
TR 86-30-7

urUUEASlTY

5ClEnCE

KNOWLEDGE SOURCES FOR AN INTELLIGENT ALGEBRA TUTOR

William S. Bregar
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

Arthur M. Farley
Department of Computer and Information Science

University of Oregon
Eugene, Oregon 97403

Garland Bayley
Department of Mathematics

University of Portland
Portland, Oregon 97203

l

Q

l
n

lJ
j

1

j

1

j

Knowledge Sources for an Intelligent Algebra Tutor

William S. Bregar*

Department of Computer Science
Oregon State University

Arthur M . Farley

Department of Computer and Information Science
University of Oregon

Garland Bayley

Department of Mathematics
University of Portland

• Present address: Computer Research Laboratory, Tektronix Inc. Beaverton, Oregon

r

l
l
Q

l
l

n

]

l

l

l l

l

j

l

j

Knowledge Sources for an Intelligent Algebra Tutor

ABSTRACT

The focus of this paper is on the underlying knowledge base for an intelligent
tutorial system for high school algebra problems. We present a model of prob
lem solving flexible enough to account for a variety of problem solving behaviors
and general enough to allow new problem domains to be defined easily. The
model is based upon the analysis of protocols between students and expert tutors.
We show how student errors can be monitored and remediated using the model,
and we provide an approach to understanding problem difficulty that can be used
to generate challenging problems and also provides a mechanism for planning
their solution.

I
I
I
I
I

l

u
u

I

u

l
Introduction

What do we expect from an intelligent CAI system? What kind of behavior should an ICAI
system exhibit? In general we would want the system to approximate the behavior of an expert
human tutor. It should be adaptive to aspects of the student's behavior rather than respond
according to a fixed regimen. The system should be capable of following a student's approach to
a problem, furthering it when that approach is reasonable and providing appropriate guidance
when errors occur. The system must be able to determine what knowledge is required to solve a
problem and be able to articulate that knowledge at the right time.

Several systems have begun to demonstrate the potential for providing high quality, in
depth, tutorial interaction. The SOPHIE system (Brown and Burton, 1974) monitored student
behavior on electrical circuit troubleshooting problems. It recognized when a student's
hypothesis could not be supported by prior observations. In that event SOPHIE would take one
of several actions ranging from noting that the student was drawing a conclusion from insufficient
data to providing a set of alternatives to pursue. Thus, SOPHIE instilled proper problem solving
skills by constraining the student to considering a set of hypotheses consistent with previous
observations.

Clancey's Guidon (Clancey, 1979) emphasized representation and utilization of pedagogi
cal strategies in tutoring medical diagnostic problem solving. What kind of tutorial information a
student was given depended on a number of criteria, such as the the student's familiarity with cer
tain factors, elements apparently not considered in the current problem, and the type of goal being
discussed. Based on this analysis, Guidon might state relevant factors to consider or generate a
question for the student that focuses on these factors.

Brown and VanLehn have been concerned with cognitive-based explanations of errors
made by students on subtraction problems. They proposed repair theory as a fundamental cogni
tive framework that explained a large number of observed errors. (Brown and Vanlehn, 1980).
The theory suggests that when a subject reaches an impasse in a problem, he creates a new pro
cedure by heuristically altering the one he has been trying to use. The new procedure fails, how
ever, when neither it nor the old procedure contains the fragment of the correct skill necessary to
solve the problem.

Each of these systems relies on significant knowledge of the problem domain as a basis for
intelligent tutorial guidance. Brown and Burton implemented a complete simulation of the elec
tronic circuit used in SOPHIE. Clancey utilized the MYCIN knowledge base (Shortliffe, 1976)
in GUIDON, and Brown and VanLehn implemented their cognitive model in a rule based system.

A model for algebra word problems

This paper presents a model of problem solving designed to serve as the underlying
knowledge base for an intelligent tutorial system for algebra word problems. Our hypothesis is
that a central component of the knowledge base for a tutorial system in mathematics must be a
problem solver that performs as a student does, both correctly and incorrectly. This knowledge
base should be designed so that the information it contains - strategic, procedural, factual - can
be extracted and presented to a student as necessary. We argue further that the problem solving
model should be based on observed human performance. We see this approach reflected in our
previously cited examples by an increasing emphasis on cognitive models for their domains.

The focus in this paper is on the development of our problem solving system. It is based on
tutorial protocols, from which we derive an information processing model. The model is shown
to approximate human problem solvers and account for several classes of errors. In particular, the
model emphasizes the nature of qualitative processing (Larkin, 1977), that aspect of problem

-2-

solving behavior concerned with the establishment and subsequent utilization of a symbolic
representation of a problem from which a solution can be derived. General, strategic knowledge
is separated from domain specific computational knowledge; both are implemented as rule based
systems which allow declarative access, while providing control over the level of knowledge
detail the system represents. ·

The model operates on a structured, symbolic representation that is the result of reading a
problem statement, classifying the problem into one of a set of known types, instantiating pre
defined schemata associated with that problem type, and incorporating relevant information from
the problem statement. The problem classification phase has been observed and discussed previ
ously by Hinsley, Hayes, and Simon (1977). Our schemata are structured data types such as
those employed by Novak (1976) in the Isaac system in Mecho (Luger, 1981).

From the point at which problem entities have been defined and instances of schemata
created to represent them, the system executes in a rule-based environment where rules match
against aspects of the schemata. Two sets of rules interact to solve problems. These sets are
referred to as computation rules and strategic rules. The former reflect typical expressions of for
mulas for a problem domain; the latter articulate strategies observed in our student-tutor proto
cols. Titls separation of knowledge provides generality of behavior as well as opportunity to tutor
on domain-specific or general problem solving topics independently.

Goals for the model

The design criteria for our model derive from considerations of problem solving abilities
and tutorial requirements. Our system must be able to solve the problems about which it is
attempting to teach and to provide a basis for monitoring and correcting students during a prob
lem solving session. Thus, a major goal for the system is that it be a model of student problem
solving. The system must account for observed problem solving behaviors, both correct and
erroneous, at appropriate levels of expertise and detail. At any level of expertise, the granularity,
that is, the explicitness and "size" of the steps in the solution of a problem, must be of sufficient
detail to provide a reasonable explanation of the process while being general enough to track a
student's solution attempts.

Other important goals for the model include an ability to provide a description of the pro
cess and effects of learning, a theory of problem difficulty, and generality sufficient for applica
tion across different problem domains. Learning in our system can be construed as incremental
alterations or additions to the rule sets. Thus, partially specified rules or incomplete rule sets
stand as indicators of unlearned information relevant to a problem domain. Incorrect rules indi
cate mislearned content. Problem difficulty is a function of which information is included in the
problem statement and the relative complexity and number of rules needed to solve the problem.
Generality is accomplished through the separation of strategic from domain-specific computation
rules. A set of computation rules for a domain can be defined independently from the strategic
rule base, thereby allowing the problem solver to determine solutions for a new domain by
acquiring only domain knowledge.

Tutorial protocols and their anaylsis

The basis for our model of problem solving is an analysis of think-aloud protocols of stu
dents interacting with tutors while solving several representative mixture problems. We concen
trated our analysis on protocols for the following problem:

A vat contains 10 gallons of a 20% alcohol solution. If pure alcohol is added at the
rate of one gallon per hour, how long will it take to produce a 70% alcohol solution?

l
l
l
l

l

j

I
l
I
j

j

j

j

r

n

l

l

I

J

u

- 3 -

This problem is representative of those found in a typical algebra text book. Students tend to find
this problem somewhat harder than one which asks for the result of combining two solutions
where the amounts of the two solutions are known. This phenomenon was noted in several of our
protocols, and we attribute it to the "indirectness" of the goal of the sample problem. Most of the
student subjects (volunteers from first-year, college-level algebra classes at Oregon State Univer
sity) found this mixture problem difficult or impossible to solve. They all recognized that they
had to solve a mixture problem to solve the time problem.

Solutions to the problem reflected several approaches ranging from setting up and manipu
lating a single proportion to determining values for subgoals as generated by means-ends. We
observed behavior ranging from that reflecting a total inability to understand or set up the prob
lem to that which produced a solution in one step. The latter would correspond closely to the
behavior associated with compiled rules as described by Anderson et.al (1981). Between these
extremes, we were able to identify particular behaviors throughout the qualitative phase of pro
cessing. These behaviors result in one or more expressions relating quantities in the problem
statement which can subsequently be solved algebraically to produce a correct solution.

Unlike many studies of problem solving behavior, which utilize uninterrupted protocols of
novice or expert subjects, our protocols consist of interactions between tutors and novice or inter
mediate subjects . There are several advantages to be gained from observing tutors interacting
with comparatively naive subjects. First, by observing tutors and novices, we were able to see
details of behavior on the part of the tutors not generally seen in expert protocols. Specifically, a
tutor ' s reactions to students' errors and misconceptions afford a deeper look at elements of the
tutor ' s knowledge base. This is especially true as the tutor attempts to fill in information
apparently missing from a student's knowledge base. Corrections to a student's erroneous
behavior provide evidence for the identification of expert strategies and necessary elements of
domain knowledge. At the same time, the protocols yield a variety of novice errors, as will be
discussed below. Errors can provide significant insights into the elements and structure of exper
tise. Understanding the nature and causes of these errors is important from the standpoint of
modeling cognition as well as for its implications for instruction (Brown and VanLehn,1980 ;
Brown and Burton,1978; Matz,1982) .

Our protocols strongly supported the observation of Hinsley, Hayes and Simon (1977) that
problem type recognition occurs as a primary reaction to reading the problem statement. Other
types of problem solving behaviors we noted include entity construction - the development of a
representation for problem elements and their attributes, instantiation of entity attributes -
where known and unknown values (variables) are bound to entity attributes, goal determination
- the identification of the unknown whose value will be a solution to the given problem (includ
ing subgoal determination), value computation - combining known values according to domain
based relations among attribute values, and equation creation - the generation of an algebraic
relation among selected problem attributes. Evidence for these behaviors is presented in the form
of annotated protocol fragments in figure 1.

- 4 -

Following are fragments of transcriptions of two of the student-tutor protocols analyzed in this
study. S.n and T.n refer to student and tutor remarks, respectively.
This first segment deals with constructing appropriate enJity representations : of illitial and fin.al soluJions. Note filling ill of directly
compuJable attribute values (8, 2 and later 30%) in S.J and S3. We refer to this as value computation.

S.l OK, the faucet ... 1 gallon per hour ... 10 gallons ... 20% ... You want to get to 70% solution . OK, 10 gallons, 20% solution
would mean that 8 gallons are water and 2 gallons are alcohol.

T.l That's right

S.2 OK, if you want to get to the point where 70% ... 2 gallons ... if you add a gallon ... OK, that'd be 3 to 10, no 3 to 8 so yoo
have to keep adding until you get to the point where you have 70%.

T.2 Can you express that somehow - use some sort of a relation. Maybe I might suggest that yoo might draw a picture showing
what yoo have at the beginning and what you have at the end.

S.3 OK. OK, this is 8 gallons of water 2 gallons of alcohol total of 10 gallons and at the end, now, 70% alcohol and we get 30%
water . OK, so 8 to 2.

T.3 See if yoo can relate the quantities in this solution to the quantities in this one, somehow.

This segment deals with goal determination and creating a variable reference for that unknown quanJity. (S.13)

T.9 Now go back to the diagram for a second. You started out with something and you ' re gonna end up with something . What
takes place in between the time that you're here and you're here.

S.10 The addition of 100% alcohol.

T.10 Howmuch?

S.11 1 gallon per hour

T.11 But bow nrucb precisely. Do you know?

S.12 No, that's what I can't figure .

T.12 Well, maybe that tells you, suggests to yoo what you might want to use as an unknown in this problem.

S.13 OK, So we use x as the amount of alcohol added .

This segmenJ deals with establishing an algebraic expression for the compuJation nde about percentages of soluJions when the
amounts involve 1D1.bwwns.

S.23 OK. Then you 're going to add alcohol to this.

T.23 OK, how much? You don't know.

S.24 To gel the part where you have 7 ... So you're going to end up with more than 10 gallons. You don ' t know how many gallons
yet

T.24 But yoo do know what that "how many gallons" is don't you? You have a ... well go ahead. Don't let me confuse you. Go
ahead and write what you were going to start to write.

S.25 OK . So this is the same as the ... no if you ... would be 7, 70%.

T.25 Ofwhat?

S.26 Of 10. No, we don't know. 70% of the total.

T.26 Which is what? What is that total?

S.27 10+ x

T.27 Ah hah! That's exactly right!

S.28 OK.

T.28 Now let's go back to this part again. I'm not sure about this 2/10 over here. What do you think it should be?

S.29 OK, it would be 20% .

T.29 Of?

S.30 (20% of) 10 plus x • 70% of 10 + x

l

n

l

l

j

J

I
J

j

J

l
r

fl

l
l
n
l

l

j

J

l

J

J

-5-

New protocol : This first segmenl deals wiJh subgoaling-needing the alcohol amount to gd time.Note use of example in T.2 and S.2.

T.1

S.2

T.2

That's the idea. Right So in theory, that can happen. It seems reasonable that ifwe let it run long enough that 110lution would
become more and more alcohol so that at some point you'd reach 70% . And what we want to know is (what are we asked to
find here) how long will it take? Suppose you knew how many gallons it took?

Well we know it's one gallon per hour of pure alcohol. Soooo ...

Suppose you had to add 25 gallons to reach the 70% solution .

S.3 It would take 25 hours if you had to add 25 gallons of alcohol.

T.3 In addition to what's already in there you ...

S.4 You want to make it 20% .

T.4 Would that tell you bow many hours?

S.5 Yeah, you could figure it out

This is dealing with computation rule knowledge for compuJing amount given ~rcenl and quanlily .

T.8 Of the 10 gallons in there at the start, do you know mapy gallons of alcohol there are? There are 10 gallons of a 20% solution.

S.9 Well, there's 20% of 10.

T.9 OK .

S.10 Which would be .02 times 10 which would be .2.

T.10 How much would 50% be? How much would 10% be? Let me ask you that.

S.10 One .. oh two.

T.11 OK, so that means there are two gallons there at the beginning .

S.12 So there's two gallons. Seems like I could set up a proportion .

Establishing 101known as goal (S.26) and variable reference lo iJ (f 32, S33).

S.26 Well somehow we have to figure out how many gallons of alcohol there are in a 70% solution.

T.26 UmHm, that's right, that'd help . Well how nruch ... let's see now what's in the solution when we're all done .? There's eight
gallons of water and there's a certain amount of alcohol . So that would be the total volume.

S.27 So we want to find 70% of 10, because, Oh no.

T.27 Well there are going to be more than 10 gallons aren't there. All right we don't know precisely what that amount is do we?

S.28 No.

T.28 All right Let's use a variable name for something here . There are only two things in the solution, water and alcohol .

S.29 OK

T.29 At the start there are eight gallons of water and two gallons of alcohol. Now we're going to add some more alcohol. And
that's all that's being added. That's the only Olher thing being added.

S.30 Like if alcohol was x

T.30 xis the

S.31 Alcohol to begin with. The two gallons .

T.31 All right, now, would that be a good name for a variable? Sorry, would that be a good variable quantity? It's not a variable, is
it 7 The amount of alcohol to start is a constant, it's two. The amount that you add is some unknown.

S.32 OK.

T.32 Suppose you let x be the amount that you're going to add.

S.33 OK, alcohol added . So then you have two plus x.

This segmenl deals wiJh creating the necessary algebraic equation for the relationships in the final sollllions .

T.42 Well tell me what you do know at this point, what do you know about the percent of alcohol in the total 10lution?

S.43 That's it .7.

T.43 Right, so the amount of alcohol ... is 70% of the total solution .

S.44 Oh, so 2 + x is the same as .7 ...

-6-

T.44 Well you have a proportion here that the alcohol, the number of gallons of alcohol to the total is equal to .7 over IIO!Tlething and
we're not sure what you do there. Well tell me in words what you want What do you want to have in words here? What's the
idea of this equation?

S.45 OK, this is the amount of alcohol and this is the total solution. So, the amount of alcohol is the proportion of the amount of
alcohol to the total solution is the same as the percent of the alcohol to the total which would be ...

T.45 As a percent though, right? It's the percentage of alcohol, which is 70%, to the total solution, which would be 100% right? So
it's 100 as a decimal ... OK, fine.

S.46 I could put 70 as 100

Figure 1. Protocol Fragments

l

l
Q

j

J

j

J

u
l
l

I
I l

j

J

J

l
j

-7-

Subjects with previous knowledge of the domain could be expected to already have a gen
eral representation of problem entities that they could begin to instantiate. Similarly, equation
building could also involve the instantiation of previously defined relations known to be relevant
to the problem type. Incomplete entity representations or failure to find correct, consistent instan
tiations of the attributes of these representations led to one class of student errors.

We interpreted a pattern of behavioral actions as a problem solving strategy. Sequences
dominated by computation from known values reflect a forward-directed strategy most often
employed by inexperienced problem solvers. Forward-directed strategies are based upon the
computation of new values from known values until the value for the goal attribute has been
determined. Another weak method we observed was hill-climbing, wherein a student tried a suc
cession of values for the goal attribute, searching for a value that would make a domain relation
involving the goal attribute and other, known attribute values consistent. Sequences were
observed which involved substantial goal setting and subgoal generation in a backward-directed
search from the original goal; such sequences are referred to as means-ends strategies (Newell
and Simon, 1972). Finally, sequences consisting of the · selection and instantiation of a relevant
equation whose solution directly solves the problem are said to be expert-level strategies similar
to those noted by Larkin, McDermott, and Simon (1980).

It should be noted that in a given problem solution, more than one problem solving strategy
is often identified. Mixtures of strategies, are more likely to be observed at the novice to inter
mediate level. Thus, a model capable of generating or monitoring problem solving behavior in an
ICAI system must represent multiple strategies and account for their co-occurrence in problem
solving sessions.

System Architecture

In this section we describe the architecture of the problem solving component of our sys
tem. We assume an initial translation phase that results in the creation of an internal representa
tion which is then utilized in problem solving.

Our model of algebra problem solving consists of two cooperating rule-based systems
matching elements of a structured problem representation. These systems consist of strategic
rules and computation rules, as mentioned earlier. They represent, in an explicit manner, the
knowledge sources we observed in protocols of subjects solving algebra word problems. A third
system of algebraic rules solves equations produced during the qualitative processing phase for
specified variables. A detailed description of the algebraic rule system can be found in Lantz,
Bregar, and Farley (1983).

The strategic rules represent the observed general problem solving strategies and levels of
expertise. The computation rules represent domain-specific knowledge of relationships among
problem entity attribute values; they are defined as part of a problem-type frame. In addition to
computation rules, the problem-type frame contains entity schemata, relational schemata, and
linguistic features. Entity schemata are structured representations of objects found in a given
class of problems. Each schema provides a set of attribute slots for value and scale. Unfilled
slots represent unknowns, some of which will become goals for the problem solver. Relational
schemata indicate how problem entities are interrelated according to semantically meaningful
relations of the domain.

For example, in distance-rate-time problems, one expects to find one or two moving objects
with attributes such as rate, direction of travel, and time constraints. There are several forms or
sub-classes of distance-rate-time problems such as those in which one object overtakes a second
or in which an object is traveling in a moving substance. The relational schemata specify the

l

- 8 -

correspondence between objects in a problem statement to entity schemata and state the key rela
tionship between them. Again, in a DRT problem, two objects, 500 miles apart, traveling in
opposite directions, would be entered into an "opposite-direction-relation" as

(type oppposite-direction-relation
first-object car_ 1
second-object car_ 2
distance-apart 500)

In mixture problems we define three types of entities - substances, solutions, and compo
sites. Solutions have parts which are substances, while composites have parts which are solu
tions. We restrict ourselves to discussions of solutions and composites that have only two parts .
Substances are atomic (i.e., have no parts). For example, the schemata for substances have the
form

substance
name:
proportion-value:
amount:
type-value:

<String>
<decimal>
<decimal>
<substance-type>

The schemata for solutions include pointers to the substances they contain, as well -as specifying
the measurement units:

solution
name :
amount:
units:
part-sub 1:
part-sub2:

<String>
<decimal>
<measure>
<substance name>
<substance name>

Attribute values are directly available from the problem statement, can be computed from
the problem statement, or represent (current) unknowns. Unknown attribute values become goals
and subgoals for the problem solver. The relational schema for mixture problems is called equiv
and identifies two solutions which are equivalent, represented by what we call a composite
solution. The composite-solution is a solution which can be viewed as being comprised of two
solutions or, alternatively, as two substances. Note that this implies that solutions can be parts of
composites and substances can be parts of solutions. This establishes multiple perspectives on
the same problem element, and thus the possibility of setting up multiple computations involving
the same quantity . The problem solver can then apply computation rules in appropriate combina
tions to solve the problem in a variety of ways.

The linguistic features in the problem-type frame consist of a domain dependent lexicon of
words and phrases common to the problem type . The lexicon is employed by an augmented tran
sition network parser which interprets natural language statements of problems and translates
them into the schemata (Rapp, 1986). We will not discuss this component further in this paper,
focusing our discussion on the interaction of entity representations with strategic and computa
tion rules in the production of the variety of problem solving behavior necessary for tutorial sys
tems .

l
l
l
7
n
l
1

I

J

j

J

j

l

I
l

Q

l

l
I
I
I
I

II
ll
l

J

j

J

- 9 -

Computation rules

A computation rule represents how the unknown values of an entity attribute can be com
puted in terms of the values of other appropriately related attributes. Constraints on the attributes
provide important matching information to the problem solving system as it attempts to bind
entity attributes to computation rule variables. Appendix A contains the set of computation rules
used for mixture problems. Each rule has five pans: structure, constraints, inputs, outputs, and
computation. The structure part describes a subset of the relational schemata associations; the
structure and constraints are, in effect, the conditional aspects of the rule. Constraints specify res
trictions on bindings of attributes to variables named in the structure part. Inputs are attributes of
the entities whose values are involved in the computation; the resultant value is that of the output
entity. The actual computation given in the computation part of a rule can involve arbitrary con
stants, as well. For example, computation rule CR5 computes the proportion of one part of a
composite, given the proportion of the other part.

Strategic rules

The strategic rules provide the basic control facilities in the system and reflect our observa
tions of problem solvers, ranging from novice to expert. Four sets of strategic rules encompass
the range of approaches to problem solving we observed; these rule sets are presented in Appen
dix 8.

The least expert level is referred to as forward-directed (FD) and implements an undirected
search from known values. Only FDl has a notion of a goal to be solved. Otherwise, the mode
of operation is to compute a value if possible (FD2) or to select a computation rule having at least
one known (numerical) value for one of its inputs (FD3) which is then considered by FD2.

A somewhat more intelligent strategy is embodied in the hill-climbing rules (HC). This
strategy can be characterized as a heuristic search over the value space of the goal. The key
aspect of this strategy is the interaction between rules HC2 and HC6. HC2 will never be invoked
unless HC6 has been, previously. Rule HC6 looks for a computation rule such that there is an
unknown goal variable on the right-hand side, and all other attributes have known values. Rather
than solving for the goal variable algebraically, the rule stipulates that a guess be made for the
goal attribute's value and the computation of the rule is then performed. If the guess is correct,
HC 1 fires and the goal is known. Otherwise, rule HC2 will continue to fire until an answer is
found (or time runs out). The adjustment of value produces the hill-climbing effect, increasing or
decreasing the value as appropriate to move the value closer to the goal value.

At the next level are the means-ends (ME) rules (Newell and Simon, 1972). In general,
these rules solve problems through recursive application of subgoaling, working backward from
the original goal to known attribute values. Rule MEI determines if a solution has been found
for the current (sub)goal. Failing that, rules ME2 and ME3 look for a computation rule that either
computes the quantity in question or incorporates it in the computation of another quantity,
respectively. These are referred to as direct or indirect computations, respectively . The order of
the rules reflects the observed difficulty of these solution strategies. Rule ME3 fires when a com
putation rule has been fully instantiated. Means-ends is incorporated into rule ME4 which posts
unknown variables in a computation rule as the new subgoals for the system and an implicit
"push" operation to a new problem occurs. Rule ME2 picks a subgoal to process following an
application of ME4. Finally, rules ME6-ME8 invoke the algebraic subsystem to create and solve
equations representing computation rules which could not be fired because they were not entirely
instantiated . This corresponds to an observed behavior in which subjects consciously transformed
a relation into an equation before attempting to find a value for the goal variable.

- 10 -

The highest level strategy is manifested by the expert rules (EX). EX2 captures the notion
that an expert can generally move directly to a known algebraic relation relevant to the problem
and its variables and solve that equation. If the equation cannot be solved with the information
available, subgoals must be created to provide the additional values necessary (rule EX3).

An example

To clarify the concepts presented thus far, we give an annotated example of the system
solving the mixture problem used in the earlier described protocols:

A vat contains 10 gallons of a 20% alcohol solution. How many gallons of pure
alcohol must be added to produce a 70% solution?

We then compare this with a student-tutor protocol of the same problem.

The complete example is presented in_ figure 3. Figure 2a shows a representation of the
stated mixture problem. Attributes whose values are represented by question marks are those for
which no values are given directly in the problem statement. These may later become goals,
based on decisions by the strategic component. Starred attributes mark those which are computed
by applications of computation rules as the schema is being built We have referred to this filling
in of immediately computable values as spontaneous computation. Such behavior occurred
repeatedly in the tutorial protocols . Figure 2b gives a diagram showing the relationships among
the entities, substructures of which are utilized as matching criteria for the computation rules.
Individual rules utilized in the example will be presented and explained as they are used .

l
l
l
l
u
1

. I
)

j

j

J

J

J

l
l
n
n
I
l
n
I
j

I

l

j

1

J

I

J

solution
name: START
amount: 10
units: gallons
part-subl: START.Pl
sub 2: ST ART.P2

substance
name: ST ART.Pl
prop-val: 0.2
amount: 2*
type: alcohol

substance
name: ST ART.P2
prop-val: 0.8*
amount: 8*
type: water

equiv
name: RESULT'
sol 1: START
sol 2: ADDED
comp: RESULT

solution
name:ADDED
amount: GOAL

- 11 -

units: gallons
part-subl: ADDED.Pl
sub2: ADDED.P2

substance
name: ADDED.Pl
prop-val: 1.0
amount:?
type: alcohol

substance
name: ADDED.P2
prop-val: 0
amount: 0
type: water

Figure 2a. Entity schemata for a mixture problem.

RESULT' {Composite)

Start Added

~ ~

solution
name: RESULT
amount:?
units: gallons
part-subl: RESULT.Pl
sub2: RESUL T.P2

substance
name: RESULT.Pl
prop-val: 0.7
amount:?
type: alcohol

substance
name: RESULT.P2
prop-val: 0.3*
amount:?
type: water

RESULT (Solution)

Result.P1 Result.P2

Start.P1 Start .P2 Added.P1 Added.P2

Figure 3. Annotated example.

Figure 2b. Structural representation of entity schemata. Note that RESULT' and RESULT are in
the equiv relation.

2.

3.

4.

5.

6.

RuleME2:

Inputs :
Outputs:

Comment:

RuleME4:

Inputs:
Outputs :
Comment :

RuleME2 :

Inputs :
Outputs:

- 12-

Given a goal entity, select a rule computing its value as output and determine consistent
entity bindings .
amount(ADDED)
SelectCR2
P2 • amount(ADDED)
Pl• amount(STAR1)
E - amount(RESUL T')
The goal is amount(ADDED), which is part of the resultant solution. CR2 is selected
because it computes the amount of a part. Entities are bound to CR2 rule arguments as
shown. The goal, amount(ADDED) is recognized as being a part of something. The only
entity descriptor in which ADDED is listed as a part is RESULT', the final solution
viewed as a composite . Its other part is START. Hence, the bindings for CR2 are
assigned. The computation is

amount(ADDED) • amount(RESUL T') - amount(ST AR1).

Given a bound computation rule with unknown attribute value inputs, make the unknown
input attributes goals.
CR2 with bindings as above
amount(RESUL T')
CR2 is fully bound, but not all entities have values. In particular, amount(STAR1) is
known, but amount(RESULT') is not Therefore, amount(RESULT') becomes the new
subgoal.

Given a goal entity, select a rule computing its value as output and determine consistent
entity bindings.
amount(RESUL T')
Select CR8
amount(RESULT') • amount(RESUL1)

Comment: CR8 states, in effect, that if a composite and a solution are equivalent, then their amounts
are equal. This will ultimately allow the system to pursue two different ways of comput
ing the same quantity.

RuleME4

Inputs:
Outputs:
Comment:

RuleME2:

Inputs :
Outputs :

Comment :

Given a bound computation rule with unknown attribute value inputs, make the unknown
input attributes goals.
CR2 bound to amount(RESUL T') • amount(RESUL 1)
goal = amount(RESUL 1)
Again, a means-ends approach is employed to establish a new subgoal.

Given a goal attribute, select a rule computing its value as output and determine con
sistent entity bindings.
amount(RESUL 1)
selectCR4
E • RESULT (the 70% solution)
P • RESUL T.P2 (the 30% part of E)
Proportion(P) • .30
The current goal is amount(RESUL1). CR4 states that given a solution or composite E
having a part P, the amount of P, and the proportion of E that P represents, then the
amount of E can be computed as

amount(E) • amount(P) / proportion(P)

Thus the equation

amount(RESUL1) -amount(RESULT .P2) / .3

is produced; amount(RESUL T.P2) is unknown. Note that the bindings could have been:

P. RESULT.Pl (the 70% part of E)
Proportion(P) • .70

Rule ME4 : Given a bound computation rule with unknown attribute value inputs, make the unknown
input attributes goals .

Inputs: CR4, bound as above

l

n
n
l
]

l

j

j

]

j

j

j

J
J

n Outp.its:
Co=ent:

7. RuleME2 :

n Inputs:
Outp.its :

l
n Connnent:

n
1

n

8. Ru!eME3:

Inputs:
Outp.its:
Comment :

9. Rule MEI :

Inputs:
Outp.its:

l

J
J

J

-13-

111bgoal • amount(RESUL T.P2)
Obvious

Given a goal attribute, select a rule computing its value as outp.it and determine con-
sistent entity bindings.
amount(RESUL T.P2)
aelectCR7
C-RESULT'
S-RESULT
Pel• START
PC2-ADDED
PART_OF_PCl • START .P2
PART_OF_PC2-ADDED.P2
CR 7 is a crucial comp.itation rule. It says that, given a oomposite composed of two solu-
tions, and a solution equivalent to the composite, lhe amount of a aubstance in the
solution/composite is equal to the sum of the amounts of that substance in each of the two
solutions making up the composite. Obtaining consistent bindings for this rule means
insuring that the resulting computation . operates on the correct aubstances. In this
instance, the instantiated rule produces lhe computation :

amount(RESULT.P2) • amount(START .P2) + amount(ADDED.P2)

Note that values for the quantities on the right hand side are known; Ibey are 8 and 0
respectively, from the entity descriptors.

CR3 could have been selected here, which, with the proper instantiation would compute

amount(RESULT.P2) • .30(amount(RESULT)).

However, this is, effectively, the same computation as in step S, which would lead to a
loop. An expert will avoid the loop; a novice might not. A meta-rule can be inferred
from this: If a set of bindings yields a comp.itation equivalent to one previously gen-
crated, do not use iL

If all inputs for a bound comp.itation rule have known values, execute lhe computation
rule.
CR7 with bindings as above
amount(RESUL T.P2) • 8
Firing CR8 whose right hand side is 8 + 0 gives 8. The amount(RESULT.P2) is now
known.

Given a goal attribute with a known value, note solution and utilize answer (report result
or propogate up goal tree).
Previously bound CRS, amount(RESULT.P2) • 8
amount(RESUL T) • amount(RESULT.P2) / .3

• 81 .3
- 26.(,66

Successive iterations ofME3 and MEI produce the remaining actions u follows :
Fire CR8. amount(RESULT') • amount(RESULT)

- 26.li66

Fire CR2 amount(ADDED) • amount(RESUL T') - amount(ST ART)

• 26.li66 - 10
• 16.li66

- 14-

Although the example is largely self-explanatory, we point out that it was restricted to
operate using only a means-ends strategy. In fact, nothing prevents the system from invoking any
of the other strategic rule systems. The capability for mixing strategies is especially useful for
monitoring problem solving in a tutorial session. Furthermore, the system is not limited to the
solution shown. The selection of computation rules in the example is arbitrary, and any of a
number of different sequences could have been executed. Again, this flexibility is important in a
system designed to emulate the performance of students in a problem solving situation.

Comparison with a live protocol

Figure 4 contains the transcript of a tutorial session wherein the tutor (f) and the student (S)
communicated through a pair of computer terminals; all of their interactions were recorded on
line. We were interested in observing communication over a channel that more closely approxi
mated that available in a typical intelligent CAI context

T.1 The problem you are to solve is as follows : A vat contains 10 gallons of a 20% alcohol solution. How many gallons of pure
alcohol must be added to obtain a 70% solution?

S.1 I have a 20 % solution and I must add another complete solution to it to obtain the 70% solution. Is it important to know how
much in gallons is in the 70% solution.?

T.2 Yes, although that is not what you are to find to answer the problem it certainly can be used to find the answer.

S.2 I have twenty percent or two gallons of alcohol in the first solution. I have 100% alcohol in the second solution , and 70% in
the third . 100% equals one. Help!

T.3 You told me you have 2 gallons of alcohol in the first solution. You also told me you have 100% alcohol in the second solu
tion . How many gallons of alcohol do you have in the second solution?

S.3 If I have 70% sol. Then I have .7 times X number of gals . giving me the number of gallons of alcohol . I know there are more
than two. There are 8 gals . of water total. 30% equals 8 gals. Now I have .3 times X number of gallons giving me 8 gallons .
So 8 divided by .3 should give me the total solution.

T.4 Which is how many gallons?

S.4 26.6gals .

T.5 Is that the answer to he problem or would you like to continue? To remind you, the problem is•- A vat contains 10 gallons of
a 20% alcohol solution. How many gallons of pure alcohol must be added to obtain a 70% solution .

S.5 I want to go on. The problem (sic) I just gave was only the total number of gallons in the third solution . Now I can multiply .7
times 26.6 giving me 18.62 . That is the amount of pure alcohol. 18.62 gals.

T.6 18.62 gallons of pure alcohol in which solution?

S.6 I forgot to subtract the two from the first solution. This would make the answer 16.62 gals . of pure alcohol.

T.7 Correct, you did a great job.

Figure 4. Transcript of tutorial session

Comparing the transcript to the example, one can see that at S.1 the student pursues a
subgoal to find the amount of 70% solution. This corresponds to step 2 in the example . At step
S.3 the student sees that the number of gallons of alcohol in the 70% solution is .7 of the total
amount She then notes that there are 8 gallons of water (corresponding to example step 8), that
the water constitutes 30% of the solution, and that the amount of solution, therefore, is 8/.3
(example step 9) . . She then computes the total, computes the amount of alcohol in it, and sub
tracts the initial amount of alcohol to obtain her final answer. Our example computes these
amounts somew:iat differently because it uses the fact that the amount of the original solution
was 10 gallons. The principle, however, is similar, and the system easily could have chosen com
putation rules (namely, CR3 and CR2) which would have yielded the same computation.

l
l
l
n
l
l
7

J

]

j

J

}

J

n
n
l
l

I
I

lJ

I
u
J

1

- 15 -

Our rules actually explain and provide more detail than is explicitly stated by the student
subject. For example, she states that there are 8 gallons of water in the 70% solution, whereas our
example actually shows the computation that must have taken place. Luger (1981) noticed a
similar phenomenon in comparing traces of the Mecho system to human protocols.

Entities represented by descriptors in our system are referred to as nominals by the subject.
In S.1 she mentions the "20% solution", "another solution" (to be added), and "the 70% solution".
These are now part of her problem solving context, although they are not given specific names.
Clearly, she has associated attributes with these entities not unlike those ascribed to them in the
entity descriptors we define.

Finally, she applies computation rules without making the transition (formally) to equa
tions. This corresponds to our example which obtains a solution by simply "reasoning" about the
relations stated in the appropriate computation rules. Our system thus can derive solutions in
terms of the entities and their relationships (part-whole, solution-component, etc.) without for
mally declaring variable names or utilizing internal names. Internal names are viewed as pointers
to the objects involved and further to the structures representing associations among them.

Levels of expertise

Our model supports the widely held assumption that experts solve problems requiring mul
tiple step solutions by utilizing some kind of planning mechanism (the strategic rules). Novices,
on the other hand, either have no plan at all or attempt means-ends only to encounter a snag and
flounder. The protocols show the expert tutors teaching and reinforcing a means-ends strategy.
This would appear to stand somewhat in contrast to Larkin et al. (1980) who claim that experts
tend to utilize a forward-directed approach to problem solving. We would explain this by noting
that tutors would or should be attempting to support a student's line of reasoning, if it were
relevant. Furthermore, it would make sense to explain the derivation of a problem solving step
by reasoning backwards from the next attainable step in order to save explaining why all the
unchosen forward-directed steps were eliminated from consideration. Expert-level strategies also
require a familiarity with domain computation rules not yet realized by novice student, and prob
ably reflect the compilation of prior means-ends determined solutions into complex computation
rules.

Our protocols further show that students who have no plan at all or who do not fully under
stand the relationships among problem entities have a tendency to fall back on familiar computa
tions, even if they are incorrect or irrelevant. The student takes whatever quantities have been
stated in the problem and attempts to compute whatever he can (as in the FD strategy) even if the
computation is inappropriate or the quantities have not been correctly bound. This would imply
that the student does have at least a partial set of computation rules, but his strategies and struc
tural constraints on computation rule invocation are not fully specified.

Another feature which differentiates expert from novice behavior is the facility with which
experts apply algebraic manipulations to instantiated rules to derive relationships between an iso
lated unknown and other attributes. Novices, on the other hand, do not appear to notice the rela
tionship between a rule and the algebraic expression of that rule. Our system, therefore, distin
guishes between instantiation, the binding of problem entities to arguments in computation rules,
invocation, the performing of the computation part of an instantiated rule, and equation forma
tion, the changing of the dynamic creation of value expressed by a computation rule into the
static relation among values expressed by an equation. An explicit operation effects the transfor
mation of a rule to an equation; this is accomplished through the application of strategic rule
ME6. Evidence for this activity is observed repeatedly in the protocols, as subjects create vari
ables and equations involving those variables.

- 16 -

Equation formation need not result in any substantive change in the meaning of a rule. It is
intended more as a change of perspective - viewing the rule as an object manipulable by the
rules of algebra. In keeping with this philosophy, the system does not allow a computation rule to
be manipulated directly. When manipulation is necessary, the algebraic rules are invoked to
create the equation coresponding to a particular rule, then to manipulate it or possibly combine it
with other similarly created equations to solve for a specific variable. Note that this allows mark
ing an aspect of a computation rule as having a variable name associated with it so that this same
name can be used consistently in other equations.

Misconceptions and errors

While modeling correct problem solving may help to explain a large part of problem solv
ing behavior, it does not always account for the difficulties people often have in solving prob
lems. It is clear that until valid procedures are well establised, a variety of erroneous procedures
can be invoked and executed, which will, ultimately, have to be corrected.

The identification and remediation of errors in problem solving has been the subject of
significant research efforts. Stevens, Collins, and Goldin (1979) augmented original work on
misconceptions from the Scholar system (Carbonell, 1970) with a taxonomy of misconceptions to
be treated in a Socratic dialogue. The Buggy system (Brown and Burton, 1978; Burton, 1982)
emulated errors ("bugs") in subtraction through a procedural network of correct and incorrect sub
skills. They further derived mechanisms for recognizing single and multiple bugs. Brown and
VanLehn (1980) proposed a theory (repair theory) to explain the derivation of erroneous pro
cedures and Matz (1982) gives a process model for the development of errors in algebra. At the
procedural level Genesereth (1982) employs a plan recognition scheme to debug user's miscon
ceptions using a symbolic algebra system.

We are currently interested in two classes of erroneous behavior evident in processing alge
bra word problems. We refer to these as interpretation errors and procedural errors. We are also
investigating aspects of problem difficulty and how they affect translation and procedure.

Interpretation errors

Our tutor-student protocols have indicated several kinds of difficulties incurred by problem
solvers in the translation process. Some general characteristics of these include

• difficulties in identifying problem entities and their attributes

• failure to determine and establish correct relationships among problem entities

• inability to translate qualitative information to quantitative information

These errors are semantic in nature. The first can be attributed to a basic lack of knowledge
about the problem domain. Of course, partial knowledge might allow a subject to identify enti
ties but not all their attributes. On the other hand, students shouldn't be expected to process prob
lems in a domain about which they have absolutely no knowledge. Clearly, the entity schemata
in our system provides adequate information for monitoring a student's ability to identify all the
attributes necessary to instantiate them.

Establishing · correct relationships among problem entities involves a process by which
problem entities are bound to (associated with) the corresponding abstract entity in a computation
rule. In our computation rules, there is a structural constraint which must be. satisfied before
problem entities can be associated with rule entities. Additional tests such as equivalence rela
tionships among entities in question, algebraic constraints, and simple dimensional constraints
can ensure that proper quantities are being combined or operated upon.

1

l

l

l
l

l
j

J

J

J

J

J

1

I
j

lJ

J

I

u

l
l
l

- 17 -

Finally , the inability to translate qualitative to quantitative information involves processes
such as those for deducing the correct mathematical operator from the text of the problem or
assigning propr and consistent units to entities in an expression. Many of these correspond to the
conversions described in STUDENT (Bobrow, 1968). As part of the mechanical translation pro
cess (Rapp, 1986), our system can flag elements of the problem statement and associate with
them the correct operation. These flagged elements can be used in hints, when necessary.

Procedural errors

Procedural errors appear to be related to an improper use or lack of application of strategic
processes. In particular, we note errors deriving from

• failure to recognize or establish problem goals

• failure to establish subgoals where appr~priate

• application of incorrect rules

Each of these procedural errors can be related to a phase in the problem solving process.
Establishment of problem goals should occur during the intial translation phase in the reading of
the problem. There are well-known cues in problem statements that can be pointed out to a stu
dent having difficulty determining a problem goal.

Failure to deal with subgoals is not surprising in light of studies such as that by the National
Assessment of Educational Progress (NAEP, 1977) which show that teen-agers have difficulty
solving problems that require more than one processing step. One hypothesis for this
phenomenon is that students are unaware that a subproblem can be processed exactly the same
way as the main problem and the result can then be propagated upward. Our system, with its
emphasis on a means-ends strategy, can easily suggest a subgoal (an unknown from an entity
descriptor) and proceed to establish a context within which the subgoal can be solved.

The application of incorrect rules is generally results when a student attempts to use a rule
· for which he has only a partial understanding. This most often occurs with computation rules,

where operations are confused, or subcomputations within the rules are not complete . For exam
ple, several students were observed to compute proportions by adding percentages. They did not
multiply the quantities of which the percentages were taken.

We account for errors of this type by associating with each computation rule, a set of devia
tion rules which represent common misinterpretations of the base rule. The concept of deviation
rules is taken from Goldstein (1979). A given deviation rule may be associated with several com
putation rules.

An example

In figure 5, we present a partial protocol of a student (S) interacting with a tutor (T) on a
representative story problem, and in the following paragraphs we show how our representation
could be employed in an automated system for identifying student errors.

- 18 -

Tl : OK, You should be getting this message. Here goes. The problem you are to solve is as follows : A vat contains 10
gallons of a 20% alcohol solution. How many gallons of pure alcohol must be added to obtain a 70% solution?

Sl : Help

T2: I was beginning lo expect that! Well, what is it you are trying to find?

S2: Does a 20% solution imply that there are 8 gallons of water and 2 gallons of alcohol?

TI : Yes. Now, can you tell me what you are trying to find?

S3: I'm just hunting around rather randomly for how much more alcohol needs lo be added to the solution . I am then
doing some dividing to try to come up with the new percenL But I don't come out with an even addition amounL

T4: Can you identify the different quantities involved in this problem?

S4: What do you mean by quantities?

T5 : The various things that are being combined and produced . For example, can you state what the particular goal of
this problem is. That is, what does it want you to figure out?

S5: How many gallons of alcohol must be added. I need an equation because I'm not coming up with it by trying to use
logic. What do I start with as usable variables lo begin with?

T6: OK, You know what you are looking for - how many gallons of alcohol must be added. You probably will need an
equation. How does the amount of alcohol you are going lo add relate (algebraically) to the amount you are starting
with?

S6: 20% + 50% = 70%. Is that what you mean?

TI : here are a couple of things here, let's do them one at a time. First, the 20% refers to a twenty percent solution.
What is the amount that it is 20% of?

S7: The 10 gallons.

TS: OK. If you want to refer to 20% of some quantity like 10 gallons, how would you write that?

S8: .20 water or 8 gallons . I'm not sure what you mean.

19: Suppose you didn't know that there were 10 gallons of solution . If you were to express that unknown quantity and
refer to the amount of alcohol in it, how would you do it?

S9: .20 X where X is the unknown .

Tl 0: RighL So if you substituted 10 for X you'd have written what I meanL So, now let's look at the rest of the relation
you wrote earlier (.20 + .50 ~ .70) . What does the 50% refer to?

SlO: .S is how much more alcohol is added to bring the total to 70. But that isn't correct because we're talking dilution .
The amount of solution is also increasing . Help.

Figure 5. Student-Tutor Protocol

l
l

l

n

j

I
1
j

j

l
T

l
l

l

n
I

I

J

I J

J

I
J

j

- 19 -

Interaction S6 could be flagged as an incorrect instantiation of computation rule 1, caused
by using only percents in a rule that requires amounts. When at an impasse in solving a problem
students often interpolate from a known rule to allow them to continue (Brown and VanLehn,
1980, Matz, 1982) which would account for such an incorrect instantiation.

As can be seen at interactions S6 and S 10 the student has missed or ignored the fact that
pure alcohol is a 100% alcohol solution. In fact, the student's equation in S6 states the starting
and ending proportions and a proportion (.50) which completes the equality. He fails to account
for the pure alcohol and assumes that percents can be summed even when they may represent pro
portions of different quantities. Assuming that the student was attempting to establish

.20(10) + .50(x) = .70(10+x)

and that there exists a deviation link in the genetic graph for the quantities rule indicating that the
percent coefficient be written and summed iridependently, the error can be discovered by the sys
tem in this case and noted to the student.

If the deviation link did not exist, a search for whether one of the correct rules had been
used incorrectly could find that

.20(10) + l.0(x) = .70(10+x)

is very close to the relation above. The actual interaction (S6) could be flagged as an incorrect
instantiation of the rule for quantities made by using only percents in a rule that requires amounts.

Problem difficulty

Problem difficulty can be partially attributed to structural aspects of the problem statement
such as the number of variables involved, the order in which they are presented, the number of
unit conversions, and the syntactic depth of sentences (Loftus and Suppes, 1972). In addition,
there appears to be a relationship between the form of a "familiar" computation and the form in
which it must be used to solve the stated problem. We refer to the unfamiliar form as a derived
rule.

We have categorized some additional features which we believe affect problem difficulty.
Problems whose solutions require more than one computation rule to effect a solution appear to
be more difficult than those which do not. If one or more of these rules is a derived rule,
difficulty also increases. Finally, rules can be composed, which further increases the difficulty of
the problem. Figure 5 illustrates these concepts with some example mixture problems.

- 20 -

Basic Rule Bl: The sum of the parts equals the whole.

Derived Rule Dl: To compute the amount of a part, subtract the amount of the other part from
the whole.

Basic Rule B2: The fraction of a substance in a solution times the total amount of solution gives
the amount of the substance.

Derived Rule D2: The total amount of a solutio is the amount of a substance divided by the pro
portion of that substance in the solution.

Problem 1 (Bl)
Ten gallons of water added to a barrel containing 20 gallons of water gives how many
gallons of water?

Problem 2 (Dl)
How many gallons of water must be added to a barrel containing 20 gallons of water to
obtain 30 gallons of water?

Problem 3 (B 1 + B2)
If 10 gallons of a 20% alcohol solution are added to 4 gallons of a 50% alcohol solution,
how much alcohol will be in the final solution?

Problem 4 (B 1 + D2)
If a 20% alcohol solution containing 2 gallons of alcohol is added to a 50% alcohol solu
tion containing 2 gallons of alcohol, how many total gallons of solution will be pro
duced?

Problem 5 (B 1 + B2 + addition unknown)
How many gallons of a 50% alcohol solution must be added to 10 gallons of a 20%
alcohol solution to produce a 40% solution?

Figure 5. Derived rules and the evolving difficulty of problems.

l
l
7

l
}

I
I

J

I
J

J

J

J

l
n
l
n

7
l

n

l

J

j

l

j

J

iJ

- 21 -

The system can utilize this model of problem difficulty to assess a student's skills as well as
a source of evidence for debugging student errors. The more finely problem difficulty can be
defined, the greater the ability of the system to diagnose and remediate student errors will be.

Finally, the ability to generate problems at various levels of difficulty using derived rules
can be employed to provide tutorials for a forward directed problem solving strategy . Namely,
rules used to generate a problem are the very computation rules which should be employed to
solve the problem. We are exploring methods for parsing story problems and identifying the
rules and derived rules which would be most appropriate for solving them . These could then be
used in an expert problem solving strategy.

Discussion

We have presented a model of problem solving for algebra problems that is designed to
serve as a knowledge base for an intelligent tutorial system. The system is more than just a
straightforward problem solver. It is important to note that it is based on a model of human prob
lem solving behavior. Because it accounts for a range of strategies, the system can be used to
monitor students who exhibit any one or a combination of them. Because it can solve problems
in its domain of expertise, it can be used to provide logical "next steps" in keeping with a particu
lar student's approach to a problem .

The separation of knowledge sources - entity schemata, computation rules, and strategic
rules - makes the system general, as well as flexible. Generality resides in the strategic rules
which are distinct from the domain-specific computation rules. In fact, we have defined a second
knowledge base for distance-rate-time problems which required no modifications to the strategic
rules.

Certain classes of errors are easily recognized as manifestations of missing or partially
known rules, deviations from existing rules, incorrect binding of problem entity attributes to rule
variables, and unfilled attribute slots in entity schemata .

Finally, our theory of problem difficulty provides the system with a mechanism for generat
ing problem sets at appropriate levels as well as to be used in planning problem solutions based
on the combination of rules encompassed in the problem statement.

The rule-based problem solver described in this paper is implemented in YAPS (Allen,
1983) under the Maryland version of Franz Lisp.

- 22-

References

Allen, L. (1983) YAPS: Yet another production system. TR 1146, Computer Science Dept.
University of Maryland, College Park.

Anderson, J. R., Greeno, J. G., Kline, P. J., and Neves, D. M. (1981) Acquisition of problem solv
ing skill. In J. R. Anderson (Ed.), Cognitive skills and their acquisition . Hillsdale, N. J.:
Lawrence Erlbaum and Associates.

Bobrow, D. G. (1968) Natural language input for a computer problem solving system. In Min
sky, M. (Ed.), Semantic Information Processing . Cambridge, MA: MIT Press.

Brown, J. S., Burton, R. R. (1974) SOPHIE - A pragmatic use of artificial intelligence.
Proceedings of the Annual Conferenre of the Association for Computing Machinery . San
Diego, CA, November, 1974, 572-579.

Brown, J. S., and Burton, R. R. (1978) Diagnostic models for procedural bugs in basic
mathematical skills. Cognitive Science. 1978, 2, 155-192.

Brown, J. S., and VanLehn, K. (1980) Repair theory: A generative theory of bugs in procedural
skills. Cognitive Science. 1980,4, 379-426 .

Burton, R.R. (1982) Diagnosing bugs in a simple procedural skill. In Sleeman, D. and Brown, J.
S. (Eds.), Intelligent Tutoring Systems. London: Academic Press.

Clancey, W. J. (1979) Tutoring rules for guiding a case method dialogue. International Journal
of Man-Machine Studies, 1979, 11, 25-49.

Genesereth, M. R. (1982) The role of plans in intelligent teaching systems. In Sleeman, D. and
Brown, J. S. (Eds.), Intelligent Tutoring Systems. London: Academic Press.

Goldstein, I. P. (1979) The genetic graph: A representation for the evolution of procedural
knowledge. International Journal of Man Machine Studies. 1979, 11, 51-77.

Hinsley, D. A., Hayes, J. R., and Simon, H. A. (1977) From words to equations: Meaning and
representation in algebra word problems. In M.A. Just and P.A. Carpenter (Eds.), Cog
nitive processes in comprehension . Hillsdale, N. J.: Lawrence Erlbaum Associates.

Lantz, B. S., Bregar, W. S., and Farley, A. M. (1983) An intelligent CAI system for teaching
equation solving. Journal of Computer-Based Instruction. 1983, JO, 35-42.

Larkin, J. H. (1977) Skilled problem solving in physics: A hierarchical planning model. Unpub
lished Manuscript, University of California, Berkeley, September, 1977.

l
l
l

l

7
I
I
I
I
I
I

I
J

J

r

n
n
n
l
I
l

J

J

J

J

j

j

J

- 23 -

Larkin, J. H., McDermott, J., Simon, D. P., and Simon, H. A. (1981) Expert and novice perfor
mance in solving physics problems . Science, June, 1980, 208, 1335-1342.

Luger, G. F. (1981) Mathematical model building in the solution of mechanics problems: Human
protocols and the MECHO trace. Cognitive Science, 1981, J, 55-77.

Loftus, E. F., and Suppes, P. (1972) Structural variables that determine problem-solving difficulty
in computer-assisted instruction . Journal of Educational Psychology . 1972, 6, 531-542 .

Matz, M. (1982) Towards a process model for high school algebra errors. In Sleeman D. and
Brown, J. S. (Eds.), Intelligent Tutoring Systems, London: Academic Press.

NAEP Newsletter. (1977) Study traces achievement profiles. National Assessment of Educa
tional Progress Newsletter, April, 1977.

Newell , A., and Simon, H. A. (1972) Human Problem Solving. Englewood Cliffs, NJ: Prentice
Hall Inc.

Novak, G. S. (1976) Computer understanding of physics problems stated in natural language.
American Journal of Computational Linguistics . Microfiche 53, 1976.

Rapp, C. ALGEBRA READER: An expert reader for algebra word problems . Technical Report
(in progress). Department of Computer Science, Oregon State University, Corvallis, OR.

Shortliffe, E. H. (1976) Computer-Based Medical Consultations : Mycin. New York: American
Elsevior .

Stevens, A ., Collins , A., and Goldin, S. E. (1979) Misconceptions in student's understanding.
lnternation Journal of Man-Machine Studies. 1979, 11, 145-156.

f

CRl:

CR2:

CR3:

- 24-

Appendix A

Computation Rules (Mixture Problems)

The amount of a solution is equal to the sum of the amounts of its parts.

Structure:
Constraints:
Input values:
Output value:
Computation:

Solution or composite E with parts Pl and P2
Pl .NE. P2
amount(Pl), amount(P2)
amount(E)
amount(Pl) + amount(P2)

The amount of one part of a solution is equal to the amount of solution minus
the amount of the other part.

Structure:
Constraints:
Input values:
Output values:
Computation:

Solution or composite E with parts Pl and P2
Pl .NE. P2
amount(E), amount(Pl)
amount(P2)
amount(E) - amount(Pl)

The amount of a part of a solution is the amount of solution times the propor
tion of the part.

Structure:
Constraints:
Input values:
Output value:
Computation:

Solution or composite E with part Pl

amount(E), proportion(Pl)
amount(Pl)
proportion(Pl) * amount(E)

CR4: The amount of a solution is equal to the amount of a part divided by the propor
tion of the part.

CR5:

Structure:
Constraints:
Input values:
Output value:
Computation:

Solution or composite E with part P

amount(P), proportion(P)
amount(E)
amount(P) / proportion(P)

The proportion of a part is equal to the amount of the part divided by the
amount of the solution or composite of which it is a part.

Structure: .
Constraints:
Input values:
Output value:
Computation:

Solution or composite E with part P

amount(E), amount(P)
proportion(P)
amount(P) I amount(E)

l
l
l
l
n
l
1

l
I

I
J

j

j

r

l
n
l

I
I
1

l

I
j

u
J

CR6:

CR7:

CR8:

- 25 -

The proportion of one part of a solution is equal to 1.0 minus the proportion of
the other part.

Structure:
Constraints:
Input values:
Output value:
Computation:

Solution or composite E with parts Pl and P2
Pl .NE. P2
proportion(P 1)
proportion(P2)
1.0 - proportion(Pl)

The amount of a substance in a composite is the sum of the amounts of that
substance in each of the solutions comprising the composite.

Structure:

Constraints:

Input values:
Output:
Computation:

Composite C and its equivalent solution S. C has parts
PC 1 and PC2 .. PC 1 has part PPC 1, PC2 has part PPC2,
and S has part PS.
PCl .NE. PC2, name(PPCl) = name(PPC2) = name(PS),
C .SAME AS. S
amount(PPC 1), amount(PPC2)
amount(PS)
amount(PPCl) + amount(PPC2)

If a composite and a solution are equivalent then their amounts are equal.

Structure:
Constraints:
Inputs:
Output value:
Computation:

Composite C and solution S
C and S are in the equiv relation
amount(C) or amount(S)
amount(C) or amount(S)
if input(amount(C)) then amount(S) else amount(C)

- 26 -

Appendix B: Strategic Rules

Means-ends rules

1. Given a goal attribute with a known value, note solution and utilize answer (report
result or propagate upward in goal tree).

2. Given a goal attribute, select a rule computing its value as output and determine
consistent entity bindings.

3. If all input attributes of a bound computation rule have known values, perform the
computation rule.

4. Given a bound computation rule with unknown attribute value inputs, make the
unknown input attributes goals· (if not already).

5. Given a goal attribute, select a rule having it as input and determine consistent
entity bindings.

6. Given a bound computation rule, activate the algebraic rules to create an equation
corresponding to the rule.

7. Given a goal attribute and an equation with its corresponding variable, activate the
algebraic rules to solve the equation for that variable (ie. isolate it on the left hand
side).

8. Given two equations having a non-goal variable in common, activate the algebraic
rules to combine equations, eliminating the common, non-goal variable.

Forward-Directed rules

1. If the goal attribute has a known value, note the solution and utilize the answer.

2. If all input attributes of a bound computation rule have known values, perform the
computation rule.

3. Given an attribute with a known value, select a rule with it as input and determine
consistent entity bindings.

Hill-Climbing rules

1. Given a goal attribute with correct value, note solution and utilize answer .

2. Given a goal attribute with an incorrect value as determined relative to a bound
computation rule, adjust the value of the goal variable, perform the computation
rule, and check the correctness of the goal attribute value (see rule HC6).

3. Given a goal attribute, select a rule computing its value as output and determine
consistent entity bindings.

4. Given a bound computation rule with input attributes all having correct, known
values, perform the computation rule to produce a correct output value.

5. Given a goal attribute, select a rule having it as input and determine consistent
entity binding.

6. Given a bound computation rule with unknown goal attribute input and all other
attribute values known, assign the goal attribute a reasonable value, perform the

l

l
1

l

l

j

j

j

J

I
l

1

n
7

n

I

]

I

l

j

j

J

- 27 -

computation rule, and check to see if the assignment is correct (i.e., the result is
equal to the known output value).

Expert rules

1. Given a goal attribute with kn6wn value, note ·result and utilize answer.

2. Given a new goal attribute, select a known algebraic relation among it and the set of
known attribute values and solve for the goal attribute with algebraic rules.

3. Given a goal attribute, employ means-ends rules to generate new goal attribute(s).

	Bregar_Farley_Bayley_86_30_07_A
	Bregar_Farley_Bayley_86_30_07_B

