
TR 86-10-3

ARTIMIS: A MODULE INDEXING AND SOURCE

PROGRAM

READING AND UNDERSTANDING

ENVIRONMENT

Abbas Birjandi

T. G. Lewis

Department of Computer Science
Oregon State University
Corvallis, Oregon 97331

(503) 754-3273

I l

I
n
n
l
I
l
l
l

I
l l
l l

J
j

u

Artimis:A Module Indexing and Source

Program

Reading And Understanding

Environment

Abbas Birjandi

T.G. Lewis

Department of Computer Science

Oregon State University

Corvallis, Oregon 97331

(503) 754-3273

1

l
l
l
l
I I
l
I
;]
I

I
J

lJ

lJ
j

u
j

u

Abstract:

Artimis is part of an environment for software reuse consisting of

two logically independent portions, 1) the indexing and retreival

facility called, GrabBag, for storage and subsequent retreival of

reusable modules, and 2) a set of tools called Browsers, which aid

reading and understanding of source programs. GrabBag creates

a highly simple and friendly interface for retreival of viable can

didates for reuse. Browser's tool set, The Module Interconnection

Graph Builder, Procedure Call Graph Builder, and Module Ab

stractor create different levels of abstraction to help a programmer

understand a source program.

Keywords: Programming environment, program transformation,

source code mutation, code fragments, code selection, program un

derstanding, program reading, program maintenance.

2

l
l
. l
1
. I

l
l
~

I
I
lJ

J

j

J
u

1 Introduction

The reuse of existing software is seen as a measure of curtailing the high cost

of software. The benefits of reusing existing software are: 1) reduction in the

cost and development time to produce a new program or system of programs, and

2) an increase in the ease of maintenance and enhancement of existing software

systems [Che83]. To reuse existing software one should know what existing software

is available and how it can be used in relation to the task at hand.

Artimis is part of an environment for reusing software [Bir86] which provides a

programmers database called GrabBag [San86] and a set of understandability and

abstraction tools collectively referred to as Browsers. GrabBage provides a conve

nient way of locating a module and related documents called attributes. A module

is an independent unit of code. Module attributes are known resources of a module

such as a documentation file and an interface definition file.

Although other source languages might be used with Artimis, Modula-2 [Wir83] is

used as the source language. In Modula-2 , a module has two parts: 1) a definition

part which defines the visibility of constants, types, variables, and procedures of

the module which can be accessed by other modules and, 2) an implementation

part that encapsulates the actual implementation detail of the module . Artimis is

written in C and runs on the Macintosh personal computer.

Reusability

In [Ker83] reusability is defined as anyway in which previously written software can

be used for a new purpose or to avoid writing new software . This definition covers

representation of software at both object code and source code level. However,

3

reuse of source code in contrast to object code has the advantage of 1) adapting the

interface as well as implementation part of a module to a new interface specification,

2) providing an opportunity to tune, optimize, and eliminate unnecessary code, and

3) providing readable code so that a programmer's knowledge of the reusable module

is increased.

This allows the possibility of:

1. Source code reuse/replication by reuse of part or all of existing source code

or its data structure,

2. Detailed algorithm reuse by reuse of source code from existing programs as

an example of how to do a new program,

3. Large-scale structural reuse by selecting and adapting program design,

4. Maintainability/ enhanceability by increasing the effectiveness of programmers

by enabling them to study programs with the aid of understandability tools,

5. Portability by facilitating the reuse of software across a wide range of hosts,

and

6. Optimization by enabling tuning of generated source code.

Reusability Life Cycle Vs. Traditional Life Cycle

When reusable components are used to build a new software system, the traditional

software life cycle is altered. Table 1 shows the difference between traditional soft

ware life cycle and reusability life cycle. The additional phases in the reusability

life cycle indicate how a designer uses existing components rather than implement

everything from the beginning.

4

l
l
l
l
I
J

1

l

I
I
I
I
l
j

I
j

J

I
7
:1

1
l
l

n

J

tJ

u
J

J
j

'.Iraditional Life Cycle

Problem Definition

Requirement Analysis

System Design Specification

Reusable Life Cycle

Problem Definition

Requirement Analysis

Find and reuse similar

Artimis Support

None

None

None

System Design Specification

Detailed Design Specification Find and reuse similar GrabBag,Browsers

Implementation

Testing

System Integration

Maintenance

Detailed Design

Find and reuse existing None

routines from object code library

Find and reuse (modified) source GrabBag,Browsers

code from previous systems None

Produce Glue Code

Testing

System Integration

Reuse of original product

None

Some help by Browsers

Some help by Browsers

GrabBag, Browsers,

None

Table 1: Reusability Life Cycle Stages vs. Traditional Life Cycle

Maintenance may be considered as reusing the original product [Fre83]. In main

tenance, problem specification is usually better defined and the product does not

have to be located [Fre83]. Problem definition is the phase during which the prob

lem to be solved is formalized as a set of needs; requirement analysis is the process

of studying user needs to arrive at a definition of system software requirements;

system design specification is the period of time during which the designs for ar

chitecture, software components, interfaces, and data are created, documented, and

verified to satisfy requirement; detailed design specification is the period of time

during which the design of system or a system component is documented; typical

contents include system or component algorithms, control logic, data structures,

5

data set-use information, input/output formats, and interface description; imple

mentation is the period of time during which a software product is created from

design documentation and debugged; testing is the period of time during which

the components of a software product are evaluated and integrated to determine

whether or not requirements have been satisfied; system integration is the period of

time during which a software product is integrated into its operational environment

and tested in this environment to ensure that it performs as required; maintenance

is the period of time during which a software product is employed in its operational

environment, monitored for satisfactory performance, and modified as necessary to

correct problems or to respond to changing requirements

A component is a basic part of a system or program; an interface is a shared

boundary to interact or communicate with another system component (Sta83]. Glue

code is the minimal extra code that may be needed to bring the reused modules

together.

2 Artimis System Components

Artimis has two logically separate components: 1) Grab Bag, for adding, deleting

and searching for a module and its different attributes, and 2) Browsers, to aid

the programmer in reading, inspecting, and understanding the code retrieved from

GrabBag (or any other source of program modules).

2.1 GrabBag

In order to reuse existing software there must be a convenient way of locating

the viable candidates for reuse. GrabBag is an indexing and retreival system for

6

l
n
l

I
l
l
, l

I
I
I
I
I
I

]

. I

I
l
n
1

l
I
·1

1

l

I J

lJ
J

J
1

J

finding available modules and their attributes in a Programmers DataBase, (PDB).

PDB contains a set of option lists that allows the searcher to successively refine

the description of the code he is looking for. Option lists are sets of categories.

Categories are text prompts entered by the PDB builder and are used to lead the

searcher to a desired module through a search path. A search path is a series of
I

individual categories that lead to a module. Since there are many different ways

to describe a module, there could be several different search paths to each module

and it's attributes. Figure 1 shows a typical hierarchy of components of a PDB

and possible search paths to individual module attributes. In Figure 1 there are

Figure 1: GrabBag Internal Data Model

two levels of option lists. The Root is a pseudo starting point of a PDB. The first

option list, A, has three categories: B, C, D. Option lists B, C, and D point to some

attribute files.

GrabBag Operations

GrabBag supports:

• Creation of new PDBs,

• Searching for a module and its attributes,

• Adding new Categories,

• Addition and deletion of search paths among the categories, and between

categories and attribute files,

• Addition and deletion of attribute files and references to them.

7

The following section is a walk through and explanation of: 1) searching through

a PDB to locate a category, leading to a module and its attributes, 2) adding

an attribute to a module stored under an existing category, and 3) establishing a

search path to a module attribute. We assume that the PDB is already selected

and opened.

Searching

Once the PD B is opened Grab Bag creates two windows: 1) for the display of

search paths being selected in the course of searching, and 2) for display of available

categories and attribute files for selection. At the beginning the title in the second

window is the name of the currently opened PDB, UTILITIES DATA BASE, see

Figure 2.

Figure 2: A Category and its Subcategories in a PDB

Selection of a subcategory is made by pointing to the title of the subcategory and

clicking the mouse twice. In Figure 3 subcategory SEARCH ROUTINES is selected.

Each time a selection is made the title of the currently selected category is updated

and moved to the Search Path window. One can continue navigation along selected

Figure 3: Search Path and Category Windows after a selection

paths to narrow down choices until the desired element is found. Notice if one

decides to reverse a selection and backtrack to some earlier category it is only

necessary to select the category name from the Search Path window. Selection of a

category from the Search Path window will always make the category the current

category. This process can be repeated as long as categories exist. Reusable modules

and their attribute files are stored at the end of each Search Path. Once a Search

8

.1
I

I
J

I

I
I
J
I
J

l
l
l

GrabBag Data Model

Root

n
l l
1

Option Ltsl D
Senrch Pnlh

Module

Fig. 1 r s Gr11b811g

Se11rch Pnth

SORT ROUT I HES

I

Figure 2

11
r S GrobBeg

ll
Senrch Plllh

UT I LI TES DATA BASE
ARRAYS

J

Li

J
J

Fi gur e 3

Path is exhausted, attribute file names are displayed in the left-side window as the

members of the latest category. In addition, a selection dialog showing available

operations is displayed as shown in Figure 4. The Search Path leading to attributes

for Binary Search and the dialog box containing the available operations is shown in

Figure 4. Selecting Edit will create an edit window and display the contents of the

Figure 4: Attribute File Selection for Category

selected attribute file {List Binary S.Document) for editing or any other operations

that are supported by the editor. Selection of Copy to will make a duplicate copy of

the file; Delete deletes the selected attribute file from the category that it belongs

to; and selecting Cancel removes the dialog so the search can be resumed.

Adding New Categories

To add a new category to an option list, one first locates the desired option list

(the process of locating is the same as searching for a category). Once the desired

category is located, Add Category must be selected from the GrabBag menu shown in

Figure 5. When Add Category is selected a dialog showing the category and number

Figure 5: Menu item for Add Category

of subcategories already under it is displayed see Figure 6. The new category title

is entered in the New Subcategory field. Selection of Add and Quit will add the new

category as a new subcategory and quits. If there is more than one subcategory

to be added, select Keep Adding which does the operation of adding and keeps the

dialog box for further addition. Notice that the current number of subcategories

under a category is also displayed. Selection of Quit terminates the process of

adding new subcategories and returns to the category and Search Path windows.

9

1

7
~

l
1

l
I
7
l

I
I j

j

I
I
J

l
. l
l
l
l

, I

j

lJ
.I

J

J

j

J

" s GrabBog

Search Path
UT I LI TES DATR BASE
SEARCH ROUTI HES
LISTS

List

List
List
List
List
List

BYNARY SEARCH
Binary S. help ,,
Binary S.Pas
Binary S. Interface
Binary S . l ■ple■ent
BI nary S. Errors It
BI nary S . Updates

l1IJ End of Search Path. Choose the action desired

R Edit I[Copy to II Add II Delete l[,--C-an_c_e_l-.

Figure 4

,, •i~~--,..--~ i I: 0 I

Help

Neu• 011111 D11~e ...
Open •••
Close ...
Quit •••

Add category ...
Delete Category ...
Spll1 C111 egory List
... link To

UTILITES DATA BASE
1/0 ROUTINES
SEARCH ROUT I HES
SORT ROUT I HES

Figure 5

Figure 6: Dialog Box for Adding a New category

Adding A Module Attribute

Adding a module attribute follows the same procedure for narrowing down the

category by selection of categories and subcategories. Once the desired category is

located the selection of Add Attribute from the menu will display the name of the

attribute files that can be added, see Figure 7, and 8. Selection of any of these file

attributes will add them to the list of available attributes of the selected module.

Figure 7: Menu Item Add Attribute Selection

Figure 8: Selection Attribute File For Addition

Module Attribute Deletion

To delete a module, locate the subcategory which contains the module attribute

to be deleted, then select Delete Attribute from the menu, see Figure 9. A dialog

box will appear as shown in Figure 10 which tells the number of references made to

the attribute file. The number of references to the specific attribute file is always

shown in order to give some clue to how many active references are to that specific

attribute file. One can choose to delete only the reference to the attribute file from

the most recent category, or choose to delete all the references to the attribute file.

In either case, the actual attribute file may be removed from the PDB by selecting

the Delete Attribute File,too option

10

l
7
~

l
l
l
l
, l

]

l

j

I
j

J

J

J1
j

J

n
l
n
l
l

l

l

j

j

j

j

j

j

J

UTILITES DATA BASE

C11tegory: jununs DATA BASE

Number . of Subc11tegortes : 4

NEW Subc11tegory :

. @ 11nother SUBCATEGORIES
New Subc11tegory WIii REFERENCE :

r c 91!"' .!I", ,..-::""."'••

Seorch Pnth
UT I LI TES DATA BASE
SEARCH ROUT I HES
AARRYS

Grob Bog.help
list Bin11ry S.N ...
Utilities DB.net

Open

C11ncel

Q ATTRIBUTES

Figure 6

SEQUENTIAL SEARCH

Array Sequen S. he Ip
Array Sequen S. Oocu•ent ·
Array Sequen S. Pos

~!!!!!!~~~~~t erf ace
p I e■ent
ror~

GrobB11gS11... dates

Eject

ortue

Fig ur e 8

c ;1:; I '
Help ~ SEQUENTIAL SEARCH

u Array Sequen S. he Ip
s Neu• Da1a Da~e ... Array Sequen S. Oocu■ent
A Open ... Array Sequen S. Pas

Close ... Array Sequen S. Int er face
Quit .•• Array Sequen S. I •PI eoent

Rdd ca1egory •••
Array Sequen S. Errors

Delete Cntl'gory •••
Array Sequen S. Updates

Spll1 C41egory Usf
••• link To

Figure 7

Figure 9: Attribute Deletion Menu Item

Figure 10: Selection Dialog For Deleting an Attribute

Linking Search Paths Among Categories and Module Attribute Files

To establish a link between a category and another category or a module attribute,

the title of the From category must be selected from the Search Path window. Then

the Link From . .. item must be selected from the menu to mark the category as

the origin of the link, see Figures 11, and 12. Next, the module attribute or the

Figure 11: Selection of Category as the origin of the Link

category to which the link should point must be selected. Choosing the Link To

from the menu specifies the destination of the link. The dialog shown in Figure 13

will be displayed showing what is linked to what, confirming the action. If the user

decides to establish the link the Ok button should be pushed, otherwise the Cancel

button should be selected.

11

l
7
l
l
l
1
)

l
]

j

J

j

LJ

J

J

J
j

J

l
l
1

u s Nett• Dali, Ba~e ...
A Open ...

Close •••
Quit •••

Rdd C41 e9011j .. ,
Delete Cotegory •••
Splll C11le90111 Lisi
... link To

SEQUENT! AL SEARCH
Array Soquon S, he Ip
Array Sequen S. Oocuaent
Array Soquen S. Pas
Array Sequen S, I nl or faco
Array Sequen S , I •PI eaent
Array Sequen S , Errors
Array Sequen S. Updates

Figure 9

SEQUENTIAL SEARCH

Attribute : Array Sequen S.Errors

Number of references : 1

@ Delete llNLY reference from SEQUENTIAL SEARCH

O Delete ALL rnferences Ok

I Figure 10

l J

u
I

J

J

J

5 New Dal11 Bit~e •••
A Open •••

Close •••
Quit •.•

SEQUENTIAL SEARCH
Array Sequen S, he Ip
Arroy Scquon S, Oocuocnl
Array Soquon S. Pas
Array Soquon S. lnlorfaco
Array Scquen S. I •PI cocnt
Array Scquen S , Errors
Array Sequen S. Updat os

Fi gure 11

Figure 12: Setting the Link Origin

Figure 13: Dialog For Link Conformation

12

7
7
n
n
J
]

J

u

J

J

l
n

l

n

IJ

lJ

j

J

u
·S Neill Da1a lla~e--,
A Open _,,

Close •••
Quit •••

Senrch Pnth
UT I LI TES OATR BASE
SEARCH ROUT I HES
AAARYS

SEQUENTIAL SEARCH
Array Sequen S. he Ip
Array Sequen S. Oocu■ent
Array Sequen S. Pao
Array Sequen S. Interface
Array Sequen S. I ■PI e■enl
Array Sequen S. Error•

Figure 12

SEQUENTIAL SEARCH
Array Sequen S. he Ip
Array Sequen S. Oocu■enl
Array Sequen S. Pao
Array Sequen S. I nlerface
Array Sequen S. I ■PI e■enl
Array Sequen S. Error•

Set link From : IITILITES DATR BASE

... To : Rrrny Sequen S.Updntes

Figure 13

2.2 Browsers

Program Understanding

Browsers are tools to aid in reading and understanding program modules, a module,

or parts of a module. Browsers assist the programmer in the process of mental

transformation of a system of modules, a module, or parts of a module into an ab

straction that summarizes the possible outcomes of the entity under consideration,

irrespective of its' internal control structure and data operations.

Recent research in text comprehension [Bar32,SA77,Gra81,BBT79] has shown that

schemas can facilitate the processing and storage of information by providing back

ground knowledge or context.

Schemas are generic knowledge structures that guide the comprehender 's

interpretations, inference, expectations, and attention when passages are

comprehended {Gra81}

There is some empirical evidence [Shn76,Ade81,MRRH81] that programmers use

schemas in the comprehension of computer programs. Information about the prob

lem, what it is, the subgoals necessary to resolve the final goal, the method employed

to solve the subgoals, how it is done , the level of expertise of the problem solver,

etc. can be derived from program text [SE83,SEB82]. Program fragments and data

structures can be thought of as schemas and knowledge structures. A program

fragment is a piece of source code representing the stereotypic action sequence in

programs. Program fragments are different from subroutines. Program fragments

are open pieces of source code that are meant to be modified or tuned to the par

ticular task at hand whereas subroutines are purposedly closed entities [SE83]. For

example a while loop in a sort routine can be considered as a Loop fragment.

13

l
7

I
l

]

J
j

J
J

. l

l
l
n
l

'l
J

I
I
I
I
lJ
IJ

I

u
u

For a program to be reused one should know what it is and how it works. In fact

understanding a source program is the basis for: 1) modifying and validating pro

grams written by others, 2) selecting and adapting program design, 3) verifying the

correctness of programs, and 4) becoming more effective through study of programs

written by others [LMW79].

Abstraction in Reading and Understanding a Module

The object of reading a program or program part is to recognize directly what

it does all in one thought, or to mentally transform it into an abstraction that

summarizes the possible outcomes of the program under construction irrespective

of its internal control structure and data operations. Thus one can regard program

reading as primarily a search for suitable abstraction [LMW79]

In [LMW79] it is shown that a program fragment is an ideal component for abstrac

tion. A compound program of any size can be read and understood by reading and

understanding its hierarchy of fragments and their abstraction. Artimis uses the

idea of stepwise abstraction in producing an abstracted version of a module or parts

of a module. The process of stepwise abstraction starts at the most detailed level,

and replaces each fragment by its equivalent abstraction. Stepwise abstraction is

the inverse of stepwise refinement.

2.3 Program Understanding Paradigm

The exact approach and steps taken in reading and understanding a program source

depends on the level of expertise of the programmer, clarity and readability of the

source code, and availability of documentation. The most common steps typically

14

taken to understand a program are:

1. Build a picture of the system structure, exposing the hierarchy of intercon

necting modules,

2. Examine the interface information to understand the nature and type of in

formation exchanged among the components communicating with each other

(e.g. procedures, functions, modules),

3. Start from the main program and trace the execution of the program,

4. Abstract and highlight the program fragments that are crucial to the operation

of the program,

5. Comment the highlights and make notes on their operation for later use,

6. Repeat this process until the mystery is solved.

The following is the tool set which implements the steps outlined above in the

Browsers of Artimis.

Module Interconnection Graph Builder

The Module Interconnection Graph Builder provides a graphical display of the

hierarchical structure of a program containing one or more modules. The graph

ical display shows, 1) the overall program structure and placement of modules,

2) accessibility of the resources of each module from other modules, and 3) the

interconnectivity (or disconnectivity) of modules. Figure 14 displays the Module

Interconnection Graph of a set of modules.

15

. I

I
I

I

J

, I

J

u
ll
j

u
u
J

The Module interconnection graph is the first order of fragmentation in program

understanding. It provides a global view of the modules (fragments) that the pro

gram is build around. For example, Figure 14 (MODULES window) shows that

module MODl has direct access to the resources (variables, procedure definitions,

constants, etc.) of MOD2, and MOD3, and possibly has indirect access to the re

sources of MOD4, and MODS. In turn MOD2 uses some of the resources defined in

MOD4, and MODS. These information can be used to trace the data and control

flow of the module.

The module interconnection graph is also useful in formulating the dependency

preserving sequence for correct compilation of the modules(MAKE). For example,

in Figure 14 MOD4, and MODS should be compiled prior to MOD2 in order to

preserve the correct compilation sequence.

Figure 14: A Sample Module Interconnection and Procedure Call Graph

2.3.l Procedure Call Graph Builder

The Procedure Call Graph Builder shows the subprogram invocations found within

a single module. The procedure call graph is the second order of fragmentation in

abstraction of a module for readability and understanding purposes. The procedure

call graph reveals the textual nested organization of a module [CWW80] that can

be used to derive information related to the visibility and scope of entities within

a module. It provides an abstract view of the control and data flow among the

subprograms. For example Figure 14 (PROCEDURES window) shows call graph

of MOD3 in which procedure HEYYOU and MAC are called from within procedure

FF. And FF is called from within body of MOD3.

16

,.. s FIie Edit Browser

Figure 14

l
7
n

.J

1
I
I
I
I

I
I
LI

J
J

l
l
l
n
I
1

I
~

l

I
ll
lJ
I
u
j

J

Module Abstractor

The Module Abstractor automatically creates an abstraction of code fragments.

This tool provides a mechanism for abstracting source code by hiding redundant

and unnecessary portions of the code. The programmer can select one or many

source fragments for abstraction. The selected source is hidden from view and

replaced by either a note provided by the programmer or a default note provided

by the abstractor. The abstracted portions of the code can be reversed.

Figure 15, and 16 display a sample program before, and after abstraction of two

fragments of the code. In the example the body of FOR loop fragment is selected

for abstraction.

The selected fragment is replaced by either a default place holder or by a prompt

that is supplied by the user. For example Figure 15 shows the body of the WHILE

loop is selected for abstraction. After the selection the body of the WHILE is hidden

and replaced by statement(s) as shown in Figure 16.

Figure 15: A Sample Module Before Abstraction

Figure 16: A Sample Module After Abstraction

In Artimis, the Module Abstractor can also be used to create internal documenta

tion. Internal documentation is the explanation of the algorithmic behavior of the

fragments of the code in the module. When abstracting fragments, the user can

enter any annotation regarding the fragment to be abstracted. These annotations

replace the actual code. This provides the capability of generating internal doc

umentation by enabling one to produce documentation consisting of a mixture of

source and annotation, annotation only, or source only.

17

r ti FIie Edlf Browser

GMODI
FRa1 G-4100 tN= Y,W;

BEGIN
FOR johnelndeK :,. lowort>oond TO Upper DO

81..nl:ae[t)•eun;
K,. flrolcell / llmeromotn • 27;
cponlng,. gelflrotllndo><J • lolol;
reg1onol ::-matrix - dimene(on;
closing,. endlrgjohnelndo><J - lolol

EN)·

r ti FIie Edl1 Browser

BEGIN
FOR JohnelndoK,. lowertxu>d TO Upper DO

Ol.ffl :-e[I) • etm;
K =-f1retce11 / Umeremetn • 27;
cpontng ,. gelflrotllndo><J • tolol;
regional :- metr1·x-dfmenefon;
closing,. endlrgjohnetndo><] - totol

EN) · .

WHIL£(K •y ■ z)DO
ototement(e)

EN)

ENDGINOO . .

It

Figure 15

Figure 16

. -..,,.-- - ... •·· ~ ~ -c.- _ _""_ u-:., ..

l

l
l

l
l

I

1

I
J

J

J

l
I
I
I
ll
u
J

j

j

j

3 Conclusion

It is easier to reuse program fragments than to reinvent them, provided that the

time needed for program understanding is less than the time needed for program

writing, and provided that the access time for the needed program fragment is

sufficiently small. If these two conditions are met then the total programming and

debugging time is reduced.

The GrabBag and Browser tools in Artimis provide simple, yet efficient facilities

in meeting the above conditions. GrabBag's user interface provides a simple and

natural method of searching and locating viable candidates for reuse. The ease of

backtracking to previous search selections, and the ability to view all the available

categories in one glance creates a highly friendly, and easy environment for locating

desired modules. The user interface of GrabBag also makes learning and using it

so simple that one does not need to know ,much about it in order to use it.

The program understanding paradigm was used as a guideline in building tools that

are applied to source modules in a non-intrusive manner. The Module interconnec

tion graph and procedure call graph provide a road map and global view of the

architecture of a module. The Module Abstractor further hides the non-essentials

of the source program and helps to further narrow attention to portions that are es

sential in understanding the source. Annotating fragments while abstracting them

is a natural way to retain the knowledge related to program fragments for further

reuse.

18

References

(Ade81]

(Bar32]

(BBT79]

[Bir86]

(Che83]

(CWW80]

(Fre83]

(Gra81]

(Ker83]

B. Adelson. Problem solving and the development of abstract categories

in programming languages. Memory and Cognition, 9:422-433, 1981.

F.C. Bartlett. Remembering. University Press, Cambridge, 1932.

G.H. Bower, J.B. Black, and T. Turner. Scripts in memory for text.

Cognitive Psychology, 11:177-220, 1979.

Abbas Birjandi. A Rule Based Environment for Software Reuse. PhD

thesis, Computer Science Department, Oregon State University, 1986.

T .E. Cheatham. Reusability through program transformations. In Pro

ceedings of Workshop on Reusability in Programming, pages 122-128,

The Media Works, Inc., Newport, RI, September 1983.

Lori A. Clarke, Jack C. Wileden, and Alexander L. Wolf. Nesting in

Ada programs is for the birds. In Proceedings of the A CM-SIG PLAN

Symposium on the Ada Programming Language, pages 139-145, ACM,

Boston, Massachusetts, December 1980.

Peter Freeman. Reusable software engineering:concepts and research

directions. In Proceedings on Workshop on Reusability in Programming,

pages 2-16, Newport, 9 1983.

A.C. Graesser. Prose Comprehension beyond the word. Springer-Verlag,

New York, 1981.

Kernighan. The unix system and software reusability. In Proceedings

of the Workshop on Reusability in Programming, pages 235-239, The

Media Works, Inc., Newport, RI, September 1983.

19

l
7
l
l

l

·1

l
I
I
I
I
u
J

j

l
)

l
l
. l

I

I
I
J

I
J

I J

j

Li
1

J

[LMW79] R. C. Linger, H. D. Mills, and B. I. Witt. Structured Programming,

Theory and Practice. Addison Wesley, 1979.

[MRRH81] K.B. McKeithen, J.S. Reitman, H.H. Rueter, and S.C. Hirtle. Knowl

edge organization and skill differences in computer programmers. Cog

nitive Psychology, 13:307-325, 1981.

[SA77]

[San86]

(SE83]

[SEB82]

[Shn76]

[Sta83]

[Wir83]

R.C. Schank and R. Abelson. Scripts, Plans, Goals and Understanding .

Technical Report, Lawernce Erlbaum Associates, Hillsdale New Jersey,

1977.

Jorge Sanchez. GrabBag:A Module Data Database. Master's thesis,

Computer Science Department, Oregon State University, 1986.

Elliot Soloway and Kate Ehrlich. What do programmers reuse? theory

and experiment. In Proceedings of Workshop on Reusability in Program

ming, pages 184-191, The Media Works,Inc., Newport, RI, September

1983.

E. Soloway, K. Ehrlich, and J. Bonar. Tapping into tacit program

ming knowledge. In Proceedings of the Conference on Human Factors

in Computing Systems, NBS, Gaithersburg, Md., 1982.

B. Shneiderman. Exploratory experiments in programmer behaviour.

International Journal of Computer and Information Sciences, 5:123-

143, 1976.

American National Standard. IEEE Standard Glossary of Software En

gineering Terminology. New York, February 1983.

Niklaus Wirth. Programming In Modula-2. Texts and Monographs in

Computer Science, Springer-Verlag, Berlin Heidelberg, 1983.

20

	Birjandi_Lewis_86_10_03_A
	Birjandi_Lewis_86_10_03_B

