
90-60-12

LinlUEASITY

5CIEnCE

Linda-Smalltall::
Parallel Implementation of Little SmaHtalk
Using Tuple Space Communication of Linda•

Jean H. Ciamg
Timothy A. Budd

Department of ComputerScim:e
Oregon State Univeasity

Corvallis, Oregon 97331-1902

l
l
l
l
D
n
l
l
I
I
I

I
J

: J

J

J

J

u

90-60-12

Linda-Smalltalk:
Parallel Implementation of Little Smalltalk
Using Tuple Space Communication of Linda

Jean H. Chung
Timothy A. Budd

Department of ComputerScience
Oregon State University

Corvallis, Oregon 97331-3902

1

l
l
l
D
n
l

l J

lJ
j

J

J

LINDA-SMALLTALK :

Parallel Implementation of Little Smalltalk ·
Using Tuple Space Communication of Linda

Jean H. Chung and Timothy A. Budd
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

chungj@cs.orst.edu, budd@cs.orst.edu

May 7, 1990

Abstract

A new technique of implementing the object-oriented language Little Smalltalk is developed using
tuple space communication of Linda. In this implementation, the language's abstract constructs such as
object, class, and method are naturally mapped into tuple space. Since Linda's tuple space is designed
to facilitate parallel processing, this implementation technique makes it particularly easy to introduce
parallelism into the language. In other words, parallelism is achieved as a natural outgrowth of the
implementation technique, without bringing excessive complexity to the system. Although it may be
natural in abstract level, mapping the entire objects into the tuple space turned out to be unrealistic in
implementation level owing the the inherent characteristics of the tuple space .

A simple case of implicit parallelism can be detected by syntactic context of the language. General
issues on object-oriented concurrent programming a.re also discussed.

1 Introduction

Parallel hardwares exist in a variety of forms nowadays, but thinking in simultanieties in order to compose
a parallel program is not an easy task, and is usually considered a step up in software complexity. Many
kinds of approaches to parallel programming have been proposed, mostly during the past decade or so, and
no single approach seems to have been widely accepted among the parallel processing community.

Models of parallel computing in general can be categorized by a few orthogonal factors, for example,
implicit versus explicit parallelism, and data-level versus control-level parallelism.

1.1 Explicit vs. Implicit Parallelism

Explicit parallelism involves either developing new languages or extending existing languages for handling
parallel programming. Examples of language features that may be provided include constructs for creating

1

l
n
l
l

□

l l
u
l

J

J

J

1 INTRODUCTION 2

processes, message passing as process communications, and shared variables. There are several systems
built or proposed for various existing languages such as Fortran [CaK88], C [LiS85, RoS87], Pascal [Ree84,
PCMM85], and Smalltalk [Y oT86]. A difficulty with this approach is that new parallel languages tend to
be highly dependent on the underlying machine because different parallel hardwares are usually so radically
different in their architectures that they affect the ways of programming. For example, programming shared
memory machine and programming hyper-cube machine usually seem to bear little resemblance.

The implicit approach, on the other hand, tries to develop smart translators for existing languages,
without modifying the language, to detect parts of program that can be executed in parallel from a sequential
program. Although this may sound fancy, its power and efficiency are practically very limited because most
programs have parts that are inherently sequential. It seems we can hardly expect to come up with a general
parallelizing translator if its base language does not direct the programmer towards a way of thinking in which
sequential solutions are so laid out that programs can be efficiently parallelized. There is a growing agreement
that, for general purpose programming, programs must be designed to be parallel, or at least, be written
with parallelization in mind to make effective use of parallel hardware. In fact, research in this direction
has focused mostly on restricted domains of problems, most notably, vector and matrix manipulations
[Wol88, Lam74, ACK86] . Fortran has been one of the major target languges for vectorizing compiler, and a
few other languages have been considered as good candidates, for example, APL (Bud84]. APL is particularly
interesting in this sense since it has a large variety of built-in vector and matrix operations.

1.2 Data-Level vs. Control-Level Parallelism

On the other axis of parallel computing models, data-level and control-level parallelism contrast with each
other. Data parallel programming [HiS86], an evolving term from late 80's, basically aims at performing a
parallel synchronous operation on massive homogeneous parallel data objects, where each object can be a
heterogeneous structure. In other words, the basic idea is to distribute multiple data over many processing
elements and perform the same operation on all the data objects at once. This approach inherently assumes
a SIMD programming model and the ability to make the number of processing elements a function of the _
problem size, rather than a funtion of the target machine. C* [RoS87], originally developed for Connection
MachineT M [Hil85], is a language based on this model. Although C* is desiged for a special synchronous
hardware, it is shown that the language can be implemented on various architectures such as shared memory
machine [QuH89] and hypercube [QuH88]. The systems considered in [CaK88, LiS85, Ree84, PCMM85]
can also be viewed as data parallel systems in that they are interested in data partitioning. The extent of
application area for data parallel model also tends to be limited to array and matrix operations.

At the other end of this axis is control parallelism, where we are more concerned with a functional decom
position of the problem solution, rather than data decomposition of the problem domain. Thus, problems that
are inherently parallel, such as dining philosopher [Dij71, Hoa78] and producer/consumer, or that have several
more or less independent processes communicating with each other from time to time, seem to fit better in this
model. Most object-oriented concurrent programming (OOCP) systems [Agh85, Hew77, YBS86, YoT86] fall
into this category, as well as data flow model based on functional programming [Vee86, Den80] and Hoare's
CSP [Hoa78]. There has been much research done in the direction of object-oriented programming (OOP)
with concurrency. Some of this will be discussed in the next section .

Our research emphasizes the control level parallelism with both implicit and explicit parallelism. The
system can detect implicit parallel computation of a simple case, while allowing the user to explicitly specify

f

l
l
n
D
l

7

u
J

j

J

J

2 CONCURRENCY IN OBJECT-ORIENTED PROGRAMMING

parts of program to run in parallel.

2 Concurrency in Object-Oriented Programming

2.1 System model for OOCP

3

Object-oriented programming(OOP), in general, tends to motivate programmers to structure a problem and
solution in terms of behavior of various components of the system . Typically , a big problem is decomposed
into various components and each component is assigned certain responsibilities (or functionalities). Then
composing a program becomes, in a sense, coordinating activities among objects by sending messages, which
is sometimes called respons ibility driven design [WiW89). Responsibility driven design is inspired by client
server model. Objects send messages to other objects to accomplish something. Then the receiver object
of the message might compute the information , or it might delegate the request for information to another
object. This can be illustrated as in Figure 1, which we will call an execut ion graph. The figure shows a
typical pattern of message passing in OOP.

As indicated in Figure 1, the order of execution for sequential computation is E F B F C G D and A,
which is like a post-order tree traversal, although the graph is not a tree. Object A sends messages to three
different objects, B, C, and D, to accomplich its computation. But after A sending a message to B it waits
until B finishes its execution before it sends another to C. Object B in turn sends messages to other objects,
and so on . Thus, A finally terminates only after all the objects in its subgraph finish. Note, however, we
have a chance of concurrency that D, E and G can run in parallel with B, C, and F since there is no interaction
between the two groups of objects.

From the concurrency point of view, we can think of an object as a self-contained computational agent
with a state (instance variables) and functionalities (methods or procedures). This view gives a good flavor
to OOCP in that objects and processes are unified into the single self-contained notion of concurrent objects.
Then a software system can be modeled as a collection of concurrently executable objects that interact with
one another by sending messages . The central idea in OOCP is then to decide what and whose activities -
should be carried out in parallel, and how such concurrent activities should interact with another.

2.2 Difficulties of Parallelism in OOP

Although it may sound very natural and easy to introduce concurr ency into OOP, in practic e we are faced
with at least one difficult problem, that is, serialization of interacting messages . In Figure 1, for example,
there must be a way to seralize messages to F so that the message from C can not even get started before
the message from B finishes, for parallel execution should yield the same result as the sequential execution.

Unfortunately, however, the execution order is dynam ically determined in most existing OOP languages.
In other words, objects and methods (or procedures) get bound dynamically so that the structure of execution
graph is determined only at run time . This feature makes it extremely difficult or even impossible to do
such things as implicit parall elism detection or compile time concurrency analysis . There have been several
approaches to get around this problem .

l
n
I
l
D
l
l
1

j

j

j

ll
J

I
J

J

2 CONCURRENCY IN OBJECT-ORIENTED PROGRAMMING 4

The order of execution is E F B F C G D A.

Figure 1: An execution graph for a typical pattern of message passing in OOP

l
I

0
l

j

J

r I

2 CONCURRENCY IN OBJECT-ORIENTED PROGRAMMING

2.3 Solutions Proposed - Related Researches

2.3.1 Roll-back mechanism

5

This solution is proposed by [BBP88] for implicit parallelism . The idea is to send all messages for execution
in parallel, and resolve message conflicts at run-time. The system checks the run-time interactions using
time stamps on messages. When the system detects a message that is processed in wrong order in a program,
it forces the program to roll back to a previous state using what they call input queue, output queue, and
state stack.

Although we may be able to build such a system that works correctly, the system itself should involve a
fair amount of overhead and inefficiency because it must remember all the states of execution history until
it becomes convinced that there is no conflict. In addition, when it rolls back, it simply has to abandon a
certain amount of computation and re-compute that much .

2.3.2 Message queue

This approach is adopted by Actors [Hew77, Agh85], ABCL/1 (YBS86], and Concurrent Smalltalk [YoT86].
An object is capable of processing one message at a time, but it can be sent multiple messages. Each object
maintains a message queue, where messages are kept in the order that they arrived, and thus messages sent
to an object is serialized by the queue. An object takes a message from the queue, processes the message,
and when done, takes the next one, and so on. An object remains passive when there is no message in the
queue.

2.3.3 Future object

Actors, ABCL/1, and Concurrent Smalltalk all rely on the notion of future object (or future message), in one
way or another. A future object acts as a place holder for a result of a message. After sending a message,
a program can continue its execution without waiting for a result to return if it is not needed immediately,
and may use the result later.

Consider, for example, the segment of code1 in Figure 2. We use an ·"&'' character at the end of a message
to express that the message is to be sent in parallel (future message). When msg1 is sent, a special object F,
a future object, is created and assigned to a by the system, and a pointer to x, the receiver object, is given
to F so that x can return its result to F later . Then the program continues without waiting for x to return .
When the actual value of a is needed, i.e., when we send msg2: in the example, it is taken from the future
object, F, if available, or the program blocks until x finishes its computation and returns the result to F.

Future objects are used as a mean to achieve synchronization among asynchronous messages. ABCL/1
provides three types of message passing: past type, now type, and future type. Past type message simply
creates a new asynchronous process : it sends and goes on. A now type message is a synchronous message
which waits until the message is finished . A future type message is an asynchronous one that can be
synchronized by its future object.

1 The syntax we use in Figure 2 does not assume any particular system

l
1

n
0
l

n

J

r J

J

J

j

3 LINDA - TUPLE SPACE AND ITS OPERATIONS

2.4 Our Approach

a<- x msg1 &:

some computation in between

b <- y msg2: a

rest of computation

Figure 2: Behaviour of Future Object

6

Our approach is closely related to the concept of future object and future message. We use Little Smalltalk 2

[Bud87) as the base language. This base language is augmented with parallel processing capabilities based
on the tuple space communication of Linda 3 [Gel85, CaG88). We first map the entire Little Smalltalk objects
into the tuple space, and then structure the interpreter of the language as processes around the tuple space
so that processes can communicate and interact with each other through the tuple space. Future objects
can be easily implemented using this technique as will be explained later.

Similar works have been done by Matsuoka and Kawai [MaK88). They also adopted the notion of
tuple space communication to implement an OOCP language, Tuple Space Smalltalk, whose base language
is Smalltalk-SO. They proposed some useful transformations on the semantics of communication model _
originally provided by Linda to make it more efficient and suitable for their language.

3 Linda - Tuple Space and Its Operations

The system Linda [Gel85, CaG88) is designed to facilitate parallel programming by means of tuple and tuple
space. Linda consists of a small number of primitive operations which can be built into a host language,
such as C, c++, Fortan, and Smalltalk, to build a parallel dialect 4 of the host language.

The basic idea is to let processes be able to communicate with each other by placing and taking tuples
into and out of a special kind of abstract shared memory 5 , called tuple space (see Figure 3). Tuples play the

2 Little Smal/tallc is a dialect of Smalltalk-SO (GoR.84]. It is a textual language, that is, without the graphic user interface of
Smalltalk-SO. .

3 Linda is a kind of parallel programming environment that is designed to make communication and interaction among
processes easy . See Section 3.

4 The resulting languages are called, by convention, C-Linda, Fortran-Linda, and so on .
5 This does not mean that Linda can be built only on shared memory machine, although it is easier and efficient. There are

versions of Linda on message passing machines.

f

l
n
l
D
l
l
n

j

j

J

1

j

J

3 LINDA - TUPLE SPACE AND ITS OPERATIONS 7

TUPLE SPACE out out

! tuple I
tupl e

tuple

I tuple I tuple
n

Figure 3: Processes, Tupl es, and Tuple Space in Linda

role of messages 6 passed among processes. They may contain information of arbitrary type that the host
language supports. In order for a process to send or receive a message, it needs not specify the destination
or source of the message, respectively. Instead, a process can place any tuple into tuple space, and can take
any tuple out of tuple space . One nice thing about Linda is that the notion of tuple and tuple space is
such a high-level concept that Linda can be built on several different parallel architectures without loosing
portability.

3.1 The Linda Model

The Linda model is a memory model. Linda's abstract memory, called tuple space, is the basis for process
creation, communication, and synchronization. The tuple space serves as a storage for tuples, and can be
thought of as a high-level associative memory that is addressed by pattern matching .

6 Note the term measage in this context has little to do with the term used in OOP.

l
J

1

0
1

I

J

J

IJ

J

J

3 LINDA - TUPLE SPACE AND ITS OPERATIONS 8

A tuple is an ordered collection of data of any type, and of any number. Conceptually, tuples are very
much like records in that they may consists of heterogeneous data elements of any number. ·Examples of
tuples are:

["any string", 3.14, x, -65536, f(y)]
["RS", reply_id, ?result]

A tuple element prefixed by a question mark, e.g. result, is called a formal element, and one without a
question mark an actual element. A formal element is like a place holder to which a value can be assigned.
Any two tuples are said to match each other, if:

1. they have the same number of elements,

2. elements on the corresponding positions in the two tuples have the same value, in case both are actual
elements,

3. elements on the corresponding positions in the two tuples have the same type, in case one is an actual
element and the other formal.

For example, the following two tuples match,

["RS", 3 .14, ?i]
["RS", 3.14, 89]

if i is of type integer. The following two tuples may or may not match depending on the value of x, which
is of type integer.

["MG", 1, x]

["MG", 1, 9]

Tuples are manipulated by a few basic operations of Linda, as described in the next section.

3.2 Tuple Space Operations

Linda has been implemented on various systems 7 , and some are somewhat different from others in syntax
and in the way tuples are formed, although the basic ideas are more or less the same. In this section, we
will try to show the general idea without refering to any particular Linda implementation in our notations .

3.2.1 Writing operations - Out

A tuple can be placed into the tuple space by out primitive .

out (< a tuple>)

7The version of Linda we use is SCA™ v2.0 on the parallel computer Sequent/Balance™ .

r

l
l
n
n
1

J

lJ

j

j

J

3 LINDA - TUPLE SPACE AND ITS OPERATIONS 9

All the elements of the tuple get evaluated before it is stored in the tuple space . For example, if an out is
done as follows:

out(x, foo(x, y), 3.14)

first, x and foo(x, y) will be evaluated, say to 3 and to O. 123, respectively, and then a tuple of the form

[3, 0.123, 3.14]

will be placed in the tuple space. If a formal element is used in an out, it just gives type information.

3.2.2 Reading operations - In and Rd

There are two kinds of operations for reading a tuple from the tuple space: destructive read (in) , and
non-destructive read (rd).

in(<a tuple>)
rd(<a tuple>)

Both operations search the tuple space to find a tuple that matches their operand tuple. If one is found,
in takes it out of the tuple space, whereas rd simply reads the tuple leaving it there in the tuple space . If
there are more that one tuple that matches the operand tuple, any one is selected non-deterministically. If a
matching tuple is not found, then the process that used one of these operations suspends until there appears
one. This is the way Linda enforces synchronization.

If a formal elements is used in in or rd operation, it gets bound to the value of the corresponding element
of the matching tuple. For example, suppose we have three tuples in the tuple space .

["MESSAGE", 1, 7, 3.14]
["MESSAGE", 1, 8, 3.14]
["MESSAGE", 1, 9, 3. 14]

Then, a reading operation

in("MESSAGE" , 1, ?i, ?r)

will take out any one of the three tuples non-deterministically, and i will get bound to either 7, 8 or 9, and
r to 3. 14. If we used rd, the tuple that matched would still be in the tuple space while i and r get bound
in the same way.

3.2.3 Predicate functions - Inp and Rdp

Linda provides two predicate functions, inp and rdp, to be able to test to see if there is a matching tuple in
the tuple space.

inp(<a tuple>)
rdp(<a tuple>)

Inp and rdp work exactly the same as in and rd, respectively, except that they return either true or
false depending on whether there is a matching tuple or not , without suspending the process that used
th em.

I
r

I
l
0

l
l

J

I
J

j

j

J

3 LINDA - TUPLE SPACE AND ITS OPERATIONS

3.2.4 Process creation - Eval

Conceptually, Linda treats a process as a special tuple, called an active tuple. So process creation is simply
done by placing an active tuple into the tuple space. An active tuple is created by eval operation.

eval(<a tuple>)

Unlike out which evaluates all its tuple elements before placing the tuple, eval blindly put its argument
tuple in the tuple space, and the process that issued eval continues its execution. Then the tuple is said
to be evaluated in the tuple space. When all the elements are evaluated, an active tuple becomes passive.
Tuples placed in the tuple space by out are all passive. ·

Consider the following example.

eval(x, too(x, y), 3.14)

In this case, the process that executed the eval operation does not take time to wait for too to return a
value. Instead, it continues its execution while the eval's argument tuple is being evaluated in the tuple
space. In effect, a new process is created to evaluate the function too.

3.3 Linda Examples

The parallel programming environment provided by Linda's tuple space and its operations is very powerful
and flexible so that wide variety of computational abstractions can be expressed elegantly within its paradigm .
Two simple examples related to the later discussions are given in this section: one for message passing
mechanism 8 in the form of remote procedure call, and the other for data structure implementation.

3.3.1 Remote procedure call

Remote procedure call is a kind of higher level message-passing constructs [AnS83, LiS82] which is designed
to make it easy to program client/server interactions. They are used in the following general form. -

call service(value_args; resu/Largs);

remote procedure service (in value_parameters; out resu/Lparameters)
begin

procedure body
end remote procedure

This can be easily expressed in Linda as shown in Figure 4. A client can ask for a service by dropping
a tuple that represents a service request. The remote procedure is in an infinite loop waiting for a service
request by in at the beginning of the loop. When there appears a request tuple in the tuple space, in takes
the tuple, and the the loop body goes on to compute its service, and out gives back its answer through the
tuple space so that the client can take it and resume its work. Note that a single server can serve various
clients by using reply_tag, and that a client can do a certain amout of work while the service is being done .

8 Again, the term message passing in th.is context has little to do with OOP.

r

l

n

n

l
l

1

l

I J

j

j

J

u

3 LINDA - TUPLE SPACE AND ITS OPERATIONS

remote procedure call :

out("request", reply_tag, arg1, arg2, arg3);
... maybe, some work in between ... ;
in("reply", reply_tag, ?answer);

procedure service()
begin

while (TRUE) begin
in("request", ?client, ?param1, ?param2, ?param3);

compute answer;

out("reply", client, answer);
end;

end-procedure;

Figure 4: Remote Procedure Call Implemented in Linda

11

I

n
1

l

l
1

l

u
J

lJ

J

J

I
J

4 LITTLE SMALLTALK - IMPLEMENTAION ISSUES

[11A11, 1, 1, va/11]
[11A11 , 2, 1, va/21]
[11A11, 3, 1, va/31]

[IIA11' 1, 2,
IIA11, 2, 2, [

[11A11, 3,

va/12]
va/22]

2, va/32]

[11 A 11 , 1, 3, va/13]
[11A11, 2, 3, va/23]
[11A11, 3, 3, va/33]

Figure 5: A 2-dimensional Array Represented as Tuples

3.3.2 Data structure representation - An array

12

Tuples can be used as data representation scheme, as well as message passing among processes. This is
particularly useful when we need structured data items shared by multiple processes. For example, a two
dimensional array can be repersented as shown in Figure 5. With this representation, we can update the
value of A[i,j] by

in(11A11 , i, j, ?val);
val:= a-new-value;
out("A 11 , i, j, val);

Although this looks a little ugly, it is convenient since both in() and out() operations are made to be
atomic, a user need not concerned about race condition.

4 Little Smalltalk - lmplementaion Issues

Little Smalltalk is a subset of Smalltalk-SO [GoRS4], and has most basic features of Smalltalk-SO except the
graphical user interface. This section discusses the implementation issues, as well as some of the fundamental
aspects, of Little Smalltalk 9 which will be contrasted against those of Linda-Smalltalk described in the next
section.

4.1 Distinguishing Characteristics of OOP Systeins

There are a few distiguishing characteristics that make OOP systems different from other kinds of program
ming enviroments. Among these are message passing for requesting action (computation) and composition
of abstract data types through classification . A class in OOP represents an abstract data type that has both
state (instance variables in Smalltalk terms), and functionalities (methods). Classes are generally structured
as superclass-subclass hierarchy to take advantages of the mechanism called inheritance.

Message passing is like a procedure call, except that the actual code for a message, a method, gets bound
dynamically at run time depending on the receiver, the first argum ent of the message . Consider, for example,

9 Little Smalltalk has evolved sinc e it first came out. The one we use as the base language in this research is version 3.05 .
The book A Little Smalltalk (Bud87] is writt en for version 1.0.

l
l
n
l
g

l
l

l

I

l

j

j

J

4 LITTLE SMALLTALK - IMPLEMENTAION ISSUES 13

the following message.

a foo: x bar: y

a, being the first argument, is called the receiver of the message foo:bar:. x and y are the second and
third arugments of the message, respectively. There may be more than one method having the same name
in the system, and which one to execute for a message is determined at run time depending on the class of
the receiver. First a search is made, in the above example, for a method named foo:bar: in the class of
the receiver, a. If such a method is found there, execute it. Otherwise, another search is made in the super
class of the class of a, and so forth .

Note that this is how we achieve inheritance through class hierarchy. The class of a may not need to
define its own method for the message foo: bar: to have the functionality. It can simply inherit from one
of its super classes . Inheritance is a powerful mechanism by which we can enhance code reusability, code
sharing, and polymorphism.

4.2 Representation of Objects

As discussed in the previous section, message passing is like a procedure invokation with an overloaded
procedure name which gets resolved at run time based on the receiver's class and class hierarchy. Thus,
besides what is needed for procedure call, e.g., activation record and argument evaluation, we also need the
information on the class of the receiver and the class hierarchy. This means objects must carry their class
information, and classes must know what methods they have and what their super classes are.

In Little Smalltalk, an object is represented as a C-structure as shown in Figure 6. All the objects in
the system are stored in a big array of obj ectStruct, called obj ectTable 10 • The data type object is an
integer type so that reference to an object is just an index to the object table. A class is simply an object
of class Class which has instance variables for, among others, methods and super class.

4.3 The System Structure

Figure 7 shows the structure of the system : interpreter, scheduler, process, and object table. Just about
everything in Little Smalltalk is object, including class, method, process, and scheduler. The figure, in fact,
is not accurate in that processes and process stacks are really part of the object table.

Interpreter is a software module that acts like a CPU for a virtual message passing machine 11 , whose
machine language is called bytecode (see Section 4.4). So, we can view the system as a virtual machine with
the interpreter as the CPU and the object table as main memory. Then there is a scheduler that allocates
processes to the single CPU (interpreter) in round-robin fashion . A process consists of a process stack (or an
execution stack) and a stack pointer. A process stack is initialized to contain, among other things, a method
to execute and arguments. The interpreter is given a process to execute.

lO Actually, the object table does not store instance variables. Instead, it keeps a pointers to heap areas where instance
variables are stored .

11 M essag e passing in OOP's sense.

l
. l
n
0
l
j

n

j

1

J

J

J
j

5 IMPLEMENTATION USING LINDA

struct objectStruct {
object class;
short referenceCount;
short size;
object *memory;
}

I* class of object *I
I* for garbage collection *I
I* number of instance variables *I
I* pointer to heap where inst vars are stored *I

objectStruct objectTable[MAX_QBJECT];

Figure 6: Structure of an Object and Object Table in Little Smalltalk

4.4 The Representation of Methods - Bytecodes

14

Method is just another name for procedure in conventional programming languages. In Little Smalltalk,
a method is represented by an internal form called bytecodes together with literals array. We can think of
bytecodes as assembly language instructions for a virtual stack-based message passing machine.

Bytecodes are best understood by examples. Consider a method for a message named isEmpty:

isEmpty
~ (self size)= 0

This method returns either true or false depending on whether the receiver (self) of the message is empty -
or not, that is, whether the size of the object is zero or not. The body of the method consists of two
messages: size tells the size of an object, and = tests object equality. This method would be represented in
the bytecode format as shown in Figure 8. Each line of bytecodes is encoded as a byte: the upper nibble 12

for the opcode, and the lower nibble for the argument of the opcode .
There are 14 opcode instructions and 10 special instructions used in the system. Conceptually, they can be

classified into four groups: stack push, stack pop, message send, and return. Since the only control mechanism
in Smalltalk is message passing, these are used mainly to support message passing: push arguments onto
stack, send message with all the arguments, and then return the result, assigning objects (popping the top
of the stack into an object) occasionally . The opcode markArguments tells how many arguments there are
for the message to be sent next .

5 Implementation Using Linda

As once briefly mentioned earlier, Linda's tuple space is used basically for two purposes: shared data repre
sentation and message passing mechanism .

12 A nibble is a half of a byte, 4 bits.

l
l

l

j

J

j

l
j

j

J

5 IMPLEMENTATION USING LINDA 15

OBJECT TABLE t
INTERPRETER

p I Process Stack I I

p I Process Stack I I

p I Process Stack I I

Round-Robin Scheduler

Figure 7: Process Execution Model in Little Smalltalk

l
1

l
0

l

u

J

J

5 IMPLEMENTATION USING LINDA 16

opcode argument comment

PushArgument 1 ; push 1 •t arg onto stack
MarkArguments 1 ; there are 1 arg for next message
SendMessage 1 ; msg name is pt elmt of literals
PushLiteral 2 ; literal is 2nd elmt of literals
MarkArguments 2 ; there are 2 args for next message
SendMessage 3 ; msg name is 3rd elmt of literals
ReturnStack noarg ; return top of the stack

literals #("size", 0, "=") ; an array of objects

Figure 8: Bytecode Representation of Method isEmpty.

5.1 Object Representation

Since we will have multiple processes running concurrently (see Section 5.2 below), and all the processes
need to have the ability to access any object in the system, the object table need to be allocated in some
sort of shared memory, a kind of memory that all the processes can access. Linda memory, the tuple space,
serves well for this purpose . It gives a clean interface for manipulating tuples, and its operations are atomic
so that we are relieved from dealing with race conditions.

All the objects, including classes and methods, are mapped into tuple sapce. An object is represented
by two tuples repesenting class and size, and zero or more tuples for instance variables depending on size. For -
example, an object with three instance variables is mapped onto the tuple space as shown in Figure 9.

Note that we can use the same representation scheme consistently for objects of class Array by keeping
as many tuples as the number of elements of an array, although an Array object conceptually has only one
instance variable, an array. For ByteArray 13 objects, however, we keep one tuple for the whole array for
efficiency because ByteArray objects are typically used as a whole entity, not element by element .

5.2 Overall System Structure

Figure 10 shows the overall structure of the system: interpreter, tuple spaces 14, listener, and process. Note
that each process has its own interpreter, where as in Little Smalltalk (Figure 7) there is only one interpreter
that executes each process in turn for a time-slice in round-robin fashion. This is a good contrast, with the
analogy of single CPU virtual machine view of Little Smalltalk, in that now we can think of Linda-Smalltalk

13 ByteArray is an array whose elements are of byte size .
14 The version of Linda we use has only one global tuple space, while some others can have multiple tuple spaces. A tuple space

can always be logically divided into any number of sub-spaces by adding in every tuple a special tuple element for designating
the spaces .

l
1
l
0

J

j

u
l

J

J
u

5 IMPLEMENTATION USING LINDA 17

[id, "CL", class-object] class
[id, "SZ", 3] size
[id, "IV", 1, object-x] first instance variable
[id, "IV", 2, object-y] second instance variable
[id, "IV", 3, object-z] third instance variable

t Id is an id number (an integer) of the object.
+ 1, 2, and 3 in "IV" tuples serve as object indices.

Figure 9: Tuples Representing an Object with Three Instance Variables

as multiple-CPU virtual machine. Also note that process stack is not a part of a process any niore, but is a
part of the interpreter.

In fact, the notion of process is one of the major features that make Lind~Smalltalk different from Little
Smalltalk. In Little Smalltalk, a process is just an object, and it needs to be allocated the interpreter by
the scheduler. In Lind~Smalltalk, on the other hand, a process is a sort of an autonomous computational
agent that is capable of executing itself, and therefore, need not be scheduled. We actually dispense with the
Little Smalltalk class Scheduler and even with the class Process !. Processes get created on the fly either
by fork or by implicit parallel messages, execute themselves, and terminate when done.

Listener is an independent system process that keeps listening to the message space to see if there is any
message to execute in parallel. The code for listener is shown in Figure 11. If there is a tuple that represents _
a asynchronous message, then listener takes the tuple and forks off yet another interpreter process. So a user
process can request for a new process by simply placing a tuple that represents an asynchronous message in
the message space. From users' point of view, placing a tuple in message space is like a remote procedure call
for a process creation service. Note the similarity between the listener and the remote procedure (Figure 4).
The mechanism for asynchronous message passing is explained in detail in Section 5.4.

5.3 Implicit Parallelism Detection

The parser can detect implicit parallelism by syntactic context. We deal with only a simple case of implicit
parallelism - concurrent execution of arguments of a message. Consider, for example, the following message:

(a foo) aMessage: (b bar) withArg: c

Here the message aMessage:withArg: has three arguments, (a foo), (b bar), and c, and two of these
arguments are results from another messages, foo and bar . Note that since the order of argument evaluations
is of no significance, we can evaluate them in parallel without problems. If a message of such a pattern is
found the parser generates code that causes the interpreter to create new interpreter processes for evaluating
the argument messages .

l

l
D
l

n
I
I
J

. I

I
J

j

j

I
J

5 IMPLEMENTATION USING LINDA

TUPLE SPACE

OBJECT
SPACE

REPLY
SPACE

MESSAGE
SPACE

LISTENER

PROCESS

0NTERPRETER)

PROCESS

0NTERPRETER)

PROCESS

process 0NTERPRETER)

forks off processes

rocess rocess
• • •

Figure 10: Process Execution Model in Linda-Smalltalk

18

l

n

l

l

1

I
I

j

J

J

5 IMPLEMENTATION USING LINDA

5.4

void listener()
{ int replyTag;

object message, method, arguments;

while (TRUE) {
in("MESSAGE SPACE", ?message, ?arguments, ?replyTag);

find method for message;

eval("REPLY SPACE", replyTag, interpreter(method, arguments));
}

}

Figure 11: Listener Process in Linda-Smalltalk

Parallel Message Passing Mechanism

19

In Little Smalltalk, when a message is to be sent with more than one arguments, the interpreter evaluates
each argument in turn and pushes the value onto a process stack, and then sends the message with the
argument values. However, in Linda-Smalltalk, in order to evaluate all the arguments concurrently, an
interpreter forks off processes, one for each argument that is to be evaluated in parallel, giving each process
a unique id number, called a reply tag. The interpreter uses the reply tags later to collect the results through _
reply space. So, instead of pushing the values of arguments, the interpreter pushes the reply tags, and when
it is time to pop, it pops the reply tag and uses the tag to get the result from the reply space. But, we
need to have a certain way to distinguish whether the item popped off from the stack is a tag or an normal
object. A special object called tagMarker, which is not visible to users, serves this purpose. Figure 12 shows
the C macros used for stack manipulation .

Note that we use in() to get the actual value for a reply tag. This is how processes usually · get synchro
nized in Linda program . Here, when popping the stack, the interpreter waits by blocking itself with in()
until the child processes finish their argument evaluation.

All that the parser should do for a parallel message detected is to produce code for calling a special
primitive. This primitive causes an interpreter to simply put out in the message space a tuple containing the
message and a unique reply tag, instead of the interpreter executing the message. Then, the listener takes
this tuple from the reply message space, and forks off an interpreter process to evaluate the message, giving
the child interpreter a reply tag, the method to execute, and arguments 15 . This is to be contrasted with
Little Smalltalk where the interpreter is given a process that has a process stack in it. (See Section 4.3.)

15 Actually, an interpreter is given a reply tag and a special object, called Context object, which contains method and
arguments. We avoid r efering to context objects here for ease of discussion.

l
l

l
l

j

J

1

j

j

6 PROBLEMS ENCOUNTERED AND POSSIBLE EXTENSIONS

push(x) •++sp = x

pushTag(x) •++sp = replyTag; •++sp = tagMarker

pop(x) x = *sp; *sp-- = O;
if (x == tagMarker)

{ replyTag = •sp; •sp-- = O; in("RS", replyTag, ?x) }

t sp is a stack pointer .

Figure 12: Stack Manipulation for Reply Tags

The new process returns the result to its parent process through the reply space using the reply tag.

5.5 The Interpreter

20

The interpreter is the heart of system. It can be thought of as a software central processing unit (CPU) for
a hypothetical stack machine. Given a method and arguments, it processes the bytecodes associated with
the method. The interpreter basically loops over each bytecode until the method it is given returns. The
skeletal C code for the interpreter is shown in Figure 13.

6 Problems Encountered and Possible Extensions

Although the current approach is conceptually simple and natural in mapping objects into the tuple space
and in structuring the interpreter around the tuple space, it has revealed some critical problems at the
implementation level. The system is unacceptably slow, mainly due to the way the tuple space is used.
There is, however, a possible remedy to this problem . In addition, the system can be easily extended to be
augmented with more flexible inter-process communications without introducing too much complexity .

6.1 Problems with the Current Approach

6.1.1 Use of tuple space

Although Linda itself is already slow in its tuple space searching, it should be more of the way the tuple space
is used that makes Linda-Smalltalk really slow. Mapping the entire objects into the tuple space makes the
tuple space far larger than can be searched in a reasonable amount of time. Incidentally, this argument seems

l
l
1
g

l

J

l

J

J

j

6 PROBLEMS ENCOUNTERED AND POSSIBLE EXTENSIONS

object interpreter (method, arguments)
object method, arguments

{ variable declarations including processStack;

... some initialization ...
while (not bottom of processStack) {

get the next bytecode
switch (bytecode) {

case Pushinstance:
case PushArgument:

case Popinstance:
case PopArgument:

case MarkArguments:
case SendMessage:

case DoPrimitive:

case ReturnStack:
} /•switch•/

} /•while•/

... '

... '

... '

... ,

... ,

... '

... , /• a special opcode •I

} /•interpreter•/

Figure 13: Code for the Interpreter in Linda-Smalltalk

21

l
7
7

l

1

j

j

j

j

J

J

6 PROBLEMS ENCOUNTERED AND POSSIBLE EXTENSIONS 22

to be true of any Linda application software in general: in order to have a reasonable speed performance,
tuple space should not be loaded with too many tuples.

As mentioned in Section 3.1, we can think of the tuple space a high-level associative memory which is
addressed by pattern matching. Therefore, a tuple access in the tuple space is inherently time-consuming
and can not be done on less than linear time-order . We may expect the searching time would be of O(n), of
O(n2), or even worse than that, depending upon the way that Linda is implemented, where n is the number
of tuples residing in the tuple space.

In the mean while, we learned that it is important for an interpreter-based system like Smalltalk that
the system be able to randomly access any object in a constant time regardless of the number of objects in
the system. In Smalltalk, data and program are uniformly represented using objects. Therefore, the number
of objects in the system is almost linearly proportional to the size of programs This means t~at, if we use
a kind of object memory that can not be accessed in a constant time, the execution time depends on the
size of the program as well as on that of data. The situation is even worse particularly for Smalltalk if we
consider the fact that Smalltalk already has a considerable amount of basic system codes without which the
system can not work. We have to pay for the system codes as well as the application codes. In short, we
have to use a kind of randomly accessable memory, like an array, for storing objects to avoid this problem.

The only reason that we mapped the entire object table onto the tuple space is to make it possible for
all processes to access any object. If, however, Linda-Smalltalk is to be implemented on a shared memory
machine, we may speed up the system vastly by allocating the object table as an array in the shared memory,
instead of mapping the object table onto the tuple space . In this case, the tuple space would be used only
for asynchronous message passing mechanism, and the system is expected to be much faster that it currently
is. But the version of Linda we used does not allow a user program to access the shared memory directly.
An earlier project [RaB89] implemented Little Smalltalk on Sequent/Balance™ using the shared memory
to have a real muti-processing Little Smalltalk without changing the semantics of the language except that
of the message fork .

6.1.2 Grain size

Linda seems to suit better for larger grain size. Since most methods in Smalltalk is small in its code size, and
since the unit of parallelism is a message in our approach, the overhead of process creation and interprocess
communication can overwhelm the possible speedup we gain from paralellism.

6.2 Possible Extensions to the Current Approach

6.2.1 Smalltalk-Linda - not Linda-Smalltalk

Since we have built Little Smalltalk on top of Linda, it should be fairly staightforward to introduce the
tuple space operations, in, out, etc., to the language itself. This will make interprocess communication in
Linda-Smalltalk considerably easier. (The resulting system should, however, be called Smalltalk-Linda, not
Linda-Smalltalk .)

6.2.2 Explicit parallel construct - Future object

It should also be straightforward to adopt the notion of future object into Linda-Smalltalk . (See Sec
tion 2.3 .3 for future object.) In our implem entation scheme, a futur e object would have one instance variable:

l
l
0
l
l
l

j

j

IJ
J

1
j

7 CONCLUDING REMARKS 23

replyTag. Then an access to every objects must be preceded by a test to see if it is a future object or not.
If an object is a future object, in operation must be done with the replyTag of the future object to get
the real value of the object. At this point, in may suspend if the future object is not yet assigned a value.
This technique is very similar to the one in which we used markerObject to handle the process stack in
Section 5.4. Future objects, like markerObj ect, is for the system's use only: a user need not ' deal with it
directly.

7 Concluding Remarks

A new way of structuring an OOP language interpreter around multiple processors is explored using tuple
space communication provided by Linda. In this implementation scheme, Linda's tuple space is used for two
different purposes: object representation and parallel message passing mechanism. Conceptually, both of
these purposes are well fullfilled in that the object representation is simple and natural and that the parallel
message passing mechanism through inter-process communication is elegantly implemented by using in()
and out () operations of Linda. Particularly, the multiple processor analogy of the system viewed as a virtual
machine (Figure 10, Section 5.2) is so clear, easy to understand, and easy to implement that it would serve
as a good model for structuring a multi-processing interpreter for object-based languages.

Linda-Smalltalk, however, turned out to be far too slower than expected. As mentioned in Section 6.1.1,
this is mainly because of the way the tuple space is used for object mapping. Another source of difficulty
is the grain size of parallelism. The unit of parallelism in our approach is a Smalltalk message, which is
rather small in its amount of computations. The process creation operation in Linda, eval (), however,
seems fit better for larger grain size. As a result, the overhead of process creation overwhelmed the potential
performance gain we might have by sending parallel messages.

We started out this research with a slightly more ambitious goal, that is, exploring implicit parallelism in
object-oriented programming possibly with some amount of performance gain. The semantics of Smalltalk,
after all, does not seem to provide good chances for implicit parallelism. As explained in Section 2.2, there
is at least one restricting factor in OOP in exploring implicit parallelism: the code to execute for a message
passed gets bound dynamically at run time. This fact makes it extremely difficult or evern impossible to
do things like static concurrency analysis or implicit parallelism detection. It is our belief that in order
for a sequential program to be efficiently converted for parallel execution, the program written in the base
language must somehow reflect the parallel structure of the problem. In other words, the base language
must be designed to direct programmers towards a way of thinking in which solutions are envisioned with
parallelization in mind, although not explicit.

References

[ACK86]

[Agh85]

Allen, J .R., Callahan, D., and Kennedy, K., "Automatic Decomposition of Scientific Programs
for Parallel Execution", Dept. of Computer Science, Rice University, Houston, TX, Nov. 1986.

Agha, G., "A Model of Concurrent Computation in Distributed Systems", AI Technical Report
844, MIT, 1985.

l
l
n
l

J

J

l

REFERENCES 24

[AnS83]

[BBP88]

[Bud84]

[Bud87]

[Bud89]

[CaG88]

[CaK88]

[Den80]

[Dij71]

[Gel85]

[GoR84]

[Hil85]

[HiS86]

[Hew77]

[Hoa78]

[Lam74]

[LiS82]

Andrews, Gregory R. and Schneider, Fred B., "Concepts and Notations for Concurrent Pro
gramming", Computing Surveys, Vol. 15, No. 1, March 1983, pp. 3 - 43.

Bensley, E.H., Brando, T.J., and Prelle, M.J., "An Execution Model for Distributed Object
Oriented Computation", OOPSLAt 88 Conference Proceedings, 1988, pp. 316 - 322.

Budd, Timothy A., "An APL Compiler for a Vector Processor", ACM Transactions on Pro
gramming Languages and Systems, Vol. 6, No. 3, July 1984, pp. 297 - 313

Budd, Timothy A., A Little Smalltalk, Addison-Wesley, 1987.

Budd, Timothy A., "Talking to Linda", Technical Report, Dept. of Computer Science, Oregon
State University, 1989.

Carriero, Nicholas and Gelernter, David, "Linda in Context", Research Report, Yale University,
Department of Computer Science, 1988.

Callahan, David and Kennedy, Ken, "Compiling Programs for Distributed-Memory Multipro
cessors", The Joural of Supercomputing 2, 1988, pp. 151 - 169.

Dennis, J.B., "Dataflow Supercomputers", Computer, Vol 13, No. 4, November 1980, pp. 48 -
56.

Dijkstra, E.W., "Hierachical Ordering of Sequential Processes", Acta Informatica, Vol. 1, 1971,
pp. 115 - 138.

Gelernter, David, "Generative Communication in Linda", A CM Transactions on Programming
Languages and Systems, Vol. 7, No. 1, January 1985, pp. 80 - 112.

Goldberg, Adele and Robson, David, Smalltalk-BO: The Language and Its Implementaition, .
Adison-Wesley, 1984.

Hillis, W. Daniel, The Connection Machine, MIT Press, Cambridge, Massachusetts, 1985.

Hillis, W. Daniel and Steele, Guy L., Jr., "Data Parallel Algorithms", Communications of the
ACM, Vol. 29, No. 12, December 1986, pp . 1170 - 1183.

Hewitt, C ., "Viewing Control Structures as Patterns of Passing Messages", Journal of Artificial
Intelligence, Vol. 8, No. 3, 1977, pp. 323 - 364. ·

Hoare, C.A.R., "Communicating Sequential Process", Communications of the ACM, Vol. 21,
No. 8, August 1978, pp. 666 - 677.

Lamport, L., "The Parallel Execution of DO Loops", Communications of the ACM, Vol. 17, No.
2 (Feb 1974), pp. 365 - 382.

Liskov, B.L . and Scheifler, R., "Guardians and Actions: Linguistic Support for Robust, Dis
tributed Programs", Proceedings of 9th ACM Symposium: Principles of Programming Lan
guages", Jan 1982, pp. 7 - 19.

l
l
l
l

l

1

1

j

j

J

]

J

J

J

REFERENCES 25

[LiS85)

[MaK88)

[Str86)

[QuH88)

[QuH89)

[RoS87)

[YBS86)

Li, Kuo-Cheng and Schwetman, Herb, "Vector C: A Vector Processing Language", Journal of
Parallel and Distributed Computing 2, 1985, pp. 132 - 169.

Matsuoka, Satoshi, and Kawai, Satoru, "Using Tuple Space Communication in Distributed
Object-Oriented Languages", OOPSLAt 88 Conference Proceedings, September, 1988, pp . 276
- 284.

Stroustrup, B., The C++ Programming Language, Addison-Wesley, Reading, MA, 1986.

Quinn, Michael J. and Hatcher, Philip J., "Compiling C* Programs for a Hypercube Mul
ticomputer", SIGPLAN Notices, Vol. 23, No. 9, September, 1988, or Proceedings of the
ACM/SIGPLAN PPEAL, 1988.

Quinn, Michael J. and Hatcher, Philip J., "Implementing a Data Parallel Language on a Tightly
Coupled Multiprocessor", Technical Report CSTR-89 -60-20, Dept. of Cpmputer Science, Oregon
State Univesity, 1989.

Rose, John R. and Steele, Guy L, Jr., "C*: An Extended C Language for Data Parallel Pro
gramming'", Thinking Machines Technical Report PL87-5, April 1987.

Yonezawa, A., Briot, J-P., and Shibayama, E., "Object-Oriented Concurrent Programming in

ABCL/1", OOPSLA t 86 Conference Proceedings, 1986, pp. 258 - 268.

[YoT86) Yokote, Y. and Tokoro, M., "The Design and Implementation of Concurrent Smalltalk",

OOPSLA t 86 Conference Proceedings, 1986, pp. 331 - 340.

[PCMM85) Perrott, R.H., Crookes, D., Milligan, P., and Purdy, W.R.M, "A Compiler for an Array and
Vector Processing Language", IEEE Transactions on Software engineering, Vol. SE-11, No. 5,
May 1985, pp. 471 - 478.

[RaB89) Raghavendra, Srinivas and Budd, Timothy A., "A Multiprocessor Implementation of Little
Smalltalk", Technical Report CSTR-89-60-15, Dept. of Computer Science, Oregon State Uni
versity, 1989

[Ree84) Reeves, Anthony P., "Parallel Pascal : An Extended Pascal for Parallel Computers", Journal of
Parallel and Distributed Computing 1, 1984, pp. 64 - 80.

[Vee86) Veen, Arthur H., "Dataflow Machine Architecure", ACM Computing Surveys, Vol. 18, No. 4,
December 1986, pp . 365 - 395.

[WiW89) Wirfs-Brock, Rebecca and Wilkerson , Brian, "Object-Oriented Design: A Responsibility-Driven
Approach", OOPSLA t 89 Conference Proceedings, October 1 - 6, New Orleans, Louisiana, pp .
71- 75.

[Wol88) Wolfe, Micheal, "Vector Optimization vs. Vectorization", Journal of Parallel and Distrubuted
Computing 5, Oct 1988, pp. 551 - 567.

t OOPSLA : Object-Oriented Programming: Systems, Languages and Applications

	Chung_Budd_90_60_12_A
	Chung_Budd_90_60_12_B

