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Abstract: 

Arash is a rule-based tool for re-structuring source programs in or

der to build software systems from reusable components. Arash in

corporates a collection of Generalizers which transform source code 

modules into abstracted modules . Conversely, a collection of Refin 

ers produce a concrete instance from an abstracted source module . 

Both Generalizers and Refiners operate on source code components 

called fragments to restructure existing programs, documentation, 

and associated text. The main significance of Arash is that it is a 

rule-based tool which can be applied to a family of programming 

languages, e.g. Pascal, Modula-2, and C. In this paper we describe 

how to use Arash to restructure Modula-2 source code modules 

taken from a programmer's database of reusable components in or

der to construct new software systems, quickly and correctly . 

Keywords : Programming environment, program transformation, 

source code mutation, syntax directed tools , code fragments, code 

selection, customizing, general software, generic systems, program 

generation, tailoring, reuse of software. 
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1 Introduction 

One approach for dealing with the rising cost of software development is to reuse 

existing software components. The benefits of reusing existing software are : 1) 

reduction in the cost and development time to produce a new program or system 

of programs, and 2) an increase in the ease of maintenance and enhancement of 

existing software systems [Che83] . 

Arash is an instance of a meta-tool called Yashar described in [BL86] which speeds 

the development of programs through reuse of existing software components. The 

basic idea is to construct new program modules from old ones by applying two 

automatic transformations: Generalization and Refinement. Generalizers transform 

a source code module to an abstracted form. Refiners operate on the abstracted 

form of a module to produce a concrete instance. Figure 1 shows a Modula-2 source 

program (sortl.mod) for sorting an array of integers, its abstracted form produced 

automatically by a series of Generalizers (sortl.GLS), and a concrete instance to 

sort an array of strings (sortl.NEW) generated by a series of Refiners. Notice 

in the abstracted version the actual abstracted program fragments are replaced by 

special identifiers called meta identifiers (e.g. ##1, ##2, .. . ). 

Figure 1: Sort Before and After Generalization and Refinement 

Although other source languages might be used with Arash, Modula-2 [Wir83] is 

used as the source language. In Modula -2 , a module has two parts : 1) a definition 

part which defines the visibility of constants, types, variables, and procedures of the 

module which can be accessed by other modules and, 2) an implementation part that 

encapsulates the actual implementation detail of the module. In addition, Arash 

supports the concept of an extended module-one that has attributes . GLS contains 
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' s FIie ·Edit Reusobility Tools 

sort I .GLS 
BEGIN 

FOR t := I TO MAX - I DO 
FOR J := 1 + I TO MAX DO 

IF "'"'2 THEN 

E 
END 

·-3; 
·•4; 

BEGIN 
r--......,=-- - -s-o_r_t 1-.m~ FOR t := I TO MAX - 1 DO 

FOR J := t + 1 TO MAX DO FOR J := t + 1 TO MAX DO 
IF ( K[t] > K[J]) IF (SlrCmp(K[tl,K[J]) = 0) THEN 
THEN StrCpy(N ,K[t]); 

N := K[t]; SlrCpy(K[Jl,K[t]) ; 
K[J] := K[t]; StrCpy(K[tl ,N) 
KIi l := N END 

END END 
END It 

END; 
END PAT10 . 
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a reusable module with meta identifiers replacing fragments, .DRI contains a list 

of meta identifiers and the actual code fragments they replaced, .MLS contains the 

rules that are used for the process of generalization, and .NEW the newly generated 

concrete module. 

Two other components of this environment are a Programmer's Data Base ( Grab

Bag) used to search for suitable source programs, and a set of Browsers to aid in 

reading and understanding the existing source programs. The Programmer's Data 

Base and Browser facilities are the subject of another paper and will not be dis

cussed in this paper [Bir86]. These tools are implemented in C on the Macintosh 

personal computer. 

Reusability 

In [Ker83] reusability is defined as anyway in which previously written software can 

be used for a new purpose or to avoid writing new software. This definition covers 

representation of software at both object code and source code level. However, 

reuse of source code in contrast to object code has the advantage of 1) adapting the 

interface as well as implementation part of a module to a new interface specification, 

2) providing an opportunity to tune, optimize, and eliminate unnecessary code, 

and 3) providing readable code so that a programmer's knowledge of the reusable 

module is increased. For these reasons, Arash operates directly on reusable source 

code components. 

This allows the possibility of: 

1. Source code reuse/replication by reuse of part or all of existing source code 

or its data structure, 
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2. Detailed algorithm reuse by reuse of source code from existing programs as 

an example of how to do a new program, 

3. Large-scale structural reuse by selecting and adapting program design, 

4. Maintainability/ enhanceability by increasing the effectiveness of programmers 

by enabling them to study programs with the aid of understandability tools, 

5. Portability by facilitating the reuse of software across a _wJde range of hosts, 

and 

6. Optimization by enabling tuning of generated source code. 

Reusability Life Cycle and Arash 

When reusable components are used to build a new software system, the traditional 

software life cycle is altered. Table 1 shows the difference between traditional soft

ware life cycle and reusability life cycle. The additional phases in the reusability 

life cycle indicate how a designer uses existing components rather than implement 

everything from the beginning . 

Tools in Arash are only applicable for reusing and maintenance of existing source 

programs. Maintenance may be considered as reusing the original product [Fre83]. 

In maintenance, problem specification is usually better defined and the reusable 

module does not have to be found [Fre83]. Problem definition is the phase during 

which the problem to be solved is formalized as a set of needs; requirement analysis 

is the process of studying user needs to arrive at a definition of system software 

requirements; system design specification is the period of time during which the 

designs for architecture, software components, interfaces, and data are created, 
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Traditional Life Cycle 

Problem Definition 

Requirement Analysis 

System Design Specification 

Reusable Life Cycle 

Problem Definition 

Requirement Analysis 

Find and reuse similar 

Arl,I.Sh Support 

None 

None 

None 

System Design Specification 

Detailed Design Specification Find and reuse similar Grab Bag ,Browsers 

Implementation 

Testing 

System Integration 

Maintenance 

Detailed Design 

Find and reuse existing None 

routines from object code library 

Find and reuse (modified) source GrabBag,Browsers 

code from previous systems Generalizers,Refiners 

Produce Glue Code None 

Testing 

System Integration 

Reuse of original product 

Some help by Browsers 

Some help by Browsers 

GrabBag, Browsers, 

Generalizers, Refiners 

Table 1: Reusability Life Cycle Stages vs. Traditional Life Cycle 

documented, and verified to satisfy requirement; detailed design specification is the 

period of time during which the design of system or a system component is doc

umented; typical contents include system or component algorithms, control logic, 

data structures, data set-use information, input/output formats, and interface de

scription; implementation is the period of time during which a software product 

is created from design documentation and debugged; testing is the period of time 

during which the components of a software product are evaluated and integrated 

to determine whether or not requirements have been satisfied; system integration is 

the period of time during which a software product is integrated into its operational 

environment and tested in this environment to ensure that it performs as required; 
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maintenance is the period of time during which a software product is employed in 

its operational environment, monitored for satisfactory performance, and modified 

as necessary to correct problems or to respond to changing requirements 

A component is a basic part of a system or program; an interface is a shared 

boundary to interact or communicate with another system component [Sta83]. Glue 

code is the minimal extra code that may be needed to bring the reused modules 

together. 

2 Arash System Architecture 

The overall structure of Arash is shown in Figure 2. A programmer interacts with 

Arash through requests which are processed by the Arash User Interface Routines 

(AUIR). These routines provide a user interface (windows, icons, menus, and a 

mouse), exercise control over the activation of Generalizers and Refiners, and com

municate with the Rule Processor. Figure 3 shows what the user interface looks 

Figure 2: Arasl { System Structure 

like when running Arash. 

A Modula-2 source program is read from a text file by the Modula-2 Interface 

Data Model Builder ( shown in Figure 2) following a user's request to build an 

internal tree representation of the Modula-2 text. Symbol table information is 

stored in the Data Dictionary, and the transformed source program file is stored in 

the Tree Representation of Modula-2 data structure. This internal data structure 

is processed by the Rule Processor. 
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Figure 3: Arash User Interface Options 

When a user requests that the Tree Representation of a Modula-2 program be gen

eralized, a collection of AUIR's are activated which traverse the tree and produce 

.MLS, .DRI, and .GLS files. The Rule Processor takes a rule from the Rule Repos

itory, processes it, calls the appropriate AUIR, and outputs the result to the .MLS, 

.DRI, and .GLS attribute files. 

Similarly, when the user requests that the .GLS file of some program be refined, 

the Refiner uses rules from the Rule Repository to carry out a refinement. To 

understand how Arash works, one must understand three central structures: 

• The Internal Tree and Data Dictionary containing Modula-2 source program 

data, 

• The Rule Repository , Rule Processor, and Syntactic and Semantic structure 

of Rules, 

• The interaction among Rules, Rule Processor, and the Internal Tree/Data 

Dictionary. 

The Rule Processor returns the result of generalization and refinment (.GLS, .MLS, 

.DRI, and .NEW) to AUIR which in turn displays each file in a text editing window 

so it may be inspected and saved by the user. These files are described below: 

.DRI Attribute File 

The .DRI attribute file contains the rules used by the rule processor to transform 

a source program into an abstraction. This file is created by Generalizers and used 
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for refining a module to a concrete form. The rules in a .DRI file are copied into 

the rule repository by A UIR prior to refining an abstracted module to a concrete 

one. 

.MLS Attribute File 

The .MLS attribute file is a text file generated by the rule processor during the 

generalization of a source program. It contains a list of meta identifiers and the 

actual source code that each meta identifier replaced. For example, see Figure 4. 

The .MLS file is used by the Refiner to replace meta identifiers with actual source 

Figure 4: Attribute Files Generated by Generalizers 

code. The contents of a .MLS file may be modified either by a rule, or by manual 

editing of the file prior to Refinement. Such modifications allow for restructuring 

of a reusable module to tailor it to a new purpose. 

.GLS Attribute File 

For each source program module which is abstracted by the Generalizers an at

tribute file .GLS is created which contains a textual representation of the abstracted 

module . It serves as visual feedback to the user to verify the operation of the Gen

eralizers and has no other significance. The Refiners operate directly on the tree 

representation of the original input. 
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sort I.GLS 
BEGIN 

FOR 1 := 1 TO MAX - 1 
FOR J := 1 + 1 TO MAX "" 1 

IF ""2 THEN INTEGER 
•-3; 
••4; --s 

""2 
(K[1I > K[jl) 

END 
""3 
N := K[11 ~ 

END 
END 

END PATIO. 

'' 4 ,.o sortl.DRI 
K[JI := K[1! 66 :@01 = @02:1:01 

66:(!l>J04 
16:IF @01:1:06 THEN@+@*/@n/@n@-END 



Internal Tree Structure 

All inputs to Arash are first converted to a tree structure by the Modula-2 Internal 

Data Model Builder as shown in Figure 2. 

Figure 5 shows a Modula-2 source code program as it 1s converted into a tree 

structure by the Internal Data Model Builder. 

Figure 5: Internal representation of an object in Arash 

Each node of the tree holds four categories of information: 

Label Info.: Each node is assigned a label which indicates its type. Type Infor

mation is used by the rule processor to decide what rule to apply to the values 

stored at each node. In Figure 5 node types 17, 43, 70, ... refer to different 

logical parts of a typical Modula-2 source program. Note that the tree repre

sentation of the sample has some extra node types ( 45, 43 second subtree of 

node 88) not usually found in an abstract syntax tree. 

Data Dictionary Reference Pointer: The data dictionary captures and dissem

inates information related to attributes of the nodes of the tree. Figure 5 shows 

the data dictionary of the sample Modula-2 source program. The scope of the 

main module is assumed to start from 1, so the scope value for W will be 1 

in the data dictionary . 

Link Information: Link information maintains the internal representation of a 

tree. Children of each node are numbered sequentially from the left to right. 

This sequence number is used to access a child of a node. For example, in 

Figure 5 node label 17 has four children that are numbered frn111 left to right 
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1 

43 1 0 

~ 
37 0 0 

1 

n 

Legend j1abel I DD~ AOL 

n : Node sequence number 

label : Node Type 
DDP: Data Dictionary Reference 

Pointer 
AOL: Application/Data Linkage 

4 

43 

84 O 0 

2 

79 

66 

DDP = O no Data Dictionary Reference 
ADL = O no Application/Data Linkage 

17: implementat ion 
37: list of variable declarations 
42: number 
43: id 
44 :; 
45 :: 
66 : assignment statement 
70: block 

71: declaration part 
79: list of statements 
84: body of module 
88: first variable 

0 
Data Dictionary 

PAT12A (43) 

2 W(43) ... 1 

3 INTEGER (43) 

4 0 (42) 

(n) = node type 
_. m=scope 

IMPLEMENTATION MODULE PAT12A; 

VAR W: INTEGER; 
BEGIN 

W ::O; 

END PAT12A. 
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as 1 ( node 43), 2 (node 44), 3 ( node 70), and 4 ( node43). Internally, the n-ary 

tree shown in Figure 5 is maintained as a binary tree based on the natural 

transformation in [Knu73]. 

Application data/linkage: Each node of the tree contains an application data/linkage 

field that is used to either hold user-defined values or extend the data struc

ture of each node without altering other portions of the system. In Arash this 

field has not been used. 

Rule Repository 

The Rule Repository is the storage element where rules are stored and accessed by 

the rule processor. This storage element is divided into two logical parts. The first 

part contains rules to recognize Modula-2 source programs and the second part 

stores Generalization and Refinement Rules. 

Rules To Recognize Modula-2 Source Programs 

These rules reconstruct Modula-2 source programs from the tree representation 

of Modula-2 source programs. These are copied into the rule repository by the 

rule processor from Arash.DRI file prior to processing the tree representation. See 

Appendix B for a list of these rules. 

Generalization and Refinement Rules 

Generalization of Modula-2 source programs and the refinement of the abstracted 

modules to concrete ones are done by a set of rules that are either generated by 
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Generalizers, or supplied by the user through creation or modification of .DRI or 

.MLS files. Appendix A lists functions which produce generalization and refinement 

rules, automatically. Manual modification of .DRI or .MLS files results in rules for 

specific transformations, also. 

The Rule Processor 

The Rule Processor is a transformational unit which converts Modula -2 source 

code stored in the tree representation into either Generalized or Refined output. 

Figure 6 shows t.he execution environment of the rule processor. Rules direct the 

rule processor to perform transformational operations on a Modula-2 source code 

tree. The transformational operations are directed by rules to either reconstruct a 

Modula-2 program from its tree representation, or to generalize/refine. The rules 

to reconstruct Modula-2 programs are always the same and reside in the Rule 

Repository. The rules for generalization are created by the Generalizers and copied 

to the Rule Repository, on the fly. The rules for refinement are copied from a .DRI 

file into the Rule Repository prior to refinement. 

Figure 6: Arash's Rule Processor Execution Environment 

The refinement rules copied from a .DRI file into the Rule Repository reference 

special-purpose functions which must be installed by loading them into Arash. 

A function table is provided for this purpose. Function Table is a vector that 

stores the address of Arash Generalizers and Refiners. These functions are listed in 

Appendix A. 
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Scratch Pad Area 

The Scratch Pad Area is a set of Registers used by functions that carry out gener

alization and refinement to communicate among themselves and the rule processor. 

Access from within a rule is symbolically referenced as Rn where n is a two digit 

register number. There are 40 registers {R01 - R40} defined for such purposes. 

Rule Processing 

The rule processor traverses the tree and processes each node in the tree according 

to navigational and · operational directives specified in each rule. When a labelled 

node is visited, the repository is searched for a rule with a corresponding label. 

Then the rule is applied to all tree nodes with the specific label. The next node to 

be visited is determined by the rule. The minimum sequencing instruction for each 

rule is @* which causes the tree to be traversed in depth first order. To traverse the 

tree according to the rules stored in the rule repository, the rule processor maintains 

a context for each node. A context consists of: 

Node Priority: used in generation of parenthesized expressions. There exists a 

classical problem of regenerating expressions from expression trees when the 

priority of their operators is altered by using parenthesis [Bro72,CH73,Bro77]. 

We have modified the solution in [Fri83] in which expression sub-trees are as

signed priorities and associativity values. These values provide the capability 

to decide where to emit parentheses in regeneration of expressions. Arash's 

solution is a generalization that assigns priorities to a node type rather than 

the expression node so that the rule processor will emit the proper parenthe

ses. In this new method there is no need to specify the associativity relation 
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of a node. 

Delimiter String Pointer: is pointer to the location of a common string ( e.g.: ;) 

to be emitted after each child of a node. The rule processor uses the content 

of the location pointed at by Delimiter String Pointer to fetch the string and 

output it as a separator of the children of a node. For example, the statements 

in the body of a loop should be separated by a ; and a newline. Therefore 

the Delimiter String Pointer will point to ;@n which the rule processor emits 

after processing each of the children of that node. The @D instruction can 

be used[BL86] to set the Delimiter String Pointer. 

Pointer to Rule Definition: refers to the rule definition of a node. The rule for 

each node to be processed is prefetched prior to its execution and its address 

is passed to the rule processor. 

Rule Processor Instruction Set 

The instruction set of the Rule Processor is divided into the following: 

• Tree Navigation 

• Formating 

• Escape and Breaking 

• Register Manipulation 

• Miscellaneous 
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Rule Syntax 

Each rule is a mixture of text, active and passive instructions. To ·distinguish 

between instructions and the text that is passed along, instructions are prefixed by 

an @symbol. 

The components of a rule are: 

• a label, always 

• one or more active instructions, always 

• text, optionally 

• one or more formatting instructions, optionally 

The label designates the type of node to be operated on by the rule processor. The 

rule is applied to all nodes of the type specified by the label. Active instructions are 

responsible for, 1) sequencing the processing order of tree nodes, and 2) providing a 

mechanism for communicating data and control values among the rules and support 

functions. Formatting instructions and text do not have any effect on tree nodes, 

and serve only to format the output. For example the following rule: 

label ,..-.... 
02 : BEGIN ..__,_,. 

text 

Formatting In,t . ___,.._,_ 
@n@+ @M$R03 = (@01)$@01 

active I n,t. 

formatting Inst . 
,..-.... 
@- END 

'-v--' 
text 

directs the rule processor to transform every node of type 02 as follows: 

• Emit a BEGIN (BEGIN) 

• Emit a newline symbol (@n) 

15 



• Increment the indentation level by one increment unit (@+). An increment 

unit is assumed to be four character positions, the default value can only be 

altered prior to activation of the rule processor. 

• Save the address of the first child of the current node in register R03 

(@M$R03=(@01)$) 

• Process the first child of the current node (@01). To make the rule processor 

operate on a specific child of a node a child's sequence number is used thus 

@01 designates the first child of every node of type 02. 

• Decrement the indentation level by one increment unit (@-) 

• Emit an END 

Tree Navigational Instructions 

The order in which children of a tree node are processed is specified by a sequence 

number prefixed with an @. For example the following causes the rule processor to 

process first, second, and forth children of all nodes labeled 20 respectively. Here, 

(@103) means to ignore child 03 of node type 20. 

20: @0l@02@J03@04 

Formatting Instructions 

Formatting instructions are for prettyprinting the textual representation obtained 

from the Modula-2 tree representation. These instructions do n o t effect the state 
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of the nodes of a tree. For example @n, @+, and @- cause the rule processor to 

emit the control sequence to generate a new line, increment indentation level, and 

decrement the indentation level respectively. 

Formating Inat . 
~ 

02: BEGIN @n@+ 

Formating Inat. ,...,,.__ 
@01 @- END 

The rule above causes the rule processor to do the following: 

• Emit BEGIN (BEGIN) 

• Emit a newline symbol (@n) 

• Increment the indentation level by one increment unit (@+) 

• Process the child number one (@01) 

• Decrement the indentation level by one increment unit (@-) 

• Emit an END (END) 

Escape and Break point Instruction 

The % symbol designates an escape instruction . If a navigation instruction has 

an % appended to it, the rule processor will execute the function referenced by 

the next two digits instead of processing the node referenced by the navigation 

instructions. The two digit number following % is an index into the Function Table 

which selects the support function to be executed. For example the following directs 

the rule processor to skip the second child of every node whose label equals 34 and 

to pass control and context of the rule processor to the 5th function referenced in 

the Function Table. 
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34: @01@02%05 

The @.Jn instruction directs the rule processor to execute the nth function in the 

function table. In contrast to (%n), the context information is not passed to the 

called function. A list of these functions is given in Appendix A. The rule processor 

supports the insertion ( definition) , activation, and removal of break points to tem

porarily interrupt the processing of a rule. One can use the break point facility to 

step through a class of tree nodes, for example. Definition, activation and removal 

of break points are described in [BL86]. 

Arithmetic and Relational Instructions 

Arithmetic operations use Scratch Pad registers and constant values. The binary 

arithmetic operators +, -, *, /, and relational operators ==, >=, <, <=, ! = are 

supported. 

@M$R03 = ( R02 + R07) $ 

This rule assigns the sum of the values stored in register two and seven to regis

ter three. The precedence and order of evaluation is the same as for the C lan

guage [KR 78]. 

Miscellaneous Instructions 

The instructions to manipulate the rule repositories, access the data dictionary 

information, etc. belong to this category. For example: 
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30: @m16$IF@01%12THEN@+@Dj;@nf@*@n@ - END$ ... -

will cause the rule processor to first modify the rule definition 16 to what is en

closed between two $ delimiters, and then continue with the remainder of rule 30. 

To restore the original definition of rule 16, some rule must contain the following 

... @r16. 

One important miscellaneous instruction is the if-then-else instruction used to 

select one of two alternative actions. The format of this instruction is 

<label>:@?< test>?< true part>?< false part> 

Anytime the rule processor encounters the rule above, it performs the < test >, 

first. If the result is true then the true part is used in modifying another rule, 

otherwise the false part is used for modifying a rule. For example: 

86:@?{ J02 == 1)??50:{StrCmp(@0l,@02) = 0 )@m66$StrCpy(@0l,@02)@r66$? 

• call function number 2 in Function Table ( J02) 

• if returned result is 1 do the true part, in this case nothing will happen because 

the true part is empty {??) 

• otherwise do the else part which in this case will modify rule 50 to: 

{StrCmp(@0l,@02) = 0 )@m66$StrCpy(@0l,@02)@r66$ 
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3 Generalizers and Refiners 

Generalizers transform a Modula-2 source code component into a parameterized 

form called an abstract module . Refiners operate on the abstracted module to 

produce a concrete instance . Generalizer-Refiner pairs are inverse transformation 

operators . 

A program fragment is a piece of source code representing the stereo-typical action 

sequence in programs [SE83]. Program fragments are open pieces of source code 

that are meant to be modified or tuned to the particular task at hand [SE83]. For 

example a WHILE loop in a sort routine can be considered a loop fragment. 

An abstract module is one in which certain program fragments are abstracted into 

a generic version by substituting a special identifier, called a meta identifier in the 

place of the program fragment. A meta identifier is an identifier prefixed by ## 
to distinguish the meta identifiers from concrete program identifiers. A concrete 

module is one in which meta identifiers are replaced by user defined or refiner 

generated text. 

Generalizer Operation 

A Generalizer transforms a set of program fragments Pi E P into a set of meta 

identifiers, qi E Q, where: 

P Modula-2 source code module 

Pi Modula-2 fragment 

Q Abstracted module 
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qi Modula-2 meta identifier 

The transformation G(P) ⇒ Q carried out by Arash Generalizers re-writes program 

P into meta-program Q through a series of generalizing functions: 

The generalization functions G(P) = g1 • g2 • g3 • • • gk(P) are generated by the Arash 

User Interface Routines before they are applied to program fragments to create 

the abstracted module. The generated rules and the tree representation of source 

program P are passed to the rule processor where the instructions present in each 

rule perform the generalization. 

G(P) produces three kinds of output: 1) .GLS attribute file with the abstracted 

Modula-2 reusable module containing meta identifiers in place of fragments, 2) 

.MLS attribute file containing a list of meta identifiers and the actual code that 

they replaced , and 3) .DRI attribute file containing the rules that were used to 

generalize P. Figure 4 is an example of these attribute files for the sort routine 

shown in Figure 1. 

A user selects program fragments for generalization from a dialog, for example in 

Figure 7: Dialog For Selection of Fragments 

Figure 7, a user has selected all TYPE, ASSIGNMENT, and IF fragments to be 

generalized. In Figure 8 the user further limits the generalization of IF primes to 

their conditional parts. · Appendix C lists all menus used for generalization. 

Figure 8: Dialog For Generalization of IF 
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' (I FIie Edit 

Please Select Fragments For Generalization 

Declarations: 

0 CONST 181 TYPE O UAR O PROCEDURE Declaration 

Statements: 

181 Assignment ... 

D Procedure Coll Rrgs. 

181 IF ... 
□ CRSE ••• 

□ RETURN 

OK 

□ WHILE ••• 

0 REPEAT ••• 

□ FDR ••• 

□ LOOP 

□ WITH ••• 
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Next, the user's selections are translated to a set of rules which define the functions 

G(P) = g1 • g2 • g3 • • • gk(P). For example the rule in Figure 8 for generalizing 

the conditional part of IF fragments directs the rule processor to do the following 

anytime it encounters a tree node of type 16 while traversing the tree. 

16:IF @01%06 THEN@+@Dj;@nj@*@n@-END 

• Emit an IF (IF) 

• Instead of processing the conditional part (@01) call function number 6 in 

the Function Table (%06) and pass the context to it. Function number 6 in 

the Function Table is Mt/JG(} which is responsible for generating the m,eta 

identifier for the conditional part of any IF statement in the Modula-2 source 

program, and then saving the actual replaced code along with it's meta iden

tifier in the .MLS file. See Appendix A for a list of functions which can be 

referenced through the Function Table. 

• Emit a THEN (THEN) 

• Increment the indentation level by one increment unit (@+) 

• Set the delimiter string to ;@n (@D / ;@n/) 

• Process all the children of the node (@*) 

• Decrement the indentation level by one increment unit (@-) 

• Emit an END (END) 
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Refiner Operation 

A refiner transforms a set of meta identifiers Qi E Q into a set of program fragments 

Pi E P where: 

P Modula-2 source code module 

Pi Modula-2 fragment 

Q Abstracted module 

Qi Modula -2 meta fragment 

The transformation R(Q) ⇒ P re-writes an abstracted module Q into a concrete 

program P through a series of Refining functions: 

The Ti'a are rules stored in .DRI and .MLS attribute files. Arash copies these rules 

from the .DRI file into the Rule Repository prior to activation of the rule processor. 

The rule processor reads the rules stored in the Rule Repository, and the tree stored 

in the Tree Representation of Modula-2 sources data structure, and writes a refined 

version of the module into the .NEW attribute file. Furthermore, the .MLS file 

provides extra flexibility for the refinement process . If at the time of refinement the 

.MLS file of the abstracted module exists, the meta identifiers in a .MLS file provide 

the Refiners with: 1) a check point to see if the transformation should be done for 

the fragment replaced by that meta identifier or not, and 2) check to see if any 

new rules should be modified in the Rule Repository before the refinement process 

for the fragment specified by that specific meta identifier. Deletion of any of the 
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IF 
181 conditional 

THEN 
D stmt. sequence 

ELSE 

D stmt. sequence 

00 

ELSIF 

D conditional 

THEN 

D stmt. sequence 
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meta identifiers in the .MLS file has the effect of disabling the refinement process 

for that specific source fragment. For example, the following will cause the rule 15 

to be redefined prior to execution of the Refiner which operates on the generalized 

fragment represented by ##1. 

meta identifier 
,.-,,-_ 
##1 : 15: @/0l@02%10@J02 

Rule to be replaced 

Notice this modification is done on the fly by a Refiner while the rule processor is 

active and is done in addition to the modifications made prior to activation of the 

rule processor. 

Consider the sortl.mod routine in Figure 1 which has been generalized and then 

refined into a routine to sort an array of character strings. The comparison and 

assignment operations are different for integers and strings, so the following rule in 

the .DRI file converts integer operations into string operations, see Figure 9. 

86:@?( J02 == 1)??50:(StrCmp(@Ol,@02) = 0 )@m66$StrCpy(@0l,@02)@r66$? 

When the rule processor encounters a node of type 86, (type declaration for array 

elements), it activates function number 2 (J02) which returns a 1 to specify an 

integer type and 0 to specify a character string type. If the evaluation of ( J02 == 

1) is true, meaning that on integer sort is desired, then no rule is modified, otherwise 

rule 50 is modified to: 

(StrCmp(@0l,@02) = 0 )@m66$StrCpy(@0l,@02)@r66$ 

The modification of rule 50 causes the generation of the proper comparison construct 

for character strings and also modifies the assignment rule ( 66) to generate the 
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correct constructs for character strings. See [BL86] for more details on the semantics 

of the rules. Figure 10 shows the generated sort routine which resulted from using 

the refinement rule above. 

Figure 9: Rules For Re-Structuring Sort Fragment 

Figure 10: Re-Structured New Sort Fragment 

4 Conclusion 

Arash was built as an experimental tool to study reusability of software systems . 

Major goals of this effort were: 1) to use existing software components available in 

existing libraries of source code, 2) avoid creation of new programming languages 

and notations that are radically different from the majority of current software 

systems [Weg83,LM83] , namely existing block structured languages, which would 

discourage application of Arash, and 3) follow the philosophy in which the cre

ation of new software must occur automatically using notation which can be easily 

generated by computers. 

Arash meets all of the goals: 1) it operates on a block structured language, 2) 

no new programming language is created, and 3) the rule based expressions for 

restructuring are easily generated and processed by computer . 

Access to data dictionary information, flexibility of modifying rules interactively, 

and two escape mechanisms for semantic processing provide all the necessary tools 

for deriving a family of concrete programs from a single abstract program. 
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' • File Edit Reusobllity Tools 

;;□ sort I.ORI 
B6:• ?(@J02== 1 )?750:(StrCmp(e>0 1,e>02) = 0)@m66$StrCpy(e>0 1,•02)0r6 $? 

fl 

l 
l 

I 
I 
u 
I 

( -~J·tj I I 



l 
n 
n 
f l 
l 

j 

J 

J 

j 

;,□ sort I.NEW 
TableType = ARRAV [ 1..1 OJ OF CHAR; 

VAR I 
1,J,k,l : INTEGER; 
K : ARRAV [ 1..MAX] OF TableType; 
N : TableType; 

BEGIN 
FOR 1 := 1 TO MAX - 1 DO 

FOR J := 1 + 1 TO MAX DO 
IF (Strt::mp(K[11,K[JI) = 0) THEN 

Strt::py(N,K[1]) ; 
Strt::py(K[Jl,K[11); 
Strt::py(K[11,N) 



A limitation that is inherent to the class of languages Arash supports (with the 

exception of Ada[DOD82]) is the difficulty of mapping the implementation of al

gorithms that use drastically different data structures. For example, sorting a list 

of numbers stored in an array versus a linked list. This problem is due to the al

gorithmic differences between indexing through elements of an array and visiting 

elements of a linked list. Currently, Arash is not capable of restructuring an array 

dependent algorithm into an equivalent linked list dependent algorithm. 

A related project in reusability through program transformation is described in [Che83]. 

In that effort an extended version of ELl programming language is used as the base 

language. The ELl language supports programmer-defined data types, generic rou

tines, and programmer control over type conversion [Weg74]. The abstracted pro

grams are built in ELl and the transformation is done by defining transformational 

rules containing a syntactic pattern part , optionally augmented by a semantic pred

icate and a replacement. The main advantage of Arash is it's applicability to more 

than one language in a family of languages and its support for existing software 

programs. 
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A Generalizer and Refiner Functions 

Reusability functions are divided into two groups: 1) functions for Generalization, 

and 2) functions for Refinement. There is a generalization and refinement support 

function defined for each language fragment. These functions are installed in the 

Function Table by the Arash User Interface Routines when Arash is started. The 

reference index to each function is shown in front of each function name. 

The context of the rule processor, a pointer to the rule definition, and a pointer to 

the tree node that will be generalized or refined are passed to the function when 

activated by the Rule Processor. These functions are assumed to return a pointer 

to a character string as the result of their activation. H nothing ' is to be returned, 

a null pointer is returned. 

A user can alter the semantics of each of the generalization and refinement functions 

by installing his own. 

A.1 Generalization support Functions 

As part of their activities each of these functions produce the meta identifiers for 

the constructs that they support. 

0 MtConsG(): Generalization function for constant fragments. 

1 MtTypeG(): Generalization function for type fragments. 

2 MtVarG() : Generalization function for variable declaration fragments . 

3 MtPrcG(): Generalization function for procedure declaration fragments. 

27 



4 MtAssG(): Generalization function for assignment statement fragments. 

5 MtPCallG(): Generalization function for procedure call fragments. -

6 MtlfG(): Generalization function for if fragments. 

7 MtCaseG (): Generalization function for case fragments. 

8 MtWhileG(): Generalization function for while fragments. 

9 MtRepeatG(): Generalization function for repeat call fragments. 

10 MtForG(): Generalization function for for fragments. 

11 MtLoopG(): Generalization function for loop fragments. 

12 MtWithG(): Generalization function for with fragments. 

13 MtReturnG(): Generalization function for return fragments. 
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A.2 Refinement Support Functions 

The refinement support functions operate on the abstracted fragments to create a 

concrete instance. If the .MLS file exists for the abstracted module under refinement 

its functionality is extended to perform extra steps as explained in Refiner Operation 

section. 

0 CuConsG(): Refinement function for constant fragments. 

1 CuTypeG(): Refinement function for type fragments. 

2 CuVarG(): Refinement function for variable declaration fragments . 

3 CuPrcG(): Refinement function for procedure declaration fragments. 

4 CuAssG(): Refinement function for assignment statement fragments. 

5 CuPCallG(): Refinement function for procedure call fragments. 

6 CulfG(): Refinement function for if fragments. 

7 CuCaseG(): Refinement function for case fragments. 

8 CuWhileG(): Refinement function for while fragments. 

9 CuRepeatG(): Refinement function for repeat call fragments . 

10 CuForG(): Refinement function for for fragments. 

11 CuLoopG(): Refinement function for loop fragments. 

12 CuWithG(): Refinement function for with fragments. 

13 CuReturnG(): Refinement function for return fragments. 
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B Rules To Recognize Modula-2 Source 

These rules are needed to reproduce the original Modula-2 source program text 

from the Tree Representation in main memory. In some cases, no rule is needed, in 

which case the null rule **NA** is used. 

0: 

1:ARRAY ©D/,/©O1 OF ©02 

2:***NA***2 

3:BY ©01 

4:CASE ©01 OF ©n©+©D/ l©n/©02©n©+©03©-©-©nEND 

5:CONST ©D/;©n/©n©+©*//;©n©-

6:DEFINITION MODULE ©01;©n©*//.©n 

7:©01 DIV ©02 

8:DO ©n©+©D/;©n/©O1 

9:©-ELSE©n©+©D/;©n/©O1©-©+ 

10:©-ELSIF ©01 THEN©n©+©D/;©n/©02©*/;©n/©-©+ 

11 :END 

12:EXIT 

13:EXPORT ©D/,/©01; 

14:FOR ©01 := ©02 TO ©03 ©04 ©05 ©-©nEND 

15:©+FROM ©01©02©n©-

16:IF ©01 THEN©+©*/©n/©n©-END 

17:IMPLEMENTATION MODULE ©01©02©*//.©n 

18:©+IMPORT ©D/./©01;©n©-

19:©01 IN ©02 

20:LOOP©n©+©D/;©n/©01©-©nEND 
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21:<001 MOD <002 

22:MODULE <D*// 

23:NOT <001 

24:***NA***24 

25:<001 OR <002 

26:***NA***26 

27:PROCEDURE <D01<D*// 

28:QUALIFIED <DD/,/<001; 

29:<Dn<D+RECORD <Dn<D+<DD/;<Dn/<D*//<Dn<D-END<D-

30:REPEAT <Dn<D+<DD/;<Dn/<D01<Dn<D-UNTIL <002 

31:RETURN <D*// 

32: {<DD/ ./<001} 

33:<DD/;<Dn/<001 

34:***NA***34 

35:TYPE<DD/;<Dn/<Dn<D+<D01;<Dn<D-

36:***NA***36 

37:VAR <DD/;<Dn/<Dn<D+<D*//;<Dn<D-

38:WHILE <DC+<D01<DD/;<Dn/<DC-DO <D+<Dn<D02<Dn<D-END 

39:WITH <001 DO <Dn<D+<DD/;<Dn/<002<0-<DnEND 

40:<001 

41: "<Dd" 

42:<Dd 

43:<Dd 

44: ; <Dn 

45:***NA***45 

46:***NA***46 

4 7: <001. <002 
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48: (001. . (002 

49:(DCm((D01 < (D02)(DCm 

50:(<001 > <D02)<DCm 

51:(<001 = <D02)<DCm 

52:(<001 >= (D02)(DCm 

53:(<001 # (D02)(DCm 

54:((001 <= (D02)(DCm 

55:(DA1(D((D01 + (DCm(D02(D) 

56:(DA2(D((D01 / (DCm(DA3(D02(DA2(D) 

57:(DA2(D((D01 * (DCm(D02(D) 

58:(DA1(D((D01 - (DCm(DA2(D02(DA1(D) 

59:(DCm(D01 k (D02(DCm 

60:***NA*60 

61:***NA*61 

62:***NA*62 

63:***NA*63 

64:***NA*64 

65:***NA*65 

66:<001 := <002 

67:***NA*67 

68:(D01A 

69:***NA*69 

70:(D01(Dn(D02 

71:(D*/(Dn/ 

72: ((DD/, /(001) 

73: (DD/ ./(001 

74:ARRAY(DD/,/(001 OF (002 
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75:<D01<D*// 

76:(<DD/; /<D01)<D02;<Dn 

77: <DD/ ,/<001: <002 

78: [<001] ; <Dn 

79:<D01<D*D 

80: <001 [<002] 

81:<D~O<D(+<D01<D) 

82:<D~O<D(-<D01<D) 

83:<001 : <Dn<D+<DD/;<Dn/<D02<D-

84:BEGIN<Dn<D+ <DD/;<Dn/<D01<D*D<D-<DnEND 

85:<001 

86:(001 = <002 

87: (<DD/ ,/(001) 

88:<DD/,/<001 : <D02 

89:SET OF <001 

90:POINTER TO (001 

91:<DD/,/<001 : <Dn<D+<DD/;<Dn/<002<0-

92: [<001 .. (002] 

93:***NA*93 

94:alD//:(001 

95:<DD/./<D01 

96:<001 : <002 

97:<D01<D*// 

98:CASE <001 OF <Dn<D+<DD/ l<Dn/<D02<Dn <003 <D-END 

99:(001 = (002 

100:VAR <DD/,/<001<002 

101:PROCEDURE <DD/, /(<001)<002 
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102:VAR <001 

103:<0D//:<001 

104:<0-ELSE<Cn<C+<CD/;<Cn/<001<0-<0+ 
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C Generalizer Selection Dialogs 

This section contains dialog boxes used to select language fragments to be Refined.. 

Please Select Fragments For Generalization 

Declarations : 

0 CONST O TYPE O UAR O PROCEDURE 0eclorollon 

Statements: 

D Assignment ••• 

D Procedure Coll Rrgs. 

□ IF ••• 

□ WHILE .•. 

0 REPERT ••. 

□ FOR ••• 

□ LOOP 0 CASE ••• 

0 RETURN 0 WITH ••• 

Figure C.1: Selection Dialog for Modula-2 Language Fragments 

Please Select the Required Forms orTYPE 
for Generalization: · 

Slmple Type D Rrroy Type D Pointer Type 

OQuolldent □ lndeH D Procedure Type 
D Enumeration 0 OF type D Formol Type List 
OSubRonge RECORD TYPE D Return Type 

□ Fleldlist 

Figure C.2: Selection Dialog for Type Fragments 
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PROCEDURE 

D Formal Parameters 

D Formal Parameters Type 

D Return Type 

Figure C.3: Selection Dialog for Procedure Declaration Fragment 

Select the required component for 
generallzatlon 

D lualue :• D ruolue 

Figure C.4: Selection Dialog for Assignment Fragment 

IF 
. D condltlonol 

THEN 
D stmt. sequence 

ELSE 
D stmt. sequence 

ELSIF 

D conditlonol 

THEN 

D stmt. sequence 

Figure C.5: Selection Dialog for IF Fragment 
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Select the required component for 
generalfzatlon 

D Argument list 

Figure C.6: Selection Dialog for Procedure Call Fragment 

CASE 

Of 
D eHpresslon 

D Caselabel D stmt . sequence 

ELSE 

O stmt . sequence 

Figure C. 7: Selection Dialog for CASE Fragment 

Select the required component for 
generalization 

WHILE □ eHpresslon DO 

D stmt. sequence 

ENO 

Figure C.8: Selection Dialog for WHILE Fragment 
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Select the required component for 
genenillz11t1on 

REPERT 

0 stmt. sequence 

UNTIL 

OeHpresslon 

Figure C.9: Selection Dialog for REPEAT Fragment 

FOR 

TO 
ldent :• D eHpresslon 

DeHpresslon 
BY 

D ConstEHpresslon 
00 

D stmt. sequence 
END 

Figure C.10: Selection Dialog for FOR Fragment 

Select the required component for 
gener11llz11tlon 

WITH O deslgnotor DO 

D stmt. sequence 

END 

~ 

Figure C.11: Selection Dialog for WITH Fragment 
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