
LI'71UEASITY

5CIE'7CE

A LETTER ORIENTED MINIMAL PERFECT HASHING FUNCTION

82-1-2

Curtis R. Cook
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

R.R. Oldehoeft
Department of Computer Science

Colorado State University
Fort Collins, Colorado 80523

l

l
fl

l

1

I
I
I
I
I
j

I
j

u
1

LJ

A LETTER ORIENTED MINIMAL PERFECT HASHING FUNCTION

CURTIS R. COOK
COMPUTER SCIENCE DEPARTMENT

OREGON STATE UNIVERSITY
CORVALLIS, .. OREGON 97330

R.R. OLDEHOEFT
COMPUTER SCIENCE DEPARTMENT
COLORADO STATE UNIVERSITY

. FORT COLLINS, COLORADO 80523

ABSTRACT

Cichelli has presented a simple method for constructing minimal per­
fect hash tables of identifiers for small static word sets. The hash func­
tion value for a word is computed as the sum of the length of the word and
the values associated with the first and last letters of the word.
Cichelli's backtracking algorithm considers one word at a time and performs
an exhaustive search to find the letter value assignments. In considering
heuristics to improve his algorithm we were led to develop a letter orien­
ted algorithm that handles more than one word per iteration and that fre­
quently outperforms Cichelli's. We also investigate the impact of relaxing
the minimality requirement and allowing blank spaces in the constructed ta­
ble. This substantially reduced the execution time of the algorithm. This
relaxation and partitioning data sets are shown to be two useful schemes
for handling large data sets.

Key words: hash tables, perfect hashing functions, minimal hash tables.

n
n
ii
I
l
l
l

I

I

j

j

j

u

page 2

INTRODUCTION

A minimal perfect hash table is a static data structure with two use­
ful attributes: there is no unused space in the table, and using the asso­
ciated hashing - function one can, in exactly one probe, determine the loca­
tion in the table of the search key or conclude that the key is not
present. Data which might be stored this way include reserved and prede­
fined words in programming languages, common English words, and other set
of identifiers.

Jaeschke [2] _ presented a method for building min'imal perfect hash
functions. For a set W of positive integers, his method (called reciprocal
hashing) attempts to find integer constants C, D and E such that for each
integer i in W

h(i) = C/(D*i' + E) mod n, W = n
is a minimal perfect hashing function. The existence of h is guaranteed.
However, the value of C may be very large and the user must "prescribe a
limit for the C values to be examined such that the algorithm terminates in
economical time."

Cichelli [1] presented an excellent heuristic which will successfully
build tables and associated hashing functions for a number of representa­
tive data sets.

The problem is interesting both for its applications and because it is
essentially hard: the only known methods rely on exhaustive search techni­
ques to place words in the table and/or vary parameters in the hashing
function. Because of this, it cannot be claimed that one algorithm is more
efficient then another for every possible data set. One can only cite its
performance on certain data sets or compare it with other algorithms on
various data sets.

Cichelli solved a special case of the general problem. He restricted
the form of the hashing function to
F(word) = Length(word) + value(first letter)+ value(last letter)

That is, the table position of a word is computed as the sum of its length
plus the values associated with the first and last letters of the word.
This is also the problem we address in this paper. Building a minimal ta­
ble involves assigning values to letters so that each word is mapped to a
unique spot in the table, and no internal blank spaces remain in the table.

Even though his hashing function is appealing because of its simplici­
ty and machine independence, it is not guaranteed to work in all cases.
For example, a set containing two words with the same first and last letter
sets and length (e.g., THEN, NEAT) cannot be handled. When this occurs, one
can choose letter pairs other than the first and last, or the set can be
partitioned into groups so that a perfect table may be constructed for
each. Other restrictions on the possibility of perfect table construction
can be found in Jaeschke [3].

To find the letter value assignments, Cichelli used a backtracking al-

l
I
n
n
. I
1

I
l

I
I

I
j

page 3

gorithm that considered one word at a time and performed an intelligent ex­
haustive search. In our attempts to improve Cichelli's algorithm we were
led to develop a letter oriented algorithm that considers more than one
word at a time and that frequently outperformed Cichelli's. We also inves­
tigated the impact of removing the minimality restriction and allowed blank
spaces in the table. This relaxation and partitioning data sets are shown
to be two useful schemes for handling large data sets •

CICHELLI'S ALGORITHM

In this section we present a description of Cichelli's backtrack al­
gorithm. We include enough detail to understand it and for comparison with
our letter oriented algorithm.

Cichelli's Algorithm (WHASH)

1. Find frequencies of letters occurring at either end of words
in set.

2. Order the words by sum of frequencies of first and last let­
ters. This step causes words with frequently occurring let­
ters, and hence most impact on the placement of other words,
to .be considered early by the algorithm.

3. Adjust ordered list of words. This step moves forward the
words whose first and last letter values are determined when
the algorithm processes an initial portion of the list. With
this adjustment potential collisions will be determined earlier
by the algorithm.

4. Assignment of letter values. This is the time consuming ex­
haustive search part of the algorithm. The algorithm considers
each word in order beginning with the first. It attempts to
find letter values for any letter or pair of letters not al­
ready assigned a value. Beginning with O it searches for a
value or values that will map the word to an empty table slot.
If it finds a value it assigns the letter the value and places
the word in the hash table. If no value assignment is possible,
the algorithm backs up to the previous word and trys to find
another value assignment.

We tried several modifications of Cichelli's algorithm with mixed
results. However, we were able to conclude that the algorithm was very
sensitive to the word ordering. For several data sets, a slight change in
the word ordering led to a significant improvement or degradation in per­
formance.

One important note about the word list size. Since the algorithm per­
forms an exhaustive search, the list should not be large. Cichelli recom­
mends limiting the size to 45. Our results support this.

l
l

fl

n
I l
I
I
l
l
I
. I
j

I

j

J

page 4

LETTER ORIENTED ALGORITHM

Our attempts to improve Cichelli's algorithm led to the development of
a letter oriented algorithm that deals with letters directly rather than
indirectly. The algorithm is called letter oriented because the ordering
of the letters determines the word ordering. In this section we present
the algorithm and compare it with Cichelli's.

Letter Oriented Algorithm (LHASHA)

·1. Compute frequency of letters occurring at either end of words
in the set. If a letter appears as both the first and last letter
of the same word assign it a large value.

2. Order the letters by decreasing frequency, resolving ties
arbitrarily.

3. Let each word be represented by a triple: (letter 1, letter 2,
length) where letter 1 is the first letter and letter 2 is the
last letter. For each triple (word) interchange letter 1 and
letter 2 if letter 2 precedes letter 1 in the letter ordering.

4. Using letter 2 as the key, sort the list of triples in descen­
ding order. Figure 1 illustrates the affect of steps 3 and 4
for the set of Pascal Reserved words.

5 . Assignment of letter values. Begin with the first triple.
For each group of triples with the same letter 2 attempt to
find a letter value assignment for letter 2. Note that for
this group of triples, either letter 2 = letter 1 or letter 1
precedes letter 2 in the letter ordering and letter 1 has
previously been assigned a value. Thus only letter 2 needs to
be assigned a value to place the group of triples (words) in
the hash table.

Beginning with O search for a value for letter 2 that
maps the group of triples to distinct empty table slots.

If it finds a value it assigns the value to letter 2 and
places the group of triples (words) in the table.

If it does not find a value, it backs up to one of two
places depending on the reason for its failure. One reason
for failure is that two triples in the group have the same
value of letter 1 and length sums. Hence the two triples
will have identical hash values for any value assignment to
letter 2. In this case the algorithm backs up to the nearest
group that computes a value assignment for a letter 1 of one
of the two triples. For all other failures, the algorithm
backs up to the previous group of triples.

Note that when the algorithm backs up it unassigns letter
values and removes the associated hash table entries along the
way.

Assigning large values to letters that occur both first and last in a
word (Step 1) forces these letters to the front of the letter ordering
(Step 2). This heuristic was based on the following observations. If such
a letter occurs later in the table construction process, then the only pos­
sible value assignments may easily result in a non-minimal table, especial­
ly if more than one-half of the words have already been placed. Further,

n
n
l

I
1

I

l
I
I

l

Li
J

1

page 5

all possible table indices for such a word will be either all odd or all
even, depending only on the word length and hence there is less flexibiliy
in the placement of these words.

Letter ordering
after Step 2

E
L
D
0
T
N
F

Triples (words) ordering
after Step 4

(E,E,4)
(L,L,5)
(E,D,3)
(D,0,2)
(D,0,6)
(E,0,9)
(T,0,2)
(E,T,4)

ELSE
LABEL
END
DO
DOWNTO
OTHERWISE
TO
TYPE

Figure 1. Partial letter ordering and triple
ordering after steps 3 and 4.

Notice that the major differences between our letter oriented algor­
ithm and Cichelli's are: The letter oriented algorithm considers groups of
words rather than a single word at each step; the letter oriented algorithm
is able to back up immediately to the letter value assignment that caused
the conflict in some cases; and the letter oriented algorithm searches for
a value assignment for only one letter at each step.

RESULTS

Table 1 gives the comparative timings for Cichelli's algorithm (WHASH)
and our letter oriented algorithm (LHASHA). All programs were written in
Pascal and run on a CDC Cyber 720 computer system under the NOS 1.4 opera­
ting system and using University of Minnesota/Zurich Pascal 3.2. Descrip­
tions of the data sets can be found in the Appendix.

The performance of LHASHA has been encouraging. Table 1 shows that
for all data sets except ENGWORDS it outperfoms WHASH. Unlike the word
oriented WHASH, LHASHA handles words in groups which are associated with a
letter, rather than one word at a time. Further, backtracking after
discovery of a failure may revert back immediately to the letter assignment
that caused the problem, while Cichelli's algorithm backtracked just one
word at a time.

Experience and reflection have led us to two variations of LHASHA.
Both result from the observation that, since there is considerable arbi­
trariness in the sorted letter order due to ties among frequencies , a qui­
te variable amount of time can be taken to build a minimal perfect hash ta­
ble. This reflects our experience with the sensitivity of the word order-

l

l
I
I
j

I
u
1

J

page 6

ing in our attempts to discover improvements of Cichelli's algorithm. Also
observe that there is considerable freedom in assigning a value to a letter
that occurs at the end of only one word. Accordingly, we subtract one from
the frequency of a letter occurring at the other end a of word with such a
letter, thereby reducing its position in the sorted letter list. Call the
modified algorithm that implements this LHASHB.

The third version of the letter oriented algorithm incorporates the
previous modification and also includes more information with which to sort
letters. For each letter, compute the sum of the frequencies for the let­
ters that appear with it at the other ends of words. Then the sort key is
computed by .

(letter frequency)* 1000 + (sum of associated frequencies)
The rationale for this alteration is that two letters with the same fre­
quency of occurrence should be considered in an order consistent -with the
impact of the value assignments will have on other words. Call this ver­
sion LHASHC.

Both LHASHB and LHASHC result in fewer ties among letter sort keys,
and both manage to encode more useful information into the sort key values.
The relative performance of the three versions is shown in Table 1. Note
that LHASHB and LHASHC do not consistently outperform LHASHA, but LHASHC is
often better and never a great deal worse than LHASHA. For an efficient,
stable algorithm, LHASHC seems to be the best choice of the three.

One shortcoming we noticed in the letter oriented algorithms was their
occasional poor performance in what we call the "end game." This phase oc­
curs when all letters with frequency greater than one have been assigned
values; all that remains is to assign values to letters which occur only
once. The words involved appear at the end of the word ordering. We
thought that with the freedom to assign any value to these letters it would
be straightforward for the algorithms to place these words into whatever
blank spaces remain in the hash table. However, the algorithms only con­
sider blank spaces at positions beginning at the sum of the length of the
word and the value assigned to the other letter. Hence a blank space that
occurs early in the table will not be considered and the last word cannot
be placed if the only an internal blank is at a position less than the
length of the word. Thus the algorithm will do a great deal of backtrack­
ing resulting in the reorganization of most of the table.

To avoid this problem we added a special test for handling letters
with frequency one to LHASHC so that it looks for blank spaces in the table
begining at the first word in the table. Note that this may result in
negative letter values in these cases. Call this algorithm LHASHD.

From Table 1 we see that its performance is the same as that of LHASHC
except for two cases in which execution was improved by a substantial
amount. For the 55 words of a Pascal-like language for process control ap­
plications (not included in Appendix) algorithms LHASHA, LHASHB and LHASHC
were all unsuccessful after a great deal of computer time, while LHASHD
only required 0.3 seconds.

l
7
n
n
l
I
l
I
1

j

I
I

I
J

I

page 7

Data set WHASH LHASHA LHASHB LHASHC LHASHD

ENGWORDS 0.3 1.7 4. 6 3.0 0.2
ASCIIWDS 290.4 0.2 0. 1 0.2 0.2

(1 blank)
PRESWDS 1.2 o. 1 o. 1 0. 1 o. 1
PDEFWDS 90.6 0.2 32.0 0.3 0.3

(4 blanks)
OPCODES 0.2 o. 1 0.4 1.5 1.4
VALWDS 55.5 1.3 0.3 0.5 0.5

(15 blanks)

Table 1. Performance of Algorithms

NON-MINIMAL TABLES

In this section we present the results of an investigation of the ef­
fect on algorithm performance when a controlled number of blank slots are
allowed in the perfect hash table. We thought that the extra space should
speed up the algorithm and allow it to handle large data sets. Table 2
gives performance measurements for several data sets using a version of
LHASHC which allows a parameterized number of blanks in the perfect hash
table it constructs. Not included in Table 2 are results for LHASHA and
LHASHB; they generally performed like LHASHC.

As expected, the small number of blank slots generally reduced the ex­
ecution time by varying amounts. In a few cases the construction time ac­
tually increased slightly before decreasing when a few more blanks were al­
lowed (see results for the data set VALWDS). Because the algorithm always
attempts to find small values for letters, most of the blanks occur at the
ends of the hash tables. One expecially interesting observation was that,
in almost every case, the algorithm showed little or no improvement after
more than 10 percent empty slots were allowed. Hence a "10 percent rule"
seems to be a good heuristic for how many blank slots to allow in order to
achieve optimal performance . For comparison purposes, we also ran each of
the algorithms with the hash table size doubled, i.e. with 100 percent
blank space. No improvement in algorithm speed was observed over allowing
10 percent blank space .

For a large data set we chose the 105 PL/1 key words and their abbre­
viations (with some identifiers altered to eliminate conflicts). Each al­
gorithm was unsuccessful when the "10 percent rule" was applied. However,
when the table size was doubled, LHASHC constructed a perfect table in 0.8
seconds. While this may suggest doubling table size as a solution for lar­
ge data sets, when the number of identifiers increases, so does the proba­
bility of conflicts in the data set. So it is very likely that either the
algorithm or the data set will need to be modified .

l
n
l

fl

I 1

l
I
l
I
I
I
]

I
' j

j

J

Number of
Blanks

0
1
2
4
6
8

10
Doubled

ENGWORDS
31 words

3.0
0.1
o. 1
0.1
o. 1
0.1
0. 1
o. 1

ASCIIWDS
34 words

0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

PRESWDS
36 words

0. 1
0. 1
0.1
o. 1
o. 1
o. 1
0.1
o. 1

page 8

PDEFWDS OPCODES VALWDS
39 words 36 words 57 words

0.3 1.5 0.5
0.2 0.2 0.4
0.3 0.1 0.3
0.2 0.1 0.3
0.2 0.1 0.9
0.2 0.1 1.1
0.2 0.1 0.3
0.2 0.1 0.3

Table 2. Performance for Non-minimal Tables for LHASHC

PARTITIONED TABLES

For some data sets a single minimal perfect hash table cannot be con­
structed because of the size of the data set or conflicts among words in
the set. In the first case the best algorithms may not execute fast enough
to be practical (all versions have exponential time complexity). It is
easy to partition the data set (e.g., by subranges of letters using the
second letters of words) so that each partition is of manageable size and
constant search time is preserved: table selection followed by a single
probe into the table.

In the second case the data set may be small enough but contain un­
resolvable conflicts, or in a large data set the plethora or words and the
limited range of word lengths along with the constant number of letters may
lead inevitably to the impossibility of table construction. By identifying
conflicting words and placing them in different partitions along with oth­
ers to make the partitions nearly equal in size, minimal perfect tables can
be built. However, it may be that table selection will require time pro­
portional to the number of partitions if a clever scheme for table selec­
tion cannot be improvised. For example, consider the data set containing
the 105 PL/1 key words and their abbreviations. Using the first and last
letters, the algorithm detects the following collisions: ACTIVATE VS. ALLO­
CATE, COMPLETION vs. CONVERSION, COL vs. CTL, CPLN vs. CONN, NOSTRINGSIZE
vs. NOZERODIVIDE, NOOFL vs. NOUFL, PREC vs. PROC, NOZDIV vs. NOCONV, and
UNFL vs. UNAL. By partitioning the data set into the letter intervals A:E,
F:M, N:S, and T:Z using the third letter if word length is at least four,
or using the second letter for shorter words, we obtain partitions of sizes
30, 23, 36, and 16 words respectively. Then LHASHD builds minimal perfect
hash tables for each in 0.6, 0.1, 4.6, and 0.1 seconds respectively.

Finally, perfect hash tables may have applications in problems invol­
ving non-static data. The fast construction seen for 10 percent minimal
tables combined with partition mechanisms may provide an information
storage and retrieval scheme for large identifer sets which change very
slowly relative to frequent searches which must be performed quickly.

l
n
n
l

]

I
l
I
]

1

I
u
J

j

page 9

CONCLUSIONS

We are fully aware of the dangers of any sweeping conclusions based on
the results of a limited number of test data sets. In fact, the test data
results underscore the data sensitivity and relative instability of the
various algorithms.

In almost all cases the letter oriented algorithms substantially out­
performed Cichelli's word oriented algorithm. For all data sets these
three letter oriented algorithms ran in less than one-half second.

Relaxing the minimality condition results in only a small speedup in
the algorithm in some cases. The "10 percent rule" seems to be a good
guideline for the number of blank table slots.

As mentioned by Cichelli, one should not apply these minimal perfect
algorithms to data sets larger than about 50 identifiers. Two possible
solutions for larger sets are doubling the table size or partitioning the
data sets into smaller segments.

At least three open problems remain of interest.

1. Find an efficient algorithm for determining whether or not a
minimal perfect hash table exists. If not, find a method of
resolving the word conflicts.

2. Find an efficient algorithm to find either another letter pair
(other than the first and last) or another scheme to handle con­
flicts, i.e. two words with the same first and last letter sets
and length. ·

3. Find an efficient algorithm for segmenting large data sets.

Copies of the program are available upon request.

REFERENCES

1. R. J. Cichelli, Minimal perfect hash functions made simple, CACM
23 (1980), pp. 17-19.

2. G. Jaeschke, Reciprocal hashing: a method for generating minimal
perfect hashing functions, CACM 24 (1981), pp. 829-833.

3. G. Jaeschke and G. Osterburg, On Cichelli's minimal perfect hash
functions method, CACM 23 (1980), pp. 728-729.

l
l

n

1

1

I

I
J

j

J

J
j

J

page 10

APPENDIX

This section lists all of the data sets referenced in this report.

1. ENGWORDS: 31 most frequently occurring English words.
I, IT, FROM, THAT, AT, TO, A, HE, THE, HAVE, OF, ARE, IS, HIS, THIS,
AS, WITH, WHICH, IN, NOT, HER, YOU, ON, OR, BUT, FOR, WAS, HAD, BY,
BE, AND.

2. ASCIIWDS: 34 identifiers associated with non-printable ASCII charac­
ters .

FF, FS, SYN, EOT, DLE, BS, SUB, ETB, LF, NUL, DEL, RS, CAN, BEL, ESC,
STX, ETX, SI, DCI, NAK, HT, CR, SOH, SO, SP, GS, US, EM, ENQ, DCW,
DCJ, DCZ, VT, ACK.

3. PRESWDS: the 36 reserved words of Pascal (including OTHERWISE).

DO, END, ELSE, LABEL, DOWNTO, NIL, TO, OTHERWISE, TYPE, WHILE, OR,
NOT, THEN, OF, RECORD, FILE, PACKED, MOD, CASE, PROCEDURE, REPEAT,
DIV, AND, FUNCTION, FOR, CONST, IN, SET, GOTO, BEGIN, UNTIL, VAR,
WITH, PROGRAM, ARRAY, IF.

4. PDEFWDS: 39 predefined identifiers of Pascal (except ODD,
which conflicts with ORD and was omitted).

TEXT, RESET, MAXINT, TRUE, SQR, SQRT, REWRITE, GET, READLN, EOLN, SIN,
CHR, CHAR, TRUNC, READ, ROUND, COS, SUCC, PUT, PACK, DISPOSE, EXP,
PAGE, WRITE, NEW, INPUT, OUTPUT, INTEGER, WRITELN, EOF, REAL, FALSE,
ABS, PRED, LN, BOOLEAN, ARCTAN, ORD, UNPACK.

5. OPCODES: 36 mnemonics for a simple assembly language.

SFLGS, STOY, STOAY, BSS, STCTL, STOA, LOADY, LOADAY, ADDAY, LDIA,
LOADA, EQUALS, ENTRY, LAND, ADD, JMPY, CLCTL, JMPLDY, END, JPSUB, DE­
CYSZ, MOVAY, NAME, STFLG, EXTERN, MOVYA, COMP, LIOR, JUMP, INCSZ, IN­
CYSZ, USE, VALUE, OUTA, HALT, CLFLG.

6. VALWDS: 57 reserved words of the dataflow language VAL.
REML was changed to REMLO (to avoid conflict with REAL) and TRUE and
FALSE were omitted, because TRUE conflicts with TYPE.

ELSE, ZERODIVIDE, TYPE, END, HIGH, TAGCASE, ERROR, REMH, REPLACE,
RESULT, EMPTY, RECORD, THEN, EVAL, LET, ELSEIF, TAG, FOR, REAL, NEGO­
VER, NEGUNDER, INT, NIL, NULL, AT, ITER, ADDH, FUNCTION, FORALL, MAKE,
JOIN, IF, MOD, SIZE, ARRAY, MISSELT, ARITHERROR, ADDL, MIN, EXP, DO,
RETURNS, LOW, OTHERWISE, REMLO, UNDEF, CHAR, BOUND, CONSTRUCT, POSO­
VER, POSUNDER, IS, ONEOF, BEGIN, MAX, BOOL, ABS.

	Cook_Oldehoeft_82_01_02_A
	Cook_Oldehoeft_82_01_02_B

