
TR 86-10-2

UfllUEASlTLr

5ClEflCE

ARASH: A RE-STRUCTURING E!:NIRONMENT FOR

BUILDING

SOFTWARE SYSTEMS FROM

REUSABLE COMPONENTS

Abbas Birjandi

T. G. Lewis

Department of Computer Science
Oregon State University
Corvallis, Oregon 97331

(503) 754-3273

I
J

j

j

I
J

Arash:A Re-Structuring Environment For

Building

Software Systems From

Reusable Components

Abbas Birjandi

T.G. Lewis

Department of Computer Science

Oregon State University

Corvallis, Oregon 97331

(503) 754-3273

1

l

J

J

j

J

Abstract:

Arash is a rule-based tool for re-structuring source programs in or

der to build software systems from reusable components. Arash in

corporates a collection of Generalizers which transform source code

modules into abstracted modules . Conversely, a collection of Refin

ers produce a concrete instance from an abstracted source module .

Both Generalizers and Refiners operate on source code components

called fragments to restructure existing programs, documentation,

and associated text. The main significance of Arash is that it is a

rule-based tool which can be applied to a family of programming

languages, e.g. Pascal, Modula-2, and C. In this paper we describe

how to use Arash to restructure Modula-2 source code modules

taken from a programmer's database of reusable components in or

der to construct new software systems, quickly and correctly .

Keywords : Programming environment, program transformation,

source code mutation, syntax directed tools , code fragments, code

selection, customizing, general software, generic systems, program

generation, tailoring, reuse of software.

2

n
n
n
fl
l

I
j

I
J

J

I
I
J

J

u

1 Introduction

One approach for dealing with the rising cost of software development is to reuse

existing software components. The benefits of reusing existing software are : 1)

reduction in the cost and development time to produce a new program or system

of programs, and 2) an increase in the ease of maintenance and enhancement of

existing software systems [Che83] .

Arash is an instance of a meta-tool called Yashar described in [BL86] which speeds

the development of programs through reuse of existing software components. The

basic idea is to construct new program modules from old ones by applying two

automatic transformations: Generalization and Refinement. Generalizers transform

a source code module to an abstracted form. Refiners operate on the abstracted

form of a module to produce a concrete instance. Figure 1 shows a Modula-2 source

program (sortl.mod) for sorting an array of integers, its abstracted form produced

automatically by a series of Generalizers (sortl.GLS), and a concrete instance to

sort an array of strings (sortl.NEW) generated by a series of Refiners. Notice

in the abstracted version the actual abstracted program fragments are replaced by

special identifiers called meta identifiers (e.g. ##1, ##2, .. .).

Figure 1: Sort Before and After Generalization and Refinement

Although other source languages might be used with Arash, Modula-2 [Wir83] is

used as the source language. In Modula -2 , a module has two parts : 1) a definition

part which defines the visibility of constants, types, variables, and procedures of the

module which can be accessed by other modules and, 2) an implementation part that

encapsulates the actual implementation detail of the module. In addition, Arash

supports the concept of an extended module-one that has attributes . GLS contains

3

' s FIie ·Edit Reusobility Tools

sort I .GLS
BEGIN

FOR t := I TO MAX - I DO
FOR J := 1 + I TO MAX DO

IF "'"'2 THEN

E
END

·-3;
·•4;

BEGIN
r--......,=-- - -s-o_r_t 1-.m~ FOR t := I TO MAX - 1 DO

FOR J := t + 1 TO MAX DO FOR J := t + 1 TO MAX DO
IF (K[t] > K[J]) IF (SlrCmp(K[tl,K[J]) = 0) THEN
THEN StrCpy(N ,K[t]);

N := K[t]; SlrCpy(K[Jl,K[t]) ;
K[J] := K[t]; StrCpy(K[tl ,N)
KIi l := N END

END END
END It

END;
END PAT10 .

l

fl
l

l

J

J

j

I

1- I ~~ I
j

I
n
n
n
l

1

j

I
I
I
I
J

I
j

j

j

J

a reusable module with meta identifiers replacing fragments, .DRI contains a list

of meta identifiers and the actual code fragments they replaced, .MLS contains the

rules that are used for the process of generalization, and .NEW the newly generated

concrete module.

Two other components of this environment are a Programmer's Data Base (Grab

Bag) used to search for suitable source programs, and a set of Browsers to aid in

reading and understanding the existing source programs. The Programmer's Data

Base and Browser facilities are the subject of another paper and will not be dis

cussed in this paper [Bir86]. These tools are implemented in C on the Macintosh

personal computer.

Reusability

In [Ker83] reusability is defined as anyway in which previously written software can

be used for a new purpose or to avoid writing new software. This definition covers

representation of software at both object code and source code level. However,

reuse of source code in contrast to object code has the advantage of 1) adapting the

interface as well as implementation part of a module to a new interface specification,

2) providing an opportunity to tune, optimize, and eliminate unnecessary code,

and 3) providing readable code so that a programmer's knowledge of the reusable

module is increased. For these reasons, Arash operates directly on reusable source

code components.

This allows the possibility of:

1. Source code reuse/replication by reuse of part or all of existing source code

or its data structure,

4

2. Detailed algorithm reuse by reuse of source code from existing programs as

an example of how to do a new program,

3. Large-scale structural reuse by selecting and adapting program design,

4. Maintainability/ enhanceability by increasing the effectiveness of programmers

by enabling them to study programs with the aid of understandability tools,

5. Portability by facilitating the reuse of software across a _wJde range of hosts,

and

6. Optimization by enabling tuning of generated source code.

Reusability Life Cycle and Arash

When reusable components are used to build a new software system, the traditional

software life cycle is altered. Table 1 shows the difference between traditional soft

ware life cycle and reusability life cycle. The additional phases in the reusability

life cycle indicate how a designer uses existing components rather than implement

everything from the beginning .

Tools in Arash are only applicable for reusing and maintenance of existing source

programs. Maintenance may be considered as reusing the original product [Fre83].

In maintenance, problem specification is usually better defined and the reusable

module does not have to be found [Fre83]. Problem definition is the phase during

which the problem to be solved is formalized as a set of needs; requirement analysis

is the process of studying user needs to arrive at a definition of system software

requirements; system design specification is the period of time during which the

designs for architecture, software components, interfaces, and data are created,

5

l
n
n
l

l
l
I

I
j

J

J

1

l
n
n
l

1

u
j

Traditional Life Cycle

Problem Definition

Requirement Analysis

System Design Specification

Reusable Life Cycle

Problem Definition

Requirement Analysis

Find and reuse similar

Arl,I.Sh Support

None

None

None

System Design Specification

Detailed Design Specification Find and reuse similar Grab Bag ,Browsers

Implementation

Testing

System Integration

Maintenance

Detailed Design

Find and reuse existing None

routines from object code library

Find and reuse (modified) source GrabBag,Browsers

code from previous systems Generalizers,Refiners

Produce Glue Code None

Testing

System Integration

Reuse of original product

Some help by Browsers

Some help by Browsers

GrabBag, Browsers,

Generalizers, Refiners

Table 1: Reusability Life Cycle Stages vs. Traditional Life Cycle

documented, and verified to satisfy requirement; detailed design specification is the

period of time during which the design of system or a system component is doc

umented; typical contents include system or component algorithms, control logic,

data structures, data set-use information, input/output formats, and interface de

scription; implementation is the period of time during which a software product

is created from design documentation and debugged; testing is the period of time

during which the components of a software product are evaluated and integrated

to determine whether or not requirements have been satisfied; system integration is

the period of time during which a software product is integrated into its operational

environment and tested in this environment to ensure that it performs as required;

6

maintenance is the period of time during which a software product is employed in

its operational environment, monitored for satisfactory performance, and modified

as necessary to correct problems or to respond to changing requirements

A component is a basic part of a system or program; an interface is a shared

boundary to interact or communicate with another system component [Sta83]. Glue

code is the minimal extra code that may be needed to bring the reused modules

together.

2 Arash System Architecture

The overall structure of Arash is shown in Figure 2. A programmer interacts with

Arash through requests which are processed by the Arash User Interface Routines

(AUIR). These routines provide a user interface (windows, icons, menus, and a

mouse), exercise control over the activation of Generalizers and Refiners, and com

municate with the Rule Processor. Figure 3 shows what the user interface looks

Figure 2: Arasl { System Structure

like when running Arash.

A Modula-2 source program is read from a text file by the Modula-2 Interface

Data Model Builder (shown in Figure 2) following a user's request to build an

internal tree representation of the Modula-2 text. Symbol table information is

stored in the Data Dictionary, and the transformed source program file is stored in

the Tree Representation of Modula-2 data structure. This internal data structure

is processed by the Rule Processor.

7

I
l
l
l
l

I
I

J

j

l
n
l

)

I

1

J

j

Pro9r,1immer

~
Requests

Ar.ash User -----------•
Interface .. ., ..

Ruh· Repository . =~ ~~ . . .
Rui.sto ; .. •:
r•c•gniz:• t
Hodula-2 cl! 'Ii
sourc• N . Hodula-2

i
E

o•4• !
t

.ORI, .HLS

f
GeHr•liz:a-
t;..
Refin•111••t
Rui.s

~

=
RULE

PROCESSOR

--.. D,1t,1 flew

-+ · Control now

0 StGnge El•fflHits

□
Processing Ei.ments

.IILS .. . GLS., . DBI

.VEY .. n:o4,da-2
Soa::rce

Hodul.a-2
Sourc• code

Dictionary
for Hodul,1-
ldentffHrs

TrH· Reps.
ofHodula-2

DO info . for Hoduh,-2 sourc•

1----J RULE

Progr.ammer

Figure 3: Arash User Interface Options

When a user requests that the Tree Representation of a Modula-2 program be gen

eralized, a collection of AUIR's are activated which traverse the tree and produce

.MLS, .DRI, and .GLS files. The Rule Processor takes a rule from the Rule Repos

itory, processes it, calls the appropriate AUIR, and outputs the result to the .MLS,

.DRI, and .GLS attribute files.

Similarly, when the user requests that the .GLS file of some program be refined,

the Refiner uses rules from the Rule Repository to carry out a refinement. To

understand how Arash works, one must understand three central structures:

• The Internal Tree and Data Dictionary containing Modula-2 source program

data,

• The Rule Repository , Rule Processor, and Syntactic and Semantic structure

of Rules,

• The interaction among Rules, Rule Processor, and the Internal Tree/Data

Dictionary.

The Rule Processor returns the result of generalization and refinment (.GLS, .MLS,

.DRI, and .NEW) to AUIR which in turn displays each file in a text editing window

so it may be inspected and saved by the user. These files are described below:

.DRI Attribute File

The .DRI attribute file contains the rules used by the rule processor to transform

a source program into an abstraction. This file is created by Generalizers and used

8

l
n
n
n

I
J

j

I
J

I
I I
I

j

I
J

J

for refining a module to a concrete form. The rules in a .DRI file are copied into

the rule repository by A UIR prior to refining an abstracted module to a concrete

one.

.MLS Attribute File

The .MLS attribute file is a text file generated by the rule processor during the

generalization of a source program. It contains a list of meta identifiers and the

actual source code that each meta identifier replaced. For example, see Figure 4.

The .MLS file is used by the Refiner to replace meta identifiers with actual source

Figure 4: Attribute Files Generated by Generalizers

code. The contents of a .MLS file may be modified either by a rule, or by manual

editing of the file prior to Refinement. Such modifications allow for restructuring

of a reusable module to tailor it to a new purpose.

.GLS Attribute File

For each source program module which is abstracted by the Generalizers an at

tribute file .GLS is created which contains a textual representation of the abstracted

module . It serves as visual feedback to the user to verify the operation of the Gen

eralizers and has no other significance. The Refiners operate directly on the tree

representation of the original input.

9

l
n
n
~

l
l
l

l
)

)

I
)

I
I
J

n
n

u
J

r s FIie Edit Reusobility Tools

sort I.GLS
BEGIN

FOR 1 := 1 TO MAX - 1
FOR J := 1 + 1 TO MAX "" 1

IF ""2 THEN INTEGER
•-3;
••4; --s

""2
(K[1I > K[jl)

END
""3
N := K[11 ~

END
END

END PATIO.

'' 4 ,.o sortl.DRI
K[JI := K[1! 66 :@01 = @02:1:01

66:(!l>J04
16:IF @01:1:06 THEN@+@*/@n/@n@-END

Internal Tree Structure

All inputs to Arash are first converted to a tree structure by the Modula-2 Internal

Data Model Builder as shown in Figure 2.

Figure 5 shows a Modula-2 source code program as it 1s converted into a tree

structure by the Internal Data Model Builder.

Figure 5: Internal representation of an object in Arash

Each node of the tree holds four categories of information:

Label Info.: Each node is assigned a label which indicates its type. Type Infor

mation is used by the rule processor to decide what rule to apply to the values

stored at each node. In Figure 5 node types 17, 43, 70, ... refer to different

logical parts of a typical Modula-2 source program. Note that the tree repre

sentation of the sample has some extra node types (45, 43 second subtree of

node 88) not usually found in an abstract syntax tree.

Data Dictionary Reference Pointer: The data dictionary captures and dissem

inates information related to attributes of the nodes of the tree. Figure 5 shows

the data dictionary of the sample Modula-2 source program. The scope of the

main module is assumed to start from 1, so the scope value for W will be 1

in the data dictionary .

Link Information: Link information maintains the internal representation of a

tree. Children of each node are numbered sequentially from the left to right.

This sequence number is used to access a child of a node. For example, in

Figure 5 node label 17 has four children that are numbered frn111 left to right

10

l
7
n
n
n

I
I
I
J

l
7
n
n
f 1

J

J

Root

1

43 1 0

~
37 0 0

1

n

Legend j1abel I DD~ AOL

n : Node sequence number

label : Node Type
DDP: Data Dictionary Reference

Pointer
AOL: Application/Data Linkage

4

43

84 O 0

2

79

66

DDP = O no Data Dictionary Reference
ADL = O no Application/Data Linkage

17: implementat ion
37: list of variable declarations
42: number
43: id
44 :;
45 ::
66 : assignment statement
70: block

71: declaration part
79: list of statements
84: body of module
88: first variable

0
Data Dictionary

PAT12A (43)

2 W(43) ... 1

3 INTEGER (43)

4 0 (42)

(n) = node type
_. m=scope

IMPLEMENTATION MODULE PAT12A;

VAR W: INTEGER;
BEGIN

W ::O;

END PAT12A.

1

as 1 (node 43), 2 (node 44), 3 (node 70), and 4 (node43). Internally, the n-ary

tree shown in Figure 5 is maintained as a binary tree based on the natural

transformation in [Knu73].

Application data/linkage: Each node of the tree contains an application data/linkage

field that is used to either hold user-defined values or extend the data struc

ture of each node without altering other portions of the system. In Arash this

field has not been used.

Rule Repository

The Rule Repository is the storage element where rules are stored and accessed by

the rule processor. This storage element is divided into two logical parts. The first

part contains rules to recognize Modula-2 source programs and the second part

stores Generalization and Refinement Rules.

Rules To Recognize Modula-2 Source Programs

These rules reconstruct Modula-2 source programs from the tree representation

of Modula-2 source programs. These are copied into the rule repository by the

rule processor from Arash.DRI file prior to processing the tree representation. See

Appendix B for a list of these rules.

Generalization and Refinement Rules

Generalization of Modula-2 source programs and the refinement of the abstracted

modules to concrete ones are done by a set of rules that are either generated by

11

1
n
n
I
l
I
I
l
l
I
J

J

I
J

I
J

1
n
n

l
I
I

J

J

1

j

j

J

Generalizers, or supplied by the user through creation or modification of .DRI or

.MLS files. Appendix A lists functions which produce generalization and refinement

rules, automatically. Manual modification of .DRI or .MLS files results in rules for

specific transformations, also.

The Rule Processor

The Rule Processor is a transformational unit which converts Modula -2 source

code stored in the tree representation into either Generalized or Refined output.

Figure 6 shows t.he execution environment of the rule processor. Rules direct the

rule processor to perform transformational operations on a Modula-2 source code

tree. The transformational operations are directed by rules to either reconstruct a

Modula-2 program from its tree representation, or to generalize/refine. The rules

to reconstruct Modula-2 programs are always the same and reside in the Rule

Repository. The rules for generalization are created by the Generalizers and copied

to the Rule Repository, on the fly. The rules for refinement are copied from a .DRI

file into the Rule Repository prior to refinement.

Figure 6: Arash's Rule Processor Execution Environment

The refinement rules copied from a .DRI file into the Rule Repository reference

special-purpose functions which must be installed by loading them into Arash.

A function table is provided for this purpose. Function Table is a vector that

stores the address of Arash Generalizers and Refiners. These functions are listed in

Appendix A.

12

Date Dictioner\j lnformetfon

Tree
Representetfon
of Input ---~

runctfon
Tobie

sustem
fuftction c•lta

Pre-Comp11 er Ve sher
Support Routinea

6enere zer en
Reriner
Functione

,.---,... Control flow

,.---,... Doto flow

VASHAR
Engine

Scratch Pad Area

._ Rule• frem Rule
Repo1ito'l11

Outi,ut

l
n
l

. J

j

J

J

n
n
n
f l

I
I
I

I I

I
I
J

J

J

Scratch Pad Area

The Scratch Pad Area is a set of Registers used by functions that carry out gener

alization and refinement to communicate among themselves and the rule processor.

Access from within a rule is symbolically referenced as Rn where n is a two digit

register number. There are 40 registers {R01 - R40} defined for such purposes.

Rule Processing

The rule processor traverses the tree and processes each node in the tree according

to navigational and · operational directives specified in each rule. When a labelled

node is visited, the repository is searched for a rule with a corresponding label.

Then the rule is applied to all tree nodes with the specific label. The next node to

be visited is determined by the rule. The minimum sequencing instruction for each

rule is @* which causes the tree to be traversed in depth first order. To traverse the

tree according to the rules stored in the rule repository, the rule processor maintains

a context for each node. A context consists of:

Node Priority: used in generation of parenthesized expressions. There exists a

classical problem of regenerating expressions from expression trees when the

priority of their operators is altered by using parenthesis [Bro72,CH73,Bro77].

We have modified the solution in [Fri83] in which expression sub-trees are as

signed priorities and associativity values. These values provide the capability

to decide where to emit parentheses in regeneration of expressions. Arash's

solution is a generalization that assigns priorities to a node type rather than

the expression node so that the rule processor will emit the proper parenthe

ses. In this new method there is no need to specify the associativity relation

13

of a node.

Delimiter String Pointer: is pointer to the location of a common string (e.g.: ;)

to be emitted after each child of a node. The rule processor uses the content

of the location pointed at by Delimiter String Pointer to fetch the string and

output it as a separator of the children of a node. For example, the statements

in the body of a loop should be separated by a ; and a newline. Therefore

the Delimiter String Pointer will point to ;@n which the rule processor emits

after processing each of the children of that node. The @D instruction can

be used[BL86] to set the Delimiter String Pointer.

Pointer to Rule Definition: refers to the rule definition of a node. The rule for

each node to be processed is prefetched prior to its execution and its address

is passed to the rule processor.

Rule Processor Instruction Set

The instruction set of the Rule Processor is divided into the following:

• Tree Navigation

• Formating

• Escape and Breaking

• Register Manipulation

• Miscellaneous

14

l
l
n
n

I
l

I
I
I
I
I

l

n
l

l

I
j

j

I
J

Rule Syntax

Each rule is a mixture of text, active and passive instructions. To ·distinguish

between instructions and the text that is passed along, instructions are prefixed by

an @symbol.

The components of a rule are:

• a label, always

• one or more active instructions, always

• text, optionally

• one or more formatting instructions, optionally

The label designates the type of node to be operated on by the rule processor. The

rule is applied to all nodes of the type specified by the label. Active instructions are

responsible for, 1) sequencing the processing order of tree nodes, and 2) providing a

mechanism for communicating data and control values among the rules and support

functions. Formatting instructions and text do not have any effect on tree nodes,

and serve only to format the output. For example the following rule:

label ,..-....
02 : BEGIN ..__,_,.

text

Formatting In,t . ___,.._,_
@n@+ @M$R03 = (@01)$@01

active I n,t.

formatting Inst .
,..-....
@- END

'-v--'
text

directs the rule processor to transform every node of type 02 as follows:

• Emit a BEGIN (BEGIN)

• Emit a newline symbol (@n)

15

• Increment the indentation level by one increment unit (@+). An increment

unit is assumed to be four character positions, the default value can only be

altered prior to activation of the rule processor.

• Save the address of the first child of the current node in register R03

(@M$R03=(@01)$)

• Process the first child of the current node (@01). To make the rule processor

operate on a specific child of a node a child's sequence number is used thus

@01 designates the first child of every node of type 02.

• Decrement the indentation level by one increment unit (@-)

• Emit an END

Tree Navigational Instructions

The order in which children of a tree node are processed is specified by a sequence

number prefixed with an @. For example the following causes the rule processor to

process first, second, and forth children of all nodes labeled 20 respectively. Here,

(@103) means to ignore child 03 of node type 20.

20: @0l@02@J03@04

Formatting Instructions

Formatting instructions are for prettyprinting the textual representation obtained

from the Modula-2 tree representation. These instructions do n o t effect the state

16

1

'l

n
l

I
I
I
I
j

j

J

I

n
11

fl

l
l
I
1

l
l

J

I
j

of the nodes of a tree. For example @n, @+, and @- cause the rule processor to

emit the control sequence to generate a new line, increment indentation level, and

decrement the indentation level respectively.

Formating Inat .
~

02: BEGIN @n@+

Formating Inat. ,...,,.__
@01 @- END

The rule above causes the rule processor to do the following:

• Emit BEGIN (BEGIN)

• Emit a newline symbol (@n)

• Increment the indentation level by one increment unit (@+)

• Process the child number one (@01)

• Decrement the indentation level by one increment unit (@-)

• Emit an END (END)

Escape and Break point Instruction

The % symbol designates an escape instruction . If a navigation instruction has

an % appended to it, the rule processor will execute the function referenced by

the next two digits instead of processing the node referenced by the navigation

instructions. The two digit number following % is an index into the Function Table

which selects the support function to be executed. For example the following directs

the rule processor to skip the second child of every node whose label equals 34 and

to pass control and context of the rule processor to the 5th function referenced in

the Function Table.

17

34: @01@02%05

The @.Jn instruction directs the rule processor to execute the nth function in the

function table. In contrast to (%n), the context information is not passed to the

called function. A list of these functions is given in Appendix A. The rule processor

supports the insertion (definition) , activation, and removal of break points to tem

porarily interrupt the processing of a rule. One can use the break point facility to

step through a class of tree nodes, for example. Definition, activation and removal

of break points are described in [BL86].

Arithmetic and Relational Instructions

Arithmetic operations use Scratch Pad registers and constant values. The binary

arithmetic operators +, -, *, /, and relational operators ==, >=, <, <=, ! = are

supported.

@M$R03 = (R02 + R07) $

This rule assigns the sum of the values stored in register two and seven to regis

ter three. The precedence and order of evaluation is the same as for the C lan

guage [KR 78].

Miscellaneous Instructions

The instructions to manipulate the rule repositories, access the data dictionary

information, etc. belong to this category. For example:

18

l
l
l
l
1

]

I

J

1

n
[l

n
n
l
I
l
l
I
I
J

J

J

J

J
j

u

30: @m16$IF@01%12THEN@+@Dj;@nf@*@n@ - END$... -

will cause the rule processor to first modify the rule definition 16 to what is en

closed between two $ delimiters, and then continue with the remainder of rule 30.

To restore the original definition of rule 16, some rule must contain the following

... @r16.

One important miscellaneous instruction is the if-then-else instruction used to

select one of two alternative actions. The format of this instruction is

<label>:@?< test>?< true part>?< false part>

Anytime the rule processor encounters the rule above, it performs the < test >,

first. If the result is true then the true part is used in modifying another rule,

otherwise the false part is used for modifying a rule. For example:

86:@?{ J02 == 1)??50:{StrCmp(@0l,@02) = 0)@m66$StrCpy(@0l,@02)@r66$?

• call function number 2 in Function Table (J02)

• if returned result is 1 do the true part, in this case nothing will happen because

the true part is empty {??)

• otherwise do the else part which in this case will modify rule 50 to:

{StrCmp(@0l,@02) = 0)@m66$StrCpy(@0l,@02)@r66$

19

3 Generalizers and Refiners

Generalizers transform a Modula-2 source code component into a parameterized

form called an abstract module . Refiners operate on the abstracted module to

produce a concrete instance . Generalizer-Refiner pairs are inverse transformation

operators .

A program fragment is a piece of source code representing the stereo-typical action

sequence in programs [SE83]. Program fragments are open pieces of source code

that are meant to be modified or tuned to the particular task at hand [SE83]. For

example a WHILE loop in a sort routine can be considered a loop fragment.

An abstract module is one in which certain program fragments are abstracted into

a generic version by substituting a special identifier, called a meta identifier in the

place of the program fragment. A meta identifier is an identifier prefixed by ##
to distinguish the meta identifiers from concrete program identifiers. A concrete

module is one in which meta identifiers are replaced by user defined or refiner

generated text.

Generalizer Operation

A Generalizer transforms a set of program fragments Pi E P into a set of meta

identifiers, qi E Q, where:

P Modula-2 source code module

Pi Modula-2 fragment

Q Abstracted module

20

l
l
n
n
l
l
l
l

l
I
I

I
j

J

j

I

l
l
n
~

f]

I

l
I

j

u
J

u

qi Modula-2 meta identifier

The transformation G(P) ⇒ Q carried out by Arash Generalizers re-writes program

P into meta-program Q through a series of generalizing functions:

The generalization functions G(P) = g1 • g2 • g3 • • • gk(P) are generated by the Arash

User Interface Routines before they are applied to program fragments to create

the abstracted module. The generated rules and the tree representation of source

program P are passed to the rule processor where the instructions present in each

rule perform the generalization.

G(P) produces three kinds of output: 1) .GLS attribute file with the abstracted

Modula-2 reusable module containing meta identifiers in place of fragments, 2)

.MLS attribute file containing a list of meta identifiers and the actual code that

they replaced , and 3) .DRI attribute file containing the rules that were used to

generalize P. Figure 4 is an example of these attribute files for the sort routine

shown in Figure 1.

A user selects program fragments for generalization from a dialog, for example in

Figure 7: Dialog For Selection of Fragments

Figure 7, a user has selected all TYPE, ASSIGNMENT, and IF fragments to be

generalized. In Figure 8 the user further limits the generalization of IF primes to

their conditional parts. · Appendix C lists all menus used for generalization.

Figure 8: Dialog For Generalization of IF

21

' (I FIie Edit

Please Select Fragments For Generalization

Declarations:

0 CONST 181 TYPE O UAR O PROCEDURE Declaration

Statements:

181 Assignment ...

D Procedure Coll Rrgs.

181 IF ...
□ CRSE •••

□ RETURN

OK

□ WHILE •••

0 REPEAT •••

□ FDR •••

□ LOOP

□ WITH •••

(Cancel]

l

7
It

J

J

l

I
l
J

J

I J

j

j

J
J

j

Next, the user's selections are translated to a set of rules which define the functions

G(P) = g1 • g2 • g3 • • • gk(P). For example the rule in Figure 8 for generalizing

the conditional part of IF fragments directs the rule processor to do the following

anytime it encounters a tree node of type 16 while traversing the tree.

16:IF @01%06 THEN@+@Dj;@nj@*@n@-END

• Emit an IF (IF)

• Instead of processing the conditional part (@01) call function number 6 in

the Function Table (%06) and pass the context to it. Function number 6 in

the Function Table is Mt/JG(} which is responsible for generating the m,eta

identifier for the conditional part of any IF statement in the Modula-2 source

program, and then saving the actual replaced code along with it's meta iden

tifier in the .MLS file. See Appendix A for a list of functions which can be

referenced through the Function Table.

• Emit a THEN (THEN)

• Increment the indentation level by one increment unit (@+)

• Set the delimiter string to ;@n (@D / ;@n/)

• Process all the children of the node (@*)

• Decrement the indentation level by one increment unit (@-)

• Emit an END (END)

22

Refiner Operation

A refiner transforms a set of meta identifiers Qi E Q into a set of program fragments

Pi E P where:

P Modula-2 source code module

Pi Modula-2 fragment

Q Abstracted module

Qi Modula -2 meta fragment

The transformation R(Q) ⇒ P re-writes an abstracted module Q into a concrete

program P through a series of Refining functions:

The Ti'a are rules stored in .DRI and .MLS attribute files. Arash copies these rules

from the .DRI file into the Rule Repository prior to activation of the rule processor.

The rule processor reads the rules stored in the Rule Repository, and the tree stored

in the Tree Representation of Modula-2 sources data structure, and writes a refined

version of the module into the .NEW attribute file. Furthermore, the .MLS file

provides extra flexibility for the refinement process . If at the time of refinement the

.MLS file of the abstracted module exists, the meta identifiers in a .MLS file provide

the Refiners with: 1) a check point to see if the transformation should be done for

the fragment replaced by that meta identifier or not, and 2) check to see if any

new rules should be modified in the Rule Repository before the refinement process

for the fragment specified by that specific meta identifier. Deletion of any of the

23

l
l
n
n
n
l
l
1

I
J
J

j

7

l

j

J

J

j

IF
181 conditional

THEN
D stmt. sequence

ELSE

D stmt. sequence

00

ELSIF

D conditional

THEN

D stmt. sequence

~

r

meta identifiers in the .MLS file has the effect of disabling the refinement process

for that specific source fragment. For example, the following will cause the rule 15

to be redefined prior to execution of the Refiner which operates on the generalized

fragment represented by ##1.

meta identifier
,.-,,-_
##1 : 15: @/0l@02%10@J02

Rule to be replaced

Notice this modification is done on the fly by a Refiner while the rule processor is

active and is done in addition to the modifications made prior to activation of the

rule processor.

Consider the sortl.mod routine in Figure 1 which has been generalized and then

refined into a routine to sort an array of character strings. The comparison and

assignment operations are different for integers and strings, so the following rule in

the .DRI file converts integer operations into string operations, see Figure 9.

86:@?(J02 == 1)??50:(StrCmp(@Ol,@02) = 0)@m66$StrCpy(@0l,@02)@r66$?

When the rule processor encounters a node of type 86, (type declaration for array

elements), it activates function number 2 (J02) which returns a 1 to specify an

integer type and 0 to specify a character string type. If the evaluation of (J02 ==

1) is true, meaning that on integer sort is desired, then no rule is modified, otherwise

rule 50 is modified to:

(StrCmp(@0l,@02) = 0)@m66$StrCpy(@0l,@02)@r66$

The modification of rule 50 causes the generation of the proper comparison construct

for character strings and also modifies the assignment rule (66) to generate the

24

l
I l
n
l
l
I
I
I

I
J

J

1

l
fl
n
f l

l
I
I
j

I
I
]

j

j

u

correct constructs for character strings. See [BL86] for more details on the semantics

of the rules. Figure 10 shows the generated sort routine which resulted from using

the refinement rule above.

Figure 9: Rules For Re-Structuring Sort Fragment

Figure 10: Re-Structured New Sort Fragment

4 Conclusion

Arash was built as an experimental tool to study reusability of software systems .

Major goals of this effort were: 1) to use existing software components available in

existing libraries of source code, 2) avoid creation of new programming languages

and notations that are radically different from the majority of current software

systems [Weg83,LM83] , namely existing block structured languages, which would

discourage application of Arash, and 3) follow the philosophy in which the cre

ation of new software must occur automatically using notation which can be easily

generated by computers.

Arash meets all of the goals: 1) it operates on a block structured language, 2)

no new programming language is created, and 3) the rule based expressions for

restructuring are easily generated and processed by computer .

Access to data dictionary information, flexibility of modifying rules interactively,

and two escape mechanisms for semantic processing provide all the necessary tools

for deriving a family of concrete programs from a single abstract program.

25

' • File Edit Reusobllity Tools

;;□ sort I.ORI
B6:• ?(@J02== 1)?750:(StrCmp(e>0 1,e>02) = 0)@m66$StrCpy(e>0 1,•02)0r6 $?

fl

l
l

I
I
u
I

(-~J·tj I I

l
n
n
f l
l

j

J

J

j

;,□ sort I.NEW
TableType = ARRAV [1..1 OJ OF CHAR;

VAR I
1,J,k,l : INTEGER;
K : ARRAV [1..MAX] OF TableType;
N : TableType;

BEGIN
FOR 1 := 1 TO MAX - 1 DO

FOR J := 1 + 1 TO MAX DO
IF (Strt::mp(K[11,K[JI) = 0) THEN

Strt::py(N,K[1]) ;
Strt::py(K[Jl,K[11);
Strt::py(K[11,N)

A limitation that is inherent to the class of languages Arash supports (with the

exception of Ada[DOD82]) is the difficulty of mapping the implementation of al

gorithms that use drastically different data structures. For example, sorting a list

of numbers stored in an array versus a linked list. This problem is due to the al

gorithmic differences between indexing through elements of an array and visiting

elements of a linked list. Currently, Arash is not capable of restructuring an array

dependent algorithm into an equivalent linked list dependent algorithm.

A related project in reusability through program transformation is described in [Che83].

In that effort an extended version of ELl programming language is used as the base

language. The ELl language supports programmer-defined data types, generic rou

tines, and programmer control over type conversion [Weg74]. The abstracted pro

grams are built in ELl and the transformation is done by defining transformational

rules containing a syntactic pattern part , optionally augmented by a semantic pred

icate and a replacement. The main advantage of Arash is it's applicability to more

than one language in a family of languages and its support for existing software

programs.

26

l
l
l
l
l

I
I
I
I
J

J

J

I

I
n
n
f l
l
l
l

I I

J

J

I

J

J

J

A Generalizer and Refiner Functions

Reusability functions are divided into two groups: 1) functions for Generalization,

and 2) functions for Refinement. There is a generalization and refinement support

function defined for each language fragment. These functions are installed in the

Function Table by the Arash User Interface Routines when Arash is started. The

reference index to each function is shown in front of each function name.

The context of the rule processor, a pointer to the rule definition, and a pointer to

the tree node that will be generalized or refined are passed to the function when

activated by the Rule Processor. These functions are assumed to return a pointer

to a character string as the result of their activation. H nothing ' is to be returned,

a null pointer is returned.

A user can alter the semantics of each of the generalization and refinement functions

by installing his own.

A.1 Generalization support Functions

As part of their activities each of these functions produce the meta identifiers for

the constructs that they support.

0 MtConsG(): Generalization function for constant fragments.

1 MtTypeG(): Generalization function for type fragments.

2 MtVarG() : Generalization function for variable declaration fragments .

3 MtPrcG(): Generalization function for procedure declaration fragments.

27

4 MtAssG(): Generalization function for assignment statement fragments.

5 MtPCallG(): Generalization function for procedure call fragments. -

6 MtlfG(): Generalization function for if fragments.

7 MtCaseG (): Generalization function for case fragments.

8 MtWhileG(): Generalization function for while fragments.

9 MtRepeatG(): Generalization function for repeat call fragments.

10 MtForG(): Generalization function for for fragments.

11 MtLoopG(): Generalization function for loop fragments.

12 MtWithG(): Generalization function for with fragments.

13 MtReturnG(): Generalization function for return fragments.

28

n
n
n

I
I

I
I
I

J

J

l
l
n
n
l l
l
l
I
. I

I

I
I
J

I

A.2 Refinement Support Functions

The refinement support functions operate on the abstracted fragments to create a

concrete instance. If the .MLS file exists for the abstracted module under refinement

its functionality is extended to perform extra steps as explained in Refiner Operation

section.

0 CuConsG(): Refinement function for constant fragments.

1 CuTypeG(): Refinement function for type fragments.

2 CuVarG(): Refinement function for variable declaration fragments .

3 CuPrcG(): Refinement function for procedure declaration fragments.

4 CuAssG(): Refinement function for assignment statement fragments.

5 CuPCallG(): Refinement function for procedure call fragments.

6 CulfG(): Refinement function for if fragments.

7 CuCaseG(): Refinement function for case fragments.

8 CuWhileG(): Refinement function for while fragments.

9 CuRepeatG(): Refinement function for repeat call fragments .

10 CuForG(): Refinement function for for fragments.

11 CuLoopG(): Refinement function for loop fragments.

12 CuWithG(): Refinement function for with fragments.

13 CuReturnG(): Refinement function for return fragments.

29

B Rules To Recognize Modula-2 Source

These rules are needed to reproduce the original Modula-2 source program text

from the Tree Representation in main memory. In some cases, no rule is needed, in

which case the null rule **NA** is used.

0:

1:ARRAY ©D/,/©O1 OF ©02

2:***NA***2

3:BY ©01

4:CASE ©01 OF ©n©+©D/ l©n/©02©n©+©03©-©-©nEND

5:CONST ©D/;©n/©n©+©*//;©n©-

6:DEFINITION MODULE ©01;©n©*//.©n

7:©01 DIV ©02

8:DO ©n©+©D/;©n/©O1

9:©-ELSE©n©+©D/;©n/©O1©-©+

10:©-ELSIF ©01 THEN©n©+©D/;©n/©02©*/;©n/©-©+

11 :END

12:EXIT

13:EXPORT ©D/,/©01;

14:FOR ©01 := ©02 TO ©03 ©04 ©05 ©-©nEND

15:©+FROM ©01©02©n©-

16:IF ©01 THEN©+©*/©n/©n©-END

17:IMPLEMENTATION MODULE ©01©02©*//.©n

18:©+IMPORT ©D/./©01;©n©-

19:©01 IN ©02

20:LOOP©n©+©D/;©n/©01©-©nEND

30

l
l
n
n
I
l
I
I
l

J

I

I
I
J

I
J

l
l
n
n
l
I

1

l
1

l

j

J

21:<001 MOD <002

22:MODULE <D*//

23:NOT <001

24:***NA***24

25:<001 OR <002

26:***NA***26

27:PROCEDURE <D01<D*//

28:QUALIFIED <DD/,/<001;

29:<Dn<D+RECORD <Dn<D+<DD/;<Dn/<D*//<Dn<D-END<D-

30:REPEAT <Dn<D+<DD/;<Dn/<D01<Dn<D-UNTIL <002

31:RETURN <D*//

32: {<DD/ ./<001}

33:<DD/;<Dn/<001

34:***NA***34

35:TYPE<DD/;<Dn/<Dn<D+<D01;<Dn<D-

36:***NA***36

37:VAR <DD/;<Dn/<Dn<D+<D*//;<Dn<D-

38:WHILE <DC+<D01<DD/;<Dn/<DC-DO <D+<Dn<D02<Dn<D-END

39:WITH <001 DO <Dn<D+<DD/;<Dn/<002<0-<DnEND

40:<001

41: "<Dd"

42:<Dd

43:<Dd

44: ; <Dn

45:***NA***45

46:***NA***46

4 7: <001. <002

31

48: (001. . (002

49:(DCm((D01 < (D02)(DCm

50:(<001 > <D02)<DCm

51:(<001 = <D02)<DCm

52:(<001 >= (D02)(DCm

53:(<001 # (D02)(DCm

54:((001 <= (D02)(DCm

55:(DA1(D((D01 + (DCm(D02(D)

56:(DA2(D((D01 / (DCm(DA3(D02(DA2(D)

57:(DA2(D((D01 * (DCm(D02(D)

58:(DA1(D((D01 - (DCm(DA2(D02(DA1(D)

59:(DCm(D01 k (D02(DCm

60:***NA*60

61:***NA*61

62:***NA*62

63:***NA*63

64:***NA*64

65:***NA*65

66:<001 := <002

67:***NA*67

68:(D01A

69:***NA*69

70:(D01(Dn(D02

71:(D*/(Dn/

72: ((DD/, /(001)

73: (DD/ ./(001

74:ARRAY(DD/,/(001 OF (002

32

l
l
n
n
l
1

l

j

l
j

I
J

l
l
n
n
fl

I

I J

I
I
J
j

75:<D01<D*//

76:(<DD/; /<D01)<D02;<Dn

77: <DD/ ,/<001: <002

78: [<001] ; <Dn

79:<D01<D*D

80: <001 [<002]

81:<D~O<D(+<D01<D)

82:<D~O<D(-<D01<D)

83:<001 : <Dn<D+<DD/;<Dn/<D02<D-

84:BEGIN<Dn<D+ <DD/;<Dn/<D01<D*D<D-<DnEND

85:<001

86:(001 = <002

87: (<DD/ ,/(001)

88:<DD/,/<001 : <D02

89:SET OF <001

90:POINTER TO (001

91:<DD/,/<001 : <Dn<D+<DD/;<Dn/<002<0-

92: [<001 .. (002]

93:***NA*93

94:alD//:(001

95:<DD/./<D01

96:<001 : <002

97:<D01<D*//

98:CASE <001 OF <Dn<D+<DD/ l<Dn/<D02<Dn <003 <D-END

99:(001 = (002

100:VAR <DD/,/<001<002

101:PROCEDURE <DD/, /(<001)<002

33

102:VAR <001

103:<0D//:<001

104:<0-ELSE<Cn<C+<CD/;<Cn/<001<0-<0+

34

l

J

J

l

n
n

l

1

J

u

C Generalizer Selection Dialogs

This section contains dialog boxes used to select language fragments to be Refined..

Please Select Fragments For Generalization

Declarations :

0 CONST O TYPE O UAR O PROCEDURE 0eclorollon

Statements:

D Assignment •••

D Procedure Coll Rrgs.

□ IF •••

□ WHILE .•.

0 REPERT ••.

□ FOR •••

□ LOOP 0 CASE •••

0 RETURN 0 WITH •••

Figure C.1: Selection Dialog for Modula-2 Language Fragments

Please Select the Required Forms orTYPE
for Generalization: ·

Slmple Type D Rrroy Type D Pointer Type

OQuolldent □ lndeH D Procedure Type
D Enumeration 0 OF type D Formol Type List
OSubRonge RECORD TYPE D Return Type

□ Fleldlist

Figure C.2: Selection Dialog for Type Fragments

35

PROCEDURE

D Formal Parameters

D Formal Parameters Type

D Return Type

Figure C.3: Selection Dialog for Procedure Declaration Fragment

Select the required component for
generallzatlon

D lualue :• D ruolue

Figure C.4: Selection Dialog for Assignment Fragment

IF
. D condltlonol

THEN
D stmt. sequence

ELSE
D stmt. sequence

ELSIF

D conditlonol

THEN

D stmt. sequence

Figure C.5: Selection Dialog for IF Fragment

36

l
l
n
n
n
l
l
l
l

j

J

j

l
n
n

I

l

j

l

u
J

Select the required component for
generalfzatlon

D Argument list

Figure C.6: Selection Dialog for Procedure Call Fragment

CASE

Of
D eHpresslon

D Caselabel D stmt . sequence

ELSE

O stmt . sequence

Figure C. 7: Selection Dialog for CASE Fragment

Select the required component for
generalization

WHILE □ eHpresslon DO

D stmt. sequence

ENO

Figure C.8: Selection Dialog for WHILE Fragment

37

Select the required component for
genenillz11t1on

REPERT

0 stmt. sequence

UNTIL

OeHpresslon

Figure C.9: Selection Dialog for REPEAT Fragment

FOR

TO
ldent :• D eHpresslon

DeHpresslon
BY

D ConstEHpresslon
00

D stmt. sequence
END

Figure C.10: Selection Dialog for FOR Fragment

Select the required component for
gener11llz11tlon

WITH O deslgnotor DO

D stmt. sequence

END

~

Figure C.11: Selection Dialog for WITH Fragment

38

l
n
n
n

I
7

u
]

J

I
n
n
n
fl

1

l
J

1

J

I
f I
I
I
j

j

J
J

References

[Bir86] Abbas Birjandi. A Rule Based Environment for Software Reuse. PhD

thesis, Computer Science Department, Oregon State University, 1986.

[BL86] Abbas Birjandi and T. G. Lewis. Yashar:A Rule Based Meta-Tool For

Program Development. Technical Report 86-30-6, Department of Com

puter Science Oregon State University, Corvallis Oregin 97331, 1986.

[Bro72] P. J. Brown. Re-creation of source code from reverse polish form.

Software-Practice and Experience, 2:275-278, 1972.

[Bro77] P. J. Brown. More on the re-creation of source code from reverse polish
'

form. Software-Practice and Experience, 7:545-551, 1977.

[CH73] C. C. Charlton and P. G. Hibbard. A note on recreating source code

from the reverse polish form. Software-Practice and Experience, 3:151-

153, 1973.

[Che83] T.E. Cheatham. Reusability through program transformations. In Pro

ceedings of Workshop on Reusability in Programming, pages 122-128, The

Media Works, Inc., Newport, RI, September 1983.

[DOD82] DOD. Reference Manual for the Ada Programming Language. United

States Department of Defense, Washington DC, July 1982.

[Fre83] Peter Freeman. Reusable software engineering:concepts and research di

rections. In Proceedings on Workshop on Reusability in Programming,

pages 2-16, Newport, 9 1983.

39

[Fri83] Peter Fritzson. Adaptive Prettyprinting of Abstract Syntax Applied to

ADA and PASCAL. Technical Report, Deptartment of Computer Sci

ence, Linkoping University, Linkoping, Sweden, September 1983.

[Ker83] Kernighan. The unix system and software reusability. In Proceedings of

the Workshop on Reusability in Programming, pages 235-239, The Media

Works, Inc., Newport, RI, September 1983.

[Knu73] Donald E. Knuth. The Art of Computer Programming. Volume 1, Addi

son Wesley, 2 edition, 1973.

[KR78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan

guage. Prentice-Hall Software Series, Prentice-Hall, 1978.

[LM83] S.D. Litvintchouk and A.S. Matsumoto. Design of ada systems providing

reusable components. In Proceedings of Workshop on Reusability in Pro

gramming, pages 198-206, The Media Works, Inc., Newport, RI, Septem

ber 1983.

[SE83] Elliot Soloway and Kate Ehrlich. What do programmers reuse? theory

and experiment. In Proceedings of Workshop on Reusability in Program

ming, pages 184-191, The Media Works,Inc., Newport, RI, September

1983.

[Sta83] American National Standard. IEEE Standard Glossary of Software En

gineering Terminology. New York, February 1983.

[Weg74] Ben Wegbreit. The treatment of data types in ELL Communication of

the ACM, 17(5):251-264, May 1974.

40

l
l
I
n
n

I
I
I

J

J

l
n
n
f1

1

l
l
I

I
J

J

I
J
J

j

[Weg83] Peter Wegner. Varieties of reusability. In Proceedings of Workshop on

Reusability in Programming, pages 30-44, The Media Works, Inc., New

port,RI, 9 1983.

[Wir83] Niklaus Wirth. Programming In Modula -2. Texts and Monographs m

Computer Science, Springer-Verlag, Berlin Heidelberg, 1983.

41

	Birjandi_Lewis_86_10_02_A
	Birjandi_Lewis_86_10_02_B

