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Abstract 

An active-object user interface system (AOUIS) is a user interface system implemented as an 

active object system (AOS). An AOS is a transition-based object-oriented system suitable for the 

design of various concurrent systems. In an AOUIS, user interface objects, which are sometimes 

called "widgets", are represented as active user interface objects (AUIOs). The behavior of an 

AUIO is defined by _th~ transition rules, the equational assignment statements, and the event rou

tines provided in its class definition. Furthermore , an AUIO can be constructed from its component 

AUIOs through structural composition as ifit were a hardware object. Thus, AUIOs are better en

capsulated and provide more flexible communication protocols than ordinary user interface objects. 

In addition, declarative descriptions of multiple views can be provided for each AUIO. 

Key Words and Phrases : user interface management system, active object system, production 

system, structural composition , software IC, subject/view . 
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1 Introduction 

Implementation of a sophisticated graphical user interface is still a laborious endeavor although object

oriented programming [GOLD80, MEYE88], with its higher levels of modularization and code sharing, 

has made this process significantly easier. The benefits of object-oriented user interface systems are well 

documented in [LIPK82, SIBE86, BART87, LINT88, KNOL89]. In this paper, we show that further 

improvement can be achieved through the use of an active object system as the framework of a user 

interface system. 

The idea of active objects originated from the first object-oriented language SIMULA [BIRT73], 

where active objects are cooperating sequential processes that communicate with each other through 

procedure calls . Several active object systems [AGHA86, BLAC86, YONE87] have been designed since 

then by replacing procedure calls of SIMULA with message passing. Some AI systems allow u~to create 

active objects by using active values [KUNZ84, KEHL84]. A KNOs object [TSIC87], which possesses 

an internal state, a set of operations, and a set of rules, is also active. One approach for implementing 

a user interface system from active objects is introduced in [COOT88]. 

Our active object system (AOS) uses transition (production) rules, equational assignment statements, 

and event routines for its behavior description. Transition rules (production rules) are condition-action 

pairs, and they have been known to be suitable for various concurrent systems that require flexible 

synchronization [DAVI76, ZISM78]. Equational assignment statements can maintain simple invariant 

relationships among object states. Event routines are activated by messages. Our AOS supports one

to-many message passing as well as ordinary many-to-one message passing. 

We call transition rules, equational assignment statements, and event routines transition statements. 

The behavior of each active object is determined by the transition statements provided in the class 

definition of that object. One key feature of our AOS is that the transition statements provided for 

each active object can access the states of the other active objects known to it, realizing inter-object 

communication. 

The major goal of the AOS approach is to construct a certain class of systems by the hierarchical 

composition of active objects, where software objects are constructed and modularized like hardware 

objects. This feature is very useful in constructing a user interface system because construction of a 

user interface is basically assembling component objects such as buttons, text fields, and indicators 

together . 

Behavioral composition of objects is emphasized in some user interfac e systems (LOND85, MORI85, 
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REIS86). The parallel object-oriented language POOL-I addresses the composition of heterogeneous 

objects. Other related ideas are contracts [HELM90) and collaborations graphs [WIRF90). 

In an active-object user interface system (AOUIS), user interface objects are implemented as active 

objects, which we call active user interface objects (AUIOs). The fact that the AOS approach is based 

on active objects with structural interfaces, whereas a conventional object-oriented user interface system 

is based on passive objects with procedural interfaces, makes an AOUIS easier to design, implement, 

and maintain than an ordinary object-oriented user interface system. Ellis claims that active objects 

provide a higher level of modularity than passive objects [ELLl89). For example, an AOUIS rarely 

requires back pointers, which are frequently used by a user interface system written in a conventional 

OOP language . 

In Section 2, we give an overview of an AOUIS by using a simple example. AOUIS features are 

further explained in Section 3, and implementation issues are discussed in Section 4. Section 5 concludes 

this paper . 
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2 Simple Examples 

In this section, we introduce the AOUIS approach by using simple examples. An AOUIS program 

consists of a main program and classes. A class contains three parts: an interface, a set of instance 

variables, and a behavior description. Variables defined in the interface part are called interface vari

ables. An interface variable is a special instance variable that contains a reference to another object. 

The main program is defined in the same way as a class but is an instance. As in C++ [STRO86], 

instance variables and functions can be private, protected, or public. 

2.1 Labeled Push-Button 

Fig. 1 shows a graphical view of a labeled push-button. The button is shown as a circle when it is not 

chosen, · and it is shown as a filled circle when it is chosen. 

not selected 0 
Buttonl Button2 

selected 

Figure 1: Labeled Push-Button. 

We now show how the class for labeled push-buttons can be defined. Before class PushButton is 

defined, super-classes of PushButton must be defined. 

class UIObject { 
UIObject *parent; 
Position position; 
Region region; 
Bool visible= true; 

I• event routine activated by a mouseDown() message •I 
on mouseDown(Position location) from mouse { 

if (inside(location, region)) 
say chosen(); 

} 

} 

Figure 2: Class UIObject . 

Class UIObj ect given in Fig. 2 is the root class for all the AUIOs. Every AUIO maintains a pointer 

parent pointing to its parent in the component hierarchy. The variable position indicates the location 
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of a graphical object created as an instance of a subclass of UIObj ect. The variable region shows the 

region occupied by the graphical object. The variable visible indicates whether the graphical object 

should be visible or not. If a UIObj ect detects a mouseDovn() event within the region of its graphical 

representation, it broadcasts message chosen(). 

class Button: public UIObject { 
public: 

bool selected= false; 
char *label; 
Button(char •name) {label= name}; 

} 

Figure 3: Class Button. 

Class Button defined in Fig. 3 is a subclass of UIObj ect~ It has two instance variables, selected, 

which indicates whether the button is on or off, and label, which stores the name of the button. 

We now can define the class PushButton as a subclass of Button. Fig. 4 shows AOUIS description 

of PushButton. 

class PushButton: public Button { 

} 

public: 
PushButton(char •label) : (label){}; 
int radius= 20; 
I* a circle *I 
Circle circle(radius) at (0, O); 
I* draw a text on the bottom of the circle•/ 
Text text(label) at (0, -30); 
/• a filledCircle *I 
FilledCircle fcircle(radius) at (0, O); 
I• to be displayed when selected is true•/ 
always fcircle.visible = selected; 

I* event routine activated by the message chosen() from its superobject *I 
on chosen() from this do 

selected= not selected; 

Figure 4: Class PushButton. 

When each instance of PushButton detects message chosen() from itself (super-object), it changes 

its instance variable selected, which is defined in Button, from true to false or from false to true. 

The graphical representation of an instance of PushButton is declaratively defined by instance vari

ables circle, text, and fCircle. These graphical objects are instantiated when a PushButton is cre

ated. The graphical objects circle and text are displayed statically all the time. The graphical object 
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fcircle is displayed only while the labeled push-button is selected, as dictated by the equational as

signment statement alvays fcircle. visible = selected, which always maintains fcircle. visible 

equal to selected. 

2.2 Button Group 

Radio buttons are similar to labeled push-buttons, but among a group of radio buttons, only one of 

them can be selected at any time . Fig. 5 shows a button group which has three radio buttons. 

Figure 5: Button Group. 

Fig. 6 shows the definition of class RadioButton, which will be used as a component class of the 

class for button groups. 

class RadioButton: public Button { 
interface: 

} 

int •i_selectedButton 
public: 

int myID; 
int radius= 20; 
RadioButton(int id, char •name) : (name) {myid = id, i_selectedButton = nil}; 
Circle circle(radius) at (0, 0); 
Text text(label) at (0, -30); 
FilledCircle fcircle(radius) at (0, 0); 
/• drav a filledCircle vhenever selected is true •I 
alvays fcircle.visible = selected; 

I• event routine activated by the message chosen() from its superobject •I 
on chosen() from this do {selected= true; •i_selectedButton = myID;}; 
/• transition rule activated whenever myID is different from selectedButton •I 
if (•i_selectedButton <> myID) selected= false; 

Figure 6: Class RadioButton . 

In the implementation of class RadioButton, each button is responsible for all of the operations of 

the button group. When each instance of RadioButton detects message chosen() from itself (super

object), it changes its instance vari able selected to true and sets th e variabl e referred to by the 
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interface variable i_selectedButton to the value of its my ID. As we see later, the variable referred to 

by i_selectedButton indicates the button selected within a button group. Then each of the other 

buttons sets its selected field to false, detecting its my ID to be different from the value of the variable 

referred to by i_selectedButton. The graphical representation of a radio button is identical to that 

of a push button. 

We now can define the class for button groups by using RadioButton as a component class. Class 

ButtonGroupA given in Fig. 7 is an AO UIS description of the class for button groups. 

class ButtonGroupA { 

} 

public: 
int selectedButton; 
RadioButton b1(1, "bi") at (0, 0) vith i_selectedButton = &selectedButton; 
RadioButton b2(2, "b2") at (40, 0) with i_selectedButton = &selectedButton; 
RadioButton b3(3; "b3") at (80, 0) with i_selectedButton = &selectedButton; 

Figure 7: Class ButtonGroupA. 

The instance variable selectedButton stores the ID of the currently selected button . Three ra

dio buttons, b1, b2, and b3, are defined as instances of RadioButton, and they are connected to 

selectedButton through interface variable i_selectedButton. This example clearly shows that we 

can declaratively construct an AO UIS class from its component AUIOs by specifying interactions among 

them. 
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3 AOUIS Features 

In this section, we discuss further details of an AOUIS system. Our discussions centers around its 

key features, i.e., structural composition of AUIOs, inter-object communications among the structurally 

composed AUIOs, and multiple views. 

3.1 Composition of AUIO 

We can compose a new AUIO from its component AUIOs by providing proper connections among them. 

Interface variables, which act like terminals of hardware components, are used for this purpose. Interface 

variables are pointers through which remote objects are accessed. The object bound to an interface 

variable may be dynamically changed. Dynamic bindings of objects to interface variables are _needed to 

describe time-dependent structural relationships among active objects. As we discussed in [CHOl91), 

operations on dynamically bound objects cannot be handled as efficiently as those on statically bound 

objects. The latter can be compiled into efficient code. 

AO UIS supports component hierarchies as well as class hierarchies. Although component hierarchies 

exist in ordinary object-oriented programming, we attach more importance to it. Fig. 8 shows the 

component hierarchy in the button group discussed in Section 2. 

buttonGroup 

selectedButton bl b2 b3 

myID radius circle fCircle text 
radius circle fCircle text 

myID radius circle fCircle text 

Figure 8: Component Hierarchy of the Button Group. 

As in ordinary OOP, instance variables and transition statements are inherited from a superclass 

to its subclasses according to the class hierarchy . Furthermore, according to the static component 

hierarchy, public instance variables are visible to its components . The inheritance according to the 

class hierarchy precedes the inheritance according to the component hierarchy . This mechanism allows 

us to provide global variables at different levels. 
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3.2 Behavior Description 

Objects in Smalltalk or C++ are passive in the sense that they only respond to the messages sent to 

them . On the other hand, the behaviors of AUIOs, can be specified by three kinds of transition state

ments: transition rules, which are condition-action pairs, event routines, which respond to messages, 

and alvays statements, which are equational assignment statements. 

3.2.1 Transition Rule 

Each transition rule is a condition-action pair, and its action part is executed when its condition part 

is satisfied. An execution of a transition rule should be atomic. The implementation details of the 

execution mechanism of transition rules are discussed in [CHOI91). 

3.2.2 Event Routines 

The activations of transition rules are, at least conceptually, state-driven. Active objects can commu

nicate with each other by directly accessing the states of other objects rather than sending messages 

to them. Although this mechanism often eliminates the necessity of explicit message passing, some 

events are more efficiently handled by messages. An AO UIS supports event-driven activations of proce

dures. We consider messages as extended events that include some data as parameters. One important 

feature of our message passing mechanism is that it supports one-to-many message-passing as well as 

many-to-one message-passing. 

We provide two constructs that support message passing among objects. The statement say 

message(p 1 , ••• , Pn) [to receiver] is used to send a message (to the receiver specified as receiver). The 

receiver may or may not be specified. The statement on message(p 1 , ··•,Pn) [from sender] is used to 

receive a message (from the sender specified as sender) . The sender may or may not be specified . For 

a pair of say and on statements between which a message is passed, if the sender is not specified in 

the say statement, the receiver must be specified in the on statement, and vice versa. The receiver 

object of a say statement and the sender object of an on statement, if specified, should be visible to 

the objects issuing these statements. 

The message-passing mechanism in ordinary OOP can be regarded as many-to-one message-passing, 

where each say statement specifies exactly one receiver of the message, while one on statement can 

receive messages from different senders. 

9 

~ 

l 
1 

l 

u 
l 

1 

j 

J 
J 



1 

l 
7 
7 
n 
l 
I 

1 

J 

LI 

u 
j 

J 
J 

If the receiver is not specified in a say statement, the message can be received by any objects to 

which the sender is visible. Hence, we implement one-to-many message passing. In the next example, 

we show how this mode of message passing can simplify the structure of an AO UIS class. 

class ButtonGroupB { 
public: 

Button b1("b1"); 
Button b2("b2"); 
Button b3("b3"); 
I• Event routine activated by chosen() from bl•/ 
on chosen() from bi { 

}; 

bl.selected= true; 
b2.selected = false; 
b3.selected = false; 

I• Event routine activated by chosen() from b2 •/ 
on chosen() from ;b2 { 

}; 

bl.selected =_false; 
b2.selected = true; 
b3.selected = false; 

I• Event routine activated by chosen() from b3 •I 
on chosen() from b3 { 

}; 
} 

bl.selected= false; 
b2.selected = false; 
b3.selected = true; 

Figure 9: Class ButtonGroupB 

In the implementation of class ButtonGroupB shown in Fig . 9, ButtonGroupB takes care of all the 

operations required for a button group . The chosen() message generated by any Button is caught by 

its parent ButtonGroupB instance . We could program ButtonGroupB without introducing a specialized 

class such as RadioButton, because on statements can designate their sources of messages. In this way, 

we can define classes without proliferating class definitions. 

3.2.3 Always Statements 

A simple mechanism for describing a behavior of an AUIO is an equational assignment statement that 

maintains an invariant relationship among the states of AUIOs . always statements are used for this 

purpose . 

An always statement can be implemented like a transition rule. The execution of the assignment 



statement should be triggered whenever any of the variables used in the expression of the always 

statement changes. 

3.3 Multiple views 

Separation of a view object from a subject (or modeQ object is often important for easy modification 

of a user interface. In an AOUIS, these objects can be easily separated into different AUIOs, and the 

necessary interconnections between them can be provided by interface variables. Multiple views can be 

supported in the same way. 

Fig. 10 shows a subject, which contains a value, and three view objects, which represent the value 

as a barcharl, a piecharl, and a text. Each view always reflects the current value of the subject. 

BarChart 

100 

75 

50 

25 

0 

25 

50 

.., value:25 ◄,.. ____ _ 

~-
Figure 10: Multiple Views. 

Furthermore, the barchart and the text can be manipulated by the user. If the user clicks the 

mouse button inside the barchart, the height of the bar is adjusted to the point where the mouse-down 

event occurred. The new height of the bar is then reflected in the value of the subject. This change 

further causes chain reactions in other view objects. Conversely, the user can directly edit the text 

representation of the value. Then the barchart and the piechart will be updated accordingly. We 

assume that the piechart only displays the value of the subject as a filled arc and cannot accept user 

input. 

We now define class MultipleViews in Fig. 11. 
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class MultipleViews { 

} 

public: 
int subject; 
BarChart barChart(100, 20) at (0, 0) with i_subject = &subject; 
PieChart pieChart(100) at (100, 60) with i_subject = &subject; 
Text text(20, 20) at (60, 0) with i_subject = tsubject; 

Figure 11: Class MultipleViews . 

MultipleViews shows subject as a subject object and BarChart, PieChart, and Text as its vieus. 

subject is connected to the views through the interface variable i_subject. 

In the following, we show how required classes for this example of multiple views can be defined . 

The class MultipleViews uses three component classes, BarChart, PieChart, and Text. 

class BarChart: public UI0bject { 
interface: 

} 

int •i_subject; 
public: 

int height, width; 
BarChart (int h, int w) {height= h; width= w;}; 
Rectangle frame(height, width) at (0, 0); 
FilledRectangle bar(width) at (0, 0); 

I• event routine activated by a mouseDown() message •I 
on mouseDown(Position location) from mouse 

if (inside(location, region)) 
*i_subject = location.y /height* 100; 

I• bar.height should always reflect the state of i_subject •I 
always bar.height= •i_subject / 100 * height; 

Figure 12: Class BarChart . 

Class BarChart shown in Fig. 12 is a subclass of UIObject. The graphical representation of a 

BarChart consists of a rectangle frame and a filled rectangle bar which is dynamically updated. If 

an event mouseDown is received from mouse by an instance of BarChart, the variable pointed to by 

i_subj ect is updated to reflect the current position of the mouseDown event. The superclass of BarChart 

also contains a event routine for the mouseDown event . However, it is overridden by the event routine of 

BarChart . The height of bar is changed according to value of the variable pointed to by i_subj ect, as 

specified by the equational assignment statement always bar. height= *i_subj ect / 100 * height. 

The class of the instance variable bar is shown in Fig. 13. 
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class FilledRectangle: public UIObject { 

} 

public : 
int oldHeight = 0, height, width; 
FilledRectangle(int w) {width= w}; 

I• transition rule which update shape of the filled rectangle•/ 
if (updated(height) tt (oldHeight != height) { 

} 

if (oldHeight > height)) 
eraseRectangle(height, oldHeight, width); 

else 
filledRectangle(oldHeight, height, width); 

oldHeight = height; 

Figure 13: Class FilledRectangle . 

Class FilledRectangle is defined as a subclass of FilledRectangle. If the interface variable 

height is updated and has a new value, FilledRectangle erases the region of the rectangle specified 

by oldHeight and width and draws a new rectangle specified by height. Instance variable oldHeight 

maintains the value of current height. 

class PieChart : public UIObject { 
interface: 

int •i_subject; 
public: 

int radius; 
PieChart(int r) {radius= r}; 
Circle circle(radius) at (0, O); 
FilledArc fArc(radius) at (0, O); 
always fArc.degree = •i_subject / 100 * 360; 

} 

Figure 14: Class PieChart. 

Class PieChart is shown in Fig. 14. Graphical representation of PieChart consists of a circle and 

a fArc. It does not accept user input and only draws a piechart which reflects the current state of 

i_subject . 

Fig. 15 shows class Text . Text accepts user input and echos the input to the display . The 

instance variabl e eText of class Edi table Text takes care of user input . i_subj ect and text of 

eText always reflect each oth er's state constrained by the equational statements always *i_subj ect 

= atoi(eText. text) and always eText. text = itoa(*i_subject). 
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class Text { 
interface: 

} 

4 

int *i_subject; 
public: 

int height, width; 
Text (int h, int w) {height= h; width= w;}; 
Rectangle rectangle(height, width) at (0, 0); 
EditableText eText at (0, 0); 
always *i_subject = atoi(eText.text); 
always eText.text = itoa(*i_subject); 

Figure 15: Class Text. 

Implementation Issues 

In this section, we describe the implementation issues of the AOUIS runtime environment and the 

translator. The major problem is the activation mechanism for the behavior description routines such 

as transition rules, always statements, and event procedures. As these routines are activated by triggers, 

setting up the triggers for them is the main subject of this section . Further details can be found in 

[CHOI91). A prototype AOUIS is being developed on top of the X window system. AOUIS programs 

are translated into C++. 

4.1 Event Scheduling 

An AOS computation is a sequence of executions of transitions, which transform the states of objects 

and generate events. These new states of objects and events may trigger executions of other transitions. 

We call an object that contains a transition a source object, since a transition contains the sources of 

references to other object states . The objects referenced by the condition parts of transitions are called 

trigger objects, since their state changes must trigger the executions of the transitions in source objects . 

An AOS computation can be best understood in terms of trigger objects and triggered transitions . 

Fig. 16 shows this interaction between the trigger objects and the triggered transitions in a ButtonGroupA 

AUIO, whose class definition is given in Section 2. 

If a RadiobuttonA receives a message chosen() from its super object, it modifies selectedButton 

m its parent component . Modification of selectedButton triggers the transition rule which has 

selectedButton in its condition part. When the transition in RadiobuttonA is executed, it modi

fies local variable selected . This modification triggers a further sequence of transitions inside the 
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/ 
modify 

RadioButtonA 

trigger ------

Figure 16: Interaction between trigger objects and triggered transitions. 

graphical object fcircle, since fcircle should reflect the state of selected. 

4.2 Trigger Setup 

In order for the transitions in an AOUIS to work properly, whenever the state of an object changes, 

all the transitions that refer to that state in their condition parts should be activated. Hence, triggers 

should be setup for the objects whose states are referenced by transitions. 

We now introduce some definitions used in our discussions. A reference path is a set of pointer vari

ables which are involved in designating a trigger object from a source object. For example, the reference 

path for the reference expression x.p->q->y .z is (x, x.p, •(x.p), x.p->q, •(x.p->q), x.p->q->y, 

x. p->q->y. z). A pointer object that is an element of a reference path is called a path pointer. When 

the value of a path pointer is changed during the execution of an AO UIS program, it is called a dynamic 

path pointer. 

In most cases, the reference path for a reference does not involve any dynamic pointers. In this case, 

the trigger for that reference need not be changed during the execution of the program . Since we can 

know the exact object that will be accessed when the source object is instantiated, the trigger for the 

reference need be setup only once when the source object is instantiated. 

When the reference path of a reference involves a dynamic pointer, the trigger object for that 

reference changes when th e value of that pointer is manipulat ed. If this happens, th e trigger in the 
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old trigger object should be dropped, and the new trigger should be added to the new trigger object . 

It is generally impossible to tell which trigger object is accessed until the operation that modifies the 

dynamic trigger object is actually executed. 

When the value of a dynamic path pointer is changed, all the reference paths that involve the 

dynamic path pointer are affected. The details of the dynamic trigger setup mechanism is discussed in 

(CHOI91). 
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5 Conclusions 

We proposed a new framework for constructing an object-oriented user interface system . The new 

framework, AOUIS ( active-object user interface system), is based on active objects whose behaviors are 

defined by the transition statements provided in their class definitions. 

We can construct an AOUIS class from its component classes as follows. First, pick-and-place 

instances of component classes. Second, to establish proper connections among the component objects, 

set their interface variables properly . Finally, specify the additional behavior of the new class by 

providing transition statements. This design process is similar to the process of constructing a hardware 

circuit from its components. 

In this paper, we introd _uced the concept of an AOUIS, described its key features , and addressed its 

implementation method. In one of our experiments, we implemented a radio-button widget as an AOUIS 

class, and found that its code size was reduced to two thirds of that of the Inter Views implementation 

of the same functionality . InterViews is a user interface system implemented in C++ according to a 

conventional approach . 

We obtained the following insights on the effectiveness of the AO UIS approach. First, active objects, 

with three kinds of transition statements, show better encapsulation and achieve more flexible inter

object communication than ordinary objects. Second, structural interfaces help to modularize software 

objects like hardware objects. Finally, the AOUIS approach can support with ease such desirable 

features as multiple views and separation of views and models. 
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