO } 

the statements calling the closure 

... ; fxO; closure( h() ) ; fy0; 

result in the following partial order of execution: 

/ 
· · ·-+ fx -+ h -+ t closure -+ f1 -+ · · ·-+ fi-+ g-+ j closure -+ j closure -+ fy -+ · · · 

The statements fj ... fn may execute in parallel with statement fy and its successors, that is t fj 
f+ L fy /\ L fy f+ L fj and therefore t fj II t fy. 

4.5 Conditional Execution For .conditional execution, we adopt the Smalltalk approach 
[Goldberg and Robson, 1983) and depend on a Boolean type and an if operation that conditionally 
executes a closure . In our case, the operation syntax is that developed in section 4.3 and the 
semantics are those described in section 3. 

operation if( test: boolean; work: closure()) 
l if ( true, work ) -+ work -+ j if 
t if ( false, work ) -+ j if 

We invoke this operation just as we would any other. For example, in if ( y>O, { z : = x/y } ) 
the assignment executes only when y > 0. 

The implementations of if else, while and repeat in terms of if are straightforward. 

4.6 Synchronization So far, we have presented no mechanism for synchronization other 
than that implicit in an operation invocation waiting for the reply. This is not sufficient for general 
parallel programming; we need to synchronize explicitly. 

Our examples use a simple wait-free condition variable for synchronization. The condition 
variable has atomic signal and blocked operations. The signal operation may be invoked only 
once, while the blocked operation may be invoked many times. Thier syntax and semantics are: 
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type condition 
operation blocked( var cond: condition): boolean 
operation signal( var cond: condition) 
j blocked = true -+ l signal 
l signal -+ j blocked = false 

The first rule says that blocked returns true before the call to signal. The second rule says that 
blocked returns false after the call to signal. 

This condition variable is not powerful enough to provide mutual exclusion, and is therefore 
insufficient a.s a. synchronization primitive. We use it here because it meets the needs of our 
examples, and has simple semantics. We expect parallel programming languages to provide wait­
free synchronization primitives richer than our condition variable, such a.s compare-and-swap, so 
that programmers may achieve mutual exclusion. We also expect languages and implementations 
to provide blocking synchronization. 

These Mechanisms are Sufficient In designing a. parallel control construct, programmers 
need to be able to generate a.n arbitrary partial order of events. The control mechanisms presented 
a.hove can generate arbitrary (computable) partial orders. To see this, first note that sequence, 
conditional execution, and recursion enable us to invoke a.n arbitrary number of closures, ea.ch with 
a.n identity that can be computed and passed via. its para.meters or environment. Ea.ch invocation 
of a. closure may then reply early, creating a.n independent thread of control. Ea.ch thread may set 
conditions and wait on any (computable) function of other conditions. 

The ca.pa.city to generate arbitrary partial orders is not helpful in coordinating existing processes. 
To do this we need the synchronization primitives that allow processes to achieve consensus. Herlihy 
[1988) presents several wait-free synchronization primitives and analyses them for their ability to 
enable two or more processes to achieve consensus, and hence mutual exclusion. For example, 
compare-and-swap is sufficient for a.n arbitrary number of processes to achieve consensus. With 
a. primitive like compare-and-swap, the mechanisms we presented can generate arbitrary partial 
orders and coordinate among arbitrary existing processes. 

5 Building Control Constructs 

In this section, we provide examples of defining, implementing, and using parallel control constructs. 
In the first two examples, we show that the partial order of the construct's implementation implies 
the partial order of the construct's definition, thus showing that the implementation satisfies the 
definition. Our first example is a. wait operation on condition variables. We use wait . in the 
implementation of a. parallel cobegin operation. We then use cobegin in the implementation of a. 
parallel forall. 

5.1 Wait on Condition Given the condition variable defined in section 4.6 we define a. 
wait operation that will not reply until the condition has been signaled: 

operation wait( var cond: condition) 
l signal -+ j wait 
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It has a straightforward implementation based on if and recursion: 2 

imple~ent wait( var cond: condition) 
{ if( blocked(), { wait( cond)})} 

We can derive the defined partial order (above) by induction from the partial orders of blocked 
and signal. For each precedence relation, we note the sections that define the rules used to derive 
the relation. The base case occurs when signal has already executed. 

! signal ~ j blocked = false ~ ! if( false, ... ) ~ j if( false, ... ) ~ j wait 

Precedence 1 derives from the definition of conditions ( 4.6). Precedence 2 derives from the evalua­
tion of blocked as an argument before invoking if ( 4.1). Precedence 3 derives from the definition 
of if with a false argument ( 4.5). And finally, precedence 4 derives from the implicit reply and the 
definition of closures ( 4.3). 

The induction step occurs when signal has not already executed. 

blocked = true ~ ! if ( true, . . . ) ~ wai trecum .!.+ j if ~ j wait 

Precedence 5 derives from the evaluation of blocked as an argument before invoking if (4.1). 
Precedences 6 and 7 derive from the definition of if with a true argument ( 4.5). And finally, 
precedence 8 derives from the implicit reply and the definition of closures ( 4.3). 

An alternate implementation of condition and wait could provide blocking synchronization, 
rather than the busy waiting presented here . 

5.2 Cobegin The cobegin construct may execute two closures concurrently and replies 
only when both have replied.3 Its syntax and semantics are: 

operation cobegin( work1, work2: closure()) 
! cobegin --+ work1 --+ j cobegin 
! cobegin --+ work2 --+ j cobegin 
! work2 -f+ ! work1 

These rules state, respectively, that both closures start after the cobegin, both closures reply before 
the cobegin replies, and work1 does not wait on work2.4 · 

The above rules permit but do not guarantee concurrent 5 execution ( as opposed to truly parallel 
execution). The rule that guarantees concurrent execution, ! work1 -f+ ! work2, states that work2 
does not wait on work1. In conjuction with the third rule above, ! work1 II ! work2, and neither 
work may wait on the other, which implies that cobegin must invoke both closures before waiting on 
their replies. In general, it is not good practice to use control constructs that guarantee concurrency 
because they exclude processor-efficient sequential implementations. 

2Tail recursion elimination will avoid stack growth. 
3 We could provide a more general n argument co begin given a language that allows lists as arguments ( e.g. Lisp). 

~This rule is primarily useful when using cobegin to implement other control constructs . We rely on this rule in 
our implementation of forall in section 5.3. 

5 We use the term concurrent to include those implementations that may execute correctly on uniprocessors. Such 
implementations need some form of blocking thread. 
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One possible parallel implementation of cobegin follows. It uses only the mechanisms defined 
in section 4 and the wait pperation defined in section 5.1. We use early reply as the source of 
parallelism and our condition variable as the source of synchronization. 

implement cobegin( work1, work2: closure()) 
{ var done: condition; 

--- define and execute a closure to execute one argument 
{ reply; remainder of closure executes in parallel 

work1 () ; do work1 
signal( done) work1 has finished, signal it 

}(); directly execute closure 
--- execution continues here, in parallel, after the reply executes 
work2(); do work2 
wait( done) wait for signal indicating work1 finished 

implicit reply from cobegin 
} 

We can show that the implementation meets the specification as follows: 

! cobegin ~ ! inner closure ~ l inner closure 

l inner closure ~ work1 ~ ! signal ~ l wait 
l inner closure ~ work2 .!.+ ! wait ~ l wait 

l wait ~ l co begin 
10 

! work2 f+ ! work1 

Precedences 1 and 2 derive from the first statement in a closure executing after the closure is 
invoked ( 4.3). Precedence 3 derives from the first statement after a reply in a closure executing 
after the reply ( 4.4 ). Precedences 4, 6 and 7 derive from statement sequencing ( 4.2). Precedence 5 
derives from the definition of wait (5.1). Precedence 8 is inherent to an operation replying after its 
invocation. Precedence 9 derives from the implicit reply and the definition of closures ( 4.3). And 
finally, precedence 10 derives from the concurrent execution of the statement after a reply and the 
statement after a call to a closure (4.4). With the exception of the calls to signal and wait, the 
derivation of precedences is straightforward. 

5.3 Forall In our next example we define an iterator over a range of integers, analogous to 
a parallel for loop or a CLU iterator [Liskov et al., 1977].6 Its syntax and semantics are: 

operation forall( lower, upper: integer; work: 
! for all ( lower, upper, work ) -+ ! work ( i ) 
l work ( i ) -+ l for all ( lower, upper, work ) 
! work ( j ) f+ ! work ( i ) 

closure( iteration: integer) ) 
[i: lower ::; i ::; upper] 
[i: lower ::; i ::; upper] 

[i,j: lower ::; i < j::; upper] 

6 Unlike CL U, our emphasis is on the separation of semantics and implementation for general control constructs, 
rather than the ability to iterate over the values of any abstract type. 
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These rules state, respectively, that the forall starts before any iteration; all iterations reply 
before forall does; and higher-numbered iterations do not wait on lower-numbered iterations. 7 

Again, we omit the rule that guarantees concurrency: 

! work ( i ) II ! work ( j ) [i,j: i-::/ j I\ lower ~ i ~ upper /\ lower ~ j ~ upper] 

which states that the implementation would have to start all iterations before waiting on the reply 
of any iteration. 

We use co begin and recursion to build a parallel divide-and-conquer implementation of forall. 

implement forall( lower, upper: integer; work: closure( iteration: integer) ) 
{ if( lower= upper, { work( lower)}); 

if( lower< upper, {middle:= (lower+ upper) div 2; 
cobegin( { forall( lower, middle, work)}, 

{ forall( middle+!, upper, work)})})} 

We omit the detailed verification of the specification. Note, however, that meeting the third forall 
rule relies on the third cobegin rule. 

In addition to the parallel implementation, forall also has valid sequential implementations. 
In particular, we can implement forall in with a sequential for operation. 

implement forall( lower, upper: integer; work: closure( iteration : integer) ) 
{ for( lower, upper, work)} 

These examples show the power of control abstraction when used to define parallel control 
constructs. Using closures and early reply we can represent many different forms of parallelism. 
In particular, we used closures, conditional execution, recusrion, and wait-free synchronization to 
implement waiting synchronization, which we then used with closures and early reply to implement 
cobegin. We then used cobegin with closures, conditional execution, and recursion to implement 
forall . These examples show that control abstraction enables programmers to extend the set of 
control constructs beyond those defined by the language designer. 

6 Parallel Programming with Control Abstraction 
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We have programmed several parallel applications using control abstraction in the Matroshka lan-
guage. Our experiences have confirmed our intuition about the benefits of control abstraction, ) 
and produced some specific lessons on how to use control abstraction in parallel programs. In ~ 

this section we give examples of how application-specific control constructs can improve parallel 
programs. The first example is Gaussian elimination and shows the ability to select easily among j 
multiple implementations of a control construct and exploit different parallelizations. The second 
example is part of a program to compute subgraph isomorphism and shows how associating control 
operations with data abstractions can improve the clarity and precision of parallel programs. For J 
more detailed treatment, see [Crowl and LeBlanc, 1991] or [Crowl, 1991]. 

7This rule is useful primarily when using forall to implement other control constructs. 
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6.1 Select Among Multiple Implementations In implementing a parallel algorithm, 
programmers are faced with the task of balancing the potential speedup of parallelism with the 
overhead of starting parallel tasks. In addition, they must balance the use of explicit synchro­
nization ( and its corresponding debugging problems) with the improved performance that a more 
precise description of parallelism may bring. Most current parallel programming languages force 
programmers to make such decisions early in program development because the choice of parallelism 
affects program development. 

In Gaussian elimination, the primary source of parallelism is in the production of the upper 
triangular matrix (LU decomposition). Data fl.ow constraints for Gaussian elimination state that 
pivot equations must reduce any given equation in order, and an equation must be reduced com­
pletely before it can be used as a pivot. Our goal is to represent the most general applicable partial 
order that respects these constraints directly in a program's control constructs. 

Using control abstraction, it is both possible and desireable to base the specification of control 
on the synchronization constraints inherent in the algorithm. We do this by defining a new control 
construct, triangulate, that encapsulates precisely the partial order required by Gaussian elimi­
nation. It takes two parameters: the number of equations in the system, and the statements to be 
executed for each pivot and reduction equation pair. This construct encapsulates all parallelism 
and synchronization in selecting pairs of pivot and reduction equations. We encapsulate the state­
ments that implement a reduction within a closure; its parameters are the indices of the pivot and 
reduction equations. The triangulate construct invokes the closure with the appropriate pairings, 
while maintaining the synchronization necessary for correct execution. 

define triangulate( size: integer; work: closure( pivot, reduce: integer)) 
! triangulate( size, work ) --t ! work( i, j ) [i,j: 1::; i < j::; size) 
j work( i, j ) --t ! work( k, j ) [i,j,k: 1::; i < j::; size /\. i < k::; size) 
j work( i, j ) --t ! work( j, k ) [i,j,k: 1::; i < j::; size /\. i < k::; size) 

This construct has several different implementations, from sequential to maximally parallel, each 
embedding only the synchronization it needs. Because synchronization is embedded in the im­
plementation of the triangulate control construct, and not in the statements that reduce an 
equation, we were able to simultaneously select parallelism and synchronization by choosing an 
implementation for triangulate. 

Written with triangulate, the code to form the upper triangular matrix 8 is: 

var system: array [ 1. . SIZE ] of array [ 1. . SIZE ] of float; 
triangulate( SIZE, ( pivot, reduce: integer) 

{ var fraction := system[reduce] [pivot] / system[pivot] [pivot]; 
forall( pivot, SIZE, ( variable: integer) 

{ system[reduce][variable] -:=fraction* system[pivot] [variable]})}) 

By annotating each use of triangulate and forall with the desired implementation, we were 
able to implement many different parallelizations of Gaussian elimination ( changing only the an­
notations) and compare the performance of different parallelizations on the Butterfly and Alliant 

8 For historical and expository purposes , we us an algorithm without pivoting. The algorithm is numerically 
unstable . 
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architectures. For example, selecting a sequential implementation of triangulate and a sequential 
implementation of forall, yields an efficient sequential program. Selecting a vector implemen­
tation of forall takes advantage of any vector hardware. For processors with hardware support 
for barriers, we might wish to use an implementation of triangulate based on the implicit bar­
rier synchronization of forall. For processors without hardware support for barriers, such as the 
Butterfly, an implementation of triangulate based on condition variables is most efficient. We 
can adapt this program to a wide variety of architectures simply by changing the implementation 
annotations for each control construct. 

6.2 Associate Control and Data Control abstraction is especially powerful when com­
bined with data abstraction. The relationship between control abstraction and data abstraction 
shows clearly in our implementation of subgraph isomorphism. 

The problem is to find the set of isomorphisms from a small graph to subgraphs of a larger 
graph. A graph isomorphism is a mapping from each vertex in one graph to a unique vertex in the 
second, such that if two vertices are connected in the first graph then their corresponding vertices 
in the second graph are also connected. In subgraph isomorphism, the second graph is an arbitrary 
subset of a larger graph. 

Our algorithm is based on tree-search with constraint propagation. This paper concentrates 
on one of those constraints - the distances from the current vertex in the small graph to other 
verticies in the small graph must be no larger than the distances from the current vertex in the 
large graph to other verticies in the large graph. We remove from the set of possible mappings 
those which are inconsistent with the distance constraint. 

In a sequential language we would typically write code that iterates over possible elements 
of the set of mappings, testing for membership, and then testing the distance condition. When 
parallelized, the source of parallelism in this code is the possible elements of the set, rather than 
the much smaller number of actual elements. 

· With control abstraction, we can define a set operation that iterates in parallel over actual 
elements of the set, testing them for removal. We define a new construct, remove_elements_cond, 
that removes those elements of a set that meet a given test. 

define remove_element_cond( var members: set of integer; 
test: closure( member: integer): 

! remove_element_cond ( members, test ) -+ ! test ( i ) 
j test( i ) -+ j remove_element_cond ( members, test ) 

boolean ) · 
[i : i E members 
[i : i E members 

Because this iterator combines the specification of paralelism across elemets of the set with the 
synchronization required by the removal operation, the implementation can restrict its generation 
of parallelism so that removals do not need to synchronize, thus improving the efficiency of the 
program. 

A distance filter based on this construct expresses our algorithmic intent precisely, while leaving 
a great deal of latitude in the possible implementations of remove_element_cond. 
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implement distances( curr_small, curr_large: integer; var node: tree_node) 
{ --- for all verticies in the small graph 

forall( 1, maximum_small, ( other_small: integer) 
{ remove_element_cond( remove elements from the 

node[other_small], set of possible mappings of that vertex 
( other_large: integer) to a vertex in the large graph 

{ that do not meet the distance constraint 
reply small_distance[curr_small,other_small] 

< large_distance[curr_large,other_large]})})} 

We cannot reasonably expect language designers to anticipate application-specific control con­
structs such as triangulate and remove_element_cond, so only languages that support control 
abstraction can support such constructs. 

7 Implementation 

Earlier sections showed the importance of control abstraction in parallel programming . although 
descriptive power is an important property, programmers use parallelism to improve performance. 
Any programming language that uses closures and operation invocation to implement the most basic 
control mechanisms might appear to sacrifice performance for expressibility. With an appropriate 
combination of language and compiler, however, user-defined control constructs can be as efficient 
as languaged-defined constructs. 

In the case of our mechanisms, seven straightforward optimizations reduce the execution cost 
of these mechanisms to that comparable with compiled languages. 

Invocations as Procedure Calls: An invocation may reply early, causing concurrent execution . 
So, a conservative implementation of invocation provides a separate thread of control for each 
invocation. We can reduce this cost by implementing operations that have no statements after 
the reply, and hence no concurrency, as procedure calls. 

Delayed Replies: Some early replies can be safely delayed until after the last statement, again 
enabling a procedural implementation. 

In-line Substitution: By statically identifying the procedure that implements an operation, we 
can do in-line substitution. This technique is effective in implementing sequential control 
constructs as machine branches. 

Stack Allocation of Closures: We can reduce the cost of closures by allocating their activations 
on the stack, rather than from the heap. This requires either language restrictions or program 
analysis [Kranz et al., 1986]. 

Direct Scheduler Access: Note that the presence of an implementation for a control construct, 
such as forall, using our mechanisms does not imply that a programming system must use 
that implementation . In particular, implementations of forall are most efficient when they 
can directly manipulate scheduler queues. 

Stack Borrowing: When a the body of work passed to a parallel construct does not block, we 
can execute it from within the scheduler and avoid task creation. 
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Last-In-First-Out Scheduling: FIFO scheduling is equivalent to a breadth-first search of the 
tree of tasks, which requires 0( n) simultaneous activations. The representation of these 
activations could swamp available memory. On the other hand, LIFO scheduling is equivalent 
to depth-first search and requires only O(log n) simultaneous activations. 

Using these optimizations, our prototype implementation of Matroshka [Crowl, 1991] produces 
programs that executes two to four times slower than equivalent C programs compiled with an opti­
mizing compiler. The performance difference arises primarily because the Matroshka compiler uses 
C as an intermediate language (which causes substantial inefficiencies), and secondarily because 
the compiler does not do inlining of user-defined operations ( and hence control abstractions) and 
because the prototype language does not permit passing sub-arrays. These problems have straight­
forward corrections. Applying the corrections by hand brings Matroshka execution times to .within 
4% of comparable C programs for several programs on the BBN Butterfly multiprocessor. Figure 1 
shows the corresponding execution times for the Gaussian elimination example. We expect that a 
production compiler for Matroshka would be competitive with an optimizing C compiler. 

1024 

',, - - - -prototype compiler 
.... 
' 512 

.... .... ..... ... ... ... ..... ...... 
Seconds 256 ----~ ~ --with hand optimization 

128 
··· · ····hand-tuned C program 

8 12 16 24 32 48 
Processors 

Figure 1: Performance of Gaussian Elimination 

8 Conclusions 

Control abstraction has four benefits that are particularly important for parallel programming. 

• Programmers are not limited to a fixed set of control constructs. New constructs that express 
arbitrary partial orders on statement execution can be created and stored in a library for use 
by others. This is particularly important because application-specific control constructs can 
provide substantial improvements to parallel programs. 

• Each control construct can have multiple implementations, corresponding to different par­
allelizations. In tuning a program for a specific architecture, or in porting a program to a 
new architecture, programmers can experiment with alternative parallelizations by selecting 
implementations from a library of control constructs. 
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• Programmers can use constructs that reflect the potential paralleism of the algorithm, iso­
lating decisions on actual parallelism and synchronization within the implementation of con­
structs and away from program logic . 

. • Programmers can associate control operations with data structures, thus providing expressive 
and concise data-dependent parallelism. 

We presented a notation for precisely defining control constructs, introduced a small set of prim­
itive control mechanisms for control abstraction and defined them in terms of our notation. We then 
showed how to define and implement new control constructs, verifying that the implementations 
meet the definitions. We gave examples of the value of application-specific control constructs in 
parallel programming. Finally, we described several optimizations that admit an implementation 
of our mechanisms competitive with compiled languages. We conclude that the enormous benefits 
and reasonable costs of control abstraction argue for its inclusion in explicitly parallel programming 
languages. 

References 

[Alverson, 1990] Gail A. Alverson, "Abstraction for Effectively Portable Shared Memory Parallel 
Programs," Technical Report 90-10-09, Department of Computer Science, University of Wash­
ington, October 1990, Ph.D. Dissertation. 

[Alverson and Notkin, 1991] Gail A. Alverson and David Notkin, "Abstracting Data-
Representation and Partition-Scheduling in Parallel Progams," In Proceedings of the Inter­
national Symposium on Shared Memory Multiprocessing, Tokyo, Japan, April 1991. 

[Andrews et al., 1988] Gregory R. Andrews, Ronald A. Olsson, Michael H. Coffin, Irving J. P. 
Elshoff, Kelvin Nilsen, Titus Purdin, and G. Townsend, "An Overview of the SR Language and 
Implementation," ACM Transactions on Programming Languages and Systems, 10(1):51-86, 
January 1988. 

[Coffin and Andrews, 1989] Michael H. Coffin and Gregory R. Andrews, "Towards Architecture­
Independent Parallel Programming," Technical Report 89-21a, Department of Computer Sci­
ence, University of Arizona, September 1989. 

[Crowl, 1991] Lawrence A. Crowl, "Architectural Adaptability in Parallel Programming," Tech­
nical Report 381, Computer Science Department, University of Rochester, May 1991, Ph.D. 
Dissertation. 

[Crowl and LeBlanc, 1991] Lawrence A. Crowl and Thomas J. LeBlanc, "Architectural Adaptabil­
ity in Parallel Programming via Control Abstraction," Technical Report 359, Computer Science 
Department, University of Rochester, January 1991. 

[Goldberg and Robson, 1983] Adele Goldberg and David Robson, Smalltalk-BO, The Language and 
Its Implementation, Addison-Wesley Publishing Company, Reading, Massachusetts, 1983. 

15 



[Halstead, 1985] Robert H. Halstead, Jr., "Multilisp: A Language for Concurrent Symbolic Com­
putation," ACM Transactions on Programming Languages and Systems, 7(4):501-538, October 
1985. 

[Herlihy, 1988] Maurice P. Herlihy, "Impossibility and Universality Results for Wait-Free Synchro­
nization," In Proceedings of the Seventh Annual ACM Symposium on Principles of Distributed 
Computing, pages 276-290, August 1988. 

[Hilfinger, 1982] Paul N. Hilfinger, Abstraction Mechanisms And Language Design, ACM Distin­
guished Dissertation. MIT Press, 1982. 

[Jensen and Wirth, 1975] Kathleen Jensen and Niklaus Wirth, Pascal User Manual and Report, 
Springer-Verlag, New York, second edition, 1975. 

[Kranz et al., 1986] David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin, 
and Norman Adams, "ORBIT: An Optimizing Compiler for Scheme," In Proceedings of the 
SIGPLAN '86 Symposium on Compiler Construction, pages 219-233, June 1986, in SIGPLAN 
Notices 21(7), July 1986. 

[Liskov et al., 1986] .Barbara H. Liskov, Maurice P. Herlihy, and Lucy Gilbert, "Limitations of 
Synchronous Communication with Static Process Structure in Languages for Distributed Com­
puting," In Conference Record of the Thirteenth Annual ACM Symposium on Principles of 
Programming Languages, pages 150-159, January 1986. 

[Liskov et al., 1977) Barbara H. Liskov, Alan Snyder, R. R. Atkinson, and J. C. Schaffert, "Ab­
straction Mechanisms in CLU," Communications of the ACM, 20(8):564-576, August 1977. 

[Sabot, 1988] Gary Wayne Sabot, The Paralation Model: Architecture-Independent Parallel Pro­
gramming, MIT Press, 1988. 

[Scott, 1987) Michael L. Scott, "Language Support for Loosely-Coupled Distributed Programs ," 
IEEE Transactions on Software Engineering, SE-13(1):88-103, January 1987. 

[Steele, 1984) Guy L. Steele, Jr., Common Lisp: The Language, Digital Press, 1984. 

[U. S. DoD, 1983) United States Department of Defense, Washington D. C., Reference Manual for 
the Ada Programming Language, June 1983, ANSI/MIL-STD-1815A. 

16 

. I 

l 
l 

l 

] 

l 
j 

) 

) 

j 

j 

J 

j 

J 


	Crowl_LeBlanc_91_80_03_A
	Crowl_LeBlanc_91_80_03_B

