
j

J

J

91-40-1

LifUUEAS~TY

Active Object System

·s_ungoon Choi
Toshimi Mi noura

Department of Computer Science
Oregon State University

Corvallis, Oregon 97331-3202

l
l
l
n
n
n

l

I

l I
ll

u

Active Object System

Sungoon Choi and Toshimi Minoura
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331-4602

choi@cs.orst .edu, minoura@cs.orst.edu (Research)

Abstract

An active object system is a transition-based object-oriented system suitable for the design

of various concurrent systems. An AOS consists of a collection of interacting objects, where the

behavior of each object is determined by the transition statements provided for the class of that .

object. A transition statement is a condition-action pair, an equational assignment statement, or

an event routine. The transition statements provided for each object can access, besides the state ·

of that object, the states of the other objects known to it through its interlace variables. - Intefface

variables are bound to objects when objects are instantiated so that desired connections among

objects are established. The major benefit of the AOS approach is that an active system can be

hierarchically composed from its active software components as if it were a hardware system.

Key Words _and Phrases: object-oriented concurrent programming, software IC, production

system, hierarchical composition, behavioral composition.

1 Introduction

An active object system (AOS) is an object-oriented concurrent system using transition (f)l'oduction)
;::.. , .

rules, equational assignment statements, and event routines for its behavior descriptfon:~rc:@~ction
;,,. .-·

systems have been known to be suitable for various concurrent systems that require flexible synchroniza~ _

tion [DAVI76, ZISM78]. On the other hand, object-oriented programming [GOLD80, MEYE87] enables

us to achieve higher levels of modularization and code sharing . These two paradigms are combined in

the AOS approach .

The major goal of the AOS approach is to enable us to construct a certain class of concurrent systems

by hierarchical composition of active objects, in which software objects are constructed and modularized

like hardware objects. Note that a hardware object is an active autonomous object . . I~ an AOS, a higher

level object is constructed by putting component objects together with some connections. Systems that

can be best handled by the AOS approach are those that are normally represented graphically. Hardware

circuits, simulation diagrams, and control system diagrams are examples .

1

The behavior of each object in an AOS is determined by the transition statements provided for the

class of that object. Each transition statement is a transition rule, which is a condition-action pair,

an equational assignment statement, or an event routine. Equational assignment statements pioneered

by VISICALC can maintain simple invariant relationships among object states. Event routines are

activated by messages. We support one-to-many message passing as well as ordinary many-to-one

message passing.

One key feature of our AOS is that the transition statements provided for each object can access,

besides the state of that object, the states of the other · obj~ts known to the object, thus realizing

inter-object communication. Desired connections among objects can be established through interface

variables which can be bound to proper objects when objects are instantiated.

The AOS approach is an object-oriented programming paradigm based on active objects with stan:

dardized structu,ral interfaces, whereas conventional object-oriented languages support passive---...objects

with standardized procedural interfaces. As active objects provide a higher level of modularity than

passive objects [ELLI89], AOS's are easier to design, implement, and maintain than ordinary object

oriented programs.

The idea of active objects originated with the first object-oriented language SIMULA [BIRT73],

where active objects are cooperating sequential processes that communicate with each other through

procedure calls. Several active object systems have been designed since then by replacing procedure

calls used by SIMULA with message passing. Actors introduced active computational agents that carry

out their actions in response to incoming messages [AGHA86]. ABCL objects [YONE87] and Emerald

objects [BLAC86] may be sequential processes that exchange messages among them.

Researchers recently started to emphasize behavioral composition of objects. Inheritin~ei~d iii~-_
typing in the parallel object-oriented language POOL-I are addressed in [AMER90], including --co~~~ -

sition of heterogeneous objects. Contracts [HELM90] provides a basis- for interaction-orie11teci desjgn

that facilitates identification, abstraction and reuse of patterns of behavior in programs. Collaborations

graphs for analyzing paths of communication and identifying potential subsystems are introduced in

[WIRF90].

Some AI systems allow us to create active objects by using active values [KUNZ84, KEHL84]. A

KNOs object has an internal state, a set of operations, and a set of rules [TSIC87] . . Operations on

KNOs objects are invoked by messages and state-driven transition rules.

In Section 2, we give an overview of an AOS by using a simple queuing system. AOS features are

2

l

n
D
7
I

I I

LI

LI

J

1

7
l
l
D
7
I

J

I
t J

l

J
J
J

further explained in Section 3, and implementation issues are discussed in Section 4. Section 5 concludes

this paper.

2 Simple Queuing System

In this section, we introduce an AOS program by using a simple example of a queuing system.

g ql pl q2 p2 q3

e
Figure 1: Queuing system with 2 processors and 3 queues.

The queuing system in Fig. 1 consists of a generator g that generates a stream of jobs, two processors

p1 and p2 that process jobs, and three queues q1, q2, and q3 that hold jobs. Fig. 2 gives an AOS

description of the system. It can be easily seen that the code corresponds exactly to the diagram in

Fig. 1; the outp11t of g is connected to q1, the input of p1 is connected to qi and its output to q2, and

so on.

QueuingSystem {

}

Private
Generator g vith {output= qi;};
Queue q1;
Processor p1 vith {input= q1; output= q2;};
Queue q2;
Processor p2 vith {input= q2; output= q3;};
Queue q3;

Public
boolean systemRunning = true;

Figure 2: Queuing system main.

An AOS program consists of a main program and classes . A class contains three parts: an interface,

a set of instance variables, and a behavior description, Instance variables and behavior can be private,

protected, or public, as in C++ [STRO86]. The main program is defined in the same way as a class hut

is an instance.

In order to construct the above system according to the AOS approach, we first define the four

classes used by the system: class Generator, class Queue, class Processor, and class Job. Second,

3

we create one instance g of Generator, three instances q1, q2 and q3 of Queue and, two instances p1

and p2 of Processor and provide the static interconnections among them as specified in Fig. 2. The

interconnections between Job instances and the other system components cannot be defined statically,

since Job instances are created dynamically by g and are moved to the processors and the queues during

the execution of the system.

We now show the definitions of the classes used by the system.

Class Timer {
Instance Variables

}

enum {reset,running,complete} status;
Behavior Description

void startTimer(int delay) {
I* Sets status to running.

When the delay time passes,
status automatically changes to complete. *I

}

Figure 3: Timer.

Class Job{

}

Instance Variables
Int ID;
Job *next;

Figure 4: Job.

Class Timer. Class Timer is a system-defined class. A Timer is used by a Generator or Pro-c-essor · -·
·- ·.- .- ==-:.: ; _ -

to measure a time interval. Initially its status is reset. After it starts running, its -stat~~a~es --

to complete when the specified delay time expires.

Class Job. Class Job has instance variables ID and next. The next field is used to point to the next

Job when Jobs form a queue. It has no behavior description.

Class Generator. Class Generator generates a stream of jobs whose inter-arrival times are randomly

distributed. Interface variable output of class Queue designates the queue to which this generator

feeds jobs. Transition rule Start initiates the timer tm, whose expiration time designates the

next job's generation time. When the timer expires, transition rule Stop that gen.erates a_job and

resets the timer is activated.

4

7

]

]

l
n
l
n
0
n
I

.1

J

lJ
u

J
J

Class Generator {
Interface

Queue output; I* imported reference *I
Instance Variables

Timer tm with status= reset;
Job newJob;
int jobID = O;

Behavior Description
I* Transition Rule Start *I
if (system_running and (tm . status -- reset))

tm. startTimer(random()); •
I* Transition rule Stop *I
if (tm.status == complete) {

newJob = new Job;
newJob->ID = jobID++;
newJob->next = nil;
output->enqueue(newJob);
tm.status = reset;

}
}

Figure 5: Generator .

Class Queue {
Interface

}

I* none*/
Instance Variables

int njobs;
Job *head= nil, •tail= nil, •temp;

Behavior Description
void enqueue (Job* job) {

}

I* put the job at the end of the queue *I
if (tail== nil) {

tail= job; head= job;
}

else {
tail-> next= job; tail= tail->next;

}

njobs++;

Job* dequeue() {
I* get the job in front of the queue *I
if (head) {

njobs--;
temp= head; head= head->next; temp->next = nil;

}

return (temp);
}

Figure 6: Queue.

5

-. - · , ·•.

Class Processor {
Interface

Queue input, output; I* imported reference *I
Instance Variables

boolean avail= true;
Timer tm with status= reset;
Job *job= nil;

Behavior Description
I* Transition Start *I
if ((input.njobs > 0) and (avail -- true)) {

job= input->dequeue();
avail= :false;
tm.startTime(random());

}

I* Transition Stop *I
if (tm.status == complete) {

tm.status = reset;
avail= true;
output->enqueue(job);

}
}

Figure 7: Processor.

Class Queue. Class Queue has two methods, enqueue and dequeue. Instance variablenjobs is directly

accessed by Processors.

Class Processor. A Processor processes jobs found in the Queue designated by interface variable

input one at a time. When the processing of each job is complete, the job is placed in the Queue

designated by interface variable output. The Timer tm is used to measure the processing time,

which is randomly generated. Instance variable avail indicates if the processor is free or busy.

Transition rule Start is activated when the processor is free and when there is at least _9nej6J~Jn

the input queue . Once activated, the processor removes one job from the input q~~u~-~~ sla.rts -

the timer. When the timer expires, transition rule Stop, which -~esets the timer and .moves the

job to the output queue, is activated.

3 AOS Features

In this section, we discuss further details of an AOS system. Our discussions centers around its key fea

ture, i.e., structural composition of active objects. Inter-object communications among .thl:! structurally

compos ed active objects are realized by interface variables and transitions. Besides event routines that

respond to messages , transition rules, which are condition-action pairs, and always statements, which

6

1

n
l
l
n
1

l
7

J

l I

l

J

j

J

J

7

□
l

7

J

lJ

are equational assignment statements, can be used as transition statements that describe the behaviors

of activ e obj ects .

3.1 Structural Composition

We can compose a new AOS object from its component objects by providing proper connections among

them . Interface variables, which act like terminals of hardware components, are used for this purpose.

Interface variables are basically pointers through which remote objects are accessed. The object bound

to an interface variable may be dynamically changed. Dynamic bindings of objects to interface variables

are needed to describe time-dependent structural relationships among active objects . As we discuss in

Section 4, operations on dynamically bound objects cannot be handled as efficiently as those on statically

bound objects . The latter can be compiled into efficient code.

There are two kinds of hierarchies in an AOS. One is the class hierarchy , and the other is the compo

nent hierarchy. Although the component hierarchy exists in ordinary object-oriented programming, we

attach more importance to it. Fig . 8 shows the component hierarchy in the queuipg system discussed

in Section 2.

QueuingSystem

f q3

tm

Figure 8: Component hierarchy of the queuing system given in Section 3.__ .

··.:-~
:;:._-.-- .

-- - - --3 L -:--_ -

As in ordinary OOP, public and protected instance variables and transition statem~nt f ·a.re inher-

ited from a superclass to its subclasses according to the class .hierarchy. Furthermore, according to ·

the component hierarchy, public instance variables are visible to its components. For exa:mple, the

instance variable systemRunning of the main program QueuingSystem is visible to the instance g of

class Generator . The inheritance according to the class hierarc9y precedes the inheritance according to

the component hierarchy .

3.2 Behavior Description

Objects in Smalltalk or C++ are passive in the sense that they only respond to the messages sent to

them. On the other hand, the behaviors of AOS objects can be specified by thr ee kinds of tr ansition

7

statements: transition rules, always statements, and event routines.

3.2.1 Transition Rule

Each transition rule is a condition-action pair, and its action part is executed when its condition part

is satisfied. An execution of a transition rule should be atomic. The implementation details of the

execution mechanism of transition rules are discussed in Section 4.

3.2.2 Always Statements

A simple mechanism for describing a behavior of an object is an equational assignment statement that

maintains an invariant relationship among the states of objects. always statements are used for this

purpose.

For example, the class AND-Gate can be defined as follows. Note that interface variables input1 and

input2 are bound to instances of Gate, each of which has an instance variable output.

class Gate {

}

Instance Variables ·
bool output;

class AND-Gate: public Gate {
Interface Variables

Gate input1, input2;
Behavior Description

always state= input1->output and input2->output;
}

An always statement can be implemented similarly to a transitton rule. The execution of the

assignment statement should be triggered whenever any of the variables used in the expression of -the

al ways statement changes.

3.2.3 Event Routines

The activations of transition rules are, at least conceptually, state-driven . Active objects can commu

nicate with each other by directly accessing the states of other objects rather than s~nding messages to

them. Although this mechanism often eliminates the necessity of explicit message passing, some events

8

l
l
l
l

l
l

j

J

I
J

I
J

l
n
1
n
□
1

I
n

I
I

J

l

J

are more efficiently handled by messages. An AOS supports event-driven activations of procedures. We

consider messages as extended events that include some data as parameters. The unique feature of our

message passing mechanism is that it supports one-to-many message-passing as well as many-to-one

message-passing .

We provide two constructs that support message passing among objects. The statement say

message(p 1, .. . , Pn) [to receiver] is used to send a message (to the receiver specified as receiver). The

receiver may or may not be specified. The statement on message(p1, ... , Pn) [from sender] is used to

receive a message (from the sender specified as sender). The sender .may or may not be specified . For

a pair of say and on statements between which a message is passed, if the sender is not specified in

the say statement, the receiver must be specified in ·the on statement, and vice versa. The receiver

object of a say statement and the sender object of an on statement, if specified, should be_ -~i_sible to

the objects issuing these statements.

The message-passing mechanism in ordinary OOP can be regarded as many -to-one message-passing,

where each say statement specifies exactly one receiver of the message, while one on statement can

receive messages from different senders.

If the receiver is not specified in a say statement, the message can be received by any objects to

which the sender is visible. Hence, we can implement one-to-many message passing. In the example

given later, we show how this mode of message passing can simplify programming ,

3.3 Examples

To illustrate the usefulness of the features discussed in this section, we show the cont r.Q.ijer p'(a radio-
-: i".---···- -

button group as shown in Fig. 9 as various AOS programs. Our button group has three · push buttons

of which at most one button can be on at any time .

. ·.,.,.,,,,,Button Group.,.,,,,:::=="""""""""==== =
··;·=·: =:=:=❖=•= ;,:,:?::·· ···:··=··•::-:::::::,·-:-:-:

~ ~iD :!.,;~bi~~;J;,,:;;;h@j . .c.::

Figure 9: Button Group.

In Fig . 10, two basic classes Graphical0bj ect and Button are shown . Graphical0bj ect is the

super-class of Button. A Graphical0bject catches every mouseDown event, and if it detects that the

9

I

event has happened inside its region, it broadcasts the message pressed() . Class Button inherits all

. the properties of class Graphical□bj ect and has one instance variable status which indicates whether

the button is on or off.

class Graphical□bject {
Region region;

}

on mouseDoqn(Position position) from mouse
if (in(position, region))

say pressed();

class Button: public Graphical□bject {
Status status= off;

}

Figure 10: Classes GraphicalObject and Button.

In the first implementation called ButtonGroupA shown in Fig. 11, class ButtonA, which is defined

as a subclass of class Button, is responsible for the whole operations of the button group . When each

instance of ButtonA detects message pressed() from itself (super-object), it changes its s~atus to on

and sets the parent's buttonID to the value of its myID. Each of the other buttons makes its status

field off, detecting its myID to be different from the value in the parent's buttonID.

class ButtonA: public Button {
int myID;

}

on pressed() from this do {
status= on;
parent->buttonID = myID;

}

if (parent->buttonID <> myID)
status= off;

class ButtonGroupA {
int buttonID;

}

ButtonA b[MAXBUTT0N];
for (i=0; i<MAXBUTT0N; i++)

b[i] .myID = i;

Figur e 11: Button group A.

:::..:-• .

In the impl ementation shown in Fig. 12, only event routines are used for behavior descriptions,

while a transition rule is used by button group A. If a ButtonB receives pressed() from its elf, it

changes its status to on and sends m essage pressed(myID) to its parent. Wh en th e par ent obj ect,

10

l
l
l

l
l
l

j

I
j

J

I
I
J

l
l
l

l
l
7
l

I

I
l

J
u

which is a ButtonGroupB, receives pressed() from its component, it sets the status of the previously

pressed button to off and sets the ID of the newly pressed button newButtonID to its instance variable

oldButtonID.

class ButtonB: public Button {
int myID;

}

on pressed() from this do {
status= on;
say pressed(myID) to parent;

}

class ButtonGroupB {
int oldButtonID, newButtonID;
ButtonA b[MAXBUTTON];
for (i=O; i<MAXBUTTON; i++)

b[i].myID = i;

on pressed (newButtonID) do {
b[oldButtonID]->status = off;
oldButtonID = newButtonID;

}

}

Figure 12: Button group B.

In the last implementation shown in Fig. 13, ButtonGroupC takes care of all of the operations of the

button group. The pressed() message generated by any Button is caught by its parent ButtonGroupC

instance. We could program ButtonGroupC without introducing a specialized class of Button because

on statements can designate their sources of messages. We consider it important not to proliferate class

definitions .

4 Implementation Issues

The AOS translator translates AOS descriptions into C++. In this section, we describe the implemen

tation issues of the AOS runtime environment and the translator. The major problem is the mechanism

for activating behavior description routines such as transition rules, always statements, and event pro

cedures. As these routines are activated by triggers, setting up the triggers for them is the main subject

of this section.

11

class ButtonGroupC {
Button b[MAXBUTTON];

}

}

}

}

on pressed() from b[1] {
b[1]->status = on;
b[2]->status = off;
b[3]->status = off;

on pressed () from b[2] {

b[1)->status = off;
b[2]->status = on;
b[3]->status = oft;

on pressed () from b[3] {

b[1]->status = off;
b[2]->status = off;
b[3]->status = on;

4.1 Event Scheduling

Figure 13: Button group C.

An AOS computation is a sequence of executions of transitions, which transform the states of objects

and generate events . These new states of objects and events may trigger executions of other transitions.

We call an object that contains a transition a source object, since a transition contains the sources of

references to other object states. The objects referenced by the condition parts of transitions are called

trigger objects, since their state changes must trigger the executions of the transitions in source objects.

An AOS computation can be best understood in terms of trigger objects and triggered transitions.

Fig. 14 shows this interaction between the trigger objects and the triggered transitions.in thesimple ..

queuing system discussed in Section 2.
:::_:::i --

Generator : g Queue: ql Processor : p 1 Queue: q2

:::::::::::wt:t:::::

modify
njobs

trigger
s

ilil\{iJ{liii
'~m_od_ify--~ njobs ---~

trigger

Figure 14: Interaction between trigger objects and triggered transitions.

In an AOS, triggered transitions are executed one at a time . Since an execution .of a-transition may

cause activations of multiple transitions, multiple triggered transitions may be pending at any given

time . The transitions triggered simultaneously should not interfere with each other, or their interference

12

l
l
n
l

l
l

j

J
j

J
J

. l
l
0
n
I

l

I

I
l l

should not cause any undesirable effects. When simultaneously activated transitions cause undesirable

effects, the programmer must take care of the problem by introducing, for example, interlocking variables

or programmer-defined queues .

mod;fy-'7 execution of transition ~

modify Triggered Trans ·

TriggerList... (ol, tl) •·········
,~

Trigger List ...
....___ modify

modify

~ execution of transition◄I------
Figure 15: AOS runtime environment.

Fig. 15 shows the run time environment for an AOS. The identities of the transitions to be activated

when the state of an object changes are stored in the trigger list TL associated with it. Each entry

of TL associated with a trigger object o is a pair (s, t), which indicates that transition t of object s

should be activated when the state of o changes. We call such a pair a trigger element. Activations of

transitions are handled as follows. When the state of a trigger object is changed, --the trigger elements

in its TL are added to the triggered-transition-list TTL. TTL, which is global, maintains the trigger

elements for all the triggered transitions. Transitions designated by the trigger elements in TTL are

executed one by one in first-come-first-serve basis by the transition scheduler TS.
=c., •.

Although it is possible to let individual objects produce events at future times, ~~~p~Jtioiu·esources

can be saved if timed events (or future events) are directly supp<:>rted by the system. _A timed event is•

a triple (s, t, tm) which indicates that transition t of object s should be executed at time tin. When

a timed event is posted, it is added to the timed event list TEL, and when the time specified in it is

reached, its execution is scheduled by the timed-events schedul,er TES.

4.2 Trigger Setup

In order for the transitions in an AOS to work properly, whenever the state of ari object changes, all the

transitions that refer to that state in their condition parts should be activated. Hence, triggers should

be setup for the objects whose states are referenced by transitions.

13

We now introduce some definitions used in our discussions .

Reference Path. A reference expression such as x. p->q->y. z, where x, y, z, p, and q are field names,

and furthermore p and q are pointers, is used to access the state of an object. A reference

expression, when evaluated, produces a reference path (vo, vi, v2, ... , vn), where Vo is a source

object, v; is a composite object containing Vi+1 or a pointer object pointing to v;+l, and Vn is a

trigger object . The reference path for the reference expression x.p->q->y.z is (x, x.p, *(x.p),

x.p->q, *(x.p->q), x.p->q->y, x.p->q->y .z). We designate each reference by (source-object-ID,

reference-ID). Reference IDs are integers unique relative to each object.

Dynamic Path Pointer. A pointer object that is an element of a reference path is called a path

pointer. When the value of a path pointer is changed during the execution of an AOS pro,gram,

it is called a dynamic path pointer.

4.2.1 Static Triggers

In most cases, the reference path for a reference does not involve any dynamic pointers. -In this case,

the trigger for that reference need not be changed during the execution of the program. Since we can

know the exact object that will be accessed when the source object is instantiated, the trigger for the

reference need be setup only once when the source object is instantiated.

4.2.2 Dynamic Triggers

When the reference path of a reference involves a dynamic pointer, the trigger object for that 1derence -

changes when the value of that pointer is manipulated. If this happens, the trigger iri thii'l~ tr~e,r -

object should be dropped, and the new trigger should be added to the new trigger object. It is gene~ally

impossible to tell which trigger object is accessed until the operation that modifies the dynamic trigger

object is actually executed.

When the value of a dynamic path pointer is changed, all the reference paths that involve the

dynamic path pointer are affected. We associate with each dynamic path pointer a path list that

contains the set of path elements each of which indicates a reference path that includes the dynamic

path pointer . A path element is a pair (source-object-ID, reference-ID).

Fig. 16 shows the trigger lists and the path lists maintained by trigger objects and dynamic path

objects, respectively . The situation depicted is as follows . Transition t 1 of object a accesses the state of

14

l
n
l

l
l
7
l

I

J

J

J

n
n
D
l

I

l l
j

u
J

C)
Source Object Dynamic

Path
Pointer

@ill)
Composite
object

Trigger
Object

Figure 16: Trigger lists and path lists.

object h through reference expression •(u->v->z). Transition t2 of object band transition t~ of object

c also access the state of h, and transition t4 of object d accesses that of object k. The reference path

IDs of all of these reference paths happen to be 1. Note that reference path IDs are relative to each

source object. The path list of dynamic path pointer yin object/, for example, is ((a, 1), (b, 1) and

(c, 1)), which indicates that y of/ is involved in the three reference paths originating from a, b, and c.

f [?""""

?'=II

d~r-:$;\~V --~,-, .. -------
t4 Path List

~(d. l)W

.
'\}i~ t::h .

athLi
~: (d, l)~«:1--~~
::. (b. 1)
·· (c, 1)

Figure 17: A change of a dynamic pat~ pointer value.

We now show how the trigger lists and the path lists should be updated when the object pointed

to by a dynamic path pointer is changed. In Fig. 17, the dynamic path pointer x in e, which initially

points to fas in Fig. 16, is changed to point to object i. Now the trigger elements (b, ti) and (c, t3)

are removed from h, and they are added to k. Path elements (b, 1) and (c, 1) are deleted from y off

and z of g, and they are added toy of i and z of j.

15

for each path element (s, i) in the path list of p do
begin

remove path element (s, i) from every dynamic
path pointer in the old reference path (s, i),
and remove the trigger element (s, tj) from the old trigger object;
change p;
add path element (s, i) to every dynamic
path pointer in the new reference path (s, i),
and add the trigger element (s, tj) to the new trigger object;

end;

Figure 18: Changing a dynamic path pointer value.

When the value of a dynamic path pointer p is to be changed, the procedure given in Fig. 18 must be

executed. In order to allow dynamic trigger setup, methods addElements (i, t) and removeElements (i),

where i is a reference-path ID, and t a transition ID, should be provided in the class definition of each
-

source objects . Method addElements(i, t) adds path element (s, i) to each dynamic path p-ointer

in the ith reference path originating from s by calling method addPathElement(this, i) for that

dynamic path pointer, and it adds trigger element (s, t) to the trigger object of the ith reference

path originating from s by calling method addTriggerElement(s, t) for the trigger object. Method

removeElements(i) applied to a source objects removes the path element (s, i) from each dynamic

path pointer in the ith reference path originating from s, and the trigger element (s, t) from the trigger

object of that reference path.

Fig. 19 shows the addElements(i, t) and removeElements(i) methods defined in the class for

object b.

5 Conclusions

The AOS approach provides a new framework for constructing object-oriented concurrent systems. AOS

objects are self-contained and active, and their behaviors are defined by the transition rules, always

statements , and event routines provided in the classes from which they are instantiated. They interact

with other objects connected through their interface variables. These features allow an AOS class to

be constructed from its component classes by a pick-and-place method . Thus AOS approach facilitates

th e reusability of softwar e components.

The simple queuing system discussed in Section 2 was implemented as an AOS system . We are now

implementing more complex AOS systems and designing a graphical user interface subsystem. The

16

l

□

1

J

I
j

J
J
J

J

l
l
.1
n
D
l

n

j

(I
j

J
I

addElements(i, t) {
switch (i) {

}

}

1: { s.addPathElement(this, i);
s->x.addPathElement(this, i);
s->x->y.addPathElement(this, i);
s->x->y->z.addPathElement(this, i);
*(s->x->y->z).addTriggerElement(this, t2);}

removeElements(i) {
switch (i) {

}

}

1: { s.removePathElement(this, i);
s->x.removePathElement(this, i);
s->x->y.removePathElement(this, i);
s->x->y->z.removePathElement(this, i);
*(s->x->y->z).removeTriggerElement(this, t2); }_

Figure 19: The methods addElements and removeElements.

-. -· ..

graphical user interface subsystem displays the state of an AOS and allows its user to interact with it.

One application area of AOS's is computer-integrated manufacturing.

References

(AGHA86] Agha, G. A. Actors: A model of concurrent computation in distributed Systems. The MIT
Press, 1986.

(AMER90] America, P., and Linden, F. A Parallel Object-Oriented Language with Inheritence and
Subtyping . In Proc. ECOOP /OOPSLA'90 Conf. on Object-Oriented programming, 1986,

pp. 161-168. -.- -~-- ·=-~------.
: ~

- - - - •=,! ~
(BIRT73] Birtwistle, G., Dahl, 0. J., Byhrhang, B., and Nygard, K. SIMULA BEGJN, t.Ati.erba.ch,

1973. --

[BLAC86] Black, A., Hutchinson, N., Jul, E., and Levy, H. Object structure in the Emerald System.
In Proc. OOPSLA'86 Conf. on Object-Oriented programming, 1986, pp . 78-86.

[DAVI76] Davis, R., and King, J. An overview of production systems. Machine Intelligence, 8, 1976,
300-332.

[ELLI89] Ellis, C. A., and Gibbs, S. J . Active objects: realities and possibilities. In Object-Oriented
Concepts, Databases and Applications, W. Kim and F . H. Lochovsky (Eds), ACM Press,
1989, pp. 561-572.

[GOLD80] Goldberg, A., Robson, D. Smalltalk-SO The language and its implementation Addsison
Wesley, 1983.

[HELM90] Helm, R., Holland, I. M., and Gangopadhyay, D. Contracts: Specifying Behavioral Com
positions in Object-Oriented Systems . In Proc . ECOOP /OOPSLA'90 Conf. on Object
Oriented programming, 1986, pp . 169-180.

17

[KEHL84] Kehler, T. P., and Clemenson, G. D. An Application Development System for Expert
Systems. Systems and Software 34, 1984, 212-224.

[KUNZ84] Kunz, J. C., Kehler, T. P., and Williams, M. D. Applications development using a hybrid
AI development system. The AI Magazine, 5, 3, 1984, 41-54.

(MEYE88] Meyer, B., Object-Oriented Software Construction, Prentice Hall, 1988.

(STRO86] Stroustrup, B. The C++ Programming Language, Addison-Wesly, 1986.

(TSIC87] Tsichritzis, D., Flume, E., Gibbs, S., and Nierstrasz, 0. KNOs: Knowledge acquisition,
disemination, and manipulation objects. ACM Trans. on Office Information Systems, 5, 1,
1987, 96-112.

[WIRF90] Wirfs-Brock, R. J., and Johnson, R. E., Surveying Current Research in Object-Oriented
Design. CACM, 33, 9, 1990, 105-124.

(YONE87] Yonezawa, A., Shibayama, E., Takada, T., and Honda, Y. Modelling and programming in an
object oriented concurrent language ABCL/1. In Object-Oriented Concurrent Programming,
A. Yonezawa and M. Tokoro (Eds), The MIT press, 1987, pp. 55-90.

[ZISM78] Zisman, M. D. Use of production systems for modelling asynchronous, concurr~nt pro
cesses. In Pattern-Directed Inference Systems, D. A. Waterman and F. Hayes-Roth (Eds),
Academic Press, 1978, pp. 53-69.

18

l
n
0

]

]

J

J

J

	Choi_Minoura_91_40_01_A
	Choi_Minoura_91_40_01_B

